Sample records for l3 vertebral body

  1. Vertebral Body Growth After Craniospinal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, Katherine A.; Li Chenghong; Laningham, Fred H.

    2008-04-01

    Purpose: To estimate the effects of radiotherapy and clinical factors on vertebral growth in patients with medulloblastoma and supratentorial primitive neuroectodermal tumors treated with craniospinal irradiation (CSI) and chemotherapy. Methods and Materials: The height of eight individual or grouped vertebral bodies (C3, C3-C4, T4, T4-T5, C6-T3, T4-T7, L3, L1-L5) was measured before and after CSI (23.4 or 36-39.6 Gy) in 61 patients. Of the 61 patients, 40 were boys and 21 were girls (median age, 7 years; range, 3-13 years), treated between October 1996 and October 2003. Sagittal T{sub 1}-weighted magnetic resonance images were used for the craniocaudal measurements. Themore » measurements numbered 275 (median, 5/patient; range, 3-7). The median follow-up after CSI was 44.1 months (range, 13.8-74.9 months). Results: Significant growth was observed in all measured vertebrae. Excluding C3-C4, the growth rate of the grouped vertebrae was affected by age, gender, and CSI dose (risk classification). The risk classification alone affected the growth rates of C3 (p = 0.002) and L3 (p = 0.02). Before CSI, the length of all vertebral bodies was an increasing function of age (p <0.0001). The C3 length before CSI was affected by gender and risk classification: C3 was longer for female (p = 0.07) and high-risk (p = 0.07) patients. Conclusion: All vertebrae grew significantly after CSI, with the vertebrae of the boys and younger patients growing at a rate greater than that of their counterparts. The effect of age was similar across all vertebrae, and gender had the greatest effect on the growth of the lower cervical and upper thoracic vertebrae. The effect of the risk classification was greatest in the lumbar spine by a factor of {<=}10.« less

  2. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression

    PubMed Central

    Aubin, Carl-Éric; Chaumoître, Kathia; Mac-Thiong, Jean-Marc; Ménard, Anne-Laure; Petit, Yvan; Garo, Anaïs; Arnoux, Pierre-Jean

    2017-01-01

    Recent findings suggest that vertebral osteophytes increase the resistance of the spine to compression. However, the role of vertebral osteophytes on the biomechanical response of the spine under fast dynamic compression, up to failure, is unclear. Seventeen human spine specimens composed of three vertebrae (from T5-T7 to T11-L1) and their surrounding soft tissues were harvested from nine cadavers, aged 77 to 92 years. Specimens were imaged using quantitative computer tomography (QCT) for medical observation, classification of the intervertebral disc degeneration (Thomson grade) and measurement of the vertebral trabecular density (VTD), height and cross-sectional area. Specimens were divided into two groups (with (n = 9) or without (n = 8) substantial vertebral body osteophytes) and compressed axially at a dynamic displacement rate of 1 m/s, up to failure. Normalized force-displacement curves, videos and QCT images allowed characterizing failure parameters (force, displacement and energy at failure) and fracture patterns. Results were analyzed using chi-squared tests for sampling distributions and linear regression for correlations between VTD and failure parameters. Specimens with substantial vertebral body osteophytes present higher stiffness (2.7 times on average) and force at failure (1.8 times on average) than other segments. The presence of osteophytes significantly influences the location, pattern and type of fracture. VTD was a good predictor of the dynamic force and energy at failure for specimens without substantial osteophytes. This study also showed that vertebral body osteophytes provide a protective mechanism to the underlying vertebra against severe compression fractures. PMID:29065144

  3. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture.

    PubMed

    Park, J-H; Kang, K-C; Shin, D-E; Koh, Y-G; Son, J-S; Kim, B-H

    2014-02-01

    The progression of fractured vertebral collapse is not rare after a conservative treatment of vertebral compression fracture (VCF). Teriparatide has been shown to directly stimulate bone formation and improve bone density, but there is a lack of evidence regarding its use in fracture management. Conservative treatment with short-term teriparatide is effective for decreasing the progression of fractured vertebral body collapse. Few studies have reported on the prevention of collapsed vertebral body progression after osteoporotic VCF. Teriparatide rapidly enhances bone formation and increases bone strength. This study evaluated preventive effects of short-term teriparatide on the progression of vertebral body collapse after osteoporotic VCF. Radiographs of 68 women with single-level osteoporotic VCF at thoracolumbar junction (T11-L2) were reviewed. Among them, 32 patients were treated conservatively with teriparatide (minimum 3 months) (group I), and 36 were treated with antiresorptive (group II). We measured kyphosis and wedge angle of the fractured vertebral body, and ratios of anterior, middle, and posterior heights of the collapsed body to posterior height of a normal upper vertebra were determined. The degree of collapse progression was compared between two groups. The progression of fractured vertebral body collapse was shown in both groups, but the degree of progression was significantly lower in group I than in group II. At the last follow-up, mean increments of kyphosis and wedge angle were significantly lower in group I (4.0° ± 4.2° and 3.6° ± 3.6°) than in group II (6.8° ± 4.1° and 5.8° ± 3.5°) (p = 0.032 and p = 0.037). Decrement percentages of anterior and middle border height were significantly lower in group I (9.6 ± 10.3 and 7.4 ± 7.5 %) than in group II (18.1 ± 9.7 and 13.8 ± 12.2 %) (p = 0.001 and p = 0.025), but not in posterior height (p = 0.086). In female patients with single-level osteoporotic VCF at the thoracolumbar junction

  4. Vertebral hemangioma coincident with metastasis of colon adenocarcinoma.

    PubMed

    Zapałowicz, Krzysztof; Bierzyńska-Macyszyn, Grażyna; Stasiów, Bartłomiej; Krzan, Aleksandra; Wierzycka, Beata; Kopycka, Anna

    2016-03-01

    The authors report on colon cancer metastasis to the L-3 vertebra, which had been previously found to be involved by an asymptomatic hemangioma. A 61-year-old female patient was admitted after onset of lumbar axial pain and weakness of the right quadriceps muscle. Her medical history included colon cancer that had been diagnosed 3 years earlier and was treated via a right hemicolectomy followed by chemotherapy. Presurgical imaging revealed an asymptomatic hemangioma in the L-3 vertebral body. Computed tomography and MRI of the spine were performed after admission and revealed a hemangioma in the L-3 vertebral body as well as a soft-tissue mass protruding from the L-3 vertebral body to the spinal canal. Treatment consisted of vertebroplasty of the hemangioma, left L-3 hemilaminectomy, and removal of the pathological mass from the spinal canal and the L-3 vertebral body. Histopathological examination revealed the presence of colon cancer metastasis and a hemangioma in the same vertebra.

  5. Analysis of the spinal nerve roots in relation to the adjacent vertebral bodies with respect to a posterolateral vertebral body replacement procedure.

    PubMed

    Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F

    2017-01-01

    This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.

  6. Distal junctional failure secondary to L5 vertebral fracture—a report of two rare cases

    PubMed Central

    Tan, Jiong Hao; Tan, Kimberly-Anne; Wong, Hee-Kit

    2017-01-01

    Distal junctional failure (DJF) with fracture at the last instrumented vertebra is a rare occurrence. In this case report, we present two patients with L5 vertebral fracture post-instrumented fusion of the lumbar spine. The first patient is a 78-year-old female who had multi-level degenerative disc disease, spinal stenosis and degenerative scoliosis involving levels T12 to L5. She underwent instrumented posterolateral fusion (PLF) from T12 to L5, and transforaminal lumbar interbody fusion (TLIF) at L2/3 and L4/5. Six months after her operation, she presented with a fracture of the L5 vertebral body necessitating revision of the L5 pedicle screws, with additional TLIF of L5/S1. The second patient is a 71-year-old female who underwent decompression and TLIF of L3/4 and L4/5 for degenerative spondylolisthesis. Six months after the surgery, she developed a fracture of the L5 vertebral body with loosening of the L5 screws. The patient declined revision surgery despite being symptomatic. DJF remains poorly understood as its rare incidence precludes sufficiently powered studies within a single institution. This report aims to contribute to the currently scarce literature on DJF. PMID:28435925

  7. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    PubMed

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of

  8. Vertebral body innervation: Implications for pain.

    PubMed

    Buonocore, Michelangelo; Aloisi, Anna Maria; Barbieri, Massimo; Gatti, Anna Maria; Bonezzi, Cesare

    2010-03-01

    Vertebral fractures often cause intractable pain. To define the involvement of vertebral body innervation in pain, we collected specimens from male and female patients during percutaneous kyphoplasty, a procedure used for reconstruction of the vertebral body. Specimens were taken from 31 patients (9 men and 22 women) suffering high-intensity pain before surgery. In total, 1,876 histological preparations were obtained and analysed. Immunohistochemical techniques were used to locate the nerves in the specimens. The nerve fibres were labelled by indirect immunofluorescence with the primary antibody directed against Protein Gene Product 9.5 (PGP 9.5), a pan-neuronal marker; another primary antibody directed against type IV collagen (Col IV) was used to identify vessels and to determine their relationship with vertebral nerve fibres. The mean percentage of samples in which it was possible to identify nerve fibres was 35% in men and 29% in women. The percentages varied depending on the spinal level considered and the sex of the subject, nerve fibres being mostly present around vessels (95%). In conclusion, there is scarce innervation of the vertebral bodies, with a clear prevalence of fibres located around vessels. It seems unlikely that this pattern of vertebral body innervation is involved in vertebral pain or in pain relief following kyphoplasty.

  9. Interpedicular Approach in Percutaneous Sacroplasty for Treatment of Sacral Vertebral Body Pathologic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Latin-Small-Letter-Dotless-I rat, Ahmet Kemal, E-mail: ahmetfirat2@hotmail.com; Guemues, Burcak, E-mail: bgumus@yahoo.com; Kaya, Emin, E-mail: ekaya@inonu.edu.tr

    2011-02-15

    For this technique, bone needle is introduced into the S1 vertebral body through the interpedicular route by penetrating the central spinal canal at the level of S3-4 and passing through the vertebral body of S2-3 parallel to the anterior border of sacrum. With the interpedicular approach, two sacral vertebral bodies can be injected in one session and lower sacral body injection also is available. interpedicular technique is a safe, practical, and effective technique for the treatment of sacral vertebral body pathologic fractures.

  10. Less invasive reduction and fusion of fresh A2 and A 3 traumatic L 1-L 4 fractures with a novel vertebral body augmentation implant and short pedicle screw fixation and fusion.

    PubMed

    Korovessis, Panagiotis; Vardakastanis, Konstantinos; Repantis, Thomas; Vitsas, Vasilios

    2014-04-01

    The aim of this clinical study was to report on the efficacy in reduction and safety in PMMA leakage of a novel vertebral augmentation technique with PEEK and PMMA, together with pedicle screws in the treatment of fresh vertebral fractures in young adults. Twenty consecutive young adults aged 45 ± 11 years with fresh burst A3/AO or severely compressed A2/AO fractures underwent via a less invasive posterior approach one-staged reduction with a novel augmentation implant and PMMA plus 3-vertebrae pedicle screw fixation and fusion. Radiologic parameters as segmental kyphosis (SKA), anterior (AVBHr) and posterior vertebral body height ratio (PVBHr), spinal canal encroachment (SCE), cement leakage and functional parameters as VAS, SF-36 were measured pre- and post-operatively. Hybrid construct restored AVBHr (P < 0.000), PVBHr (P = 0.02), SKA (P = 0.015), SCE (P = 0.002) without loss of correction at an average follow-up of 17 months. PMMA leakage occurred in 3 patients (3 vertebrae) either anteriorly to the fractured vertebral body or to the adjacent disc, but in no case to the spinal canal. Two pedicle screws were malpositioned (one medially, one laterally to the pedicle at the fracture level) without neurologic sequelae. Solid posterolateral spinal fusion occurred 8-10 months post-operatively. Pre-operative VAS and SF-36 scores improved post-operatively significantly. This study showed that this novel vertebral augmentation technique using PEEK implant and PMMA reduces and stabilizes via less invasive technique A2 and A3 vertebral fractures without loss of correction and leakage to the spinal canal.

  11. High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women.

    PubMed

    Pirro, Matteo; Fabbriciani, Gianluigi; Leli, Christian; Callarelli, Laura; Manfredelli, Maria Rosaria; Fioroni, Claudio; Mannarino, Massimo Raffaele; Scarponi, Anna Maria; Mannarino, Elmo

    2010-01-01

    In the general population, low body weight and body mass index (BMI) are significant risk factors for any fracture, but the specific association between body weight, BMI, and prevalence of vertebral fractures in osteoporotic women is not fully recognized. Hence, the association between body weight, BMI, and prevalent vertebral fractures was investigated in 362 women with never-treated postmenopausal osteoporosis. All participants underwent measurement of BMI, bone mineral density (BMD), and semiquantitative assessment of vertebral fractures. Thirty percent of participants had > or =1 vertebral fracture. Body weight and BMI were associated with L1-L4 BMD (R = 0.29, P < 0.001 and R = 0.17, P = 0.009, respectively). In logistic regression analysis, BMI was positively associated with the presence of vertebral fractures independent of age and other traditional risk factors for fractures. Including weight and height instead of BMI in the multivariate model, showed weight as a positive and significant covariate of the presence of vertebral fractures (OR = 1.045; P = 0.016; 95% CI 1.008-1.084). BMI was associated with the number of vertebral fractures (rho = 0.18; P = 0.001), this association being confirmed also in the multivariate analysis (beta = 0.14; P = 0.03) after correction for smoking, early menopause, family history of fragility fractures and BMD. In conclusion, among postmenopausal women with osteoporosis, body weight and BMI are associated with a higher likelihood of having a vertebral fracture, irrespective of the positive association between weight and BMD.

  12. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    PubMed

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  13. Vertebral hemangiomas: their demographical characteristics, location along the spine and position within the vertebral body.

    PubMed

    Slon, Viviane; Stein, Dan; Cohen, Haim; Sella-Tunis, Tatiana; May, Hila; Hershkovitz, Israel

    2015-10-01

    Vertebral hemangiomas (VHs) are the most common form of benign tumors in the spine. The aim of this research was to study the prevalence of VHs in the human population, their distribution along the spine and their location in the vertebral body. The presence of VHs was assessed in full spine CT scans of 196 adults. Demographic data were gathered from medical records. VHs were present in 26.0% of the individuals studied, a rate significantly higher (χ2=43.338, p<0.001) than the prevalence reported in the literature (10.7%). Multiple VHs (≥2) appeared in 7.2% of the population studied. VHs prevalence is sex-independent, appearing in 28.6% of females and 23.5% of males (χ2=0.663, p=0.416); and age-dependent: the mean age of affected individuals (65.8 years) was significantly higher (p<0.001) than unaffected individuals (56.2 years). VH size was also age-dependent (p=0.023). No vertebra was significantly more prone to be affected by a hemangioma. T11 and T12 show the highest prevalence of VHs (3.57% of vertebrae affected). VHs were found in similar percentages in the anterior and posterior parts of the vertebral body (52.8 vs. 47.2%, respectively); and at its center and periphery (50.1 and 49.9%, respectively). VHs usually appeared at mid-height of the vertebral body or slightly higher. The reported prevalence of VHs is dependent on the demographic structure of the population studied, the size of the VHs and the method used to identify them. Overall, the phenomenon is more frequent than usually reported. VHs may appear at all vertebral levels and in all areas of the vertebral body.

  14. Estimation of stature from radiologic anthropometry of the lumbar vertebral dimensions in Chinese.

    PubMed

    Zhang, Kui; Chang, Yun-feng; Fan, Fei; Deng, Zhen-hua

    2015-11-01

    The recent study was to assess the relationship between the radiologic anthropometry of the lumbar vertebral dimensions and stature in Chinese and to develop regression formulae to estimate stature from these dimensions. A total of 412 normal, healthy volunteers, comprising 206 males and 206 females, were recruited. The linear regression analysis were performed to assess the correlation between the stature and lengths of various segments of the lumbar vertebral column. Among the regression equations created for single variable, the predictive value was greatest for the reconstruction of stature from the lumbar segment in both sexes and subgroup analysis. When individual vertebral body was used, the heights of posterior vertebral body of L3 gave the most accurate results for male group, the heights of central vertebral body of L1 provided the most accurate results for female group and female group with age above 45 years, the heights of central vertebral body of L3 gave the most accurate results for the groups with age from 20-45 years for both sexes and the male group with age above 45 years. The heights of anterior vertebral body of L5 gave the less accurate results except for the heights of anterior vertebral body of L4 provided the less accurate result for the male group with age above 45 years. As expected, multiple regression equations were more successful than equations derived from a single variable. The research observations suggest lumbar vertebral dimensions to be useful in stature estimation among Chinese population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine.

    PubMed

    Nouda, Shinya; Tomita, Seiji; Kin, Akihiro; Kawahara, Kunihiko; Kinoshita, Mitsuo

    2009-11-15

    A biomechanical study using human cadaveric thoracolumbar spinal columns. To compare the effect of treatment by vertebroplasty (VP) with polymethylmethacrylate cement and VP with calcium phosphate cement on the creation of adjacent vertebral body fracture following VP. Adjacent vertebral body fractures have been reported as a complication following VP. Twenty-four spinal columns (T10-L2) from human cadavers were subjected to dual energy radiograph absorptiometry to assess bone mineral density. They were divided into the P group and C group, and experimental vertebral compression fractures were created at T12 vertebrae. T12 vertebrae were augmented with polymethylmethacrylate and calcium phosphate cement in the P group and C group, respectively. Each spinal column was compressed until a new fracture occurred at any vertebra, and the location of newly fractured vertebra and failure load was investigated. There was no significant difference in bone mineral density at each level within each group. In the P group, a new fracture occurred at T10 in 2 specimens, T11 in 8, and L1 in 2. In the C group, it occurred at T10 in 1 specimen, T11 in 2, L1 in 1, and T12 (treated vertebra) in 8. The failure loads of the spinal column were 1774.8+/-672.3 N and 1501.2+/-556.5 N in the P group and C group, respectively. There was no significant difference in the failure load of the spinal column between each group. New vertebral fractures occurred at the vertebra adjacent to augmented vertebrae in the P group and in the augmented vertebrae in the C group. The difference in the fractured site may be because of the difference in strength between the 2 bone filler materials. Therefore, the strength of bone filler materials is considered a risk factor in developing adjacent vertebral body fractures after VP.

  16. Percutaneous CT-Guided Biopsy of C3 Vertebral Body: Modified Approach for an Old Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pua, Uei, E-mail: druei@yahoo.com; Chan, Stephen Yung-Wei

    2013-06-15

    Percutaneous biopsy of upper cervical vertebrae is challenging due to the various critical structures in the location and often requires difficult trajectory such as transoral or paramaxillary approaches. The purpose of this manuscript is to illustrate the utility of head rotation in creating a potential space for direct percutaneous access to C3 vertebral body for safe biopsy.

  17. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    PubMed

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  18. Abdominal girth, vertebral column length, and spread of spinal anesthesia in 30 minutes after plain bupivacaine 5 mg/mL.

    PubMed

    Zhou, Qing-he; Xiao, Wang-pin; Shen, Ying-yan

    2014-07-01

    The spread of spinal anesthesia is highly unpredictable. In patients with increased abdominal girth and short stature, a greater cephalad spread after a fixed amount of subarachnoidally administered plain bupivacaine is often observed. We hypothesized that there is a strong correlation between abdominal girth/vertebral column length and cephalad spread. Age, weight, height, body mass index, abdominal girth, and vertebral column length were recorded for 114 patients. The L3-L4 interspace was entered, and 3 mL of 0.5% plain bupivacaine was injected into the subarachnoid space. The cephalad spread (loss of temperature sensation and loss of pinprick discrimination) was assessed 30 minutes after intrathecal injection. Linear regression analysis was performed for age, weight, height, body mass index, abdominal girth, vertebral column length, and the spread of spinal anesthesia, and the combined linear contribution of age up to 55 years, weight, height, abdominal girth, and vertebral column length was tested by multiple regression analysis. Linear regression analysis showed that there was a significant univariate correlation among all 6 patient characteristics evaluated and the spread of spinal anesthesia (all P < 0.039) except for age and loss of temperature sensation (P > 0.068). Multiple regression analysis showed that abdominal girth and the vertebral column length were the key determinants for spinal anesthesia spread (both P < 0.0001), whereas age, weight, and height could be omitted without changing the results (all P > 0.059, all 95% confidence limits < 0.372). Multiple regression analysis revealed that the combination of a patient's 5 general characteristics, especially abdominal girth and vertebral column length, had a high predictive value for the spread of spinal anesthesia after a given dose of plain bupivacaine.

  19. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; hide

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  20. [Development and application of artificial vertebral body].

    PubMed

    Liu, Jian-Tao; Zhang, Feng; Gao, Zheng-Chao; Niu, Bin-Bin; Li, Yu-Huan; He, Xi-Jing

    2017-12-25

    Artificial vertebral body has achieved good results in treating spinal tumors, tuberculosis, fracture and other diseases. Currently, artificial vertebral body with variety of kinds and pros and cons, is generally divided into two types: fusion type and movable type. The former according to whether the height could be adjusted and strength of self-stability is divided into three types: support-fixed type, adjust-fixed type and self-fixed type. Whether the height of self-fixed type could be adjusted is dependent on structure of collar thread rotation. The latter is due to mobile device of ball-and-socket joints or hollow structures instead of the disc which retains the activity of the spine to some extent. Materials of artificial vertebral body include metals, ceramics, biomaterials, polymer composites and other materials. Titanium with a dominant role in the metal has developed to the third generation, but there are still defects such as poor surface bioactivity; ceramics with the representative of hydroxyapatite composite, magnetic bioceramics, polycrystalline alumina ceramics and so on, which have the defects of processing complex and uneven mechanical properties; biological material is mainly dominated by xenogeneic bone, which is closest to human bone in structure and properties, but has defects of low toughness and complex production; polymer composites according to biological characteristics in general consists of biodegradable type and non-biodegradable type which are respectively represented by poly-lactide and polyethylene, each with advantages and disadvantages. Although the design and materials of prosthesis have made great progress, it is difficult to fully meet requirements of spinal implants and they need be further optimized. 3D printing technology makes process of the complex structure of prosthesis and individual customization possible and has broad development prospects. However, long production cycles and high cost of defect should be overcome

  1. The evolutionary origin of the vertebrate body plan: the problem of head segmentation.

    PubMed

    Onai, Takayuki; Irie, Naoki; Kuratani, Shigeru

    2014-01-01

    The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).

  2. Vertebral sclerosis in adults.

    PubMed Central

    Russell, A S; Percy, J S; Lentle, B C

    1979-01-01

    Narrowing of the intervertebral disc space with sclerosis of the adjacent vertebral bodies may occur as a consequence of infection, neoplasia, trauma, or rheumatic disease. Some patients have been described with backache and these radiological appearances without any primary cause being apparent. The lesions were almost always of 1 or, at most, 2 vertebrae and most frequently involved the inferior margin of L4. We describe 3 patients with far more extensive vertebral involvement and present the clinical, radiological, scintiscan, and histological findings. The only patient we have seen with the better known, isolated L4/5 lesion was shown on biopsy to have staphylococcal osteomyelitis. For this reason we would still recommend a biopsy of all such sclerotic vertebral lesions if they occur in the absence of other rheumatic disease. Images PMID:434941

  3. YAP is essential for tissue tension to ensure vertebrate 3D body shape.

    PubMed

    Porazinski, Sean; Wang, Huijia; Asaoka, Yoichi; Behrndt, Martin; Miyamoto, Tatsuo; Morita, Hitoshi; Hata, Shoji; Sasaki, Takashi; Krens, S F Gabriel; Osada, Yumi; Asaka, Satoshi; Momoi, Akihiro; Linton, Sarah; Miesfeld, Joel B; Link, Brian A; Senga, Takeshi; Shimizu, Nobuyoshi; Nagase, Hideaki; Matsuura, Shinya; Bagby, Stefan; Kondoh, Hisato; Nishina, Hiroshi; Heisenberg, Carl-Philipp; Furutani-Seiki, Makoto

    2015-05-14

    Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.

  4. Case report: vertebral foreign body granuloma mimicking a skeletal metastasis.

    PubMed

    Vossen, Josephina A; Bathaii, Seyed M; Hatfield, Bryce; Hayes, Curtis W

    2018-06-01

    Intraosseous foreign body granuloma formation related to migrated surgical material is a rarely reported condition with variable imaging appearance. In this case report, we describe a foreign body granuloma that occurred in a lumbar vertebral body one level above a prior surgical fusion. The lytic appearance mimicked a skeletal metastasis in a 65-year-old patient with recently diagnosed renal cell carcinoma. To the best of our knowledge, this is the first reported case of a lumbar vertebral foreign body granuloma occurring distant from the site of surgery, indistinguishable from skeletal metastasis on radiologic examination.

  5. Age-related changes in vertebral and iliac crest 3D bone microstructure--differences and similarities.

    PubMed

    Thomsen, J S; Jensen, M V; Niklassen, A S; Ebbesen, E N; Brüel, A

    2015-01-01

    Age-related changes of vertebra and iliac crest 3D microstructure were investigated, and we showed that they were in general similar. The 95th percentile of vertebral trabecular thickness distribution increased with age for women. Surprisingly, vertebral and iliac crest bone microstructure was only weakly correlated (r = 0.38 to 0.75), despite the overall similar age-related changes. The purposes of the study were to determine the age-related changes in iliac and vertebral bone microstructure for women and men over a large age range and to investigate the relationship between the bone microstructure at these skeletal sites. Matched sets of transiliac crest bone biopsies and lumbar vertebral body (L2) specimens from 41 women (19-96 years) and 39 men (23-95 years) were micro-computed tomography (μCT) scanned, and the 3D microstructure was quantified. For both women and men, bone volume per total volume (BV/TV), connectivity density (CD), and trabecular number (Tb.N) decreased significantly, while structure model index (SMI) and trabecular separation (Tb.Sp) increased significantly with age at either skeletal site. Vertebral trabecular thickness (Tb.Th) was independent of age for both women and men, while iliac Tb.Th decreased significantly with age for men, but not for women. In general, the vertebral and iliac age-related changes were similar. The 95th percentile of the Tb.Th distribution increased significantly with age for women but was independent of age for men at the vertebral body, while it was independent of age for either sex at the iliac crest. The Tb.Th probability density functions at the two skeletal sites became significantly more similar with age for women, but not for men. The microstructural parameters at the iliac crest and the vertebral bodies were only moderately correlated from r = 0.38 for SMI in women to r = 0.75 for Tb.Sp in men. Age-related changes in vertebral and iliac bone microstructure were in general similar. The iliac

  6. Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine.

    PubMed

    Klezl, Zdenek; Majeed, Haroon; Bommireddy, Rajendranath; John, Joby

    2011-10-01

    Vertebroplasty and balloon kyphoplasty have shown to improve pain and functional outcome in cases with symptomatic vertebral fractures. Although restoration of the vertebral body height and kyphosis seemed to be easier with balloon kyphoplasty, it became clear that some of the correction achieved by the balloon is lost once it was deflated. Vertebral body stent was developed to eliminate this phenomenon. To our knowledge this is the first study in describing this technique in clinical settings. Seventeen patients with 20 fractured vertebral bodies were included. All fractures were Type A1.3 or A3.1 (incomplete burst). Information about pain (visual analogue scale-VAS) and function (Oswestry disability index-ODI) and vertebral body deformity (vertebral angle-VA) was recorded in a prospective way at regular intervals. Patients were classified into osteoporotic group (7 patients) and traumatic groups (10 patients, younger than 60 years). There were 6 male and 11 female patients with mean age of 58.1 years (31-88 years). Mean follow up was 12 months. The preoperative pain level showed a mean VAS score of 8.9 in osteoporotic group and 9.7 in traumatic group. Postoperatively, in osteoporotic group, mean VAS was 4.8 at 6 weeks, 4.0 at 6 months and 2.5 at 12 months compared with traumatic fracture group where it was 2.7 at 6 weeks, 2.2 at 6 months and 1.6 at 12 months. Mean ODI in osteoporotic group was 41.7% (14-58%) and in traumatic group it was 20.4% (6-33%). Mean vertebral body angle prior to surgery in osteoporotic group was 9.7 whilst postoperatively it was 5.2°; so the mean correction achieved was 4.5°. In traumatic group preoperative VA was 13° whilst postoperatively it was 5.7°; therefore the mean correction achieved was 7.3°. None of the patients lost reduction at their last follow up. Vertebral body stenting leads to satisfactory improvement in pain, function and kyphosis correction in the treatment of osteoporotic and traumatic fractures. Anterior spinal

  7. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis.

    PubMed

    Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li

    2017-06-01

    Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the

  8. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    PubMed

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent

  9. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations.

    PubMed

    Chen, Hao; Jia, Pu; Bao, Li; Feng, Fei; Yang, He; Li, Jin-Jun; Tang, Hai

    2015-12-05

    The cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). We retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11-L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests. The maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P < 0.001). The leakage rate of group DCPW ≤6.40 mm was lower than that of group DCPW >6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95-0.99, P < 0.001), and when the cut-off value was 4.05 mm, the diagnostic sensitivity

  10. Are spinal or paraspinal anatomic markers helpful for vertebral numbering and diagnosing lumbosacral transitional vertebrae?

    PubMed

    Tokgoz, Nil; Ucar, Murat; Erdogan, Aylin Billur; Kilic, Koray; Ozcan, Cahide

    2014-01-01

    To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels.

  11. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies

    PubMed Central

    Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.

    2013-01-01

    Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained

  12. Vertebral body clinico-morphological features following percutaneous vertebroplasty versus the conservatory approach.

    PubMed

    Constantin, Cristian; Albulescu, Dana Maria; Diţă, Daniel Răzvan; Georgescu, Claudia Valentina; Deaconu, Andrei Constantin

    2018-01-01

    Most percutaneous vertebroplasty procedures are being performed in order to relieve pain in patients with severe osteoporosis and associated stable fractures of one or more vertebral bodies. In addition, vertebroplasty is also recommended for patients suffering from post-traumatic symptoms associated with vertebral fractures, patients with large angiomas positioned inside the vertebral body, with an increased risk for collapse fracture and also patients presenting with pain associated with vertebral body metastatic disease. On another aspect, it is possible that in isolated cases, an orthopedic surgeon confronted with a vertebra plana presentation will recommend bone cement injection into the vertebral bodies adjacent to the fractured one, in order to have a better and more robust substrate for placement of screws or other fixation devices. The aim of our study is to compare results attained by the Department of Interventional Radiology, in performing this procedure, with results attained by following the classical orthopedic treatment procedure, involving non-operative treatment, using medication and bracing varying from simple extension orthoses in order to limit spinal flexion, light bracing for contiguous fractures, presenting either angulation or compression, and for severe cases standard thoracolumbosacral orthoses (TLSOs).

  13. Vertebral shape and body elongation in Triturus newts.

    PubMed

    Urošević, Aleksandar; Slijepčević, Maja D; Arntzen, Jan W; Ivanović, Ana

    2016-10-01

    Body elongation in vertebrates is often related to a lengthening of the vertebrae and an increase in their number. Changes in the number and shape of vertebrae are not necessarily linked. In tailed amphibians, a change in body shape is mostly associated with an increase in the number of trunk and tail vertebrae. Body elongation without a numerical change of vertebrae is rare. In Triturus aquatic salamanders body elongation is achieved by trunk elongation through an increase in the number of trunk vertebrae. We used computed microtomography and three-dimensional geometric morphometrics to document the size, shape and number of trunk vertebrae in seven Triturus species. The data suggest that body elongation has occurred more frequently than body shortening, possibly related to a more aquatic versus a more terrestrial locomotor style. Our results show that body elongation is achieved through an increase in the number of trunk vertebrae, and that interspecific differences in vertebral shape are correlated with this pattern of elongation. More gracile trunk vertebrae were found in the more elongated species. The shape differences are such that single trunk vertebrae can be used for the identification of species with a possible application in the identification of subfossil and fossil material. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Vertebral formula and congenital abnormalities of the vertebral column in rabbits.

    PubMed

    Proks, P; Stehlik, L; Nyvltova, I; Necas, A; Vignoli, M; Jekl, V

    2018-06-01

    The aim of this retrospective study of 330 rabbits (164 males, 166 females) was to determine different vertebral formulas and prevalence of congenital vertebral anomalies in rabbits from radiographs of the cervical (C), thoracic (Th), lumbar (L) and sacral (S) segments of the vertebral column. The number of vertebrae in each segment of vertebral column, position of anticlinal vertebra and localisation and type of congenital abnormalities were recorded. In 280/330 rabbits (84.8%) with normal vertebral morphology, seven vertebral formulas were identified: C7/Th12/L7/S4 (252/330, 76.4%), C7/Th12/L6/S4 (11/330, 3.3%), C7/Th13/L7/S4 (8/330, 2.4%), C7/Th12/L7/S5 (4/330, 1.2%), C7/Th12/L8/S4 (3/330, 0.9%), C7/Th12/L7/S6 (1/330, 0.3%) and C7/Th11/L7/S4 (1/330, 0.3%). The anticlinal vertebra was identified as Th10 in 56.4% of rabbits and Th11 in 42.4% of rabbits. Congenital spinal abnormalities were identified in 50/330 (15.2%) rabbits, predominantly as a single pathology (n=44). Transitional vertebrae represented the most common abnormalities (n=41 rabbits) in the thoracolumbar (n=35) and lumbosacral segments (n=6). Five variants of thoracolumbar transitional vertebrae were identified. Cervical butterfly vertebrae were detected in three rabbits. One rabbit exhibited three congenital vertebral anomalies: cervical block vertebra, thoracic hemivertebra and thoracolumbar transitional vertebra. Five rabbits exhibited congenital vertebral abnormalities with concurrent malalignment, specifically cervical kyphosis/short vertebra (n=1), thoracic lordoscoliosis/thoracolumbar transitional vertebrae (n=1), thoracic kyphoscoliosis/wedge vertebrae (n=2) and thoracolumbar lordoscoliosis/thoracolumbar transitional vertebrae/lumbosacral transitional vertebrae (n=1). These findings suggest that vertebral columns in rabbits display a wide range of morphologies, with occasional congenital malformations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Lucy's back: Reassessment of fossils associated with the A.L. 288-1 vertebral column.

    PubMed

    Meyer, Marc R; Williams, Scott A; Smith, Michael P; Sawyer, Gary J

    2015-08-01

    The Australopithecus afarensis partial skeleton A.L. 288-1, popularly known as "Lucy" is associated with nine vertebrae. The vertebrae were given provisional level assignments to locations within the vertebral column by their discoverers and later workers. The continuity of the thoracic series differs in these assessments, which has implications for functional interpretations and comparative studies with other fossil hominins. Johanson and colleagues described one vertebral element (A.L. 288-1am) as uniquely worn amongst the A.L. 288-1 fossil assemblage, a condition unobservable on casts of the fossils. Here, we reassess the species attribution and serial position of this vertebral fragment and other vertebrae in the A.L. 288-1 series. When compared to the other vertebrae, A.L. 288-1am falls well below the expected size within a given spinal column. Furthermore, we demonstrate this vertebra exhibits non-metric characters absent in hominoids but common in large-bodied papionins. Quantitative analyses situate this vertebra within the genus Theropithecus, which today is solely represented by the gelada baboon but was the most abundant cercopithecoid in the KH-1s deposit at Hadar where Lucy was discovered. Our additional analyses confirm that the remainder of the A.L. 288-1 vertebral material belongs to A. afarensis, and we provide new level assignments for some of the other vertebrae, resulting in a continuous articular series of thoracic vertebrae, from T6 to T11. This work does not refute previous work on Lucy or its importance for human evolution, but rather highlights the importance of studying original fossils, as well as the efficacy of the scientific method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Are Spinal or Paraspinal Anatomic Markers Helpful for Vertebral Numbering and Diagnosing Lumbosacral Transitional Vertebrae?

    PubMed Central

    Ucar, Murat; Erdogan, Aylin Billur; Kilic, Koray; Ozcan, Cahide

    2014-01-01

    Objective To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Materials and Methods Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. Results The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. Conclusion The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels. PMID:24644411

  17. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations

    PubMed Central

    Chen, Hao; Jia, Pu; Bao, Li; Feng, Fei; Yang, He; Li, Jin-Jun; Tang, Hai

    2015-01-01

    Background: The cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). Methods: We retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11–L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests. Results: The maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P < 0.001). The leakage rate of group DCPW ≤6.40 mm was lower than that of group DCPW >6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95–0.99, P < 0.001), and when the cut-off value was 4

  18. [Utility of nickel-titanium shape memory alloys of vertebral body reduction fixator with assisted distraction bar].

    PubMed

    Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong

    2011-06-07

    To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.

  19. Kyphosis and Kyphoscoliosis Associated with Congenital Malformations of the Thoracic Vertebral Bodies in Dogs.

    PubMed

    Dewey, Curtis W; Davies, Emma; Bouma, Jennifer L

    2016-03-01

    Congenital malformations of the thoracic vertebral bodies are commonly encountered in veterinary practice. These anomalies are prevalent in juvenile and adult small-breed dogs. These anomalous vertebrae typically result in various degrees of kyphosis and scoliosis in the region of the abnormality. They are thought to occur following developmental errors during embryonic or fetal vertebral segmentation and ossification; most are incidental. This article focuses on those anomalies of the thoracic vertebral bodies that lead to clinical signs of neurologic dysfunction. Based on a limited number of reported cases, the prognosis for surgically managed dogs with thoracic vertebral body abnormalities is favorable. Published by Elsevier Inc.

  20. Three-dimensional finite element simulations of vertebral body thermal treatment (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Patel, Samit J.; Morris, Ronit; Hoopes, P. J.; Bergeron, Jeffrey A.; Mahajan, Roop

    2005-04-01

    Lower back pain affects a large group of people worldwide and when in its early stages, has no viable interventional treatment. In order to avoid the eventuality of an invasive surgical procedure, which is further down the Care Pathway, an interventional treatment that is minimally invasive and arrests the patient's pain would be of tremendous clinical benefit. There is a hypothesis that if the basivertebral nerve in the vertebral body is defunctionalized, lower back pain may be lessened. To further investigate creating a means to provide localized thermal therapy, bench and animal studies were planned, but to help select the applicator configuration and placement, numerical modeling studies were undertaken. A 3D finite element model was utilized to predict the electric field pattern and power deposition pattern of radiofrequency (RF) based electrodes. Three types of tissues were modeled: 1) porcine (ex-vivo), ovine (in-vivo preclinical), and 3) human (ex-vivo, in-vivo). Two types of RF devices were simulated: 1) a pair of converging, hollow electrodes, and 2) an in-line pair of spaced-apart electrodes. Temperature distributions over time were plotted using the electric field results and the bioheat equation. Since the thermal and electrical properties of the vertebral bodies of porcine, ovine, and human tissue were not available, measurements were undertaken to capture these data to input into the model. The measurements of electrical and thermal properties of cancellous and cortical vertebral body were made over a range of temperatures. The simulation temperature results agreed with live animal and human cadaver studies. In addition, the lesion shapes predicted in the simulations matched CT and MRI studies done during the chronic ovine study, as well as histology results. In conclusion, the simulations aided in shaping and sizing the RF electrodes, as well as positioning them in the vertebral body structures to assure that the basivertebral nerve was ablated, but

  1. Prospective Single-Site Experience with Radiofrequency-Targeted Vertebral Augmentation for Osteoporotic Vertebral Compression Fracture

    PubMed Central

    Moser, Franklin G.; Maya, Marcel M.; Blaszkiewicz, Laura; Scicli, Andrea; Miller, Larry E.; Block, Jon E.

    2013-01-01

    Vertebral augmentation procedures are widely used to treat osteoporotic vertebral compression fractures (VCFs). We report our initial experience with radiofrequency-targeted vertebral augmentation (RF-TVA) in 20 patients aged 50 to 90 years with single-level, symptomatic osteoporotic VCF between T10 and L5, back pain severity > 4 on a 0 to 10 scale, Oswestry Disability Index ≥ 21%, 20% to 90% vertebral height loss compared to adjacent vertebral body, and fracture age < 6 months. After treatment, patients were followed through hospital discharge and returned for visits after 1 week, 1 month, and 3 months. Back pain severity improved 66% (P < 0.001), from 7.9 (95% CI: 7.1 to 8.6) at pretreatment to 2.7 (95% CI: 1.5 to 4.0) at 3 months. Back function improved 46% (P < 0.001), from 74 (95% CI: 69% to 79%) at pretreatment to 40 (95% CI: 33% to 47%) at 3 months. The percentage of patients regularly consuming pain medication was 70% at pretreatment and only 21% at 3 months. No adverse events related to the device or procedure were reported. RF-TVA reduces back pain severity, improves back function, and reduces pain medication requirements with no observed complications in patients with osteoporotic VCF. PMID:24228187

  2. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    PubMed Central

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity. PMID:24758278

  3. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  4. Anterior dural ectasia mimicking a lytic lesion in the posterior vertebral body in ankylosing spondylitis.

    PubMed

    Bele, Keerthiraj; Pendharkar, Hima Shriniwas; Venkat, Easwer; Gupta, Arun Kumar

    2011-12-01

    Anterior dural ectasia is an extremely rare finding in ankylosing spondylitis (AS). The authors describe a unique case of AS in which the patient presented with cauda equina syndrome as well as an unusual imaging finding of erosion of the posterior aspect of the L-1 (predominantly) and L-2 vertebral bodies due to anterior dural ectasia. Symptomatic patients with long-standing AS should be monitored for the presence of dural ectasia, which can be anterior in location, as is demonstrated in the present case.

  5. Lumbar vertebral hemangioma with extradural extension, causing neurogenic claudication: a case report.

    PubMed

    Jouibari, Morteza Faghih; Khoshnevisan, Alireza; Ghodsi, Seyed Mohammad; Nejat, Farideh; Naderi, Soheil; Abdollahzadeh, Sina

    2011-01-01

    The authors present a rare case of lumbar vertebral hemangioma extending to the epidural space with a bisected appearance and impinging on thecal sac. This 52-year-old lady presented with one year history of low back pain and bilateral leg radiation. Plain radiography showed vertical linear streaks at L2 vertebral body and axial computed tomography (CT) scan revealed small "polka dot" appearance within the vertebral body. Magnetic resonance imaging (MRI) showed low signal intensity on T1-weighted images in L2 vertebral body which was not characteristic for hemangioma. The patient underwent an L2 laminectomy, spinal canal decompression and posterior spinal instrumentation. This study indicates that lumbar vertebral hemangioma can extend to the epidural space and cause neurologic symptoms. Magnetic resonance imaging may not show diagnostic features, especially in active lesions and plain radiography and CT scan may be helpful.

  6. C3 Vertebral Metastases From Tongue Adenoid Cystic Carcinoma: A Rare Case Report.

    PubMed

    Feng, Helin; Wang, Jin; Guo, Peng; Xu, Jianfa; Feng, Jiangang

    2015-07-01

    We report a rare case involving a patient with C3 vertebral body metastasis secondary to adenoid cystic carcinoma of the tongue.Five years after local resection of the primary tumor, magnetic resonance imaging showed a metastasis located in the left posterior border of the C3 vertebral body. Additionally, multiple pulmonary metastases were identified by computed tomography. Based on these findings, the patient underwent C2-3, C3-4 discectomy; C3 corpectomy; and titanium mesh fusion with a Zephir plate. The diagnosis was confirmed by the pathology findings. During 6 months of follow-up, the patient showed improvement and return of function of the cervical vertebrae, with no serious complications.Because of the scarcity of cases of vertebral metastases from tumors of the tongue in the literature, we have reported this case to add to the available evidence regarding this rarely encountered condition.

  7. Vertebral body pneumatocyst in the cervical spine and review of the literature.

    PubMed

    Coşar, Murat; Eser, Olcay; Aslan, Adem; Korkmaz, Serhat; Boyaci, Gazi; Değirmenci, Bumin; Albayrak, Ramazan

    2008-04-01

    A pneumatocyst in the cervical spine is extremely rare and to our knowledge only a few reports have been published in the English literature. Although the etiology and natural course of vertebral body pneumatocyst is unclear, nitrogen gas accumulation is claimed. A 65-year-old-man was admitted to the emergency department with neck pain and numbness and incapacity in his both hands and fingers. The radiological images revealed a vertebral located pneumatocyst in the C4 cervical vertebra. In this report, we present a case of cervical pneumatocyst located in the C4 vertebral body. The clinical and radiological features and natural course of the pneumatocyst were evaluated.

  8. Effectiveness of percutaneous vertebroplasty in patients with multiple myeloma having vertebral pain

    PubMed Central

    Nas, Ömer Fatih; İnecikli, Mehmet Fatih; Hacıkurt, Kadir; Büyükkaya, Ramazan; Özkaya, Güven; Özkalemkaş, Fahir; Ali, Rıdvan; Erdoğan, Cüneyt; Hakyemez, Bahattin

    2016-01-01

    PURPOSE We aimed to assess the effectiveness, benefits, and reliability of percutaneous vertebroplasty (PV) in patients with vertebral involvement of multiple myeloma. METHODS PV procedures performed on 166 vertebrae of 41 patients with multiple myeloma were retrospectively evaluated. Most of our patients were using level 3 (moderate to severe pain) analgesics. Magnetic resonance imaging was performed before the procedure to assess vertebral involvement of multiple myeloma. The following variables were evaluated: affected vertebral levels, loss of vertebral body height, polymethylmethacrylate (PMMA) cement amount applied to the vertebral body during PV, PMMA cement leakages, and pain before and after PV as assessed by a visual analogue scale (VAS). RESULTS Median VAS scores of patients decreased from 9 one day before PV, to 6 one day after the procedure, to 3 one week after the procedure, and eventually to 1 three months after the procedure (P < 0.001). During the PV procedure, cement leakage was observed at 68 vertebral levels (41%). The median value of PMMA applied to the vertebral body was 6 mL. CONCLUSION Being a minimally invasive and easily performed procedure with low complication rates, PV should be preferred for serious back pain of multiple myeloma patients. PMID:26912107

  9. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less

  10. Study of lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body: the relationship between skeletal maturity and chronological age.

    PubMed

    Uraoka, Hideyuki; Higashino, Kosaku; Morimoto, Masatoshi; Yamashita, Kazuta; Tezuka, Fumitake; Takata, Yoichiro; Sakai, Toshinori; Nagamachi, Akihiro; Murase, Masaaki; Sairyo, Koichi

    2018-02-01

    The lesion of the lumbar endplate is sometimes identified in the vertebrae of children and adolescents. The purpose of this study is to compare between skeletal maturity and chronological age. The second purpose of this study is to clarify the lesions of the lumbar endplate based on the maturation of the lumbar vertebral body. Six hundred and thirty-two (485 men and 147 women) consecutive patients were included. The mean age at the first medical examination was 13.8 years. Their skeletal maturity was evaluated based on the appearances of the secondary ossification center of L3. The area of the endplate lesions was classified into five types. The apophyseal stage was observed from 10 years old to 18 years old, and the apophyseal stage was shown the peak at 14 years old. The appearance of the apophyseal ring was observed earlier in female patients than in male patients. For the concave type, the lesion at upper level vertebra was more prevalent. The anterior and middle type of the lesion at upper level vertebra was more prevalent. For the posterior type, the lesion of the inferior rim of L4 and the lesion of the rim of L5 were more prevalent. This study emerged after comparing skeletal maturity based on the maturation of the lumbar vertebral body with the chronological age of a large number of patients and examining the lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body.

  11. Two-stage vertebral column resection for severe and rigid scoliosis in patients with low body weight.

    PubMed

    Zhou, Chunguang; Liu, Limin; Song, Yueming; Liu, Hao; Li, Tao; Gong, Quan

    2013-05-01

    To date, there are no clinical series documenting the treatment of severe and rigid scoliosis in patients with low body weight. To optimize curve correction and minimize the risk of complications, we performed a two-stage vertebral column resection (VCR) with posterior pedicle screw instrumentation to treat patients with severe and rigid scoliosis and low body weight. The purposes of this study were to report the results of a two-staged VCR for patients with severe and rigid scoliosis and low body weight. This was a prospective, longitudinal, and descriptive study with a minimum follow-up of 2 years. Sixteen patients (nine women and seven men) with severe and rigid scoliosis and low body weight from the department of orthopedics, West China hospital, Sichuan University. Clinical analysis included rib hump and lumbar hump. Radiographic analysis consisted of Cobb angle measurements of coronal curves, apical vertebral translation, coronal balance, sagittal balance, thoracic kyphosis, and lumbar lordosis. All measurements were taken before surgery, after surgery, and in the final follow-up period. For evaluation of surgical effectiveness, comparative analysis of rib hump, lumbar hump, Cobb angle of coronal curves, apical vertebral translation, coronal balance, sagittal balance, thoracic kyphosis, and lumbar lordosis before operation, after operation, and at the most recent follow-up was done. The body weight of patients averaged 33.8 kg (range 27-40 kg). Mean operating time was 580.3 minutes, with a blood loss of 1,581.3 mL. The correction rates of rib hump and lumbar hump were 77% and 85%. Preoperative major curves ranged from 90° to 130° Cobb angle. Coronal plane correction of the major curve averaged 70.7%, with an average loss of correction of 1.8%. The apical vertebral translation of the major curve was corrected by 73.2%. The preoperative coronal imbalance of 0.6 cm (range 0-1.4 cm) was improved to 0.5 cm (range 0-1.4 cm) at the most recent follow-up. The

  12. Movement of the projected pedicles relative to the projected vertebral body in a fourth lumbar vertebra during axial rotation.

    PubMed

    Coleman, Roger R; Thomas, I Walker

    2004-01-01

    One use of the anteroposterior lumbar radiograph is to determine axial (y-axis) rotation of the lumbar vertebrae. Rotation might be an element of interest to clinicians seeking to evaluate vertebral positioning. Correlate and quantify movements of the projected pedicles relative to the projected vertebral body during axial rotation and determine if vertebral asymmetry and changes in object film distance affect these movements. A three-dimensional computer model of the fourth and fifth lumbar vertebrae, a modeled radiograph source, and a modeled film were produced. The vertebral model was placed in various degrees of axial rotation at a number of different object film distances. Lines from the source were passed through the pedicles of the fourth lumbar vertebral model and additional lines erected tangent to the lateral body margins. These lines were extended to points of contact with the modeled film. The projected pedicles move relative to the projected vertebral body during y-axis rotation. Vertebral asymmetry and object film distances can also affect the distance of the projected pedicle relative to the projected lateral body margin. Axial rotation produces movement of the projected pedicles relative to the projected vertebral body. However, vertebral asymmetry and changes in object film distance also affect the position of the projected pedicles relative to the projected lateral body margin and might serve as confounders to the clinician seeking to analyze vertebral rotation through the use of the projected pedicles.

  13. High-resolution computed tomography evaluation of the bronchial lumen to vertebral body diameter and pulmonary artery to vertebral body diameter ratios in anesthetized ventilated normal cats.

    PubMed

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Tillson, D Michael; Garbarino, Rachel; Barney, Sharron

    2017-10-01

    Objectives Bronchial lumen to pulmonary artery diameter (BA) ratio has been utilized to investigate pulmonary pathology on high-resolution CT images. Diseases affecting both the bronchi and pulmonary arteries render the BA ratio less useful. The purpose of the study was to establish bronchial lumen diameter to vertebral body diameter (BV) and pulmonary artery diameter to vertebral body diameter (AV) ratios in normal cats. Methods Using high-resolution CT images, 16 sets of measurements (sixth thoracic vertebral body [mid-body], each lobar bronchi and companion pulmonary artery diameter) were acquired from young adult female cats and 41 sets from pubertal female cats. Results Young adult and pubertal cat BV ratios were not statistically different from each other in any lung lobe. Significant differences between individual lung lobe BV ratios were noted on combined age group analysis. Caudal lung lobe AV ratios were significantly different between young adult and pubertal cats. All other lung lobe AV ratios were not significantly different. Caudal lung lobe AV ratios were significantly different from all other lung lobes but not from each other in both the young adult and pubertal cats. Conclusions and relevance BV ratio reference intervals determined for individual lung lobes could be applied to both young adult and pubertal cats. Separate AV ratios for individual lung lobes would be required for young adult and pubertal cats. These ratios should allow more accurate evaluation of cats with concurrent bronchial and pulmonary arterial disease.

  14. Asymmetry of the Vertebral Body and Pedicles in the True Transverse Plane in Adolescent Idiopathic Scoliosis: A CT-Based Study.

    PubMed

    Brink, Rob C; Schlösser, Tom P C; Colo, Dino; Vincken, Koen L; van Stralen, Marijn; Hui, Steve C N; Chu, Winnie C W; Cheng, Jack C Y; Castelein, René M

    2017-01-01

    Cross-sectional. To quantify the asymmetry of the vertebral bodies and pedicles in the true transverse plane in adolescent idiopathic scoliosis (AIS) and to compare this with normal anatomy. There is an ongoing debate about the existence and magnitude of the vertebral body and pedicle asymmetry in AIS and whether this is an expression of a primary growth disturbance, or secondary to asymmetrical loading. Vertebral body asymmetry, defined as left-right overlap of the vertebral endplates (ie, 100%: perfect symmetry, 0%: complete asymmetry) was evaluated in the true transverse plane on CT scans of 77 AIS patients and 32 non-scoliotic controls. Additionally, the pedicle width, length, and angle and the length of the ideal screw trajectory were calculated. Scoliotic vertebrae were on average more asymmetric than controls (thoracic: AIS 96.0% vs. controls 96.4%; p = .005, lumbar: 95.8% vs. 97.2%; p < .001) and more pronounced around the thoracic apex (95.8%) than at the end vertebrae (96.3%; p = .031). In the thoracic apex; the concave pedicle was thinner (4.5 vs. 5.4 mm; p < .001) and longer (20.9 vs. 17.9 mm; p < .001), the length of the ideal screw trajectory was longer (43.0 vs. 37.3 mm; p < .001), and the transverse pedicle angle was greater (12.3° vs. 5.7°; p < .001) than the convex one. The axial rotation showed no clear correlation with the asymmetry. Even in non-scoliotic controls is a degree of vertebral body and pedicle asymmetry, but scoliotic vertebrae showed slightly more asymmetry, mostly around the thoracic apex. In contrast to the existing literature, there is no major asymmetry in the true transverse plane in AIS and no uniform relation between the axial rotation and vertebral asymmetry could be observed in these moderate to severe patients, suggesting that asymmetrical vertebral growth does not initiate rotation, but rather follows it as a secondary phenomenon. Level 4. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All

  15. Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes.

    PubMed

    Nakagawa, Yoshimi; Satoh, Aoi; Yabe, Sachiko; Furusawa, Mika; Tokushige, Naoko; Tezuka, Hitomi; Mikami, Motoki; Iwata, Wakiko; Shingyouchi, Akiko; Matsuzaka, Takashi; Kiwata, Shiori; Fujimoto, Yuri; Shimizu, Hidehisa; Danno, Hirosuke; Yamamoto, Takashi; Ishii, Kiyoaki; Karasawa, Tadayoshi; Takeuchi, Yoshinori; Iwasaki, Hitoshi; Shimada, Masako; Kawakami, Yasushi; Urayama, Osamu; Sone, Hirohito; Takekoshi, Kazuhiro; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2014-12-01

    Transcriptional regulation of metabolic genes in the liver is the key to maintaining systemic energy homeostasis during starvation. The membrane-bound transcription factor cAMP-responsive element-binding protein 3-like 3 (CREB3L3) has been reported to be activated during fasting and to regulate triglyceride metabolism. Here, we show that CREB3L3 confers a wide spectrum of metabolic responses to starvation in vivo. Adenoviral and transgenic overexpression of nuclear CREB3L3 induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased energy expenditure, leading to marked reduction in body weight, plasma lipid levels, and glucose levels. CREB3L3 overexpression activated gene expression levels and plasma levels of antidiabetic hormones, including fibroblast growth factor 21 and IGF-binding protein 2. Amelioration of diabetes by hepatic activation of CREB3L3 was also observed in several types of diabetic obese mice. Nuclear CREB3L3 mutually activates the peroxisome proliferator-activated receptor (PPAR) α promoter in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α. CREB3L3 directly and indirectly controls fibroblast growth factor 21 expression and its plasma level, which contributes at least partially to the catabolic effects of CREB3L3 on systemic energy homeostasis in the entire body. Therefore, CREB3L3 is a therapeutic target for obesity and diabetes.

  16. The morphometric study of l3-L4 and L4-L5 lumbar spine in Asian population using magnetic resonance imaging: feasibility analysis for transpsoas lumbar interbody fusion.

    PubMed

    Yusof, Mohd Imran; Nadarajan, Eswaran; Abdullah, Mohd Shafie

    2014-06-15

    Cross-sectional study on the measurement of relevant magnetic resonance imaging parameters in 100 patients presented for lumbar spine assessment. To determine anatomical position of lumbar plexus and major blood vessels in relation to vertebral body and anterior edge of psoas muscle at L3-L4 and L4-L5 and to define the safe working zone for transpsoas approach for lumbar fusion. Lateral transpsoas lumbar interbody fusion has been shown to be safe and provides alternative for lumbar fusion. However, proximity of neurovascular structures may not allow a safe passage for this procedure in the Asian population. Relevant parameters were measured from axial magnetic resonance images and analyzed, including the psoas muscle and vertebrae endplate diameters, lumbar plexus and psoas muscle distance, lumbar plexus and vertebra body distance, and vena cava to the anterior vertebrae body diameters. The mean anteroposterior diameters of the right and left psoas muscle ranged from 44.0 to 58.6 mm and 44.8 to 54.0 mm, respectively. The mean anteroposterior diameters of vertebra endplate of L3, L4, and L5 were 38.2 mm, 39.3 mm, and 41.4 mm, respectively. The mean distance of posterior border of vena cava from the vertebra body was 4.5 mm at L3-L4 and 14.1 mm at L4-L5. L3-L4 fusion is feasible at both sides in both sexes; however, at L4-L5 level, the procedure is feasible only on the left side. The safe working zone for transpsoas approach to lumbar spine is significantly narrower at L4-L5 in both sexes. Anterior edge of psoas muscle can be used as a reliable guide to locate lumbar plexus within psoas muscle. N/A.

  17. Reconstruction of Vertebral Body After Radiofrequency Ablation and Augmentation in Dorsolumbar Metastatic Vertebral Fracture: Analysis of Clinical and Radiological Outcome in a Clinical Series of 18 Patients.

    PubMed

    Maugeri, Rosario; Graziano, Francesca; Basile, Luigi; Gulì, Carlo; Giugno, Antonella; Giammalva, Giuseppe Roberto; Visocchi, Massimiliano; Iacopino, Domenico Gerardo

    2017-01-01

    Painful spinal metastases usually occur in malignant neoplastic disease. Treatment for bone metastases has been largely conservative, and it includes the use of high doses of analgesics, radiotherapy, chemotherapy, hormone therapy, and bisphosphonates; however, results are sometimes transient and ineffective. In the presence of neurological involvement a surgical strategy should be considered. Recently, percutaneous procedures such as radiofrequency ablation, vertebroplasty, and kyphoplasty have been introduced as palliative techniques to treat painful vertebral metastases [3, 11, 25]. In our study we combined the use of radiofrequency ablation with vertebroplasty in the treatment of dorsolumbar metastatic vertebral fractures in order to examine the relationship between restoration of the vertebral structure and decrease in pain. From January 2014 to March 2015 we retrospectively analyzed 18 patients with malignant vertebral lesions who underwent radiofrequency ablation with vertebroplasty followed by cementoplasty, with posterior transpedicle fixation on levels near the lesions. The parameters examined were: demographics, pain relief, and the distribution of polymethylmethacrylate (PMMA) determined by the mean Saliou filling score; all complications were recorded. The mean age of the patients was 55.72 years (range 34-69); average operative time was 60.4 min (range, 51-72). The average pain index score (visual analog score; VAS) decreased significantly from 8.05 at baseline to 3.0 (p < 0.05) after 6 months. The Saliou filling score revealed a distribution of PMMA in the vertebral body that was satisfactory (12-18) in eight patients, mediocre (6-12) in seven patients, and inadequate (0-6) in the remaining three patients. In two vertebrae, minimal asymptomatic cement leakage occurred in the lateral recess without neurological damage. No pulmonary embolism and no visceral or neural damage was recorded. Radiofrequency ablation combined with vertebroplasty seems to

  18. Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter.

    PubMed

    Kang, Ki Ser; Song, Kwang-Sup; Lee, Jong Seok; Yang, Jae Jun; Song, In Sup

    2011-03-01

    This study was designed to investigate the characteristics of pedicle transverse diameters (PD), vertebral body transverse diameters (VBD), especially the ratios of PD/VBD (CT ratio), which has never been discussed, in Koreans using computed tomography (CT) scans and to evaluate the possibility of obtaining more accurate estimations of PD from plain radiographs using the CT ratios in each spine level. The T1-L5 vertebrae of 50 participants were analyzed prospectively with CT scans (CT-VBD and CT-PD), and the T9-L5 vertebrae of the same participants were investigated with plain radiographs (X-VBD and X-PD). The CT ratio had a higher correlation with the CT-PD (r2 = 0.630) from T1 to L5, especially in the lower thoracic and lumbar spine (T9-L5, r2 = 0.737). The correlation of VBDs between the two radiologic tools (r2 = 0.896) was higher than that of the PDs (r2 = 0.665). Based on the data, equations for the estimation of a more accurate PD from plain radiographs were developed as follows: estimated PD = estimated VBD × [1.014 × (X-VBD) + 0.152] × the mean CT ratio at each spinal level. The correlation between the estimated PD and the CT-PD (r2 = 0.852) was improved compared with that (r2 = 0.665) between the X-PD and the CT-PD. In conclusion, the CT ratio showed a very similar changing trends to CT-PD from T1 to L5 regardless of sex and body mass, and the measurement error of PD from only plain radiographs could be minimized using estimated VBD and the mean CT ratio at each spinal level.

  19. Reconstruction of the Upper Cervical Spine Using a Personalized 3D-Printed Vertebral Body in an Adolescent With Ewing Sarcoma.

    PubMed

    Xu, Nanfang; Wei, Feng; Liu, Xiaoguang; Jiang, Liang; Cai, Hong; Li, Zihe; Yu, Miao; Wu, Fengliang; Liu, Zhongjun

    2016-01-01

    Case report. To describe a three-dimensional (3D) printed axial vertebral body used in upper cervical spine reconstruction after a C2 Ewing sarcoma resection in an adolescent boy. Ewing sarcoma is a malignant musculoskeletal neoplasm with a peak incidence in adolescents. Cervical spine as the primary site of the tumor has been related to a worse prognosis. Tumor resection is particularly challenging in the atlantoaxial region due to complexity of the anatomy, necessity for extensive resection according to oncological principles, and a lack of specialized implants for reconstruction. 3D printing refers to a process where 3D objects are created through successive layering of material under computer control. Although this technology potentially enables accurate fabrication of patient-specific orthopedic implants, literature on its utilization in this regard is rare. A 12-year-old boy with a C2 Ewing sarcoma underwent a staged spondylectomy. Wide resection of the posterior elements was first performed. Two weeks later, a high anterior retropharyngeal approach was taken to remove the remains of the C2 vertebra. A customized artificial vertebral body fabricated according to a computer model using titanium alloy powder was inserted to replace the defect between C1 and C3. The microstructure of the implant was optimized for better biomechanical stability and enhanced bone healing. Patient had an uneventful recovery and began to ambulate on postoperative day 7. Adjuvant treatment commenced 3 weeks after the surgery. He was tumor-free at the 1-year follow-up. Computed tomography studies revealed evidence of implant osseointegration and no subsidence or displacement of the construct. This is a case example on the concept of personalized precision medicine in a surgical setting and demonstrates how 3D-printed, patient-specific implants may bring individualized solutions to rare problems wherein restoration of the specific anatomy of each patient is a key prognostic factor.

  20. One-stage posterior surgical treatment for lumbosacral tuberculosis with major vertebral body loss and kyphosis.

    PubMed

    Sun, Lin; Song, Yueming; Liu, Limin; Gong, Quan; Zhou, Chunguang

    2013-08-01

    The treatment goals of tuberculous spondylitis are to eradicate infection and to prevent or treat instability, deformity, and neurologic deficit. The purpose of this study was to evaluate the clinical outcomes following chemotherapy with 1-stage posterior debridement, correction, and instrumentation and fusion for the treatment of lumbosacral tuberculosis with major vertebral body loss and kyphosis. Fourteen patients with lumbosacral tuberculosis with major vertebral body loss and kyphosis underwent 1-stage posterior surgery. Clinical assessments included low back ache, Oswestry Disability Index, Scoliosis Research Society-22 scores, neurologic deficit, erythrocyte sedimentation rate, and C-reactive protein level. Radiographic parameters included kyphosis angle, anteroposterior translation, local scoliosis, lumbar lordosis, pelvic parameters, sagittal offset, and fusion. Thorough debridement was performed. Patients were followed for an average of 39.3 months. Constitutional symptoms, low back ache, and functional outcome improved in all patients postoperatively. At final follow-up, Frankel Grade improved by 0 to 2 grades, mean kyphosis angle improvement was 44.3°, and satisfactory spinopelvic and sagittal balance were achieved. Spinal posterolateral fusion was obtained in all patients and no fixation loosening was found at 2-year follow-up. Differences existed between the pre- and postoperative radiographic parameters (P<.05). Correction loss at last follow-up was not statistically significant (P>.05). No surgical complications or infection recurrence occurred. Tuberculosis can be cured and effective correction of kyphosis can be achieved for lumbosacral tuberculosis with major vertebral body loss and kyphosis by performing 1-stage posterior surgery and chemotherapy. Copyright 2013, SLACK Incorporated.

  1. Prevalence of silent vertebral fractures detected by vertebral fracture assessment in young Portuguese men with hyperthyroidism.

    PubMed

    Barbosa, Ana Paula; Rui Mascarenhas, Mário; Silva, Carlos Francisco; Távora, Isabel; Bicho, Manuel; do Carmo, Isabel; de Oliveira, António Gouveia

    2015-02-01

    Hyperthyroidism is a risk factor for reduced bone mineral density (BMD) and osteoporotic fractures. Vertebral fracture assessment (VFA) by dual-energy X-ray absorptiometry (DXA) is a radiological method of visualization of the spine, which enables patient comfort and reduced radiation exposure. This study was carried out to evaluate BMD and the prevalence of silent vertebral fractures in young men with hyperthyroidism. We conducted a cross-sectional study in a group of Portuguese men aged up to 50 years and matched in hyperthyroidism (n=24) and control (n=24) groups. A group of 48 Portuguese men aged up to 50 years was divided and matched in hyperthyroidism (n=24) and control (n=24) groups. BMD (g/cm(2)) at L1-L4, hip, radius 33%, and whole body as well as the total body masses (kg) were studied by DXA. VFA was used to detect fractures and those were classified by Genant's semiquantitative method. No patient had previously been treated for hyperthyroidism, osteoporosis, or low bone mass. Adequate statistical tests were used. The mean age, height, and total fat mass were similar in both groups (P≥0.05). The total lean body mass and the mean BMD at lumbar spine, hip, and whole body were significantly decreased in the hyperthyroidism group. In this group, there was also a trend for an increased prevalence of reduced BMD/osteoporosis and osteoporotic vertebral fractures. The results obtained using VFA technology (confirmed by X-ray) suggest that the BMD changes in young men with nontreated hyperthyroidism may lead to the development of osteoporosis and vertebral fractures. This supports the pertinence of using VFA in the routine of osteoporosis assessment to detect silent fractures precociously and consider early treatment. © 2015 European Society of Endocrinology.

  2. Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.

    PubMed

    Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M

    2015-09-01

    To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.

  3. Isolated unilateral vertebral pedicle fracture caused by a back massage in an elderly patient: a case report and literature review.

    PubMed

    Guo, Zhiping; Chen, Wei; Su, Yanling; Yuan, Junhui; Zhang, Yingze

    2013-11-01

    The vertebral pedicle injuries are clinically common. However, the isolated vertebral pedicle fracture with intact vertebral bodies is a rare lesion. We reported a case of a 66-year-old man who experienced a pedicle fracture after a back massage. The patient sustained osteoporosis, long-existing low back pain and nerve compression symptoms without antecedent major trauma. Imaging findings demonstrated an isolated unilateral L5 vertebral pedicle fracture with intact vertebral bodies, spinal canal stenosis at the L4-5 levels, bulging annulus fibrosus at the L4-S1 levels, bilateral spondylolysis and an L5/S1 spondylolisthesis. The patient underwent L4-S1 decompressive laminectomy, L5/S1 discectomy and neurolysis, and reduction and fixation of the L5 vertebral pedicle fracture and L5/S1 spondylolisthesis using the pedicle nail system. At follow-ups, the patient showed good recovery without pain or numbness in the low back and bilateral lower extremities. This study raises the awareness of a complication of alternative medicine and the possibility of a pedicle fracture caused by a low-energy trauma.

  4. Enlarging vertebral body pneumatocysts in the cervical spine.

    PubMed

    Kitagawa, Tomoaki; Fujiwara, Atsushi; Tamai, Kazuya; Kobayashi, Naoki; Saiki, Kazuhiko; Omata, Sadatoshi; Saotome, Koichi

    2003-09-01

    An intravertebral pneumatocyst is a relatively rare condition, and its natural course and etiology are unclear. We report a case of intravertebral pneumatocysts in the C5 vertebra that gradually enlarged during a 16-month period as documented by follow-up CT. In addition, direct communication was observed between the gas in the intervertebral disk and another pneumatocyst in the C6 vertebral body, which suggests that the gas in the pneumatocyst had an association with the gas in the degenerated intervertebral disk.

  5. Investigation of Buckling Phenomenon Induced by Growth of Vertebral Bodies Using a Mechanical Spine Model

    NASA Astrophysics Data System (ADS)

    Sasaoka, Ryu; Azegami, Hideyuki; Murachi, Shunji; Kitoh, Junzoh; Ishida, Yoshito; Kawakami, Noriaki; Makino, Mitsunori; Matsuyama, Yukihiro

    A hypothesis that idiopathic scoliosis is a buckling phenomenon of the fourth or sixth mode, which is the second or third lateral bending mode, induced by the growth of vertebral bodies was presented in a previous paper by the authors using numerical simulations with a finite-element model of the spine. This paper presents experimental proof of the buckling phenomenon using mechanical spine models constructed with the geometrical data of the finite-element model used in a previous work. Using three spine mechanical models with different materials at intervertebral joints, the change in the natural vibration eigenvalue of the second lateral bending mode with the growth of vertebral bodies was measured by experimental modal analysis. From the result, it was observed that natural vibration eigenvalue decreased with the growth of vertebral bodies. Since the increase in primary factor inducing the buckling phenomenon decreases natural vibration eigenvalue, the obtained result confirms the buckling hypothesis.

  6. Biomechanical Evaluation of an Injectable and Biodegradable Copolymer P(PF-co-CL) in a Cadaveric Vertebral Body Defect Model

    PubMed Central

    Fang, Zhong; Giambini, Hugo; Zeng, Heng; Camp, Jon J.; Dadsetan, Mahrokh; Robb, Richard A.; An, Kai-Nan; Yaszemski, Michael J.

    2014-01-01

    A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force–displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable

  7. A carbon fiber reinforced polymer cage for vertebral body replacement: technical note.

    PubMed

    Ciappetta, P; Boriani, S; Fava, G P

    1997-11-01

    We analyzed the surgical technique used for the replacement of damaged vertebral bodies of the thoracolumbar spine and the carbon fiber reinforced polymer (CFRP) cages that are used to replace the pathological vertebral bodies. We also evaluated the biomechanical properties of carbon composite materials used in spinal surgery. The surgical technique of CFRP implants may be divided into two distinct steps, i.e., assembling the components that will replace the pathological vertebral bodies and connecting the cage to an osteosynthetic system to immobilize the cage. The CFRP cages, made of Ultrapek polymer and AS-4 pyrolytic carbon fiber (AcroMed, Rotterdam, The Netherlands), are of different sizes and may be placed one on top of the other and fixed together with a titanium rod. These components are hollow to allow fragments of bone to be pressed manually into them and present threaded holes at 15, 30, and 90 degrees on the external surface, permitting the insertion of screws to connect the cage to an anterior or posterior osteosynthetic system. To date, we have used CFRP cages in 13 patients undergoing corporectomies and 10 patients undergoing spondylectomies. None of our patients have reported complications. CFRP implants offer several advantages compared with titanium or surgical grade stainless steel implants, demonstrating high versatility and outstanding biological and mechanical properties. Furthermore, CFRP implants are radiolucent and do not hinder radiographic evaluation of bone fusion, allowing for better follow-up studies.

  8. Assessing the effects of lumbar posterior stabilization and fusion to vertebral bone density in stabilized and adjacent segments by using Hounsfield unit

    PubMed Central

    Öksüz, Erol; Deniz, Fatih Ersay; Demir, Osman

    2017-01-01

    Background Computed tomography (CT) with Hounsfield unit (HU) is being used with increasing frequency for determining bone density. Established correlations between HU and bone density have been shown in the literature. The aim of this retrospective study was to determine the bone density changes of the stabilized and adjacent segment vertebral bodies by comparing HU values before and after lumbar posterior stabilization. Methods Sixteen patients who had similar diagnosis of lumbar spondylosis and stenosis were evaluated in this study. Same surgical procedures were performed to all of the patients with L2-3-4-5 transpedicular screw fixation, fusion and L3-4 total laminectomy. Bone mineral density measurements were obtained with clinical CT. Measurements were obtained from stabilized and adjacent segment vertebral bodies. Densities of vertebral bodies were evaluated with HU before the surgeries and approximately one year after the surgeries. The preoperative HU value of each vertebra was compared with postoperative HU value of the same vertebrae by using statistical analysis. Results The HU values of vertebra in the stabilized and adjacent segments consistently decreased after the operations. There were significant differences between the preoperative HU values and the postoperative HU values of the all evaluated vertebral bodies in the stabilized and adjacent segments. Additionally first sacral vertebra HU values were found to be significantly higher than lumbar vertebra HU values in the preoperative group and postoperative group. Conclusions Decrease in the bone density of the adjacent segment vertebral bodies may be one of the major predisposing factors for adjacent segment disease (ASD). PMID:29354730

  9. Fatal fat embolism syndrome in a case of isolated L1 vertebral fracture-dislocation.

    PubMed

    Yamauchi, Koun; Fushimi, Kazunari; Ikeda, Tsuneko; Fukuta, Masashi

    2013-11-01

    Although fat embolism syndrome is a well-known complication of fractures of the long bones or pelvis, fat embolism syndrome occurring subsequent to fracture of the lumbar spine is rare. We report a fatal case of fat embolism syndrome characterized by fat and bone marrow embolism that occurred 36 h after an isolated fracture-dislocation of the L1 vertebra. A postmortem examination was performed and pathological finding demonstrated fat and bone marrow tissue which were disseminated in the bilateral pulmonary arteries. We need to be aware of the possibility of fat embolism syndrome as a complication of spinal fractures, including isolated vertebral body fractures.

  10. Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath

    PubMed Central

    Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K

    2013-01-01

    We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. PMID:23711083

  11. Analysis of Long Bone and Vertebral Failure Patterns.

    DTIC Science & Technology

    1983-03-01

    apophyseal joints, lumbar spondylosis and low back pain in Jayson, M.I.V. (ed) The Lumbar Spine and Back Pain, Pitman Medical, pp. 83-114. PUBLICATIONS...NOTES Material in this report was presented at the International Society for the Study of the Lumbar Spine, Toronto, Canada, June 6-10, 1982. 19. KEY...intervertebral disc and end plate fragments were observed in the vertebral bodies (G84 L2 -3 ) of the upper lumbar levels. Also fragments of trabecular bone

  12. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication?

    PubMed

    Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun

    2017-02-01

    OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment

  13. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    PubMed

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  14. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography–Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibault, Isabelle; Department of Radiation Oncology, Centre Hospitalier de L'Universite de Québec–Université Laval, Quebec, Quebec; Whyne, Cari M.

    Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range,more » 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.« less

  15. Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: a cadaveric study.

    PubMed

    Krüger, Antonio; Oberkircher, Ludwig; Figiel, Jens; Floßdorf, Felix; Bolzinger, Florent; Noriega, David C; Ruchholtz, Steffen

    2015-05-01

    The treatment of osteoporotic vertebral compression fractures using transpedicular cement augmentation has grown significantly during the past two decades. Balloon kyphoplasty was developed to restore vertebral height and improve sagittal alignment. Several studies have shown these theoretical improvements cannot be transferred universally to the clinical setting. The aim of the current study is to evaluate two different procedures used for percutaneous augmentation of vertebral compression fractures with respect to height restoration: balloon kyphoplasty and SpineJack. Twenty-four vertebral bodies of two intact, fresh human cadaveric spines (T6-L5; donor age, 70 years and 60 years; T-score -6.8 points and -6.3 points) were scanned using computed tomography (CT) and dissected into single vertebral bodies. Vertebral wedge compression fractures were created by a material testing machine (Universal testing machine, Instron 5566, Darmstadt, Germany). The axial load was increased continuously until the height of the anterior edge of the vertebral body was reduced by 40% of the initial measured values. After 15 minutes, the load was decreased manually to 100 N. After postfracture CT, the clamped vertebral bodies were placed in a custom-made loading frame with a preload of 100 N. Twelve vertebral bodies were treated using SpineJack (SJ; Vexim, Balma, France), the 12 remaining vertebral bodies were treated with balloon kyphoplasty (BKP; Kyphon, Medtronic, Sunnyvale, CA, USA). The load was maintained during the procedure until the cement set completely. Posttreatment CT was performed. Anterior, central, and posterior height as well as the Beck index were measured prefracture and postfracture as well as after treatment. For anterior height restoration (BKP, 0.14±1.48 mm; SJ, 3.34±1.19 mm), central height restoration (BKP, 0.91±1.04 mm; SJ, 3.24±1.22 mm), and posterior restoration (BKP, 0.37±0.57 mm; SJ, 1.26±1.05), as well as the Beck index (BKP, 0.00±0.06 mm; SJ, 0

  16. A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies.

    PubMed

    Grotmol, Sindre; Nordvik, Kari; Kryvi, Harald; Totland, Geir K

    2005-05-01

    This study shows that segmental expression of alkaline phosphatase (ALP) activity by the notochord of the Atlantic salmon (Salmo salar L.) coincides with the initial mineralization of the vertebral body (chordacentrum), and precedes ALP expression by presumed somite-derived cells external to the notochordal sheath. The early expression of ALP indicates that the notochord plays an instructive role in the segmental patterning of the vertebral column. The chordacentra form segmentally as mineralized rings within the notochordal sheath, and ALP activity spreads within the chordoblast layer from ventral to dorsal, displaying the same progression and spatial distribution as the mineralization process. No ALP activity was observed in sclerotomal mesenchyme surrounding the notochordal sheath during initial formation of the chordacentra. Our results support previous findings indicating that the chordoblasts initiate a segmental differentiation of the notochordal sheath into chordacentra and intervertebral regions.

  17. Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath.

    PubMed

    Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K

    2013-08-01

    We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. © 2013 Anatomical Society.

  18. Association between l-thyroxine treatment, GH deficiency, and radiological vertebral fractures in patients with adult-onset hypopituitarism.

    PubMed

    Mazziotti, G; Mormando, M; Cristiano, A; Bianchi, A; Porcelli, T; Giampietro, A; Maffezzoni, F; Serra, V; De Marinis, L; Giustina, A

    2014-06-01

    In this study, we aimed at evaluating the association between radiological vertebral fractures and levo-thyroxine (l-T4) replacement doses in adult patients with hypopituitarism. Cross-sectional study. We studied 74 adult hypopituitary patients (males, 43; females, 31; mean age, 57 years; and range, 23-79) with central hypothyroidism treated with l-T4 (median daily dose: 1.1  μg/kg). All patients also had severe GH deficiency (GHD) and 38 of them were replaced with recombinant GH. Vertebral fractures were assessed by a quantitative morphometric analysis performed on thoracic and lumbar spine lateral X-ray. Radiological vertebral fractures were found in 23 patients (31.1%) in association with untreated GHD (P=0.02), higher serum free T4 levels (P=0.03), a higher daily dose of l-T4 (P=0.005), and a longer duration of hypopituitarism (P=0.05). When GHD was treated, the prevalence of vertebral fractures was more frequent (P=0.03) in patients receiving high l-T4 doses (third tertile: >1.35  μg/kg per day) as compared with patients who were treated with lower drug doses (first tertile: <0.93  μg/kg per day). Such a difference was not observed in patients with untreated GHD who showed a higher prevalence of vertebral fractures regardless of l-T4 daily doses. Multivariate analysis showed that untreated GHD (odds ratio: 4.27, 95% CI 1.27-14.33; P=0.01) and the daily dose of l-T4 (odds ratio: 4.01, 95% CI 1.16-14.39; P=0.03) maintained a significant and independent association with vertebral fractures in patients with central hypothyroidism. Our data suggest for the first time that a relative overtreatment with l-T4 may influence the fracture risk in some patients with hypopituitarism. © 2014 European Society of Endocrinology.

  19. Cellular automata segmentation of the boundary between the compacta of vertebral bodies and surrounding structures

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Nimsky, Christopher

    2016-03-01

    Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.

  20. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT

    PubMed Central

    Burns, Joseph E.; Yao, Jianhua; Muñoz, Hector

    2016-01-01

    Purpose To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). Materials and Methods This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14–88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Results Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). Conclusion The fully automated computer system detects and anatomically localizes vertebral body fractures in

  1. Effects of Daily Administration of Prostaglandin E2 and Its Withdrawal on the Lumbar Vertebral Bodies in Male Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S. S.

    1992-01-01

    The effects of daily prostaglandin E2 (PGE2) treatment (on) and PGE2 treatment followed by withdrawal (on-off) on cancellous bone in lumbar vertebral bodies were studied in 7 month-old male Sprague-Dawley rats. The first groups of rats were given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE2/kg/d for 60,120, and 180 days, and the second group of rats were given PGE2 for 60 days followed by withdrawal for 60 and 120 days. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified sections of fourth lumbar vertebral bodies. Systemic PGE2 treatment elevated cancerous bone mass of lumbar vertebral bodies 26-60%, above control levels within 60 days and continued treatment maintained it for another 120 days, but the excess bone was lost after the treatment was witndrawn. PGE2 treatment for 60 days increased trabecular bone area, trabecular width, and bone formation parameters, and shortened remodeling periods in a dose-response manner. These changes were sustained at the levels achieved by 60-day treatment in the rats treated for 120 and 180 days. The eroded perimeter increased at day 60 and further at day 120 and then plateaued. In the on-off treated rats, the cancenous bone area, bone formation, and resorption parameters returned to near age-related controls by 60 days after withdrawal and were maintained there after 120 days of withdrawal. Therefore, we conclude that the continuous treatment is needed in order to maintain the PGE2-induced bone gain. When these findings were compared to those previously reported for the proximal tibial metaphyses, we found that the proximal tibial spongiosa was much more responsive to PGE2 treatment than the fourth lumbar vertebral body.

  2. Mechanical Contributions of the Cortical and Trabecular Compartments Contribute to Differences in Age-Related Changes in Vertebral Body Strength in Men and Women Assessed by QCT-Based Finite Element Analysis

    PubMed Central

    Christiansen, Blaine A; Kopperdahl, David L; Kiel, Douglas P; Keaveny, Tony M; Bouxsein, Mary L

    2011-01-01

    The biomechanical mechanisms underlying sex-specific differences in age-related vertebral fracture rates are ill defined. To gain insight into this issue, we used finite element analysis of clinical computed tomography (CT) scans of the vertebral bodies of L3 and T10 of young and old men and women to assess age- and sex-related differences in the strength of the whole vertebra, the trabecular compartment, and the peripheral compartment (the outer 2 mm of vertebral bone, including the thin cortical shell). We sought to determine whether structural and geometric changes with age differ in men and women, making women more susceptible to vertebral fractures. As expected, we found that vertebral strength decreased with age 2-fold more in women than in men. The strength of the trabecular compartment declined significantly with age for both sexes, whereas the strength of the peripheral compartment decreased with age in women but was largely maintained in men. The proportion of mechanical strength attributable to the peripheral compartment increased with age in both sexes and at both vertebral levels. Taken together, these results indicate that men and women lose vertebral bone differently with age, particularly in the peripheral (cortical) compartment. This differential bone loss explains, in part, a greater decline in bone strength in women and may contribute to the higher incidence of vertebral fractures among women than men. © 2011 American Society for Bone and Mineral Research. PMID:21542000

  3. SHOX gene is expressed in vertebral body growth plates in idiopathic and congenital scoliosis: implications for the etiology of scoliosis in Turner syndrome.

    PubMed

    Day, Gregory; Szvetko, Attila; Griffiths, Lyn; McPhee, I Bruce; Tuffley, John; LaBrom, Robert; Askin, Geoffrey; Woodland, Peter; McClosky, Eamonn; Torode, Ian; Tomlinson, Francis

    2009-06-01

    Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis. Copyright 2008 Orthopaedic Research Society

  4. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    PubMed

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. A Regulatory Pathway, Ecdysone-Transcription Factor Relish-Cathepsin L, Is Involved in Insect Fat Body Dissociation

    PubMed Central

    Zhang, Yao; Lu, Yu-Xuan; Liu, Jian; Yang, Cui; Feng, Qi-Li; Xu, Wei-Hua

    2013-01-01

    Insect fat body is the organ for intermediary metabolism, comparable to vertebrate liver and adipose tissue. Larval fat body is disintegrated to individual fat body cells and then adult fat body is remodeled at the pupal stage. However, little is known about the dissociation mechanism. We find that the moth Helicoverpa armigera cathepsin L (Har-CL) is expressed heavily in the fat body and is released from fat body cells into the extracellular matrix. The inhibitor and RNAi experiments demonstrate that Har-CL functions in the fat body dissociation in H. armigera. Further, a nuclear protein is identified to be transcription factor Har-Relish, which was found in insect immune response and specifically binds to the promoter of Har-CL gene to regulate its activity. Har-Relish also responds to the steroid hormone ecdysone. Thus, the dissociation of the larval fat body is involved in the hormone (ecdysone)-transcription factor (Relish)-target gene (cathepsin L) regulatory pathway. PMID:23459255

  6. The Evolution of LINE-1 in Vertebrates

    PubMed Central

    Sookdeo, Akash

    2016-01-01

    The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals. PMID:28175298

  7. The Evolution of LINE-1 in Vertebrates.

    PubMed

    Boissinot, Stéphane; Sookdeo, Akash

    2016-12-01

    The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals.

  8. Quality of life after hip, vertebral, and distal forearm fragility fractures measured using the EQ-5D-3L, EQ-VAS, and time-trade-off: results from the ICUROS.

    PubMed

    Svedbom, Axel; Borgström, Fredrik; Hernlund, Emma; Ström, Oskar; Alekna, Vidmantas; Bianchi, Maria Luisa; Clark, Patricia; Curiel, Manuel Díaz; Dimai, Hans Peter; Jürisson, Mikk; Uusküla, Anneli; Lember, Margus; Kallikorm, Riina; Lesnyak, Olga; McCloskey, Eugene; Ershova, Olga; Sanders, Kerrie M; Silverman, Stuart; Tamulaitiene, Marija; Thomas, Thierry; Tosteson, Anna N A; Jönsson, Bengt; Kanis, John A

    2018-03-01

    The International Costs and Utilities Related to Osteoporotic fractures Study is a multinational observational study set up to describe the costs and quality of life (QoL) consequences of fragility fracture. This paper aims to estimate and compare QoL after hip, vertebral, and distal forearm fracture using time-trade-off (TTO), the EuroQol (EQ) Visual Analogue Scale (EQ-VAS), and the EQ-5D-3L valued using the hypothetical UK value set. Data were collected at four time-points for five QoL point estimates: within 2 weeks after fracture (including pre-fracture recall), and at 4, 12, and 18 months after fracture. Health state utility values (HSUVs) were derived for each fracture type and time-point using the three approaches (TTO, EQ-VAS, EQ-5D-3L). HSUV were used to estimate accumulated QoL loss and QoL multipliers. In total, 1410 patients (505 with hip, 316 with vertebral, and 589 with distal forearm fracture) were eligible for analysis. Across all time-points for the three fracture types, TTO provided the highest HSUVs, whereas EQ-5D-3L consistently provided the lowest HSUVs directly after fracture. Except for 13-18 months after distal forearm fracture, EQ-5D-3L generated lower QoL multipliers than the other two methods, whereas no equally clear pattern was observed between EQ-VAS and TTO. On average, the most marked differences between the three approaches were observed immediately after the fracture. The approach to derive QoL markedly influences the estimated QoL impact of fracture. Therefore the choice of approach may be important for the outcome and interpretation of cost-effectiveness analysis of fracture prevention.

  9. Extraosseous Extension of Aggressive Vertebral Hemangioma as a Potential Pitfall on 68Ga-PSMA PET/CT.

    PubMed

    Probst, Stephan; Bladou, Franck; Abikhzer, Gad

    2017-08-01

    A 74-year-old man with newly diagnosed prostate cancer underwent Ga-PSMA PET/CT, which demonstrated intense uptake in and adjacent the L2 vertebral body. Subsequent MRI of the lumbar spine showed an aggressive L2 hemangioma with adjacent soft tissue extension. There was congruence of the intraosseous and extraosseous components of the hemangioma and the PSMA PET uptake. This is a rare but important potential pitfall in Ga-PSMA PET/CT-a soft tissue lesion with intense tracer uptake related not to a nodal metastasis of prostate cancer but to extraosseous extension of an aggressive vertebral body hemangioma.

  10. Renal cell carcinoma metastasis involving vertebral hemangioma: dual percutaneous treatment by navigational bipolar radiofrequency ablation and high viscosity cement vertebroplasty.

    PubMed

    Zerlauth, Jean-Baptiste; Meuli, Reto; Dunet, Vincent

    2017-02-02

    The case of a 70-year-old woman with progressive renal cell carcinoma (RCC) metastatic invasion of a L3 vertebral hemangioma treated by dual percutaneous radiofrequency ablation (RFA) and vertebroplasty is reported. The patient was surgically treated for RCC in 2001. Chemotherapy and immunotherapy were introduced in 2013 for ovarian, bladder and cerebral metastatic disease. An asymptomatic L3 benign hemangioma was noticed at this time. One-year CT and MRI follow-up studies demonstrated a nodular isolated soft tissue lesion involving the anterior edge of the hemangioma. Percutaneous treatment consisted of a L3 vertebral body unipedicular approach to perform a biopsy, RFA with a navigational bipolar RFA device and vertebroplasty using high viscosity cement. Histopathological examination confirmed metastasis of RCC. The 5-month spinal MRI and CT examinations demonstrated complete disappearance of the tumor. 2017 BMJ Publishing Group Ltd.

  11. A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages

    PubMed Central

    Liu, Xifeng; Paulsen, Alex; Giambini, Hugo; Guo, Ji; Miller, A. Lee; Lin, Po-Chun; Yaszemski, Michael J.

    2017-01-01

    We have developed a novel polymeric expandable cage that can be delivered via a posterior-only surgical approach for the treatment of noncontained vertebral defects. This approach is less invasive than an anterior-only or combined approach and much more cost-effective than currently used expandable metal cages. The polymeric expandable cage is composed of oligo poly(ethylene glycol) fumarate (OPF), a hydrogel that has been previously shown to have excellent nerve and bone tissue biocompatibility. OPF hydrogel cages can expand to twice their original diameter and length within a surgical time frame following hydration. Modulation of parameters such as polymeric network crosslink density or the introduction of charge to the network allowed for precise expansion kinetics. To meet specific requirements due to size variations in patient vertebral bodies, we fabricated a series of molds with varied diameters and explored the expansion kinetics of the OPF cages. Results showed a stable expansion ratio of approximately twofold to the original size within 20 min, regardless of the absolute value of the cage size. Following implantation of a dried OPF cage into a noncontained vertebral defect and its in situ expansion with normal saline, other augmentation biomaterials, such as poly(propylene fumarate) (PPF), can be injected to the lumen of the OPF cage and allowed to crosslink in situ. The OPF/PPF composite scaffold can provide the necessary rigidity and stability to the augmented spine. PMID:27835935

  12. Cervical vertebral bone mineral density changes in adolescents during orthodontic treatment.

    PubMed

    Crawford, Bethany; Kim, Do-Gyoon; Moon, Eun-Sang; Johnson, Elizabeth; Fields, Henry W; Palomo, J Martin; Johnston, William M

    2014-08-01

    The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status. In this study, we examined whether cone-beam computed tomography images can be used to detect changes of CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment. Eighty-two cone-beam computed tomography images were obtained from 41 patients before (14.47 ± 1.42 years) and after (16.15 ± 1.38 years) orthodontic treatment. Two cervical vertebral bodies (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after converting the cone-beam computed tomography images. Significant changes for the examined variables were detected during the observation period (P ≤0.018) except for C3 vertebral body volume (P = 0.210). The changes of CVM stage had significant positive correlations with those of vertebral body volume (P ≤0.021). The change of the standard deviation of bone mineral density (variability) showed significant correlations with those of vertebral body volume and mandibular length for C2 (P ≤0.029). The means and variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because of active bone remodeling during maturation. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  13. Closure of the vertebral canal in human embryos and fetuses.

    PubMed

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  14. An investigation of thoracic and lumbar cancellous vertebral architecture using power-spectral analysis of plain radiographs*

    PubMed Central

    Buck, AM; Price, RI; Sweetman, IM; Oxnard, CE

    2002-01-01

    The internal architecture of the vertebral bodies spanning the levels T1 to L5 in seven male columns was studied using mammographic-resolution radiographs of 2.5-mm-thick planar parasagittal slices. The overlapping radiographic shadows of vertebral trabeculae combined in the image to form a series of ‘elements’, broadly representative of the cancellous structure. The orientations and sizes of these elements were analysed by applying the Fast Fourier transform (FFT) to the digitized radiographic images. Elements aligned in the ‘vertical’ orientation, along the long axis of the column, were the most prominent for all vertebral levels. The relative prominence of horizontal to vertical elements was generally constant along the column below T5. In contrast, the relative prominence of oblique to vertical elements declined in the cranio-caudal direction, particularly in individuals aged ≥ 60 years. The ratio of ‘large’ (x > 0.3 mm) to ‘small’ (0.15 mm ≤ x ≤ 0.3 mm) elements was unchanged cranio-caudally in specimens < 60 years. However, in individuals ≥ 60 years, large elements increased in relative prominence in the caudal direction. These results suggest that a basic orthogonal pattern of trabeculae is found along the male human spine, regardless of differences in vertebral body size. Power-spectral analysis is shown to yield information summarizing the predominant orientations and sizes of radiographically rendered architectural elements of vertebral cancellous bone, to define the effects of ageing on architecture, and to identify broad structural differences between vertebral levels in the adult male spine. PMID:12090391

  15. Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species

    NASA Astrophysics Data System (ADS)

    Harwood, L. A.; Smith, T. G.; George, J. C.; Sandstrom, S. J.; Walkusz, W.; Divoky, G. J.

    2015-08-01

    Studies of the body condition of five marine vertebrate predators in the Beaufort Sea, conducted independently during the past 2-4 decades, suggest each has been affected by biophysical changes in the marine ecosystem. We summarize a temporal trend of increasing body condition in two species (bowhead whale subadults, Arctic char), in both cases influenced by the extent and persistence of annual sea ice. Three other species (ringed seal, beluga, black guillemot chicks), consumers with a dietary preference for Arctic cod, experienced declines in condition, growth and/or production during the same time period. The proximate causes of these observed changes remain unknown, but may reflect an upward trend in secondary productivity, and a concurrent downward trend in the availability of forage fishes, such as the preferred Arctic cod. To further our understanding of these apparent ecosystem shifts, we urge the use of multiple marine vertebrate species in the design of biophysical sampling studies to identify causes of these changes. Continued long-term, standardized monitoring of vertebrate body condition should be paired with concurrent direct (stomach contents) or indirect (isotopes, fatty acids) monitoring of diet, detailed study of movements and seasonal ranges to establish and refine baselines, and identification of critical habitats of the marine vertebrates being monitored. This would be coordinated with biophysical and oceanographic sampling, at spatial and temporal scales, and geographic locations, that are relevant to the home range, critical habitats and prey of the vertebrate indicator species showing changes in condition and related parameters.

  16. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  17. Automatic vertebral bodies detection of x-ray images using invariant multiscale template matching

    NASA Astrophysics Data System (ADS)

    Sharifi Sarabi, Mona; Villaroman, Diane; Beckett, Joel; Attiah, Mark; Marcus, Logan; Ahn, Christine; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].

  18. Vertebral pneumatocysts.

    PubMed

    Arslan, G; Ceken, K; Cubuk, M; Ozkaynak, C; Lüleci, E

    2001-01-01

    To review the prevalence and location of vertebral pneumatocysts and evaluate the CT findings of these benign lesions. Retrospectively we reviewed CT images of 89 patients with suspected disc disease during a 6-month period. Distinctive CT pattern of intraosseous pneumatocysts involving the cervical, thoracic and lumbar spine was found. In 8 patients (9%), 10 vertebral pneumatocysts were detected. Five were located in the vertebral body and 4 of these were associated with vacuum phenomenon in adjacent intervertebral discs. Five were located near the facet joint and all were associated with vacuum phenomenon in adjacent facet joint. Intraosseous pneumatocyst is a benign lesion, therefore biopsy and follow-up are unnecessary. Although vertebral pneumatocysts seem to be uncommon with a few reported cases, this study shows them to be more frequent than previously thought.

  19. [Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].

    PubMed

    Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying

    2014-10-14

    To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.

  20. Sagittal imbalance treated with L5 pedicle subtraction osteotomy with short lumbar fusion from L4 to sacrum using four screws into L4 for enhanced fixation two additional vertebral screws: a technical note.

    PubMed

    Wangdi, Kuenzang; Otsuki, Bungo; Fujibayashi, Shunsuke; Tanida, Shimei; Masamoto, Kazutaka; Matsuda, Shuichi

    2018-02-07

    To report on suggested technique with four screws in a single vertebra (two pedicle screws and two direct vertebral body screws) for enhanced fixation with just one level cranially to a pedicle subtraction osteotomy (PSO). A 60-year-old woman underwent L4/5 fusion surgery for degenerative spondylolisthesis. Two years later, she was unable to stand upright even for a short time because of lumbar kyphosis caused by subsidence of the fusion cage and of Baastrup syndrome in the upper lumbar spine [sagittal vertical axis (SVA) of 114 mm, pelvic incidence of 75°, and lumbar lordosis (LL) of 41°]. She underwent short-segment fusion from L4 to the sacrum with L5 pedicle subtraction osteotomy. We reinforced the construct with two vertebral screws at L4 in addition to the conventional L4 pedicle screws. After the surgery, her sagittal parameters were improved (SVA, 36 mm; LL, 54°). Two years after the corrective surgery, she maintained a low sagittal vertical axis though high residual pelvic tilt indicated that the patient was still compensating for residual sagittal misalignment. PSO surgery for sagittal imbalance usually requires a long fusion at least two levels above and below the osteotomy site to achieve adequate stability and better global alignment. However, longer fixation may decrease the patients' quality of life and cause a proximal junctional failure. Our novel technique may shorten the fixation area after osteotomy surgery. These slides can be retrieved under Electronic Supplementary Material.

  1. Characteristic features of bone tissue regeneration in the vertebral bodies in the experiment with osteograft

    NASA Astrophysics Data System (ADS)

    Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.

    2017-09-01

    In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.

  2. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana.

    PubMed

    Wollmann, Heike; Stroud, Hume; Yelagandula, Ramesh; Tarutani, Yoshiaki; Jiang, Danhua; Jing, Li; Jamge, Bhagyshree; Takeuchi, Hidenori; Holec, Sarah; Nie, Xin; Kakutani, Tetsuji; Jacobsen, Steven E; Berger, Frédéric

    2017-05-18

    Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.

  3. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    PubMed

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  4. Risk factor analysis for predicting vertebral body re-collapse after posterior instrumented fusion in thoracolumbar burst fracture.

    PubMed

    Jang, Hae-Dong; Bang, Chungwon; Lee, Jae Chul; Soh, Jae-Wan; Choi, Sung-Woo; Cho, Hyeung-Kyu; Shin, Byung-Joon

    2018-02-01

    In the posterior instrumented fusion surgery for thoracolumbar (T-L) burst fracture, early postoperative re-collapse of well-reduced vertebral body fracture could induce critical complications such as correction loss, posttraumatic kyphosis, and metal failure, often leading to revision surgery. Furthermore, re-collapse is quite difficult to predict because of the variety of risk factors, and no widely accepted accurate prediction systems exist. Although load-sharing classification has been known to help to decide the need for additional anterior column support, this radiographic scoring system has several critical limitations. (1) To evaluate risk factors and predictors for postoperative re-collapse in T-L burst fractures. (2) Through the decision-making model, we aimed to predict re-collapse and prevent unnecessary additional anterior spinal surgery. Retrospective comparative study. Two-hundred and eight (104 men and 104 women) consecutive patients with T-L burst fracture who underwent posterior instrumented fusion were reviewed retrospectively. Burst fractures caused by high-energy trauma (fall from a height and motor vehicle accident) with a minimum 1-year follow-up were included. The average age at the time of surgery was 45.9 years (range, 15-79). With respect to the involved spinal level, 95 cases (45.6%) involved L1, 51 involved T12, 54 involved L2, and 8 involved T11. Mean fixation segments were 3.5 (range, 2-5). Pedicle screw instrumentation including fractured vertebra had been performed in 129 patients (62.3%). Clinical data using self-report measures (visual analog scale score), radiographic measurements (plain radiograph, computed tomography, and magnetic resonance image), and functional measures using the Oswestry Disability Index were evaluated. Body height loss of fractured vertebra, body wedge angle, and Cobb angle were measured in serial plain radiographs. We assigned patients to the re-collapse group if their body height loss progressed greater

  5. Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: A retrospective study.

    PubMed

    Hou, Yu; Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui

    2018-01-01

    Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper: t = 31.41, p<0.001; lower

  6. Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: A retrospective study

    PubMed Central

    Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui

    2018-01-01

    Background Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. Methods A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. Results One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper

  7. Vertebral reconstruction using the telescopic plate spacer-thoracolumbar (TPS-TL) device.

    PubMed

    Atalay, Basar; Riesenburger, Ron I; Schirmer, Clemens M; Bhadelia, Rafeeque A; Weller, Simcha J

    2010-07-01

    Retrospective study of surgical technique and outcome. The authors conducted a study to evaluate the ability of the TPS-TL (telescopic plate spacer-thoracolumbar) implant to correct kyphotic deformity and restore vertebral body height after vertebrectomy in the thoracolumbar spine. TPS-TL is a novel vertebral body replacement device that consists of an expandable cage with an integrated plate component for transvertebral screw fixation. This is a retrospective study of 20 patients who underwent anterior column reconstruction with TPS-TL after a 1 or 2 level thoracolumbar vertebrectomy. Preoperative and postoperative sagittal alignment and vertebral body heights were radiologically analyzed in all patients. The mean follow-up was 14 months. Preoperative and postoperative Cobb angles were measured to assess sagittal alignment. The average preoperative Cobb angle was 16.0 + or - 7 degrees. This was reduced to 9.8 + or - 10 degrees at the final follow-up (P<0.001). Percent of ideal vertebral body height was used to assess postoperative restoration of vertebral body height. This value was obtained by creating a ratio of the height of the effected vertebral levels to the height of the adjacent normal vertebral bodies. The mean percent of ideal vertebral body height improved from a preoperative value from 86.2 + or - 2% to 93.1 + or - 6% at the final follow-up (P<0.001). The TPS-TL implant is effective in restoring vertebral body height and correcting kyphotic deformity after thoracolumbar vertebrectomy.

  8. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    NASA Astrophysics Data System (ADS)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  9. Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.

    PubMed

    Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K

    1995-12-01

    Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.

  10. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    PubMed Central

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  11. The Neandertal vertebral column 2: The lumbar spine.

    PubMed

    Gómez-Olivencia, Asier; Arlegi, Mikel; Barash, Alon; Stock, Jay T; Been, Ella

    2017-05-01

    Here we provide the most extensive metric and morphological analysis performed to date on the Neandertal lumbar spine. Neandertal lumbar vertebrae show differences from modern humans in both the vertebral body and in the neural arch, although not all Neandertal lumbar vertebrae differ from modern humans in the same way. Differences in the vertebral foramen are restricted to the lowermost lumbar vertebrae (L4 and L5), differences in the orientation of the upper articular facets appear in the uppermost lumbar vertebrae (probably in L1 and L2-L3), and differences in the horizontal angle of the transverse process appear in L2-L4. Neandertals, when compared to modern humans, show a smaller degree of lumbar lordosis. Based on a still limited fossil sample, early hominins (australopiths and Homo erectus) had a lumbar lordosis that was similar to but below the mean of modern humans. Here, we hypothesize that from this ancestral degree of lumbar lordosis, the Neandertal lineage decreased their lumbar lordosis and Homo sapiens slightly increased theirs. From a postural point of view, the lower degree of lordosis is related to a more vertical position of the sacrum, which is also positioned more ventrally with respect to the dorsal end of the pelvis. This results in a spino-pelvic alignment that, though different from modern humans, maintained an economic postural equilibrium. Some features, such as a lower degree of lumbar lordosis, were already present in the middle Pleistocene populations ancestral to Neandertals. However, these middle Pleistocene populations do not show the full suite of Neandertal lumbar morphologies, which probably means that the characteristic features of the Neandertal lumbar spine did not arise all at once. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Facet joint geometry and intervertebral disk degeneration in the L5-S1 region of the vertebral column in German Shepherd dogs.

    PubMed

    Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann

    2002-01-01

    To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.

  13. Renal cell carcinoma metastasis involving vertebral hemangioma: dual percutaneous treatment by navigational bipolar radiofrequency ablation and high viscosity cement vertebroplasty.

    PubMed

    Zerlauth, Jean-Baptiste; Meuli, Reto; Dunet, Vincent

    2017-09-01

    The case of a 70-year-old woman with progressive renal cell carcinoma (RCC) metastatic invasion of a L3 vertebral hemangioma treated by dual percutaneous radiofrequency ablation (RFA) and vertebroplasty is reported. The patient was surgically treated for RCC in 2001. Chemotherapy and immunotherapy were introduced in 2013 for ovarian, bladder and cerebral metastatic disease. An asymptomatic L3 benign hemangioma was noticed at this time. One-year CT and MRI follow-up studies demonstrated a nodular isolated soft tissue lesion involving the anterior edge of the hemangioma. Percutaneous treatment consisted of a L3 vertebral body unipedicular approach to perform a biopsy, RFA with a navigational bipolar RFA device and vertebroplasty using high viscosity cement. Histopathological examination confirmed metastasis of RCC. The 5-month spinal MRI and CT examinations demonstrated complete disappearance of the tumor. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Variation of canine vertebral bone architecture in computed tomography

    PubMed Central

    Cheon, Byunggyu; Park, Seungjo; Lee, Sang-kwon; Park, Jun-Gyu; Cho, Kyoung-Oh

    2018-01-01

    Focal vertebral bone density changes were assessed in vertebral computed tomography (CT) images obtained from clinically healthy dogs without diseases that affect bone density. The number, location, and density of lesions were determined. A total of 429 vertebral CT images from 20 dogs were reviewed, and 99 focal vertebral changes were identified in 14 dogs. Focal vertebral bone density changes were mainly found in thoracic vertebrae (29.6%) as hyperattenuating (86.9%) lesions. All focal vertebral changes were observed at the vertebral body, except for a single hyperattenuating change in one thoracic transverse process. Among the hyperattenuating changes, multifocal changes (53.5%) were more common than single changes (46.5%). Most of the hypoattenuating changes were single (92.3%). Eight dogs, 40% of the 20 dogs in the study and 61.6% of the 13 dogs showing focal vertebral changes in the thoracic vertebra, had hyperattenuating changes at the 7th or 8th thoracic vertebra. Our results indicate that focal changes in vertebral bone density are commonly identified on vertebral CT images in healthy dogs, and these changes should be taken into consideration on interpretation of CT images. PMID:28693309

  15. The variability of vertebral body volume and pain associated with osteoporotic vertebral fractures: conservative treatment versus percutaneous transpedicular vertebroplasty.

    PubMed

    Andrei, Diana; Popa, Iulian; Brad, Silviu; Iancu, Aida; Oprea, Manuel; Vasilian, Cristina; Poenaru, Dan V

    2017-05-01

    Osteoporotic vertebral fractures (OVF) can lead to late collapse which often causes kyphotic spinal deformity, persistent back pain, decreased lung capacity, increased fracture risk and increased mortality. The purpose of our study is to compare the efficacy and safety of vertebroplasty against conservative management of osteoporotic vertebral fractures without neurologic symptoms. A total of 66 patients with recent OVF on MRI examination were included in the study. All patients were admitted from September 2009 to September 2012. The cohort was divided into two groups. The first study group consisted of 33 prospectively followed consecutive patients who suffered 40 vertebral osteoporotic fractures treated by percutaneous vertebroplasty (group 1), and the control group consisted of 33 patients who suffered 41 vertebral osteoporotic fractures treated conservatively because they refused vertebroplasty (group 2). The data collection has been conducted in a prospective registration manner. The inclusion criteria consisted of painful OVF matched with imagistic findings. We assessed the results of pain relief and minimal sagittal area of the vertebral body on the axial CT scan at presentation, after the intervention, at six and 12 months after initial presentation. Vertebroplasty with poly(methyl methacrylate) (PMMA) was performed in 30 patients on 39 VBs, including four thoracic vertebras, 27 vertebras of the thoracolumbar jonction and eight lumbar vertebras. Group 2 included 30 patients with 39 OVFs (four thoracic vertebras, 23 vertebras of the thoracolumbar junction and 11 lumbar vertebras). There was no significant difference in VAS scores before treatment (p = 0.229). The mean VAS was 5.90 in Group 1 and 6.28 in Group 2 before the treatment. Mean VAS after vertebroplasty was 0.85 in Group 1. The mean VAS at six months was 0.92 in Group 1 and 3.00 in Group 2 (p < 0.05). The mean VAS at 12 months was 0.92 in Group 1 and 2.36 in Group 2. The mean improvement

  16. Origin of the vertebrate body plan via mechanically biased conservation of regular geometrical patterns in the structure of the blastula.

    PubMed

    Edelman, David B; McMenamin, Mark; Sheesley, Peter; Pivar, Stuart

    2016-09-01

    We present a plausible account of the origin of the archetypal vertebrate bauplan. We offer a theoretical reconstruction of the geometrically regular structure of the blastula resulting from the sequential subdivision of the egg, followed by mechanical deformations of the blastula in subsequent stages of gastrulation. We suggest that the formation of the vertebrate bauplan during development, as well as fixation of its variants over the course of evolution, have been constrained and guided by global mechanical biases. Arguably, the role of such biases in directing morphology-though all but neglected in previous accounts of both development and macroevolution-is critical to any substantive explanation for the origin of the archetypal vertebrate bauplan. We surmise that the blastula inherently preserves the underlying geometry of the cuboidal array of eight cells produced by the first three cleavages that ultimately define the medial-lateral, dorsal-ventral, and anterior-posterior axes of the future body plan. Through graphical depictions, we demonstrate the formation of principal structures of the vertebrate body via mechanical deformation of predictable geometrical patterns during gastrulation. The descriptive rigor of our model is supported through comparisons with previous characterizations of the embryonic and adult vertebrate bauplane. Though speculative, the model addresses the poignant absence in the literature of any plausible account of the origin of vertebrate morphology. A robust solution to the problem of morphogenesis-currently an elusive goal-will only emerge from consideration of both top-down (e.g., the mechanical constraints and geometric properties considered here) and bottom-up (e.g., molecular and mechano-chemical) influences. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E

    2013-01-01

    Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.

  18. Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral Body in Adolescent with T9 Primary Bone Tumor.

    PubMed

    Choy, Wen Jie; Mobbs, Ralph J; Wilcox, Ben; Phan, Steven; Phan, Kevin; Sutterlin, Chester E

    2017-09-01

    Neurosurgery and spine surgery have the potential to benefit from the use of 3-dimensional printing (3DP) technology due to complex anatomic considerations and the delicate nature of surrounding structures. We report a procedure that uses a 3D-printed titanium T9 vertebral body implant post T9 vertebrectomy for a primary bone tumor. A 14-year-old female presented with progressive kyphoscoliosis and a pathologic fracture of the T9 vertebra with sagittal and coronal deformity due to a destructive primary bone tumor. Surgical resection and reconstruction was performed in combination with a 3D-printed, patient-specific implant. Custom design features included porous titanium end plates, corrective angulation of the implant to restore sagittal balance, and pedicle screw holes in the 3D implant to assist with insertion of the device. In addition, attachment of the anterior column construct to the posterior pedicle screw construct was possible due to the customized features of the patient-specific implant. An advantage of 3DP is the ability to manufacture patient-specific implants, as in the current case example. Additionally, the use of 3DP has been able to reduce operative time significantly. Surgical procedures can be preplanned using 3DP patient-specific models. Surgeons can train before performing complex procedures, which enhances their presurgical planning in order to maximize patient outcomes. When considering implants and prostheses, the use of 3DP allows a superior anatomic fit for the patient, with the potential to improve restoration of anatomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. CIRSE Guidelines on Percutaneous Vertebral Augmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Too, Chow Wei, E-mail: spyder55@gmail.com; Koch, Guillaume, E-mail: guillaume.koch@gmail.com

    Vertebral compression fracture (VCF) is an important cause of severe debilitating back pain, adversely affecting quality of life, physical function, psychosocial performance, mental health and survival. Different vertebral augmentation procedures (VAPs) are used in order to consolidate the VCFs, relief pain,and whenever posible achieve vertebral body height restoration. In the present review we give the indications, contraindications, safety profile and outcomes of the existing percutaneous VAPs.

  20. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.

    PubMed

    Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg

    2007-06-01

    Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.

  1. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan.

    PubMed

    Skoglund, Paul; Keller, Ray

    2010-10-01

    The shaping of the vertebrate embryonic body plan depends heavily on the narrowing and lengthening (convergence and extension) of embryonic tissues by cell intercalation, a process by which cells actively crawl between one another along the axis of convergence to produce a narrower, longer array. We discuss recent evidence that the vertebrate non-canonical Wnt/Planar Cell Polarity (PCP) pathway, known to directly function in polarizing the movements of intercalating cells, is also involved in the localized assembly of extracellular matrix (ECM). These cell-ECM interactions, in turn, are necessary for expression of the oriented, polarized cell intercalation. The mechanism of PCP/ECM interactions, their molecular signaling, and their mechanical consequences for morphogenesis are discussed with the goal of identifying important unsolved issues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The cervical vertebral maturation method: A user's guide.

    PubMed

    McNamara, James A; Franchi, Lorenzo

    2018-03-01

    The cervical vertebral maturation (CVM) method is used to determine the craniofacial skeletal maturational stage of an individual at a specific time point during the growth process. This diagnostic approach uses data derived from the second (C2), third (C3), and fourth (C4) cervical vertebrae, as visualized in a two-dimensional lateral cephalogram. Six maturational stages of those three cervical vertebrae can be determined, based on the morphology of their bodies. The first step is to evaluate the inferior border of these vertebral bodies, determining whether they are flat or concave (ie, presence of a visible notch). The second step in the analysis is to evaluate the shape of C3 and C4. These vertebral bodies change in shape in a typical sequence, progressing from trapezoidal to rectangular horizontal, to square, and to rectangular vertical. Typically, cervical stages (CSs) 1 and CS 2 are considered prepubertal, CS 3 and CS 4 circumpubertal, and CS 5 and CS 6 postpubertal. Criticism has been rendered as to the reproducibility of the CVM method. Diminished reliability may be observed at least in part due to the lack of a definitive description of the staging procedure in the literature. Based on the now nearly 20 years of experience in staging cervical vertebrae, this article was prepared as a "user's guide" that describes the CVM stages in detail in attempt to help the reader use this approach in everyday clinical practice.

  3. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study

  4. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI.

    PubMed

    Winfield, Jessica M; Poillucci, Gabriele; Blackledge, Matthew D; Collins, David J; Shah, Vallari; Tunariu, Nina; Kaiser, Martin F; Messiou, Christina

    2018-04-01

    The aim of this study was to identify apparent diffusion coefficient (ADC) values for typical haemangiomas in the spine and to compare them with active malignant focal deposits. This was a retrospective single-institution study. Whole-body magnetic resonance imaging (MRI) scans of 106 successive patients with active multiple myeloma, metastatic prostate or breast cancer were analysed. ADC values of typical vertebral haemangiomas and malignant focal deposits were recorded. The ADC of haemangiomas (72 ROIs, median ADC 1,085×10 -6 mm 2 s -1 , interquartile range 927-1,295×10 -6 mm 2 s -1 ) was significantly higher than the ADC of malignant focal deposits (97 ROIs, median ADC 682×10 -6 mm 2 s -1 , interquartile range 583-781×10 -6 mm 2 s -1 ) with a p-value < 10 -6 . Receiver operating characteristic (ROC) analysis produced an area under the curve of 0.93. An ADC threshold of 872×10 -6 mm 2 s -1 separated haemangiomas from malignant focal deposits with a sensitivity of 84.7 % and specificity of 91.8 %. ADC values of classical vertebral haemangiomas are significantly higher than malignant focal deposits. The high ADC of vertebral haemangiomas allows them to be distinguished visually and quantitatively from active sites of disease, which show restricted diffusion. • Whole-body diffusion-weighted MRI is becoming widely used in myeloma and bone metastases. • ADC values of vertebral haemangiomas are significantly higher than malignant focal deposits. • High ADCs of haemangiomas allows them to be distinguished from active disease.

  5. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1.

    PubMed

    Bieber, A J; Snow, P M; Hortsch, M; Patel, N H; Jacobs, J R; Traquina, Z R; Schilling, J; Goodman, C S

    1989-11-03

    Drosophila neuroglian is an integral membrane glycoprotein that is expressed on a variety of cell types in the Drosophila embryo, including expression on a large subset of glial and neuronal cell bodies in the central and peripheral nervous systems and on the fasciculating axons that extend along them. Neuroglian cDNA clones were isolated by expression cloning. cDNA sequence analysis reveals that neuroglian is a member of the immunoglobulin superfamily. The extracellular portion of the protein consists of six immunoglobulin C2-type domains followed by five fibronectin type III domains. Neuroglian is closely related to the immunoglobulin-like vertebrate neural adhesion molecules and, among them, shows most extensive homology to mouse L1. Its homology to L1 and its embryonic localization suggest that neuroglian may play a role in neural and glial cell adhesion in the developing Drosophila embryo. We report here on the identification of a lethal mutation in the neuroglian gene.

  6. Posterior internal fixation plus vertebral bone implantation under navigational aid for thoracolumbar fracture treatment

    PubMed Central

    ZHOU, WEI; KONG, WEIQING; ZHAO, BIZHEN; FU, YISHAN; ZHANG, TAO; XU, JIANGUANG

    2013-01-01

    The aim of this study was to investigate the method of posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid for the treatment of thoracolumbar fractures. The efficacy of the procedure was also measured. Between June 2005 and March 2011, posterior thoracolumbar vertebral pedicle screw reduction and fixation plus artificial bone implantation via the affected vertebral pedicle under navigational aid was used to treat 30 patients with thoracolumbar fractures, including 18 males and 12 females, ranging in age from 21 to 57 years. Compared with the values prior to surgery, intraspinal occupation, vertebral height ratio and Cobb angle at the follow-up were significantly improved. At the long-term follow-up, the postoperative Cobb angle loss was <1° and the anterior vertebral body height loss was <2 mm. Posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid may increase the accuracy and safety of surgery, and it is an ideal method of internal implantation. Bone implantation via the affected vertebral body may increase vertebral stability. PMID:23935737

  7. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    PubMed

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  8. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine

    PubMed Central

    Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim

    2011-01-01

    The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399

  9. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study.

    PubMed

    Molinares, Diana M; Davis, Timothy T; Fung, Daniel A

    2015-10-09

    OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5-S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2-S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors' database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2-5 discs have the following mean distances: L2-3 = 16.04 mm, L3-4 = 14.21 mm, and L4-5 = 10.28 mm. The L5-S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3-4 disc in 5%, at the L-4 vertebral body in 43%, at the L4-5 disc in 11%, and at the L-5 vertebral

  10. Validation of a White-light 3D Body Volume Scanner to Assess Body Composition.

    PubMed

    Medina-Inojosa, Jose; Somers, Virend; Jenkins, Sarah; Zundel, Jennifer; Johnson, Lynne; Grimes, Chassidy; Lopez-Jimenez, Francisco

    2017-01-01

    Estimating body fat content has shown to be a better predictor of adiposity-related cardiovascular risk than the commonly used body mass index (BMI). The white-light 3D body volume index (BVI) scanner is a non-invasive device normally used in the clothing industry to assess body shapes and sizes. We assessed the hypothesis that volume obtained by BVI is comparable to the volume obtained by air displacement plethysmography (Bod-Pod) and thus capable of assessing body fat mass using the bi-compartmental principles of body composition. We compared BVI to Bod-pod, a validated bicompartmental method to assess body fat percent that uses pressure/volume relationships in isothermal conditions to estimate body volume. Volume is then used to calculate body density (BD) applying the formula density=Body Mass/Volume. Body fat mass percentage is then calculated using the Siri formula (4.95/BD - 4.50) × 100. Subjects were undergoing a wellness evaluation. Measurements from both devices were obtained the same day. A prediction model for total Bod-pod volume was developed using linear regression based on 80% of the observations (N=971), as follows: Predicted Bod-pod Volume (L)=9.498+0.805*(BVI volume, L)-0.0411*(Age, years)-3.295*(Male=0, Female=1)+0.0554*(BVI volume, L)*(Male=0, Female=1)+0.0282*(Age, years)*(Male=0, Female=1). Predictions for Bod-pod volume based on the estimated model were then calculated for the remaining 20% (N=243) and compared to the volume measured by the Bod-pod. Mean age among the 971 individuals was 41.5 ± 12.9 years, 39.4% were men, weight 81.6 ± 20.9 kg, BMI was 27.8 ± 6.3kg/m 2 . Average difference between volume measured by Bod-pod- predicted volume by BVI was 0.0 L, median: -0.4 L, IQR: -1.8 L to 1.5 L, R2=0.9845. Average difference between body fat measured-predicted was-1%, median: -2.7%, IQR: -13.2 to 9.9, R2=0.9236. Volume and BFM can be estimated by using volume measurements obtained by a white- light 3D body scanner and the prediction

  11. Building the Vertebrate Spine

    NASA Astrophysics Data System (ADS)

    Pourquié, Olivier

    2008-03-01

    The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead

  12. Behavioral fever in ectothermic vertebrates.

    PubMed

    Rakus, Krzysztof; Ronsmans, Maygane; Vanderplasschen, Alain

    2017-01-01

    Fever is an evolutionary conserved defense mechanism which is present in both endothermic and ectothermic vertebrates. Ectotherms in response to infection can increase their body temperature by moving to warmer places. This process is known as behavioral fever. In this review, we summarize the current knowledge on the mechanisms of induction of fever in mammals. We further discuss the evolutionary conserved mechanisms existing between fever of mammals and behavioral fever of ectothermic vertebrates. Finally, the experimental evidences supporting an adaptive value of behavioral fever expressed by ectothermic vertebrates are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Rapid onset aggressive vertebral haemangioma.

    PubMed

    Cheung, Nicholas K; Doorenbosch, Xenia; Christie, John G

    2011-03-01

    Vertebral haemangiomas are generally benign asymptomatic vascular tumours seen commonly in the adult population. Presentations in paediatric populations are extremely rare, which can result in rapid onset of neurological symptoms. We present a highly unusual case of an aggressive paediatric vertebral haemangioma causing significant cord compression. A 13-year-old boy presented with only 2 weeks duration of progressive gait disturbance, truncal ataxia and loss of bladder control. Magnetic resonance imaging (MRI) of the spine revealed a large vascular epidural mass extending between T6 and T8 vertebral bodies. Associated displacement and compression of the spinal cord was present. A highly vascular bony lesion was found during surgery. Histopathology identified this tumour to be a vertebral haemangioma. We present an extremely unusual acute presentation of a paediatric vertebral haemangioma. This study highlights the need for early diagnosis, MRI for investigation and urgent surgical management. © Springer-Verlag 2011

  14. A case report: pregnancy-induced severe osteoporosis with eight vertebral fractures.

    PubMed

    Ofluoglu, Onder; Ofluoglu, Demet

    2008-12-01

    Osteoporosis associated with pregnancy and lactation is a rare condition. The prevalence, etiology and its pathogenesis is unknown. It causes one or more vertebral fractures with severe, prolonged back pain and height loss in affected women. Majority of the cases are seen in the third trimester or just after delivery in primagravid women. In this case report, a 30-year-old woman who had severe pregnancy-induced osteoporosis with 8 vertebral fractures was presented. During last month of her first pregnancy she had moderate back pain. After delivery, the back pain has gotten worse. The radiological examinations have shown that there was 50% in T6, T8 and T10; 30% in L2; 20% in L1 height loss and biconcave vertebral images in L3-5. In the bone mineral density, L2-4 T score was -4.7 and total femoral T score was -3.1. There was no abnormality in the laboratory findings except mild elevation in alkaline phosphates. Although pregnancy-associated osteoporosis is a rare condition, when pain occurs in the last trimester or early postpartum period, it should be considered in differential diagnosis.

  15. Mechanical Loading during Growth Is Associated with Plane-specific Differences in Vertebral Geometry: A Cross-sectional Analysis Comparing Artistic Gymnasts vs. Non-gymnasts

    PubMed Central

    Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.

    2011-01-01

    Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (PA) and supine lateral (LAT) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (PALAT) versus standard PA and LAT outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater PABMD, PABMC, PAWIDTH, PA CROSS-SECTIONAL AREA (CSA), PAVOLUME, LATBMD, LATBMAD, PALATCSA and PALATIBS (p<0.05). Non-gymnasts exhibited greater LATDEPTH/PAWIDTH, LATBMC/PABMC, LATVHEIGHT, LATAREA and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for PA or PALAT BMAD. In contrast, cuboid model results (Carter 1992) suggested erroneous ex/gymnast PABMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than PA or LAT plane scans alone. PMID:21839871

  16. Cement vertebroplasty combined with ethanol injection in the treatment of vertebral hemangioma.

    PubMed

    Chen, Liang; Zhang, Chun-lin; Tang, Tian-si

    2007-07-05

    A number of methods have been used in the treatment of symptomatic and aggressive vertebral hemangioma, but none of them is optimal. Vertebral hemangioma treated with cement vertebroplasty or ethanol injection alone showed relatively good results despite their limitations. Between February 2002 and May 2004, twelve patients with vertebral hemangioma were subjected to combined cement vertebroplasty and ethanol injection, five of them were men and seven women, and aged from 26 to 54 years (mean, 41 years). The following levels of the spine were involved: T9: 1, T10: 3, T12: 2, L1: 1, L2: 2, L3: 2 and L4: 1. The clinical results and radiographic records of the patients were assessed after 2 years and 5 months of follow-up. The average score of back pain significantly decreased from 6.5 before operation to 1.7 one month after operation. No severe complications occurred during and after operation. During the period of follow-up, symptoms were not deteriorated. At the end of follow-up, neither radiographic sign of aggressive destruction nor collapse of the involved vertebra was observed. Significant improvement in the 12 patients was demonstrated on 7 of 8 SF-36 Health Scale except for mental health. Cement vertebroplasty combined with ethanol injection as a safe and effective technique is an alternative to the treatment of patients with vertebral hemangioma.

  17. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  18. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?: A retrospective study.

    PubMed

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-09-01

    Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis.From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study.With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  19. The generation of vertebral segmental patterning in the chick embryo

    PubMed Central

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-01-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. PMID:22458512

  20. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific

  1. Vertebral body fracture after anterior cervical discectomy and fusion with zero-profile anchored cages in adjacent levels: a cautionary tale.

    PubMed

    Mattei, Tobias A; Teles, Alisson R; Dinh, Dzung H

    2016-01-05

    Zero-profile (also called self-locking, anchored or stand-alone cages) have been recently proposed as an interesting alternative for anterior cervical discectomy and fusion (ACDF), as they are supposed to reduce the rates of post-operative cage extrusion without necessarily incurring in the additional surgical time and increased rates of dysphagia associated with plating. Nevertheless, the exact indications of zero-profile anchored cages have not yet been established in the literature. To report the first case of a vertebral body fracture between the blades of zero-profile anchored cages after ACDFs in adjacent levels and to review the available literature on hardware-related complications after multi-level ACDFs with zero-profile anchored cages. Case report and systematic literature review. The authors report the first case of a vertebral body fracture between the blades of zero-profile anchored cages after ACDFs in adjacent levels. The patient presented with refractory mechanical neck pain at the 1-month post-operative follow-up, ultimately requiring a posterior instrumented fusion. A comprehensive systematic literature review on the available data regarding the safety, complications as well as radiological and clinical outcomes of zero-profile anchored cages is also performed. In the reported case, the use of zero-profile anchored cages in adjacent levels on the cervical spine led to a fracture of the vertebral body between the cages at the 1-month follow-up, with anterior avulsion of the part of the vertebral body where the blades from the two cages converged. According to the systematic literature review which included 409 patients from 10 different clinical series (with a total cumulative follow-up of approximately 535 patients-year), there were only two reported hardware-related complications after ACDF with zero-profile anchored cages, none of them involving fracture at the level of convergence of blades or screws. Although hardware-related complications

  2. Temporal Trends in Vertebral Size and Shape from Medieval to Modern-Day

    PubMed Central

    Junno, Juho-Antti; Niskanen, Markku; Nieminen, Miika T.; Maijanen, Heli; Niinimäki, Jaakko; Bloigu, Risto; Tuukkanen, Juha

    2009-01-01

    Human lumbar vertebrae support the weight of the upper body. Loads lifted and carried by the upper extremities cause significant loading stress to the vertebral bodies. It is well established that trauma-induced vertebral fractures are common especially among elderly people. The aim of this study was to investigate the morphological factors that could have affected the prevalence of trauma-related vertebral fractures from medieval times to the present day. To determine if morphological differences existed in the size and shape of the vertebral body between medieval times and the present day, the vertebral body size and shape was measured from the 4th lumbar vertebra using magnetic resonance imaging (MRI) and standard osteometric calipers. The modern samples consisted of modern Finns and the medieval samples were from archaeological collections in Sweden and Britain. The results show that the shape and size of the 4th lumbar vertebra has changed significantly from medieval times in a way that markedly affects the biomechanical characteristics of the lumbar vertebral column. These changes may have influenced the incidence of trauma- induced spinal fractures in modern populations. PMID:19279681

  3. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton.

    PubMed

    Keating, Joseph N; Marquart, Chloe L; Donoghue, Philip C J

    2015-06-01

    Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four-layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel-fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel-fibred bone, showing osteon-like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we interpret the

  4. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo.

    PubMed

    Briggs, Andrew M; Wrigley, Tim V; van Dieën, Jaap H; Phillips, Bev; Lo, Sing Kai; Greig, Alison M; Bennell, Kim L

    2006-12-01

    The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 +/- 6.4 years, 162.2 +/- 5.1 cm, 69.1 +/- 11.2 kg) and 19 without fractures (62.9 +/- 7.9 years, 158.3 +/- 4.4 cm, 59.3 +/- 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for

  5. Vertebral Osteomyelitis Caused by Helicobacter cinaedi Identified Using Broad-range Polymerase Chain Reaction with Sequencing of the Biopsied Specimen.

    PubMed

    Hase, Ryota; Hirooka, Takuya; Itabashi, Takashi; Endo, Yasunobu; Otsuka, Yoshihito

    2018-05-15

    A 65-year-old man presented with gradually exacerbating low back pain. Magnetic resonance imaging revealed vertebral osteomyelitis in the Th11-L2 vertebral bodies and discs. The patient showed negative findings on conventional cultures. Direct broad-range polymerase chain reaction (PCR) with sequencing of the biopsied specimen had the highest similarity to the 16S rRNA gene of Helicobacter cinaedi. This case suggests that direct broad-range PCR with sequencing should be considered when conventional cultures cannot identify the causative organism of vertebral osteomyelitis, and that this method may be particularly useful when the pathogen is a fastidious organism, such as H. cinaedi.

  6. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.

    PubMed

    De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia

    2018-06-01

    The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies

  7. The generation of vertebral segmental patterning in the chick embryo.

    PubMed

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-06-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  8. Micro Finite Element models of the vertebral body: Validation of local displacement predictions.

    PubMed

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco; Dall'Ara, Enrico

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model's predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87-0.99). However, model predictions of axial forces were largely overestimated (80-369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10-80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types.

  9. Micro Finite Element models of the vertebral body: Validation of local displacement predictions

    PubMed Central

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model’s predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87–0.99). However, model predictions of axial forces were largely overestimated (80–369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10–80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types. PMID:28700618

  10. Embryonic origin of the gnathostome vertebral skeleton

    PubMed Central

    Gillis, J. Andrew

    2017-01-01

    The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts. PMID:29167367

  11. The role of the notochord in amniote vertebral column segmentation.

    PubMed

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation.

    PubMed

    Takei, Y

    2000-04-01

    The origin of life took place in the ancient sea where the ionic concentration is thought to have been somewhat lower than that of the present day seas. This may partly explain why most vertebrate species have plasma ionic concentrations roughly one-third of seawater. Exceptions are primitive marine cyclostomes whose plasma is almost identical to seawater, and marine cartilaginous fishes that accumulate urea in plasma to increase osmolarity to a seawater level. The mechanisms for regulation of water and electrolyte balance should have evolved from these animals into those of more advanced ones in which plasma ions are regulated to one-third of seawater irrespective of the habitat. Although most extant terrestrial and aquatic animals maintain similar plasma osmolarity and ionic concentrations, the mechanisms of regulation differ greatly among different groups of animals according to their habitat. An outstanding difference is that while plasma Na(+) concentration is a primary factor of regulation in terrestrial mammals and birds, blood volume is most strictly regulated in aquatic teleost fishes. Consistently, while an increase in plasma osmolarity (cellular dehydration) is a major dipsogenic stimulus for birds and mammals, hypovolemia (extracellular dehydration) is a much stronger stimulus for elicitation of drinking in teleost fishes. Furthermore, fish cells in culture are tolerant to changes in environmental osmolarity compared with mammalian cells, further suggesting a secondary role of plasma osmolarity as a target of regulation in fishes. A secondary role of blood volume for body fluid regulation in birds is further assessed by the fact that volume receptors for thirst, salt gland secretion, and vasotocin secretion are localized in the extravascular, interstitial space in some species of birds. All terrestrial animals including mammals have derived from the fishes in phylogeny, during which the mechanisms for body fluid regulation underwent adaptive evolution

  13. Extinction risk is most acute for the world's largest and smallest vertebrates.

    PubMed

    Ripple, William J; Wolf, Christopher; Newsome, Thomas M; Hoffmann, Michael; Wirsing, Aaron J; McCauley, Douglas J

    2017-10-03

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world's vertebrates, fundamentally reordering the structure of life on our planet.

  14. Building the backbone: the development and evolution of vertebral patterning.

    PubMed

    Fleming, Angeleen; Kishida, Marcia G; Kimmel, Charles B; Keynes, Roger J

    2015-05-15

    The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning. © 2015. Published by The Company of Biologists Ltd.

  15. Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2

    PubMed Central

    Nielson, Carrie M; Liu, Ching-Ti; Smith, Albert V; Ackert-Bicknell, Cheryl L; Reppe, Sjur; Jakobsdottir, Johanna; Wassel, Christina; Register, Thomas C; Oei, Ling; Alonso, Nerea; Oei, Edwin H; Parimi, Neeta; Samelson, Elizabeth J; Nalls, Mike A; Zmuda, Joseph; Lang, Thomas; Bouxsein, Mary; Latourelle, Jeanne; Claussnitzer, Melina; Siggeirsdottir, Kristin; Srikanth, Priya; Lorentzen, Erik; Vandenput, Liesbeth; Langefeld, Carl; Raffield, Laura; Terry, Greg; Cox, Amanda J; Allison, Matthew A; Criqui, Michael H; Bowden, Don; Ikram, M Arfan; Mellstrom, Dan; Karlsson, Magnus K; Carr, John; Budoff, Matthew; Phillips, Caroline; Cupples, L Adrienne; Chou, Wen-Chi; Myers, Richard H; Ralston, Stuart H; Gautvik, Kaare M; Cawthon, Peggy M; Cummings, Steven; Karasik, David; Rivadeneira, Fernando; Gudnason, Vilmundur; Orwoll, Eric S; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P; Hsu, Yi-Hsiang

    2017-01-01

    Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 1.9 × 10−8) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (β = 0.09, p = 1.2 × 10−10) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10−4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β = 0.12, FDR p = 1.7 × 10−3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to linkSLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help

  16. Vertebrate blood cell volume increases with temperature: implications for aerobic activity.

    PubMed

    Gillooly, James F; Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures.

  17. High-resolution CT evaluation of bronchial lumen to vertebral body, pulmonary artery to vertebral body and bronchial lumen to pulmonary artery ratios in Dirofilaria immitis-infected cats with and without selamectin administration.

    PubMed

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Graham, Shannon; Tillson, D Michael; Barney, Sharron

    2017-10-01

    Objectives The bronchial lumen to pulmonary artery (BA) ratio is utilized to evaluate pulmonary pathology on CT images. The BA ratio may be unreliable when changes are present in bronchial and pulmonary arteries concurrently. Bronchial lumen to vertebral body (BV) and pulmonary artery to vertebral body (AV) ratios have been established in normal cats and may serve as an alternative. This study aimed to evaluate the BV, AV and BA ratios in cats before and after infection with Dirofilaria immitis, with and without selamectin administration, and to characterize the distribution of disease. Methods Archived CT images were reviewed from three groups of cats: D immitis-infected untreated (n = 6); infected pretreated with selamectin (n = 6); uninfected untreated (n = 5). The BV, AV and BA ratios were calculated for all lung lobes for baseline (D0) and day 240 (D240) postinfection. Ratios and percentage change from baseline were compared between lobes and between groups. Results BV and AV ratios were more consistent in identifying abnormalities when disease was present in bronchial and arteries concurrently than BA ratios. Infected untreated cats had significant changes in both BV and AV ratios and percentage change from baseline. Abnormal BV and AV ratios were noted in the infected selamectin group, although less widely distributed. Conclusions and relevance The BV and AV ratios more accurately identified bronchial and pulmonary artery abnormalities in D immitis-infected cats. Both bronchial and pulmonary artery changes were present in infected cats, decreasing the diagnostic application of the BA ratio. Pulmonary artery changes were more widely distributed than bronchial changes in the lung. Heartworm-infected cats receiving selamectin had bronchial and pulmonary artery changes but to a lesser extent than untreated heartworm-infected cats. The CT-derived BV and AV ratios are a useful measure to evaluate lung disease of cats.

  18. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images.

    PubMed

    Dall'Ara, E; Varga, P; Pahr, D; Zysset, P

    2011-05-01

    The accuracy of QCT-based homogenized finite element (FE) models is strongly related to the accuracy of the prediction of bone volume fraction (BV/TV) from bone mineral density (BMD). The goal of this study was to establish a calibration methodology to relate the BMD computed with QCT with the BV/TV computed with micro-CT (microCT) over a wide range of bone mineral densities and to investigate the effect of region size in which BMD and BV/TV are computed. Six human vertebral bodies were dissected from the spine of six donors and scanned submerged in water with QCT (voxel size: 0.391 x 0.391 x 0.450 mm3) and microCT (isotropic voxel size: 0.018(3) mm3). The microCT images were segmented with a single level threshold. Afterward, QCT-grayscale, microCT-grayscale, and microCT-segmented images were registered. Two isotropic grids of 1.230 mm (small) and 4.920 mm (large) were superimposed on every image, and QCT(BMD) was compared both with microCT(BMD) and microCT(BV/TV) for each grid cell. The ranges of QCT(BMD) for large and small regions were 9-559 mg/cm3 and -90 to 1006 mg/cm3, respectively. QCT(BMD) was found to overestimate microCT(BMD). No significant differences were found between the QCT(BMD)-microCT(BV/TV) regression parameters of the two grid sizes. However, the R2 was higher, and the standard error of the estimate (SEE) was lower for large regions when compared to small regions. For the pooled data, an extrapolated QCTBMD value equal to 1062 mg/ cm3 was found to correspond to 100% microCT(BV/TV). A calibration method was defined to evaluate BV/TV from QCTBMD values for cortical and trabecular bone in vitro. The QCT(BMD-microCT(BV/TV) calibration was found to be dependent on the scanned vertebral section but not on the size of the regions. However, the higher SEE computed for small regions suggests that the deleterious effect of QCT image noise on FE modelling increases with decreasing voxel size.

  19. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures.

    PubMed

    Vega, E; Ghiringhelli, G; Mautalen, C; Rey Valzacchi, G; Scaglia, H; Zylberstein, C

    1998-05-01

    The bone mineral density (BMD) at the lumbar spine, proximal femur, and total skeleton was evaluated in 38 men with primary osteoporosis and vertebral fractures. BMD of the patients was significantly reduced over all skeletal areas compared with controls. The Z-score of the lumbar spine (-2.8 +/- 0.9) was less than that of the other areas (P < 0.001) except the legs (-2.5 +/- 1.1) (p.n.s.) showing that bone loss had a tendency to be greater over the axial skeleton. Vertebral dimensions compared with age-matched controls were as follows: projected L2-L4 area (cm 2): 45.7 +/- 5.6 versus 53.7 +/- 3. 6 (P < 0.001); vertebral width (cm): 4.37 +/- 0.44 versus 4.90 +/- 0. 36 (P < 0.001). Serum biochemical parameters and testosterone levels were similar between osteoporotic and control men. We conclude that men with vertebral osteoporotic fractures have reduced vertebral BMD and vertebral dimensions compared with age-matched controls. Thus, these findings indicate that the achievement of a reduced bone size at the end of the growth period or a failure of periosteal increase during adult life is likely to contribute to the pathogenesis of the vertebral fractures observed in older men.

  20. Extinction risk is most acute for the world’s largest and smallest vertebrates

    PubMed Central

    Ripple, William J.; Wolf, Christopher; Newsome, Thomas M.; Hoffmann, Michael; Wirsing, Aaron J.; McCauley, Douglas J.

    2017-01-01

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world’s vertebrates, fundamentally reordering the structure of life on our planet. PMID:28923917

  1. Identification of vertebral deformities in the Polish population by morphometric X-ray absorptiometry - results of the EPOLOS study.

    PubMed

    Skowrońska-Jóźwiak, Elzbieta; Płudowski, Paweł; Karczmarewicz, Elzbieta; Lorenc, Roman; Lewiński, Andrzej

    2009-01-01

    The aim of the study was the determination of the prevalence of asymptomatic vertebral deformities in healthy persons of the Polish population, based on morphometric X-ray absorptiometry (MXA), and comparison of the results with data from literature, obtained by other techniques. The study involved 829 persons, including 520 women and 309 men, aged 18-79 years, untreated for osteoporosis before. The Th(4) to L(4) vertebrae were examined. Lateral scans of the thoracic-lumbar spine were made by an Expert-XL densitometer. Six point digitization was used to calculate the anterior (Ha), central (Hc), and posterior (Hp) height of the Th(4)-L(4) vertebral bodies. The vertebrae were defined as having prevalent deformities when at least one ratio value (Ha/Hp, Hc/Hp, Hp/Hp up, or Hp/Hp low) fell 3 SDs below or even more than the reference mean of that ratio at any vertebral level. The analysis was performed on 9629 vertebrae, of which 167 (1.75%), evaluated as deformed and considered as fractures, were observed in 113 patients (13.63 % of the examined patients). In 81 persons (74% of the patients with fractures; 9.7% of the studied population), single fractures were demonstrated, while in 28 persons, multiple deformities prevailed. Fractures occurred in 108 women (20.7% of the examined women) and 42 men (13.5% of the examined men). The highest incidence of deformities was observed in women over 55 years of age. First-degree deformities dominated. Deformities of the Th(8) and Th(6) vertebrae were most frequently observed. 1. Using MXA, it was found that in the Polish population deformities of vertebrae are common, as was demonstrated in X-ray morphometric studies in the European Vertebral Observation Study (EVOS). 2. Densitometric morphometry, as a non-invasive technique, may become a useful tool in the diagnostics of vertebral fractures.

  2. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    PubMed Central

    Liang, Cheng-Loong; Wang, Hao-Kwan; Syu, Fei-Kai; Wang, Kuo-Wei; Lu, Kang; Liliang, Po-Chou

    2015-01-01

    Purpose Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation. Methods We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD) of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure) and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses. Results The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36), advanced age (AOR=1.60; 95% CI: 1.32–2.08), diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88), cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76), dementia (AOR=1.97; 95% CI: 1.69–2.33), blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95), hypertension (AOR=2.58; 95% CI: 2.35–3.47), and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22). Patients taking calcium/vitamin D (AOR=2.98; 95% CI: 1.83–3.93), bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61), or calcitonin (AOR=4.59; 95% CI: 3.40–5.77) were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08), acetaminophen (AOR=3.54; 95% CI: 2.75–4.83), or nonsteroidal anti-inflammatory drugs (NSAIDs) (AOR=6.14; 95% CI: 5.08–7.41) were more likely to undergo repeat vertebral augmentation. Conclusion We conclude that the incidence of repeat vertebral augmentation is rather high. An understanding of risk factors predicting repeat

  3. Fibrous dysplasia: an unusual case of a very aggressive form with costo-vertebral joint destruction and invasion of the contralateral D7 vertebral body.

    PubMed

    Zoccali, Carmine; Attala, Dario; Rossi, Barbara; Zoccali, Giovanni; Ferraresi, Virginia

    2018-05-23

    Fibrous dysplasia (FD) is a benign fibro-osseous disease of the bone that may be solitary or multicentric. It is important to distinguish this type of lesion from low-grade osteosarcomas (LGOS) and from secondary sarcomas, because malignant transformation has rarely been reported. It is classically described as having a ground-glass appearance, endosteal scalloping, and thinning of the cortex. Cortical disruption is considered evidence of malignancy, but it can also be present in benign FD with aggressive behavior. We present an unusual case of aggressive FD of the 7th left rib, already diagnosed more than 22 years ago, where cortical and costo-vertebral joint disruption and 7th thoracic vertebral body involvement were not evidence of malignant behavior. From a histological perspective, FD and LGOS are similar; even if histology is of fundamental importance, the diagnosis has to be made based on the clinical and radiological aspects as well, although at imaging, differentiation between FD and LGOS can be difficult. In the present case, even though the histological examination suggested a benign lesion, the radiological examination instead consistently suggests malignancy. It is for this reason that there should be a high index of suspicion during follow-up and a new biopsy should be scheduled in case any changes occur during follow-up.

  4. Delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation: Case report with histopathologic-MRI correlation.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Hsi, Andy C; Robinson, Clifford G; Chang, Randy O; Jennings, Jack W

    2015-12-01

    Stereotactic radiosurgery and percutaneous radiofrequency ablation are emerging therapies for pain palliation and local control of spinal metastases. However, the post-treatment imaging findings are not well characterized and the risk of long-term complications is unknown. We present the case of a 46-year-old woman with delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation of a painful lumbar metastasis. Histopathologic-MRI correlation confirmed osteonecrosis as the underlying etiology and demonstrated that treatment-induced vascular fibrosis and tumor progression can have identical imaging appearances. © The Author(s) 2015.

  5. Numerical-experimental study of internal fixation system "Dufoo" for vertebral fractures.

    PubMed

    Nieto-Miranda, J Jesús; Faraón-Carbajal Romero, Manuel; Sánchez-Aguilar, Jons

    2012-01-01

    We describe a numerical experimental study of the stress generated by the internal fixation system "Dufoo" used in the treatment of vertebral fractures with the purpose of validating the numerical model of human lumbar vertebrae under the main physiological loads that the human body is exposed to in this area. The objective is to model and numerically simulate the elements of the musculoskeletal system to collect the stresses generated and other parameters that are difficult to measure experimentally in the thoracic lumbar vertebrae. We used an internal fixator "Dufoo" and vertebrae L2-L3-L4 specimens from pig and human. The system uses a total L3 corpectomy. The fixator acts as a mechanical bridge implant from L2 to L4. Numerical analysis was performed using the finite element method (FEM). For the experimental study, reflective photoelasticity and extensometry were used. Torsion and combined loads generate the main displacements and stresses in the study system, determining that the internal fixation carries out part of the function of the damaged organ structure when absorbing the stresses presented by applied loads. Numerical analysis allows great freedom in the management of the variables involved in the developed models using radiological images. Geometric models are obtained and are entered into FEM programs that allow testing using parameters that, under actual conditions, may not be easily carried out, allowing to comprehensively determine the biomechanical behavior of the coupled system of study.

  6. Gravidity, Parity and Vertebral Dimensions in the Northern Finland Birth Cohort 1966.

    PubMed

    Oura, Petteri; Paananen, Markus; Auvinen, Juha; Niinimäki, Jaakko; Niinimäki, Maarit; Karppinen, Jaro; Junno, Juho-Antti

    2018-03-15

    A population-based birth cohort study. To investigate the association between gravidity, parity and vertebral geometry among middle-aged women. Vertebral size is a recognized determinant of vertebral fracture risk. Yet only a few lifestyle factors that influence vertebral size are known. Pregnancy is a labile period which may affect the maternal vertebral size or shape. The lumbar lordosis angle is permanently deepened by pregnancy, but it remains unclear whether vertebral shape or size contribute to this deepened angle. We aimed to investigate whether gravidity and parity were associated with vertebral cross-sectional area (CSA) and height ratio (anterior height: posterior height) among 705 middle-aged women from the Northern Finland Birth Cohort 1966. We measured the corpus of their fourth lumbar vertebra using magnetic resonance imaging of the lumbar spine at the age of 46. Gravidity and parity were elicited using a questionnaire also at the age of 46. Linear regression analysis was used with adjustments for body mass index, vertebral CSA (height ratio models), and vertebral height (CSA models). We also ran a subgroup analysis which did not include nulliparous women, and we compared nulliparous women with grand multiparous women. The models found no statistically significant associations between the predictors and outcomes. Crude and adjusted results were highly similar, and the subgroup analyses provided analogous results. Pregnancy, or even multiple pregnancies, do not seem to have long-term effects on vertebral geometry. In order to enhance the prevention of vertebral fractures, future studies should aim to reveal more lifestyle determinants of vertebral size. 3.

  7. Identifying osteoporotic vertebral endplate and cortex fractures

    PubMed Central

    Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H.

    2017-01-01

    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs. PMID:29184768

  8. Long term outcome of treatment of vertebral body hemangiomas with direct ethanol injection and short segment stabilization.

    PubMed

    Chandra, P Sarat; Singh, Pankaj; K, Rajender; Agarwal, Deepak; Tandon, Vivek; Kale, S S; Sarkar, Chitra

    2018-06-08

    Vertebral body (VH) hemangiomas with myelopathy are difficult to manage. To evaluate the role of intra-operative ethanol embolization, surgical decompression and instrumented short segment fusion in VH with myelopathy and long-term outcome (>24 months). Prospective study: Symptomatic VH with cord compression with myelopathy. Excluded: pathological fractures, and/or deformity or multi-level pathologies. Surgery consisted of intra-operative bilateral pedicular absolute alcohol (<1% hydrated ethyl alcohol) injection, laminectomy and cord decompression at the level of pathology followed by a short segment instrumented fusion using pedicle screws. 33 patients (Mean 26.9 + 13.2, range: 10-68 years, 18 females). myelopathy all (5 paraplegic), sphincter involvement (13), and mid back/ lower pain (7). Pre-operative American Spinal Injury Association (ASIA) scores: A(7), B(11), C(6), D(8) and E(1). Majority had single vertebral involvement (30), 3 multiple level. Six underwent surgery earlier (1 alcohol embolization here). Mean surgical time: 124+39 minutes, average blood: 274+80 cc. Mean amount of absolute alcohol injected: 14.6+5.7 cc. (2 requiring 20 & 25 cc). Immediate embolization achieved in all, allowing laminectomy and soft-tissue hemangioma removal easily. Post-surgery, 1 patient had transient deterioration, rest all patients improved (sphincters improved in 9) at a follow up ranging 28-103 months (mean 47.6+22.3). Follow-up ASIA scores: E(26), D(4), B(2) & C(1). All patients showed evidence of bone sclerosis and relief of cord compression on follow-up imaging. This is largest study in literature showing excellent improvement, low re-operation rates following ethanol embolization and short segment fixation. Copyright © 2018. Published by Elsevier Inc.

  9. Zone-dependent changes in human vertebral trabecular bone: clinical implications.

    PubMed

    Thomsen, Jesper Skovhus; Ebbesen, E N; Mosekilde, Li

    2002-05-01

    We have previously shown that there are pronounced age-related changes in human vertebral cancellous bone density and microarchitecture. However, the magnitude of these changes seemed to be dependent on zone location in the vertebral body-the central third vs. the areas adjacent to the endplates. The aim of the present study was, therefore, to investigate whether such zone-specific differences could be identified by static histomorphometric measures. The material comprised 48 individuals (24 women aged 19-97 years, and 24 men aged 23-95 years). Three of the women had a known fracture of the L-2. From each L-2, thick frontal sections of half of the vertebra were embedded undecalcified in methylmethacrylate, cut into 10-microm-thick sections, and stained with aniline blue. The sections were scanned into a computer, and classic static histomorphometry was performed on the images. The histomorphometry was performed on both the whole section and on the separate zones (central and sub-endplate zone). The results showed that trabecular bone volume, trabecular number, and connectivity density decreased significantly faster with age, whereas marrow space star volume increased significantly faster with age in the zones adjacent to the endplates than in the central zone. The other histomorphometric measures showed no zone specificity in relation to aging. However, trabecular thickness and trabecular separation were both higher at all ages in the central zone than in the sub-endplate zone, although this was significant only for trabecular separation. The described differences might have significant clinical implications concerning quantitative computed tomography (QCT) scanning, X-ray analyses, and assessment of fracture liability in the human spine, but the underlying pathogenesis is still not known. This study shows that the human vertebral body can be described as two distinct zones with very specific age-related changes in density and microstructure. This zone

  10. Lauroyl-L-aspartate decreased food intake and body temperature in neonatal chicks.

    PubMed

    Erwan, E; Chowdhury, V S; Ito, K; Furuse, M

    2013-11-15

    We hypothesized that the effects of L- and D-amino acids might be influenced when conjugated with fatty acid. Thus, the effects of oral administration of lauroyl-L-aspartate (Lau-L-Asp) as well as lauroyl-D-aspartate (Lau-D-Asp) were examined. In Experiment 1, oral administration of both Lau-L-Asp and Lau-D-Asp decreased food intake while L- or D-Asp did not influence food intake. Interestingly, only Lau-L-Asp decreased body temperature. Experiment 2 was conducted to determine whether non-conjugated mixture of L-Asp plus lauric acid has same effects under ad libitum feeding conditions. Lau-L-Asp decreased food intake and body temperature, but L-Asp plus lauric acid did not show any effect studied. In Experiment 3, we found that Lau-L-Asp declined food intake as well as time-dependently suppressed the body temperature in fasted chicks. However, L-Asp plus lauric acid did not show any effect. These results suggest that Lau-L-Asp may exert anorexigenic and hypothermic actions in chicks. © 2013.

  11. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    PubMed Central

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  12. Permo-Triassic vertebrate extinctions: A program

    NASA Technical Reports Server (NTRS)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  13. Scoliosis associated with airflow obstruction due to endothoracic vertebral hump.

    PubMed

    Ito, Kenyu; Kawakami, Noriaki; Miyasaka, Kazuyoshi; Tsuji, Taichi; Ohara, Tetsuya; Nohara, Ayato

    2012-12-01

    A retrospective clinical study of scoliosis-associated airflow obstruction due to endothoracic vertebral hump. The purpose of this study was to evaluate and present anatomical features of patients with scoliosis who showed airflow obstruction caused by endothoracic vertebral hump. It is well known that severe scoliosis causes airflow restriction due to thoracic cage deformity. There have been few reports of clinical data and anatomical features on scoliosis associated with airflow obstruction due to endothoracic vertebral hump. The subjects were 6 patients. The diagnoses were idiopathic scoliosis in 3 patients, symptomatic scoliosis in 2 patients, and thoracogenic scoliosis in 1 patient. The radiological outcome, comorbidities, pre- and postoperative respiratory function, and surgical complication were analyzed. Four patients had preoperative atelectasis on the convex side of the lower lobe and improved after the operations. All patients showed main thoracic curves and their apex was located at T7-T9. All patients had lordoscoliosis except 1, who demonstrated kyphosing scoliosis. The correction rate was 78% (62.8%-83.5%). Preoperative thoracic lordosis within the range of -5° to -47° was postoperatively corrected to a substantially normal kyphosis within the range of 9° to 24°. The average vital capacity, percent VC improved from 0.72 L (0.33-1.17 L) to 1.21 L (0.82-1.71 L) and 45.5% (37.3%- 50.8%) to 63.7% (41.0%-88.6%) relatively. Spine Penetration Index improved from 23% (18%-35%) to 16% (13%-19%). Endothoracic hump ratio improved from 1.34 (0.98-1.93) to 1.12 (0.86-1.28). Each patient with symptomatic scoliosis and thoracogenic scoliosis required relatively long periods of respiration management. Patients having lordoscoliosis with an apex located between T7 and T9 may develop airflow obstruction due to an endothoracic vertebral hump. Correction of lordoscoliosis through anterior and posterior approaches successfully improved endothoracic hump ratio and

  14. Dietary fatty acids and inflammation in the vertebral column of Atlantic salmon, Salmo salar L., smolts: a possible link to spinal deformities.

    PubMed

    Gil Martens, L; Lock, E J; Fjelldal, P G; Wargelius, A; Araujo, P; Torstensen, B E; Witten, P E; Hansen, T; Waagbø, R; Ørnsrud, R

    2010-12-01

    Vegetable oils (Vo) are an alternative to fish oil (Fo) in aquaculture feeds. This study aimed to evaluate the effect of dietary soybean oil (Vo diet), rich in linoleic acid, and of dietary fish oil (Fo diet) on the development of spinal deformities under bacterial lipopolysaccharide (LPS)-induced chronic inflammation conditions in Atlantic salmon, Salmo salar L. Fish [25 g body weight (BW)] were fed the experimental diets for 99 days. On day 47 of feeding (40 g BW), fish were subjected to four experimental regimes: (i) intramuscular injections with LPS, (ii) sham-injected phosphate-buffered saline (PBS), (iii) intraperitoneally injected commercial oil adjuvant vaccine, or (iv) no treatment. The fish continued under a common feeding regime in sea water for 165 more days. Body weight was temporarily higher in the Vo group than in the Fo group prior to immunization and was also affected by the type of immunization. At the end of the trial, no differences were seen between the dietary groups. The overall prevalence of spinal deformities was approximately 14% at the end of the experiment. The Vo diet affected vertebral shape but did not induce spinal deformities. In groups injected with LPS and PBS, spinal deformities ranged between 21% and 38%, diet independent. Deformed vertebrae were located at or in proximity to the injection point. Assessment of inflammatory markers revealed high levels of plasma prostaglandin E₂ (PGE₂) in the Vo-fed and LPS-injected groups, suggesting an inflammatory response to LPS. Cyclooxigenase 2 (COX-2) mRNA expression in bone was higher in fish fed Fo compared to Vo-fed fish. Gene expression of immunoglobulin M (IgM) was up-regulated in bone of all LPS-injected groups irrespective of dietary oil. In conclusion, the study suggests that Vo is not a risk factor for the development of inflammation-related spinal deformities. At the same time, we found evidence that localized injection-related processes could trigger the development of

  15. Changes in Vertebral Column Height (VCH) at Different Distance Intervals During a 3-Mile Walk.

    PubMed

    Roush, J R; Kee, M; Toeppe, J

    2008-08-01

    The purpose of this study was to determine the changes in vertebral column height (VCH) of males and females, at every one-half mile, for a total walking distance of 3 miles. Twenty males and twenty females between the ages of 21 and 40 years walked 3 miles on a treadmill maintaining a walking speed that the subject rated between 12 and 14 on Borg's rate of perceived exertion scale. Blood pressure, heart rate, and VCH measurements were taken initially and at each half-mile interval throughout the three-mile walk. Vertebral column height (VCH) was measured from the spinous process of C7 to S2 using a standard tape measure. Significant differences existed in vertebral column height according to sex (F = 16.18; p < .05) and significant differences in vertebral column height at the different distances (F = 65.02: p < .0001). Significant changes occurred in the VCH between half-mile intervals only between 0.5 miles and 1.0 mile and between 1.0 mile and 1.5 miles during the walk. As found with a regression analysis, curvilinear relationship exists between the distance walked and VCH; with VCH decreasing throughout the distance of the walk. Vertebral column height decreased in a curvilinear relationship throughout the distance of walking 3 miles in both males and females.

  16. Changes in Vertebral Column Height (VCH) at Different Distance Intervals During a 3-Mile Walk

    PubMed Central

    Kee, M; Toeppe, J

    2008-01-01

    Background The purpose of this study was to determine the changes in vertebral column height (VCH) of males and females, at every one-half mile, for a total walking distance of 3 miles. Methods Twenty males and twenty females between the ages of 21 and 40 years walked 3 miles on a treadmill maintaining a walking speed that the subject rated between 12 and 14 on Borg's rate of perceived exertion scale. Blood pressure, heart rate, and VCH measurements were taken initially and at each half-mile interval throughout the three-mile walk. Vertebral column height (VCH) was measured from the spinous process of C7 to S2 using a standard tape measure. Results Significant differences existed in vertebral column height according to sex (F = 16.18; p < .05) and significant differences in vertebral column height at the different distances (F = 65.02: p < .0001). Significant changes occurred in the VCH between half-mile intervals only between 0.5 miles and 1.0 mile and between 1.0 mile and 1.5 miles during the walk. As found with a regression analysis, curvilinear relationship exists between the distance walked and VCH; with VCH decreasing throughout the distance of the walk. Conclusions Vertebral column height decreased in a curvilinear relationship throughout the distance of walking 3 miles in both males and females. PMID:21509126

  17. Vertebrate whole-body-action asymmetries and the evolution of right handedness: a comparison between humans and marine mammals.

    PubMed

    MacNeilage, Peter F

    2013-09-01

    As part of a vertebrate-wide trend toward left brain/right side asymmetries in routine whole-body actions, marine mammals show signs of rightward appendage-use biases, and short- and long-term turning asymmetries most of which are unique in non-humans in being just as strong as right handedness, and even stronger than human handedness-related turning biases. Short-term marine mammal turning asymmetries and human about-turning asymmetries share a leading right side, suggesting a commonality in left hemisphere intentional control. The long-term leftward turning bias that both groups share may be an indirect result of both sensory and motor influences on the right side in dolphins, but be induced by a right-hemisphere-controlled spatial/attentional bias to the left in humans. Marine mammals may share, with humans and other higher primates, a left hemisphere specialization for action dynamics, although evidence is currently lacking for human-like right hemisphere specializations relevant to action in other vertebrates. Copyright © 2013 Wiley Periodicals, Inc.

  18. A new method for assessing relative dynamic motion of vertebral bodies during cyclic loading in vitro.

    PubMed

    Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K

    1991-01-01

    A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.

  19. PET/CT in giant cell arteritis: High 18F-FDG uptake in the temporal, occipital and vertebral arteries.

    PubMed

    Rehak, Z; Vasina, J; Ptacek, J; Kazda, T; Fojtik, Z; Nemec, P

    18 F-FDG PET/CT imaging is useful in patients with fever of unknown origin and can detect giant cell arteritis in extracranial large arteries. However, it is usually assumed that temporal arteries cannot be visualized with a PET/CT scanner due to their small diameter. Three patients with clinical symptoms of temporal arteritis were examined using a standard whole body PET/CT protocol (skull base - mid thighs) followed by a head PET/CT scan using the brain protocol. High 18 F-FDG uptake in the aorta and some arterial branches were detected in all 3 patients with the whole body protocol. Using the brain protocol, head imaging led to detection of high 18 F-FDG uptake in temporal arteries as well as in their branches (3 patients), in occipital arteries (2 patients) and also in vertebral arteries (3 patients). Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  20. Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon.

    PubMed

    Grotmol, Sindre; Kryvi, Harald; Nordvik, Kari; Totland, Geir K

    2003-12-01

    This study indicates that the development of the vertebrae in the Atlantic salmon requires the orchestration of two sources of metameric patterning, derived from the notochord and the somite rows, respectively. Before segmentation of the salmon notochord, chordoblasts exhibit a well-defined cell axis that is uniformly aligned with the cranio-caudal axis. The morphology of these cells is characterised by a foot-like basal projection that rests on the notochordal sheath. Notochordal segments are initially formed within the chordoblast layer by metameric change in the axial orientation of groups of chordoblasts. This process results in the formation of circular bands of chordoblasts, with feet perpendicular to the cranio-caudal axis, the original chordoblast orientation. Each vertebra is defined by two such chordoblast bands, at the cranial and caudal borders, respectively. Formation of the chordoblast segments closely precedes formation of the chordacentra, which form as calcified rings within the adjacent notochordal sheath. Sclerotomal osteoblasts then differentiate on the surface of the chordacentra, using them as foundations for further vertebral growth. Thus, the morphogenesis of the rudiments of the vertebral bodies is initiated by a generation of segments within the chordoblast layer. This dual segmentation model for salmon, in which the segmental patterns of the neural and haemal arches are somite-derived, while the vertebral segments seem to be notochord-derived, contrasts with current models for avians and mammals.

  1. Ancient deuterostome origins of vertebrate brain signalling centres.

    PubMed

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  2. Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers.

    PubMed

    Kuisma, Mari; Karppinen, Jaro; Niinimäki, Jaakko; Ojala, Risto; Haapea, Marianne; Heliövaara, Markku; Korpelainen, Raija; Taimela, Simo; Natri, Antero; Tervonen, Osmo

    2007-05-01

    Cross-sectional comparison of self-reported low back pain (LBP) symptoms and Modic findings on magnetic resonance imaging (MRI). To investigate associations of frequency and intensity of LBP and sciatic pain with Modic changes in a sample of middle-aged male workers with or without whole-body vibration exposure. Vertebral endplate changes are bone marrow lesions visible on MRI and are assumed to be associated with degenerative intervertebral disc disease. Associations of these so-called Modic changes with clinical symptoms are controversial. Furthermore, most of these studies have been performed in selected series of patients. A total of 228 middle-aged male workers (159 train engineers and 69 sedentary controls) from northern Finland underwent sagittal T1 and T2-weighted MRI. Both endplates of 1140 lumbar interspaces were graded for type and extent of Modic changes. Logistic regression was used to analyze associations of pain variables with Modic changes. Train engineers had on the average higher sciatic pain scores than the sedentary controls, but the prevalence of Modic changes was similar in both occupational groups. Altogether, 178 Modic changes in 128 subjects were recorded: 30% were type I, 66% type II, and 4% both types I and II. Eighty percent of changes occurred at L4-L5 or L5-S1. Modic changes at L5-S1 showed significant association with pain symptoms with increased frequency of LBP (odds ratio [OR] 2.28; 95% confidence interval [CI] 1.44-3.15) and sciatica episodes (OR 1.44; 95% CI 1.01-1.89), and with higher LBP visual analog scores during the past week (OR 1.36; 95% CI 1.06-1.70). Type I lesions and extensive lesions in particular were closely associated with pain. Modic changes at L5-S1 and Modic type I lesions are more likely to be associated with pain symptoms than other types of Modic changes or changes located at other lumbar levels.

  3. A resegmentation-shift model for vertebral patterning.

    PubMed

    Ward, Lizzy; Evans, Susan E; Stern, Claudio D

    2017-02-01

    Segmentation of the vertebrate body axis is established in the embryo by formation of somites, which give rise to the axial muscles (myotome) and vertebrae (sclerotome). To allow a muscle to attach to two successive vertebrae, the myotome and sclerotome must be repositioned by half a segment with respect to each other. Two main models have been put forward: 'resegmentation' proposes that each half-sclerotome joins with the half-sclerotome from the next adjacent somite to form a vertebra containing cells from two successive somites on each side of the midline. The second model postulates that a single vertebra is made from a single somite and that the sclerotome shifts with respect to the myotome. There is conflicting evidence for these models, and the possibility that the mechanism may vary along the vertebral column has not been considered. Here we use DiI and DiO to trace somite contributions to the vertebrae in different axial regions in the chick embryo. We demonstrate that vertebral bodies and neural arches form by resegmentation but that sclerotome cells shift in a region-specific manner according to their dorsoventral position within a segment. We propose a 'resegmentation-shift' model as the mechanism for amniote vertebral patterning. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  4. Management of cement vertebroplasty in the treatment of vertebral hemangioma.

    PubMed

    Boschi, V; Pogorelić, Z; Gulan, G; Perko, Z; Grandić, L; Radonić, V

    2011-01-01

    The vertebral hemangiomas are benign vascular lesions occurring in spine. Although uncommon, symptomatic vertebral hemangiomas can be painful and can limit daily activities. A number of methods have been used in the treatment of symptomatic and aggressive vertebral hemangioma, but none of them is optimal. Treatment with cement vertebroplasty showed very good results. This study aims to illustrate the validity of the treatment with cement vertebroplasty in patients with painful vertebral hemangiomas. From January 2000 to January 2007, 24 patients were treated by percutaneous vertebroplasty because of hemangioma: 16 thoracic, 8 lumbar. There were 11 males and 13 females. The average age at the time of surgery was 48 years. All the patients complained of a pain syndrome resistant to continuing medication. All patients underwent X-ray examination, CT-scan and MR of the involved level preoperatively. A unipedicular approach under fluoroscopic guidance has been performed in all patients. All procedures have been carried out under the local anesthesia. The mean follow-up was 5.8 years. In all the patients a successful outcome has been observed with a complete resolution of pain symptom. Extravertebral vascular cement leakage has been observed in 3 patients, without any clinical radicular syndrome onset due to the epidural diffusion. Clinical and radiological follow-up showed stability of the treatment and absence of pain in all patients. Percutaneous treatment with vertebroplasty for symptomatic vertebral hemangiomas is a valuable, less-invasive, and a quick method that allows a complete and enduring resolution of the painful vertebral symptoms without findings of the vertebral body's fracture.

  5. [Usefullness of intrasacral fixation in an extremely unstable lumbosacral spine].

    PubMed

    Nishiura, Tsukasa; Nishiguchi, Mitsuhisa; Kusaka, Noboru; Takayama, Kazuhiro; Maeda, Yasuhiko; Ogihara, Kotaro; Nakagawa, Minoru

    2007-04-01

    Intrasacral fixation technique devised by Jackson is said to provide rigid lumbosacral fixation. We treated 3 cases of lumbosacral lesions using this technique in which lumbosacral segment had become extremely unstable during surgical intervention adding to the effect of original lesions. In all cases, surgeries were performed in 2 stages, intrasacral fixation and anterior stabilization. Case 1: A 52-year-old male was diagnosed fungal discitis and spondylitis at L4 and L5. X-ray showed destruction of the vertebral bodies. L2, L3 and sacrum were fixed posteriorly using the intrasacral fixation technique. One week after the first operation, L4 and L5 vertebral bodies were replaced by long fibula grafts through the extraperitoneal approach. Case 2: A 25-year-old female with cauda equina syndrome and abnormal body form diagnosed as having spondyloptosis in which the entire vertebral body of L5 had descended below the endplate of S1. MR imaging revealed marked canal stenosis at the S1 level. In the first surgery, L5 vertebral body was resected through the transperitoneal approach. After 1 week of bed rest, posterior segments of L5 were resected, L4 was affixed to the sacrum and anterior stabilization was achieved with 2 mesh cages and lumbosacral spine was fixed using the intrasacral fixation technique. Case 3: A 64-year-old female was diagnosed as having pyogenic discitis and osteomyelitis at the L5-S1 level. In spite of successful medical treatment for infection, low back pain continued. Radiologically, L5 vertebral body was shown to have collapsed and slipped anteriorly over the sacrum. L3, L4 and sacrum were fixed by intrasacral fixation. One week after the first operation, the L5/S1 disc and the suppurtive vertebral bodies were resected through the extraperitoneal approach and anterior stabilization was performed with iliac bone grafts. At follow-up for a minimum of 6 months, initial fixation was maintained in all 3 cases and bony fusion was obtained. The

  6. Handed behavior in hagfish--an ancient vertebrate lineage--and a survey of lateralized behaviors in other invertebrate chordates and elongate vertebrates.

    PubMed

    Miyashita, Tetsuto; Palmer, A Richard

    2014-04-01

    Hagfish represent an ancient lineage of boneless and jawless vertebrates. Among several curious behaviors they exhibit, solitary individuals in one dominant genus of hagfish (Eptatretus spp.) regularly rest in a tightly coiled posture. We present the first systematic treatment of this distinctive behavior. Individual northeastern Pacific hagfish (E. stoutii) exhibited significant handedness (preferred orientation of coiling). However, right-coiling and left-coiling individuals were equally common in the population. Individual hagfish likely develop a preference for one direction by repeating the preceding coiling direction. We also revisit classical accounts of chordate natural history and compare the coiling behavior of Eptatretus with other handed or lateralized behaviors in non-vertebrate chordates, lampreys, and derived vertebrates with elongate bodies. Handed behaviors occur in many of these groups, but they likely evolved independently. In contrast to vertebrates, morphological asymmetries may bias lateralized larval behaviors toward one side in cephalochordates and tunicates. As a consequence, no known handed behavior can be inferred to have existed in the common ancestor of vertebrates.

  7. Inheritance of Vertebral Number in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    Alho, Jussi S.; Leinonen, Tuomas; Merilä, Juha

    2011-01-01

    Intraspecific variation in the number of vertebrae is taxonomically widespread, and both genetic and environmental factors are known to contribute to this variation. However, the relative importance of genetic versus environmental influences on variation in vertebral number has seldom been investigated with study designs that minimize bias due to non-additive genetic and maternal influences. We used a paternal half-sib design and animal model analysis to estimate heritability and causal components of variance in vertebral number in three-spined sticklebacks (Gasterosteus aculeatus). We found that both the number of vertebrae (h2 = 0.36) and body size (h2 = 0.42) were moderately heritable, whereas the influence of maternal effects was estimated to be negligible. While the number of vertebrae had a positive effect on body size, no evidence for a genetic correlation between body size and vertebral number was detected. However, there was a significant positive environmental correlation between these two traits. Our results support the generalization-in accordance with results from a review of heritability estimates for vertebral number in fish, reptiles and mammals-that the number of vertebrae appears to be moderately to highly heritable in a wide array of species. In the case of the three-spined stickleback, independent evolution of body size and number of vertebrae should be possible given the low genetic correlation between the two traits. PMID:21603609

  8. The evolution of vertebral formulae in Hominoidea.

    PubMed

    Thompson, Nathan E; Almécija, Sergio

    2017-09-01

    Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    PubMed

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  10. The influence of fat infiltration of back extensor muscles on osteoporotic vertebral fractures.

    PubMed

    So, Kwang-Young; Kim, Dae-Hee; Choi, Dong-Hyuk; Kim, Choong-Young; Kim, Jeong-Seok; Choi, Yong-Soo

    2013-12-01

    Retrospective study. To investigate the influence of fat infiltration at low back extensor muscles on osteoporotic vertebral fracture. In persons with stronger back muscles, the risk of osteoporotic vertebral fractures will likely be lower than in those persons with weaker back muscles. However, the degree of influence of fat infiltration of the back extensor muscle on osteoporotic vertebral fracture remains controversial. Two hundred and thirty-seven patients who had undergone lumbar spine magnetic resonance imaging and bone mineral density (BMD) were enrolled in this study. The amount of low back extensor muscle was determined using the pseudocoloring technique on an axial view of the L3 level. The patients were divided into two groups: osteoporotic vertebral fracture group (group A) and non-fracture group (group B). The amount of low back extensor muscle is compared with BMD, degenerative change of disc, osteophyte grade of facet joint and promontory angle to reveal the association between these factors. A negative correlation is found between age and the amount of low back extensor muscle (p=0.001). The amount of low back extensor muscle in group A and group B was 60.3%±14.5% and 64.2%±9.3% respectively, thus showing a significantly smaller amount of low back extensor muscle in the osteoporotic vertebral fracture group (p=0.015). Fat infiltration of low back extensor muscle was increased in osteoporotic vertebral fracture patients. Therefore, fat infiltration of low back extensor muscle in an elderly person may be a risk factor of osteoporotic vertebral fracture.

  11. On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher

    To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planningmore » target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly

  12. High prevalence of radiological vertebral fractures in HIV-infected males.

    PubMed

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  13. GNL3L Inhibits Estrogen Receptor-Related Protein Activities by Competing for Coactivator Binding

    PubMed Central

    Yasumoto, Hiroaki; Meng, Lingjun; Lin, Tao; Zhu, Qubo; Tsai, Robert Y.L.

    2010-01-01

    Summary Guanine-nucleotide binding protein 3-like (GNL3L) is the closest homologue of a stem cell-enriched factor nucleostemin in vertebrates. They share the same yeast orthologue, Grn1p, but only GNL3L can rescue the growth-deficient phenotype in Grn1p-null yeasts. To determine the unique function of GNL3L, we identified estrogen receptor-related protein-γ (ERRγ) as a GNL3L-specific binding protein. GNL3L and ERRγ are coexpressed in the eye, kidney and muscle, and co-reside in the nucleoplasm. The interaction between GNL3L and ERRγ requires the intermediate domain of GNL3L and the AF2-domain of ERRγ. Gain- and loss-of-function experiments show that GNL3L can inhibit the transcriptional activities of ERR genes in a cell-based reporter system, which does not require the nucleolar localization of GNL3L. We further demonstrate that GNL3L is able to reduce the steroid receptor coactivator (SRC) binding and the SRC-mediated transcriptional coactivation of ERRγ. This work reveals a novel mechanism that negatively regulates the transcriptional function of ERRγ by GNL3L through coactivator competition. PMID:17623774

  14. Mid-L/D Lifting Body Entry Demise Analysis

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2017-01-01

    The mid-lift-to-drag ratio (mid-L/D) lifting body is a fully autonomous spacecraft under design at NASA for enabling a rapid return of scientific payloads from the International Space Station (ISS). For contingency planning and risk assessment for the Earth-return trajectory, an entry demise analysis was performed to examine three potential failure scenarios: (1) nominal entry interface conditions with loss of control, (2) controlled entry at maximum flight path angle, and (3) controlled entry at minimum flight path angle. The objectives of the analysis were to predict the spacecraft breakup sequence and timeline, determine debris survival, and calculate the debris dispersion footprint. Sensitivity analysis was also performed to determine the effect of the initial pitch rate on the spacecraft stability and breakup during the entry. This report describes the mid-L/D lifting body and presents the results of the entry demise and sensitivity analyses.

  15. Age changes in the bone density and structure of the lumbar vertebral column.

    PubMed Central

    Twomey, L; Taylor, J; Furniss, B

    1983-01-01

    Old age is associated with a decline in bone density in lumbar vertebral bodies in both sexes, although the rate and amount of the decline is greatest in females. The bone translucency index method, described in this study, is a sensitive method of estimating bone density. The primary reason for this decline is the significant decrease in the number of transverse trabeculae of lumbar vertebrae in old age. It is postulated that the increase in vertebral end plate concavity and the increased horizontal dimensions of lumbar vertebral bodies in old age follows as a direct consequence of the selective loss of the transverse trabeculae. Images Fig. 2 PMID:6833115

  16. [Finite element analysis of stress changes of posterior spinal pedicle screw infixation].

    PubMed

    Yan, Jia-Zhi; Wu, Zhi-Hong; Xu, Ri-Xin; Wang, Xue-Song; Xing, Ze-Jun; Zhao, Yu; Zhang, Jian-Guo; Shen, Jian-Xiong; Wang, Yi-Peng; Qiu, Gui-Xing

    2009-01-06

    To evaluate the mechanical response of L3-L4 segment after posterior interfixation with a transpedicle screw system. Spiral CT machine was used to conduct continuous parallel scan on the L3-L4 section of a 40-year-old healthy male Chinese. The image data thus obtained were introduced into MIMICS software to reconstruct the 2-D data into volume data and obtain 3-D models of every element.. Pro/3-D model construction software system was used to simulate the 3-D entity of L3-L4 fixed by screw robs through spinal pedicle via posterior approach that was introduced into the finite element software ABAQUS to construct a 3-D finite element model. The stress changes on the vertebrae and screw under the axial pressure of 0.5 mPa was analyzed. Under the evenly distributed pressure the displacement of the L4 model was 0.00125815 mm, with an error of only 0.8167% from the datum displacement. The convergence of the model was good. The stress of the fixed vertebral body, intervertebral disc, and internal fixators changed significantly. The stress concentration zone of the intervertebral disc turned from the posterolateral side to anterolateral side. The stress produced by the fixed vertebral bodies decreased significantly. Obvious stress concentration existed in the upper and lower sides of the base of screw and the fixed screw at the upper vertebral body bore greater stress than the lower vertebral body. Integration of computer aided device and finite element analysis can successfully stimulate the internal fixation of L3-IA visa posterior approach and observe the mechanic changes in the vertebral column more directly.

  17. Reversible neuronal and muscular toxicity of caffeine in developing vertebrates.

    PubMed

    Rodriguez, Rufino S; Haugen, Rebecca; Rueber, Alexandra; Huang, Cheng-Chen

    2014-06-01

    This study utilizes zebrafish embryos to understand the cellular and molecular mechanisms of caffeine toxicity in developing vertebrate embryos. By using a high concentration of caffeine, we observed almost all the phenotypes that have been described in humans and/or in other animal models, including neural tube closure defect, jittery, touch insensitivity, and growth retardation as well as a drastic coiled body phenotype. Zebrafish embryos exposed to 5mM caffeine exhibited high frequent movement, 10 moves/min comparing with around 3 moves/min in control embryos, within half an hour post exposure (HPE). They later showed twitching, uncoordinated movement, and eventually severe body curvature by 6HPE. Exposure at later stages resulted in the same phenotypes but more posteriorly. Surprisingly, when caffeine was removed before 6HPE, the embryos were capable of recovering but still exhibited mild curvature and shorter bodies. Longer exposure caused irreversible body curvature and lethality. These results suggest that caffeine likely targets the neuro-muscular physiology in developing embryos. Immunohistochemistry revealed that the motorneurons in treated embryos developed shorter axons, abnormal branching, and excessive synaptic vesicles. Developing skeletal muscles also appeared smaller and lacked the well-defined boundaries seen in control embryos. Finally, caffeine increases the expression of genes involved in synaptic vesicle migration. In summary, our results provide molecular understanding of caffeine toxicity on developing vertebrate embryos. Published by Elsevier Inc.

  18. The pattern of expression of guanine nucleotide-binding protein β3 (GNB3) in the retina is conserved across vertebrate species

    PubMed Central

    Ritchey, Eric R.; Bongini, Rachel E.; Code, Kimberly A.; Zelinka, Christopher; Petersen-Jones, Simon; Fischer, Andy J.

    2010-01-01

    Guanine nucleotide-binding protein β3 (GNB3) is an isoform of the β subunit of the heterotrimeric G protein second messenger complex that is commonly associated with transmembrane receptors. The presence of GNB3 in photoreceptors, and possibly bipolar cells, has been confirmed in murine, bovine and primate retinas (Lee et al., 1992, Peng et al., 1992, Huang et al., 2003). Studies have indicated that a mutation in the GNB3 gene causes progressive retinopathy and globe enlargement (RGE) in chickens. The goals of this study were to 1) examine the expression pattern of GNB3 in wild-type and RGE mutant chickens, 2) characterize the types of bipolar cells that express GNB3 and 3) examine whether the expression of GNB3 in the retina is conserved across vertebrate species. We find that chickens homozygous for the RGE allele completely lack GNB3 protein. We find that the pattern of expression of GNB3 in the retina is highly conserved across vertebrate species, including teleost fish (Carassius auratus), frogs (Xenopus laevis), chickens (Gallus domesticus), mice (Mus musculata), guinea pigs (Cavia porcellus), dogs (Canis familiaris) and non-human primates (Macaca fasicularis). Regardless of the species, we find that GNB3 is expressed by Islet1-positive cone ON-bipolar cells and by cone photoreceptors. In some vertebrates, GNB3-immunoreactivity was observed in both rod and cone photoreceptors. A protein-protein alignment of GNB3 across different vertebrates, from fish to humans, indicates a high degree (>92%) of sequence conservation. Given that analogous types of retinal neurons express GNB3 in different species, we propose that the functions and the mechanisms that regulate the expression of GNB3 are highly conserved. PMID:20538044

  19. High Incidence of Vertebral Fractures in Children with Acute Lymphoblastic Leukemia 12 Months After the Initiation of Therapy

    PubMed Central

    Alos, Nathalie; Grant, Ronald; Ramsay, Timothy; Halton, Jacqueline; Cummings, Elizabeth A.; Miettunen, Paivi M.; Abish, Sharon; Atkinson, Stephanie; Barr, Ronald; Cabral, David A.; Cairney, Elizabeth; Couch, Robert; Dix, David B.; Fernandez, Conrad V.; Hay, John; Israels, Sara; Laverdière, Caroline; Lentle, Brian; Lewis, Victor; Matzinger, MaryAnn; Rodd, Celia; Shenouda, Nazih; Stein, Robert; Stephure, David; Taback, Shayne; Wilson, Beverly; Williams, Kathryn; Rauch, Frank; Siminoski, Kerry; Ward, Leanne M.

    2014-01-01

    Purpose Vertebral fractures due to osteoporosis are a potential complication of childhood acute lymphoblastic leukemia (ALL). To date, the incidence of vertebral fractures during ALL treatment has not been reported. Patient and Methods We prospectively evaluated 155 children with ALL during the first 12 months of leukemia therapy. Lateral thoracolumbar spine radiographs were obtained at baseline and 12 months. Vertebral bodies were assessed for incident vertebral fractures using the Genant semi-quantitative method, and relevant clinical indices such as spine bone mineral density (BMD), back pain and the presence of vertebral fractures at baseline were analyzed for association with incident vertebral fractures. Results Of the 155 children, 25 (16%, 95% Confidence Interval (CI) 11% to 23%) had a total of 61 incident vertebral fractures, of which 32 (52%) were moderate or severe. Thirteen of the 25 children with incident vertebral fractures (52%) also had fractures at baseline. Vertebral fractures at baseline increased the odds of an incident fracture at 12 months by an odds ratio of 7.3 (95% CI 2.3 to 23.1, p = 0.001). In addition, for every one standard deviation reduction in spine BMD Z-score at baseline, there was 1.8-fold increased odds of incident vertebral fracture at 12 months (95% CI 1.2 to 2.7, p = 0.006). Conclusion Children with ALL have a high incidence of vertebral fractures after 12 months of chemotherapy, and the presence of vertebral fractures and reductions in spine BMD Z-scores at baseline are highly associated clinical features. PMID:22734031

  20. Skeletal development and abnormalities of the vertebral column and of the fins in hatchery-reared turbot Scophthalmus maximus.

    PubMed

    Tong, X H; Liu, Q H; Xu, S H; Ma, D Y; Xiao, Z Z; Xiao, Y S; Li, J

    2012-03-01

    To describe the skeletal development and abnormalities in turbot Scophthalmus maximus, samples were collected every day from hatching to 60 days after hatching (DAH). A whole-mount cartilage and bone-staining technique was used. Vertebral ontogeny started with the formation of anterior haemal arches at 5·1 mm standard length (L(S) ) c. 11 DAH, and was completed by the full attainment of parapophyses at 16·9 mm L(S) c. 31 DAH. Vertebral centra started to develop at 6·3 mm L(S) c. 16 DAH and ossification in all centra was visible at 11·0 mm L(S) c. 25 DAH. The caudal fin appeared at 5·1 mm L(S) c. 11 DAH and ossification was visible at 20·6 mm L(S) c. 37 DAH. The onset of dorsal and anal fin elements appeared at 5·8 mm L(S) c. 15 DAH and 6·3 mm L(S) c. 16 DAH, respectively. Ossifications of both dorsal fin and anal fin were visible at 20·6 mm L(S) c. 37 DAH. The pectorals were the only fins present before first feeding, their ossifications were completed at 23·5 mm L(S) c. 48 DAH. Pelvic fins began forming at 7·2 mm L(S) c. 19 DAH and calcification of the whole structure was visible at 19·8 mm L(S) c. 36 DAH. In the present study, 24 types of skeletal abnormalities were observed. About 51% of individuals presented skeletal abnormalities, and the highest occurrence was found in the haemal region of the vertebral column. As for each developmental stage, the most common abnormalities were in the dorsal fin during early metamorphic period (stage 2), vertebral fusion during climax metamorphosis (stage 3) and caudal fin abnormality during both late-metamorphic period (stage 4) and post-metamorphic period (stage 5). Such research will be useful for early detection of skeletal malformations during different growth periods of reared S. maximus. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  1. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R (2) had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  2. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    PubMed Central

    Byun, Bo-Ram; Kim, Yong-Il; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6–18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R 2 had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status. PMID:25878721

  3. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Kado, D M; Lane, N E; Ensrud, K E; Shipp, K

    2016-03-01

    Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. We used data from the Fracture Intervention Trial among 3038 women 55-81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Mean baseline kyphosis was 48° (SD = 12) (range 7-83). At baseline, 962 (32%) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95% CI 2.8-4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22% increase (95% CI 8-38%, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8% per 10° kyphosis (95% CI -4 to 22%, p = 0.18). While greater kyphosis increased the rate of incident vertebral fractures, our analysis does not

  4. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial

    PubMed Central

    Vittinghoff, E.; Kado, D. M.; Lane, N. E.; Ensrud, K. E.; Shipp, K.

    2016-01-01

    Summary Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Introduction Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. Methods We used data from the Fracture Intervention Trial among 3038 women 55–81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Results Mean baseline kyphosis was 48° (SD = 12) (range 7–83). At baseline, 962 (32 %) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95 % CI 2.8–4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22 % increase (95 % CI 8–38 %, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8 % per 10° kyphosis (95 % CI −4 to 22 %, p = 0.18). Conclusions While greater kyphosis increased the rate of

  5. Investigation of the reproducibility and reliability of sagittal vertebral inclination measurements from MR images of the spine.

    PubMed

    Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    In this study, sagittal vertebral inclination (SVI) was systematically evaluated for 28 vertebrae (segments between T4 and L5) in magnetic resonance (MR) images of one normal and one scoliotic subject to compare the performance of manual and computerized measurements, and identify the most reproducible and reliable measurements. Manual measurements were performed by three observers, who identified on two occasions the distinctive anatomical landmarks required to evaluate SVI by six measurement methods, i.e. the superior tangents, inferior tangents, anterior tangents, posterior tangents, mid-endplate lines and mid-wall lines. Computerized measurements were performed by automatically evaluating SVI from the symmetry of vertebral anatomical structures in two-dimensional (2D) sagittal cross-sections and in three-dimensional (3D) volumetric images. The mid-wall lines and posterior tangents proved to be the manual measurements with the lowest intra-observer (standard deviation, SD, of 1.4° and 1.7°, respectively) and inter-observer variability (SD of 1.9° and 2.4°, respectively). The strongest inter-method agreement was found between the mid-wall lines and posterior tangents (SD of 2.0°). Computerized measurements in 2D and in 3D resulted in intra-observer (SD of 2.8° and 3.1°, respectively) and inter-observer variability (SD of 3.8° and 5.2°, respectively) that were comparable to those of the superior tangents (SD of 2.6° and 3.7°) and inferior tangents (SD of 3.2° and 4.5°), which represent standard Cobb angle measurements. It can be concluded that computerized measurements of SVI should be based on the inclination of vertebral body walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Vertebral Volumetric Bone Density and Strength Are Impaired in Women With Low-Weight and Atypical Anorexia Nervosa.

    PubMed

    Bachmann, Katherine N; Schorr, Melanie; Bruno, Alexander G; Bredella, Miriam A; Lawson, Elizabeth A; Gill, Corey M; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V; Slattery, Meghan; Eddy, Kamryn T; Ebrahimi, Seda; Koman, Stuart L; Greenblatt, James M; Keane, Robert J; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L; Klibanski, Anne; Miller, Karen K

    2017-01-01

    Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including "atypical" AN [body mass index (BMI) ≥18.5 kg/m2]. To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum. Cross-sectional observational study. Clinical research center. 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA). Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. Copyright © 2017 by the Endocrine Society

  7. Vertebral Volumetric Bone Density and Strength Are Impaired in Women With Low-Weight and Atypical Anorexia Nervosa

    PubMed Central

    Bachmann, Katherine N.; Schorr, Melanie; Bruno, Alexander G.; Bredella, Miriam A.; Lawson, Elizabeth A.; Gill, Corey M.; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V.; Slattery, Meghan; Eddy, Kamryn T.; Ebrahimi, Seda; Koman, Stuart L.; Greenblatt, James M.; Keane, Robert J.; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L.; Klibanski, Anne

    2017-01-01

    Context: Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including “atypical” AN [body mass index (BMI) ≥18.5 kg/m2]. Objective: To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum Design: Cross-sectional observational study Setting: Clinical research center Participants: 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Measures: Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA) Results: Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Conclusions: Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. PMID:27732336

  8. Chronic low back pain is associated with reduced vertebral bone mineral measures in community-dwelling adults

    PubMed Central

    2012-01-01

    Background Chronic low back pain (CLBP) experienced in middle-age may have important implications for vertebral bone health, although this issue has not been investigated as a primary aim previously. This study investigated the associations between CLBP and dual energy X-ray absorptiometry (DXA)-derived vertebral bone mineral measures acquired from postero-anterior and lateral-projections, among community-dwelling, middle-aged adults. Methods Twenty-nine adults with CLBP (11 male, 18 female) and 42 adults with no history of LBP in the preceding year (17 male, 25 female) were evaluated. Self-reported demographic and clinical data were collected via questionnaires. Areal bone mineral density (aBMD) was measured in the lumbar spine by DXA. Apparent volumetric (ap.v) BMD in the lumbar spine was also calculated. Multiple linear regression models were used to examine associations between study group (CLBP and control) and vertebral DXA variables by gender, adjusting for height, mass and age. Results There was no difference between groups by gender in anthropometrics or clinical characteristics. In the CLBP group, the mean (SD) duration of CLBP was 13.3 (10.4) years in males and 11.6 (9.9) years in females, with Oswestry Disability Index scores of 16.2 (8.7)% and 15.4 (9.1)%, respectively. Males with CLBP had significantly lower adjusted lateral-projection aBMD and lateral-projection ap.vBMD than controls at L3 with mean differences (standard error) of 0.09 (0.04) g/cm2 (p = 0.03) and 0.02 (0.01) g/cm3 (p = 0.04). These multivariate models accounted for 55% and 53% of the variance in lateral-projection L3 aBMD and lateral-projection L3 ap.vBMD. Conclusions CLBP in males is associated with some lumbar vertebral BMD measures, raising important questions about the mechanism and potential clinical impact of this association. PMID:22458361

  9. Lumbo-costo-vertebral syndrome with congenital lumbar hernia.

    PubMed

    Gupta, Lucky; Mala, Tariq Ahmed; Gupta, Rahul; Malla, Shahid Amin

    2014-01-01

    Lumbo-costo-vertebral syndrome (LCVS) is a set of rare abnormalities involving vertebral bodies, ribs, and abdominal wall. We present a case of LCVS in a 2-year-old girl who had a progressive swelling over left lumbar area noted for the last 12 months. Clinical examination revealed a reducible swelling with positive cough impulse. Ultrasonography showed a defect containing bowel loops in the left lumbar region. Chest x-ray showed scoliosis and hemivertebrae with absent lower ribs on left side. Meshplasty was done.

  10. Lumbo-Costo-Vertebral Syndrome with Congenital Lumbar Hernia

    PubMed Central

    Gupta, Lucky; Gupta, Rahul; Malla, Shahid Amin

    2014-01-01

    Lumbo-costo-vertebral syndrome (LCVS) is a set of rare abnormalities involving vertebral bodies, ribs, and abdominal wall. We present a case of LCVS in a 2-year-old girl who had a progressive swelling over left lumbar area noted for the last 12 months. Clinical examination revealed a reducible swelling with positive cough impulse. Ultrasonography showed a defect containing bowel loops in the left lumbar region. Chest x-ray showed scoliosis and hemivertebrae with absent lower ribs on left side. Meshplasty was done. PMID:24834386

  11. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation—a pilot study

    PubMed Central

    Cunha, A R; Júnior, G C; Fernandes, N; Campos, M J S; Costa, L F M; Vitral, R W F; Bolognese, A M

    2014-01-01

    Objectives: In the present study, we developed new software for quantitative analysis of cervical vertebrae maturation, and we evaluated its applicability through a multinomial logistic regression model (MLRM). Methods: Digitized images of the bodies of the second (C2), third (C3) and fourth (C4) cervical vertebrae were analysed in cephalometric radiographs of 236 subjects (116 boys and 120 girls) by using a software developed for digitized vertebrae analysis. The sample was initially distributed into 11 categories according to the Fishman's skeletal maturity indicators and were then grouped into four stages for quantitative cervical maturational changes (QCMC) analysis (QCMC I, II, III and IV). Seven variables of interest were measured and analysed to identify morphologic alterations of the vertebral bodies in each QCMC category. Results: Statistically significant differences (p < 0.05) were observed among all QCMC categories for the variables analysed. The MLRM used to calculate the probability that an individual belonged to each of the four cervical vertebrae maturation categories was constructed by taking into account gender, chronological age and four variables determined by digitized vertebrae analysis (Ang_C3, MP_C3, MP_C4 and SP_C4). The MLRM presented a predictability of 81.4%. The weighted κ test showed almost perfect agreement (κ = 0.832) between the categories defined initially by the method of Fishman and those allocated by the MLRM. Conclusions: Significant alterations in the morphologies of the C2, C3 and C4 vertebral bodies that were analysed through the digitized vertebrae analysis software occur during the different stages of skeletal maturation. The model that combines the four parameters measured on the vertebral bodies, the age and the gender showed an excellent prediction. PMID:24319125

  12. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study.

    PubMed

    Santiago, R C; Cunha, A R; Júnior, G C; Fernandes, N; Campos, M J S; Costa, L F M; Vitral, R W F; Bolognese, A M

    2014-01-01

    In the present study, we developed new software for quantitative analysis of cervical vertebrae maturation, and we evaluated its applicability through a multinomial logistic regression model (MLRM). Digitized images of the bodies of the second (C2), third (C3) and fourth (C4) cervical vertebrae were analysed in cephalometric radiographs of 236 subjects (116 boys and 120 girls) by using a software developed for digitized vertebrae analysis. The sample was initially distributed into 11 categories according to the Fishman's skeletal maturity indicators and were then grouped into four stages for quantitative cervical maturational changes (QCMC) analysis (QCMC I, II, III and IV). Seven variables of interest were measured and analysed to identify morphologic alterations of the vertebral bodies in each QCMC category. Statistically significant differences (p < 0.05) were observed among all QCMC categories for the variables analysed. The MLRM used to calculate the probability that an individual belonged to each of the four cervical vertebrae maturation categories was constructed by taking into account gender, chronological age and four variables determined by digitized vertebrae analysis (Ang_C3, MP_C3, MP_C4 and SP_C4). The MLRM presented a predictability of 81.4%. The weighted κ test showed almost perfect agreement (κ = 0.832) between the categories defined initially by the method of Fishman and those allocated by the MLRM. Significant alterations in the morphologies of the C2, C3 and C4 vertebral bodies that were analysed through the digitized vertebrae analysis software occur during the different stages of skeletal maturation. The model that combines the four parameters measured on the vertebral bodies, the age and the gender showed an excellent prediction.

  13. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/supmore » 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.« less

  14. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Stenting for symptomatic vertebral artery stenosis: The Vertebral Artery Ischaemia Stenting Trial.

    PubMed

    Markus, Hugh S; Larsson, Susanna C; Kuker, Wilhelm; Schulz, Ursula G; Ford, Ian; Rothwell, Peter M; Clifton, Andrew

    2017-09-19

    To compare in the Vertebral Artery Ischaemia Stenting Trial (VIST) the risks and benefits of vertebral angioplasty and stenting with best medical treatment (BMT) alone for symptomatic vertebral artery stenosis. VIST was a prospective, randomized, open-blinded endpoint clinical trial performed in 14 hospitals in the United Kingdom. Participants with symptomatic vertebral stenosis ≥50% were randomly assigned (1:1) to vertebral angioplasty/stenting plus BMT or to BMT alone with randomization stratified by site of stenosis (extracranial vs intracranial). Because of slow recruitment and cessation of funding, recruitment was stopped after 182 participants. Follow-up was a minimum of ≥1 year for each participant. Three patients did not contribute any follow-up data and were excluded, leaving 91 patients in the stent group and 88 in the medical group. Mean follow-up was 3.5 (interquartile range 2.1-4.7) years. Of 61 patients who were stented, stenosis was extracranial in 48 (78.7%) and intracranial in 13 (21.3%). No periprocedural complications occurred with extracranial stenting; 2 strokes occurred during intracranial stenting. The primary endpoint of fatal or nonfatal stroke occurred in 5 patients in the stent group vs 12 in the medical group (hazard ratio 0.40, 95% confidence interval 0.14-1.13, p = 0.08), with an absolute risk reduction of 25 strokes per 1,000 person-years. The hazard ratio for stroke or TIA was 0.50 ( p = 0.05). Stenting in extracranial stenosis appears safe with low complication rates. Large phase 3 trials are required to determine whether stenting reduces stroke risk. ISRCTN95212240. This study provides Class I evidence that for patients with symptomatic vertebral stenosis, angioplasty with stenting does not reduce the risk of stroke. However, the study lacked the precision to exclude a benefit from stenting. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  16. Influence of physical activity on vertebral strength during late adolescence.

    PubMed

    Junno, Juho-Antti; Paananen, Markus; Karppinen, Jaro; Tammelin, Tuija; Niinimäki, Jaakko; Lammentausta, Eveliina; Niskanen, Markku; Nieminen, Miika T; Järvelin, Marjo-Riitta; Takatalo, Jani; Tervonen, Osmo; Tuukkanen, Juha

    2013-02-01

    Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Bone edema of the whole vertebral body: an unusual case of spondyloarthritis.

    PubMed

    Ortolan, Augusta; Lazzarin, Paolo; Lorenzin, Mariagrazia; Rampin, Lucia; Ramonda, Roberta

    2017-01-01

    Spondyloarthritis (SpA) is usually characterized by early inflammatory involvement of the sacroiliac joints (SI), which constitutes one of the most important classification criteria according to the SpondyloArthritis International Society (ASAS). These criteria do not include inflammatory spine lesions which can be detected on MRI, although spine involvement is very common in axial SpA. This is because spine MRI lesion often retrieved in SpA are not very specific, and can be found in many other diseases such as malignancy and osteoarthritis. Here we present the case of a 33-year old woman who presented a worsening low back pain, with a thoracic spine MRI showing bone marrow edema (BME) of the whole T8 vertebral body. Owing to this peculiar presentation, together with the unresponsiveness of the pain to nonsteroidal anti inflammatory drugs (NSAIDs) and a slight increase of the biomarker CA19-9, a malignancy was suspected. Therefore, the patient underwent bone scintigraphy, Single positron emission computed tomography (SPET/TC), positron emission tomography and repeated MRI without reaching a diagnosis. Finally, when SI joints MRI was performed, BME of the SI joints emerged: this was fundamental to formulate the diagnosis of axSpA.

  18. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding.

    PubMed

    Andruszkiewicz, Elizabeth A; Starks, Hilary A; Chavez, Francisco P; Sassoubre, Lauren M; Block, Barbara A; Boehm, Alexandria B

    2017-01-01

    Molecular analysis of environmental DNA (eDNA) can be used to assess vertebrate biodiversity in aquatic systems, but limited work has applied eDNA technologies to marine waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate communities at 10 oceanographic stations spanning 45 km within the Monterey Bay National Marine Sanctuary (MBNMS). In this study, we collected three biological replicates of small volume water samples (1 L) at 2 depths at each of the 10 stations. We amplified fish mitochondrial DNA using a universal primer set. We obtained 5,644,299 high quality Illumina sequence reads from the environmental samples. The sequence reads were annotated to the lowest taxonomic assignment using a bioinformatics pipeline. The eDNA survey identified, to the lowest taxonomic rank, 7 families, 3 subfamilies, 10 genera, and 72 species of vertebrates at the study sites. These 92 distinct taxa come from 33 unique marine vertebrate families. We observed significantly different vertebrate community composition between sampling depths (0 m and 20/40 m deep) across all stations and significantly different communities at stations located on the continental shelf (<200 m bottom depth) versus in the deeper waters of the canyons of Monterey Bay (>200 m bottom depth). All but 1 family identified using eDNA metabarcoding is known to occur in MBNMS. The study informs the implementation of eDNA metabarcoding for vertebrate biomonitoring.

  19. Left crossed fused renal ectopia L-shaped kidney type, with double nutcracker syndrome (anterior and posterior).

    PubMed

    Pupca, Gheorghe; Miclăuş, Graţian Dragoslav; Bucuraş, Viorel; Iacob, Nicoleta; Sas, Ioan; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2014-01-01

    Crossed fused renal ectopia (CFRE) is the second most common fusion anomalies (FAs) of the kidneys after horseshoe kidney. Crossed fused renal ectopia (CFRE) results from one kidney crossing over to the opposite side and subsequent fusion of the parenchyma of the two kidneys. We report, by multidetector-row computed tomography (MDCT) angiography, an extremely rare case of a left CFRE (L-shaped kidney type), consisting of multiple renal arteries (one main renal artery for the upper renal parenchyma, and three renal arteries (one main and two additional) for the lower renal parenchyma) and two left renal veins, which produced a double nutcracker syndrome (both anterior and posterior). The L-shaped left kidney has a maximum length of 18.5 cm, a maximum width of 10.2 cm, and a maximum thickness of 5.3 cm. The upper pole of the kidney is located at the level of the lower third of T12 vertebral body (4.6 cm left to the mediosagittal plan); the lower pole is located along the lower half of the L5 vertebral body (1.5 cm left to the mediosagittal plan). The following case will focus on the relevant anatomy, embryology, and the clinical significance of this entity.

  20. The role of bone shape in determining gender differences in vertebral bone mass.

    PubMed

    Barlow, Tricia; Carlino, Will; Blades, Heather Z; Crook, Jon; Harrison, Rachel; Arundel, Paul; Bishop, Nick J

    2011-01-01

    Dual-energy X-ray absorptiometry (DXA) measures of bone mineral density (BMD) in children fail to account for growth because bone depth is unmeasured. While multiple adjustment methods have been proposed using body or bone size, the effect of vertebral shape is relatively unknown. Our study aimed to determine gender differences in vertebral shape and their impact on areal BMD (aBMD). We recruited 189 children, including 107 boys, aged 4-17 years, who attended the emergency department due to trauma. None had fractured. Height, weight, Tanner stage, and DXA measurements of the lumbar spine (LS) and total body were obtained. Cylindrical models were used to predict relationships between vertebral width (VW) and areal density for a given vertebral area assuming uniform volumetric density. The actual relationships between VW, bone area, and aBMD for the LS in the children were then determined. The theoretical models predicted a positive relationship between width and areal density for a constant vertebral area. Actual vertebral measurements demonstrated that boys had greater VW for a given vertebral area but lower aBMD for a given VW than girls at any age. The most likely explanation for the apparent paradox was that vertebral cortical thickness relative to width was greater in girls. This difference remained after adjusting for lean mass, suggesting that bone's response to mechanical stimulation may vary between the sexes during growth with consequent evolutionary advantage for girls approaching reproductive age. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  1. Early prenatal diagnosis of a lumbo-costo-vertebral syndrome.

    PubMed

    Pristavu, Anda Ioana; Furnica, Cristina; Ifrim, Mona Mihaela; Popovici, Razvan Mihai

    2018-04-01

    Lumbo-costo-vertebral syndrome (LCVS) is a rare type of lumbar hernia with associated abnormalities of the vertebral bodies, ribs, and trunk muscles. Only a few cases have been reported in the literature, all of which were diagnosed after birth. We present a case of LCVS diagnosed early in the second trimester of pregnancy using two- and three-dimensional ultrasound. In our case, the associated anomalies were: multiple costovertebral anomalies, lumbar hernia, anal imperforation, left hand supernumerary digit, and clubfoot.

  2. Morphometric analysis of diameter and relationship of vertebral artery with respect to transverse foramen in Indian population

    PubMed Central

    Sureka, Binit; Mittal, Mahesh Kumar; Mittal, Aliza; Agarwal, Mukul Sinha Kanhaiya; Bhambri, Narendra Kumar; Thukral, Brij Bhushan

    2015-01-01

    Purpose: To study the location, origin, size and relationship of the vertebral artery and the transverse foramina in the lower cervical spine by computed tomographic angiography (CTA) measurements in the Indian population. Materials and Methods: A retrospective review of multi-detector CT (MDCT) cerebral angiography scans was done between June 2011 and February 2014. A total of 120 patients were evaluated. The diameter of the vertebral artery (AL) and the shortest distance between the vertebral artery and the medial (M), lateral (L), anterior (A), and posterior (P) borders of transverse foramen were studied. In addition, the shortest distance between the vertebral artery and pedicle (h) was also analyzed. Statistical Analysis: The means and their standard deviations (SD) were calculated in both the sexes. The t-tests were performed to look for significant sexual difference. Results: The largest vertebral artery diameter (AL) was at level C7 on the right side (3.5 ± 0.8) and at the level of C5 on the left side (3.7 ± 0.4). Statistically significant difference between males and females were seen at levels C4, C5, and C7. The diameter of the vertebral artery was smaller in females than males. The L value was greater than other parameters (M, A, P) at the same level in all the measurements. The h value was greatest at C6 level and shortest at C5. Conclusion: CTA is necessary before pedicle screw fixation due to variation in measurements at all levels. The highest potential risk of vertebral artery injury during cervical pedicle screw implantation may be at C5, then at C4, and the safest is at C7. PMID:25969640

  3. Analysis of Long Bone and Vertebral Failure Patterns

    DTIC Science & Technology

    1985-02-14

    have disc-shaped epiphyses on the surfaces of the vertebral bodies (Schmorl and Junghanns, 1959). Humans, ]< orangutans , gorillas...The annular epiphysis has been previously reported in humans, orangutans , gorillas, and marmosets (Schmorl and Junghanns, 1959; Bernick, et al

  4. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    PubMed

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  5. Prenatal development of the normal human vertebral corpora in different segments of the spine.

    PubMed

    Nolting, D; Hansen, B F; Keeling, J; Kjaer, I

    1998-11-01

    Vertebral columns from 13 normal human fetuses (10-24 weeks of gestation) that had aborted spontaneously were investigated as part of the legal autopsy procedure. The investigation included spinal cord analysis. To analyze the formation of the normal human vertebral corpora along the spine, including the early location and disappearance of the notochord. Reference material on the development of the normal human vertebral corpora is needed for interpretation of published observations on prenatal malformations in the spine, which include observations of various types of malformation (anencephaly, spina bifida) and various genotypes (trisomy 18, 21 and 13, as well as triploidy). The vertebral columns were studied by using radiography (Faxitron X-ray apparatus, Faxitron Model 43,855, Hewlett Packard) in lateral, frontal, and axial views and histology (decalcification, followed by toluidine blue and alcian blue staining) in and axial view. Immunohistochemical marking with Keratin Wide Spectrum also was done. Notochordal tissue (positive on marking with Keratin Wide Spectrum [DAKO, Denmark]) was located anterior to the cartilaginous body center in the youngest fetuses. The process of disintegration of the notochord and the morphology of the osseous vertebral corpora in the lumbosacral, thoracic, and cervical segments are described. Marked differences appeared in axial views, which were verified on horizontal histologic sections. Also, the increase in size was different in the different segments, being most pronounced in the thoracic and upper lumbar bodies. The lower thoracic bodies were the first to ossify. The morphologic changes observed by radiography were verified histologically. In this study, normal prenatal standards were established for the early development of the vertebral column. These standards can be used in the future--for evaluation of pathologic deviations in the human vertebral column in the second trimester.

  6. Gravity and the Adaptation of Form and Function in Lower Vertebrates

    NASA Technical Reports Server (NTRS)

    Lillywhite, Harvey B.

    1994-01-01

    Comparative data emphasizing lower vertebrates will be used to justify the following generalized conclusions or expectations: 1) Gravitational stress produces adaptive increases in arterial pressure. 2) Gravitational stress produces adaptive reorganization of anatomy. 3) Natural selection favors small body size in high G-stress environments. 4) Gravitational stress produces low-compliant perivascular tissues (morphological antigravity suit). 5) Gradients or regional zonation of vascular characters evolve along the length of elongate vertebrates living in high G-stress environments. Presentation of information will include new data gathered by the author and Dr. Alan Hargens while the author was a NRC Senior Research Associate at NASA Ames Research Center. While there is no published abstract provided at the meeting, a symposium manuscript will be published in a special volume of Journal of Experimental Zoology.

  7. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies.

    PubMed

    Bednar, Timothy; Heyde, Christoph E; Bednar, Grace; Nguyen, David; Volpi, Elena; Przkora, Rene

    2013-11-01

    Vertebral compression fractures caused by osteoporosis are among the most common fractures in the elderly. The treatment focuses on pain control, maintenance of independence, and management of the osteoporosis. Elderly patients often encounter adverse effects to pain medications, do not tolerate bed rest, and are not ideal candidates for invasive spinal reconstructive surgery. Percutaneous vertebral augmentation (vertebroplasty or kyphoplasty) has become popular as a less-invasive alternative. However, studies have questioned the effectiveness of these procedures. The authors conducted a MEDLINE search using relevant search terms including osteoporosis, osteoporotic vertebral compression fracture, elderly, kyphoplasty and vertebroplasty. Two elderly patients presented with a fracture of their third and first lumbar vertebral body, respectively. One patient progressed well with conservative treatment, whereas the other patient was hospitalized secondary to pain after conservative measures failed to offer improvement. The hospitalized patient subsequently opted for a kyphoplasty and was able to resume his normal daily activities after the procedure. Selecting patients on an individual case-by-case basis can optimize the effectiveness and outcomes of a vertebral augmentation. This process includes the documentation of an osteoporotic vertebral compression fracture with the aide of imaging studies, including the acuity of the fracture as well as the correlation with the physical examination findings. Patients who are functional and improving under a conservative regimen are not candidates for kyphoplasty. However, if the conservative management is not successful after 4 to 6 weeks and the patient is at risk to become bedridden, an augmentation should be considered. A kyphoplasty procedure may be preferred over vertebroplasty, given the lower risk profile and better outcomes regarding spinal alignment. Published by Elsevier HS Journals, Inc.

  8. Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma.

    PubMed

    González-Fernández, J; Daschner, A; Cuéllar, C

    With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  9. Vertebral osteoporosis: perfused animal cadaver model for testing new vertebroplastic agents.

    PubMed

    Hoell, Thomas; Huschak, Gerald; Beier, Andre; Holzhausen, Hans-Juergen; Meisel, Hans-Joerg; Emmrich, Frank

    2010-12-01

    Experimental study. It was aimed to establish a cadaver model to imitate osteoporotic perfused vertebral bone and to allow for transpedicular transfer of bone cement and various new materials into vertebrae. The model was perfused to simulate vertebroplasty in the presence of transvertebral blood flow. The injection of bone cement into vertebrae bears the risk of irreversible discharge of material into the venous system of the spinal canal. The bovine cadaver model studied allows visual studies of material distribution in a vertebral bone, the potential spill-out of material, and quantification of washout and disintegration phenomena. Thoracic and lumbar vertebrae from 1-year-old calves were cut transversally into 5 mm slices, macerated, and decalcified. The softened bone slices were compressed between 2 transparent plastic discs. A standard vertebroplasty cannula (outer diameter 3.5 mm, inner diameter 2.5 mm) was inserted into the vertebral body via the pedicle to transfer the different vertebroplasty materials. Arterial blood flow was simulated by means of liquid irrigation via 2 needles in the ventral part of the vertebral body slice. Metal powder was mixed with the solution to indicate the blood flow in the bone. The model was evaluated with the vertebroplasty cement polymethylmethacrylate. The model permitted visualization of the insertion and distribution of vertebroplasty materials. Liquid bone cement was effused into the spinal canal as in the clinical situation. Higher modulus cement acted in the same way as in clinical vertebroplasty. Rigid vertebroplasty agents led to trabecular fractures and stable mechanical interactions with the bone and eventually moved dorsal bone fragments into the spinal canal. Sedimentation of the metal powder indicated regions of perfusion. The model simulated the clinical behavior of liquid and higher modulus vertebroplasty agents in the presence of blood flow. It enabled safe ex vivo testing of the mechanical and physical

  10. Primary extracranial vertebral artery aneurysms.

    PubMed

    Morasch, Mark D; Phade, Sachin V; Naughton, Peter; Garcia-Toca, Manuel; Escobar, Guillermo; Berguer, Ramon

    2013-05-01

    Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be difficult and, because the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms. In this study we performed a retrospective, multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery. Between January 2000 and January 2011, 7 patients, aged 12-56 years, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or another hereditary disorder, including Ehler-Danlos syndrome (n=3), Marfan's disease (n=2), neurofibromatosis (n=1), and an unspecified connective tissue abnormality (n=1). Eight of 9 aneurysms were managed operatively, including an attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos syndrome. Although endovascular exclusion was not performed in isolation, 2 hybrid procedures were performed. There were no instances of perioperative stroke or death. Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality. Copyright © 2013 Elsevier Inc. All rights

  11. iDNA screening: Disease vectors as vertebrate samplers.

    PubMed

    Kocher, Arthur; de Thoisy, Benoit; Catzeflis, François; Valière, Sophie; Bañuls, Anne-Laure; Murienne, Jérôme

    2017-11-01

    In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology. © 2017 John Wiley & Sons Ltd.

  12. L1 Epithelioid Hemangioma.

    PubMed

    Davis, Joel D; Koppenhaver, Shane

    2017-05-01

    A 24-year-old male soldier on limited-duty status was referred to physical therapy by his primary care physician for a 2-year history of insidious-onset and slowly progressive low back pain. Lumbar radiographs were noncontributory. Shortly after initiating rehabilitation, the patient underwent magnetic resonance imaging that was previously ordered by his primary care physician. Radiology identified a complex mass and cortical fracturing within the L1 vertebral body, and subsequent computed tomography imaging demonstrated mixed sclerotic and lytic foci at L1. Biopsy later confirmed an epithelioid hemangioma. J Orthop Sports Phys Ther 2017;47(5):367. doi:10.2519/jospt.2017.6689.

  13. [Complications of percutaneous kyphoplasty non-related with bone leakage in treating osteoporotic thoracolumbar vertebral compression fractures].

    PubMed

    Ru, Xuan-liong; Jiang, Zeng-hui; Gui, Xian-ge; Sun, Qi-cai; Song, Bo-Shan; Lin, Hang; He, Jian

    2015-08-01

    To analyze the complications of percutaneous kyphoplasty except bone leakge for the treatment of osteoporotic thoracolumbar vertebral compression fractures. From October 2008 to October 2012,178 patients with 224 osteoporotic vertebral compression fractures were treated with percutaneous kyphoplasty under local anethsia. There were 72 males and 106 females,ranging in age from 58 to 92 years old,with an average of 75.3 years,including 93 thoracic vertebrae and 131 lumbar vertebrae. The complications except bone cement leakage were analyzed during operation and after operation. All operations were successful and all patients were followed up from 12 to 60 months with an average of 26.2 months. No death was found. Bone cement leakage occurred in 27 cases, about 15.1% in 178 cases; and complications except bone cement leakage occurred in 15 cases. There was 1 case with cardiac arrest,was completely recovery by cardiopulmonary resuscitation (CPR) immediately; and 1 case with temporary absence of breathing,was recovery after treatment. There were 3 cases with fall of blood pressure and slower of heart rate; 1 case with intestinal obstruction; 2 cases with local hematoma and 1 case with intercostal neuralgia. Vertebral body fractures of 2 cases were split by bone cement and the fractures of adjacent body occurred in 4 cases. It's uncommon complication except bone cement leakge in treatment of osteoporotic thoracolumbar vertebral compression fractures with percutaneous kyphoplasty. The complication of cardiopulmonary system is a high risk in surgery; and cytotoxicity of bone cement,nervous reflex,fat embolism and alteration of intravertebral pressure may be main reasons.

  14. Previous vertebral compression fractures add to the deterioration of the disability and quality of life after an acute compression fracture.

    PubMed

    Suzuki, Nobuyuki; Ogikubo, Osamu; Hansson, Tommy

    2010-04-01

    Prevalent vertebral compression fracture(s) have been reported as having a negative impact on pain, disability, and quality of life. But no study has evaluated the effect of previous fracture on the course of acute compression fractures. The aim of the present study was to compare the natural course of the acute compression fracture in patients with (n = 51) and without (n = 56) previous vertebral compression fracture(s). The study is a retrospective analysis of a prospective cohort followed with postal questionnaires during a 12-month period after an acute fracture event. Eligible patients were those over 40 years of age, who were admitted to the emergency unit because of back pain and had an X-ray confirmed acute vertebral body fracture. A total of 107 patients were included in the study. The pain, disability (von Korff pain and disability scores), ADL (Hannover ADL score), and quality of life (QoL) (EQ-5D) were measured after 3 weeks, and 3, 6, and 12 months. The X-rays from the first visit to the emergency unit were evaluated. The difference of the scores between the groups with and without previous fracture was statistically significant (P < 0.05) at 3 weeks, 6 and 12 months for von Korff disability score, at all occasions for EQ-5D and at 3-12 months for Hannover ADL score, but only at 12 months for the von Korff pain intensity score. In both the groups all scores had improved in a statistically significant way at 3 months. The number of previous fractures was related to all the outcome scores in a statistically significant way (P < 0.05) except von Korff pain intensity score at 3 weeks and 3 months and von Korff disability score at 3 months. In conclusion, disability, ADL, and QoL scores, but not pain intensity score, were significantly worse in the patients with previous fracture from the fracture episode through the first 12 months. However, the improvements during the follow-up year seen in both groups were of a similar magnitude. The presence or absence

  15. The Calmodulin-Binding, Short Linear Motif, NSCaTE Is Conserved in L-Type Channel Ancestors of Vertebrate Cav1.2 and Cav1.3 Channels

    PubMed Central

    Taiakina, Valentina; Boone, Adrienne N.; Fux, Julia; Senatore, Adriano; Weber-Adrian, Danielle

    2013-01-01

    NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels. PMID:23626724

  16. Comparison of ZP3 protein sequences among vertebrate species: to obtain a consensus sequence for immunocontraception.

    PubMed

    Zhu, X; Naz, R K

    1999-03-01

    The deduced ZP3 amino acid (aa) sequences of 13 vertebrate species namely mouse, hamster, rabbit, pig, porcine, cow, dog, cat, human, bonnet, marmoset, carp, and frog were compared using the PILEUP and PRETTY alignment programs (GCG, Wisconsin, USA). The published aa sequences obtained from 13 vertebrate species indicated the overall evolutionarily conservation in the N-terminus, central region, and C-terminus of the ZP3 polypeptide. More variations of ZP3 polypeptide sequences were seen in the alignments of carp and frog from the 11 mammalian species making the leader sequence more prominent. The canonical furin proteolytic processing signal at the C-terminus was found in all the ZP3 polypeptide sequences except of carp and frog. In the central region, the ZP3 deduced aa sequences of all the 13 vertebrate species aligned well, and six relatively conserved sequences were found. There are 11 conserved cysteine residues in the central region across all species including carp and frog, indicating that these residues have longer evolutionary history. The ZP3 aa sequence similarities were examined using the GAP program (GCG). The highest aa similarities are observed between the members of the same order within the class mammalia, and also (95.4%) between pig (ungulata) and rabbit (lagomorpha). The deduced ZP3 aa sequences per se may not be enough to build a phylogenetic tree.

  17. Degenerative lumbar spinal stenosis and lumbar spine configuration

    PubMed Central

    Hamoud, K.; May, H.; Hay, O.; Medlej, B.; Masharawi, Y.; Peled, N.; Hershkovitz, I.

    2010-01-01

    As life expectancy increases, degenerative lumbar spinal stenosis (DLSS) becomes a common health problem among the elderly. DLSS is usually caused by degenerative changes in bony and/or soft tissue elements. The poor correlation between radiological manifestations and the clinical picture emphasizes the fact that more studies are required to determine the natural course of this syndrome. Our aim was to reveal the association between lower lumbar spine configuration and DLSS. Two groups were studied: the first included 67 individuals with DLSS (mean age 66 ± 10) and the second 100 individuals (mean age 63.4 ± 13) without DLSS-related symptoms. Both groups underwent CT images (Philips Brilliance 64) and the following measurements were performed: a cross-section area of the dural sac, vertebral body dimensions (height, length and width), AP diameter of the bony spinal canal, lumbar lordosis and sacral slope angles. All measurements were taken at L3 to S1. Vertebral body lengths were significantly greater in the DLSS group at all levels compared to the control, whereas anterior vertebral body heights (L3, L4, L5) and middle vertebral heights (L3, L5) were significantly smaller in the LSS group. Lumbar lordosis, sacral slope and bony spinal canal were significantly smaller in the DLSS compared to the control. We conclude that the size and shape of vertebral bodies and canals significantly differed between the study groups. A tentative model is suggested to explain the association between these characteristics and the development of degenerative spinal stenosis. PMID:20652366

  18. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  19. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  20. Quantifying the Availability of Vertebrate Hosts to Ticks: A Camera-Trapping Approach

    PubMed Central

    Hofmeester, Tim R.; Rowcliffe, J. Marcus; Jansen, Patrick A.

    2017-01-01

    The availability of vertebrate hosts is a major determinant of the occurrence of ticks and tick-borne zoonoses in natural and anthropogenic ecosystems and thus drives disease risk for wildlife, livestock, and humans. However, it remains challenging to quantify the availability of vertebrate hosts in field settings, particularly for medium-sized to large-bodied mammals. Here, we present a method that uses camera traps to quantify the availability of warm-bodied vertebrates to ticks. The approach is to deploy camera traps at questing height at a representative sample of random points across the study area, measure the average photographic capture rate for vertebrate species, and then correct these rates for the effective detection distance. The resulting “passage rate” is a standardized measure of the frequency at which vertebrates approach questing ticks, which we show is proportional to contact rate. A field test across twenty 1-ha forest plots in the Netherlands indicated that this method effectively captures differences in wildlife assemblage composition between sites. Also, the relative abundances of three life stages of the sheep tick Ixodes ricinus from drag sampling were correlated with passage rates of deer, which agrees with the known association with this group of host species, suggesting that passage rate effectively reflects the availability of medium- to large-sized hosts to ticks. This method will facilitate quantitative studies of the relationship between densities of questing ticks and the availability of different vertebrate species—wild as well as domesticated species—in natural and anthropogenic settings. PMID:28770219

  1. The largest Silurian vertebrate and its palaeoecological implications

    PubMed Central

    Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an

    2014-01-01

    An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626

  2. Low back pain in a child associated with acute onset cauda equina syndrome: a rare presentation of an aggressive vertebral hemangioma: a case report.

    PubMed

    Pretell-Mazzini, Juan; Chikwava, Kudakwashe R; Dormans, John Paul

    2012-01-01

    Back pain prevalence in the pediatric age group is less compared with adults. There is a wide range of possible etiologies, and tumors such as primary spinal hemangiomas are uncommon. Most are incidental findings and asymptomatic; however, painful lesions can be presented in up to 0.9% to 1.2% of cases. These lesions can produce neurologic involvement either spinal cord compression or cauda equina syndrome as in our case. The aim of this study is to describe a case of low back pain in a child due to a vertebral hemangioma complicated with acute cauda equina syndrome, and performed a literature review that will help us to recognize this aggressive variance making an early treatment feasible. A 13-year-old female, follow-up in an outer health care center due to a L1 vertebral hemangioma, characterized by 3 years of low back pain without neurologic symptoms presented to our emergency department with an acute cauda equina syndrome. An outside magnetic resonance imaging showed complete obliteration of the spinal canal at the level of the conus medullaris related to retropulsion of bone at L1. She underwent 2-stage surgical treatment: complete posterior L1 laminectomy and partial T12-L2 laminectomies, with partial L1 vertebrectomy and posterior fusion with instrumention from T11 to L3. Three weeks later, embolization before anterior fusion with inner body cage was performed. Forty months after surgery, she is doing well with no neurologic deficits. Even though hemangiomas are not a common cause of back pain, they should be taken into account. It is important to recognize the aggressive variance so an early treatment could be performed. There is no enough clinical data to establish guidelines of management in children, therefore, the treatment should be individualized.

  3. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  4. Geometry of the intervertebral volume and vertebral endplates of the human spine.

    PubMed

    van der Houwen, E B; Baron, P; Veldhuizen, A G; Burgerhof, J G M; van Ooijen, P M A; Verkerke, G J

    2010-01-01

    Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column.

  5. Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.

    PubMed

    Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas

    2005-01-01

    An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.

  6. "Lucy" (A.L. 288-1) had five sacral vertebrae.

    PubMed

    Russo, Gabrielle A; Williams, Scott A

    2015-02-01

    A "long-backed" scenario of hominin vertebral evolution posits that early hominins possessed six lumbar vertebrae coupled with a high frequency of four sacral vertebrae (7:12-13:6:4), a configuration acquired from a hominin-panin last common ancestor (PLCA) having a vertebral formula of 7:13:6-7:4. One founding line of evidence for this hypothesis is the recent assertion that the "Lucy" sacrum (A.L. 288-1an, Australopithecus afarensis) consists of four sacral vertebrae and a partially-fused first coccygeal vertebra (Co1), rather than five sacral vertebrae as in modern humans. This study reassesses the number of sacral vertebrae in Lucy by reexamining the distal end of A.L.288-1an in the context of a comparative sample of modern human sacra and Co1 vertebrae, and the sacrum of A. sediba (MH2). Results demonstrate that, similar to S5 in modern humans and A. sediba, the last vertebra in A.L. 288-1an exhibits inferiorly-projecting (right side) cornua and a kidney-shaped inferior body articular surface. This morphology is inconsistent with that of fused or isolated Co1 vertebrae in humans, which either lack cornua or possess only superiorly-projecting cornua, and have more circularly-shaped inferior body articular surfaces. The level at which the hiatus' apex is located is also more compatible with typical five-element modern human sacra and A. sediba than if only four sacral vertebrae are present. Our observations suggest that A.L. 288-1 possessed five sacral vertebrae as in modern humans; thus, sacral number in "Lucy" does not indicate a directional change in vertebral count that can provide information on the PLCA ancestral condition. © 2015 Wiley Periodicals, Inc.

  7. Life-long accumulation of 137Cs and 40K in the vertebral column of a cow.

    PubMed

    Pichl, Elke; Rabitsch, Herbert

    2013-01-01

    We have investigated the accumulation of (137)Cs and (40)K in all the tissues and organs of an adult slaughtered Austrian "mountain pasture cow". In this paper we present measured (137)Cs- and (40)K-activity concentrations in different tissues of the vertebral bodies, in their other bony components and in all the vertebrae forming the vertebral column. Data are also given for activity concentrations of adherent tissues, and for activities of both the components and the whole vertebral column. The dairy cow was born in a highly contaminated region of Styria, Austria, at the time of the radioactive fallout following the Chernobyl accident. Both radionuclides were incorporated during life-long ingestion and their accumulation in all the vertebrae up to the day of slaughtering was determined by high-purity germanium detectors. Our results show considerable variations of (137)Cs- and (40)K-activity concentrations in the components of a certain vertebra, within vertebrae of a particular region, and between vertebrae of different regions of the vertebral column. Particularly, the courses of (137)Cs- and (40)K-activity concentrations in trabecular bone, cortical bone and intervertebral discs of thoracic vertebral bodies are subdivided by a strong drop into two sections. Mean values of (137)Cs-concentration in vertebral bodies of these subsections vary by a factor 4. Compared with corresponding quantities for the skeleton, total mass, as well as total (137)Cs- and (40)K-activities of the whole vertebral column came to 14%, and approximately 38% for each (137)Cs and (40)K, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Infra-renal angles, entry into inferior vena cava and vertebral levels of renal veins.

    PubMed

    Satyapal, K S

    1999-10-01

    Current norms for renal vasculature hold true in only half the population. Standard textbooks perpetuate old misconceptions regarding renal venous anatomy. This study is aimed to determine left and right infra-renal angles (L-IRA, R-IRA); entry level of renal veins into the inferior vena cava (IVC), and height of IVC under renal vein influence; and their vertebral level. One hundred morphologically normal en-bloc renal specimens randomly selected from post-mortem examinations were dissected and resin casted. IRA were also measured from venograms of 32 adult and 11 foetal cadavers, as were vertebral entry levels. IRA measurements (degrees) were as follows: left, 55 degrees +/- 16 degrees (20 degrees -102 degrees ); right, 60 degrees +/- 17 degrees (10 degrees -93 degrees ). Left vein entered IVC higher than right 54%, lower 36%, and opposite each other 10%. Vertical distance between lower borders of veins was 1.0 +/- 0.9 cm. Vertical distance of IVC under renal vein influence was 2.3 +/- 1.0 cm. Vertebral level of veins in adults lies between TI2-L2. In foetuses, IRA was as follows: left, 65 degrees +/- 12 degrees (45 degrees -90 degrees ); right, 58 degrees +/- 7 degrees (40 degrees -70 degrees ); vertebral level between T12 and L3. Similar IRA values from literature noted on right, 51 degrees (26 degrees -100 degrees ); differences on left, 77 degrees (43 degrees -94 degrees ), clearly differing from Williams et al. (Gray's Anatomy, 37(th) ed, 1989) statement that renal veins "open into the inferior vena cava almost at right angles." Large variations of IRA are not surprising since kidneys are considered normally "floating viscera," varying position with posture and respiratory movement as well as in live vs. cadaveric subjects. The entry level into the IVC also differs from Williams et al. This study uniquely quantitated actual height difference between lower borders of left and right veins. The data presented appears to be the first documentation of vertebral

  9. Vertebral heights and ratios are not only race-specific, but also gender- and region-specific: establishment of reference values for mainland Chinese.

    PubMed

    Ning, Lei; Song, Li-Jiang; Fan, Shun-Wu; Zhao, Xing; Chen, Yi-Lei; Li, Zhao-Zhi; Hu, Zi-Ang

    2017-10-11

    This study established gender-specific reference values in mainland Chinese (MC) and is important for quantitative morphometry for diagnosis and epidemiological study of osteoporotic vertebral compressive fracture. Comparisons of reference values among different racial populations are then performed to demonstrate the MC-specific characteristic. Osteoporotic vertebral compressive fracture (OVCF) is a common complication of osteoporosis in the elder population. Clinical diagnosis and epidemiological study of OVCF often employ quantitative morphometry, which relies heavily on the comparison of patients' vertebral parameters to existing reference values derived from the normal population. Thus, reference values are crucial in clinical diagnosis. To our knowledge, this is the first study to establish reference values of the mainland Chinese (MC) for quantitative morphometry. Vertebral heights including anterior (Ha), middle (Hm), posterior (Hp) heights, and predicted posterior height (pp) from T4 to L5 were obtained; and ratios of Ha/Hp, Hm/Hp and Hp/pp. were calculated from 585 MC (both female and male) for establishing reference values and subsequent comparisons with other studies. Vertebral heights increased progressively from T4 to L3 but then decreased in L4 and L5. Both genders showed similar ratios of vertebral dimensions, but male vertebrae were statistically larger than those of female (P < 0.01). Vertebral size of MC population was smaller than that of US and UK population, but was surprisingly larger than that of Hong Kong Chinese, although these two are commonly considered as one race. Data from different racial populations showed similar dimensional ratios in all vertebrae. We established gender-specific reference values for MC. Our results also indicated the necessity of establishing reference values that are not only race- and gender-specific, but also population- or region-specific for accurate quantitative morphometric assessment of OVCF.

  10. Elongation of the body in eels.

    PubMed

    Mehta, Rita S; Ward, Andrea B; Alfaro, Michael E; Wainwright, Peter C

    2010-12-01

    The shape of the body affects how organisms move, where they live, and how they feed. One body plan that has long engaged the interest of both evolutionary biologists and functional morphologists is axial elongation. There is a growing interest in the correlates and evolution of elongation within different terrestrial and aquatic vertebrate clades. At first glance, Anguilliformes may appear to exhibit a single cylindrical form but there is considerable diversity underlying this seemingly simplified body plan. Here, we explore evolution of the axial skeleton in 54 anguilliform taxa and some close relatives. We describe the diversity of axial elongation as well as investigate how characters such as head length, branchial-arch length, and shape of the pectoral fins correlate with vertebral number to possibly facilitate changes in absolute diameter of the body. Overall, we find that precaudal vertebral numbers and caudal vertebral numbers are evolving independently across elopomorph fishes. We also find that precaudal and caudal vertebral aspect ratios are evolving together across elopomorph fishes. When focusing within Anguilliformes we find striking diversity in the mechanisms of elongation of the body, including almost every trend for axial elongation known within actinopterygian fishes. The three major clades of eels we examined have slightly different mechanisms of elongation. We also find a suite of morphological characters associated with elongation in anguilliform fishes that appears to coincide with a more fossorial lifestyle such as high elongation ratios, a more posteriorly extended-branchial region, and a reduction in the size of the pectoral fins. Lastly, we point out that a diverse range of derived behaviors such as head- and tail-first burrowing, rotational feeding, and knotting around prey are only found in long cylindrical vertebrates.

  11. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates.

    PubMed

    Kozmikova, Iryna; Kozmik, Zbynek

    2015-12-01

    Cephalochordates, commonly known as amphioxus or lancelets, are the most basal subphylum of chordates. Cephalochordates are thus key to understanding the origin of vertebrates and molecular mechanisms underlying vertebrate evolution. The evolution of developmental control mechanisms during invertebrate-to-vertebrate transition involved not only gene duplication events, but also specific changes in spatial and temporal expression of many genes. To get insight into the spatiotemporal regulation of gene expression during invertebrate-to-vertebrate transition, functional studies of amphioxus gene regulatory elements are highly warranted. Here, we review transgenic studies performed in amphioxus and vertebrates using promoters and enhancers derived from the genome of Branchiostoma floridae. We describe the current methods of transgenesis in amphioxus, provide evidence of Tol2 transposon-generated transgenic embryos of Branchiostoma lanceolatum and discuss possible future directions. We envision that comparative transgenic analysis of gene regulatory sequences in the context of amphioxus and vertebrate embryos will likely provide an important mechanistic insight into the evolution of vertebrate body plan. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison the clinical outcomes and complications of high-viscosity versus low-viscosity in osteoporotic vertebral compression fractures.

    PubMed

    Guo, Zhao; Wang, Wei; Gao, Wen-Shan; Gao, Fei; Wang, Hui; Ding, Wen-Yuan

    2017-12-01

    To compare the clinical outcomes and complications of high viscosity and low viscosity bone cement percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCF).From September 2009 to September 2015, 100 patients with OVCF were randomly divided into 2 groups: group H, using high viscosity cement (n = 50) or group L, using low viscosity cement (n = 50). The clinical outcomes were assessed by the visual analog scale (VAS), Oswestry Disability Index (ODI), kyphosis Cobb angle, vertebral height, and complications.Significant improvements in the VAS, ODI, kyphosis Cobb angle, and vertebral height were noted in both groups, and the VAS score in the H group showed greater benefit than in the L group. Cement leakage was observed less in group H. Postoperative assessment using computed tomography identified cement leakage in 27 of 98 (27.6%) vertebrae in group H and in 63 of 86 (73.3%) vertebrae in group L (P = .025).Compared with PVP using low viscosity bone cement, PVP using high viscosity bone cement can provide the same clinical outcomes with fewer complications and is recommended for routine clinical use.

  13. Comparison the clinical outcomes and complications of high-viscosity versus low-viscosity in osteoporotic vertebral compression fractures

    PubMed Central

    Guo, Zhao; Wang, Wei; Gao, Wen-shan; Gao, Fei; Wang, Hui; Ding, Wen-Yuan

    2017-01-01

    Abstract To compare the clinical outcomes and complications of high viscosity and low viscosity bone cement percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCF). From September 2009 to September 2015, 100 patients with OVCF were randomly divided into 2 groups: group H, using high viscosity cement (n = 50) or group L, using low viscosity cement (n = 50). The clinical outcomes were assessed by the visual analog scale (VAS), Oswestry Disability Index (ODI), kyphosis Cobb angle, vertebral height, and complications. Significant improvements in the VAS, ODI, kyphosis Cobb angle, and vertebral height were noted in both groups, and the VAS score in the H group showed greater benefit than in the L group. Cement leakage was observed less in group H. Postoperative assessment using computed tomography identified cement leakage in 27 of 98 (27.6%) vertebrae in group H and in 63 of 86 (73.3%) vertebrae in group L (P = .025). Compared with PVP using low viscosity bone cement, PVP using high viscosity bone cement can provide the same clinical outcomes with fewer complications and is recommended for routine clinical use. PMID:29310386

  14. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Gap junctional coupling in the vertebrate retina: variations on one theme?

    PubMed

    Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert

    2013-05-01

    Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such

  16. Vitamin D sufficiency is associated with low incidence of limb and vertebral fractures in community-dwelling elderly Japanese women: the Muramatsu Study.

    PubMed

    Nakamura, K; Saito, T; Oyama, M; Oshiki, R; Kobayashi, R; Nishiwaki, T; Nashimoto, M; Tsuchiya, Y

    2011-01-01

    Data on the association between vitamin D status and osteoporotic fracture in Asians are sparse. We conducted a 6-year cohort study of 773 community-dwelling elderly Japanese women and found that serum 25-hydroxyvitamin D (25(OH)D) ≥ 71 nmol/L was associated with a reduced risk of osteoporotic limb and vertebral fractures. Data on the association between vitamin D status and osteoporotic fracture in Asians are sparse. This study aimed to clarify the association between vitamin D and other markers of nutritional status with the incidence of fracture in elderly Japanese women. We conducted a cohort study with a 6-year follow-up of 773 community-dwelling women aged 69 years and older. The 6-year follow-up ended in 2009. We assessed serum 25-hydroxyvitamin D, undercarboxylated osteocalcin (an index of vitamin K status), and calcium intake. The primary outcome was incident limb and vertebral fractures. Covariates were forearm bone mineral density (BMD), age, body mass index, osteoporosis treatment, and physical activity. The mean serum 25(OH)D concentration was 60.0 nmol/L. Thirty-seven limb fractures and 14 vertebral fractures occurred in 4,392 person-years. Lower forearm BMD was significantly associated with increased incident fracture (P = 0.0242). The adjusted hazard ratios (HR) of fracture for the first quartile (<47.7 nmol/L) and the third quartile (59.2-70.9 nmol/L) of serum 25(OH)D, compared to the fourth quartile (≥71.0 nmol/L), were 2.82 (95% confidence interval (CI), 1.09-7.34) and 2.82 (95%CI, 1.09-7.27), respectively. The pooled adjusted HR was 0.42 (95%CI, 0.18-0.99) when the incidence in the fourth quartile (≥71.0 nmol/L) was compared to the other three quartiles combined (<71.0 nmol/L). Vitamin K status and calcium intake were not associated with incident fracture. Sufficient vitamin D status, i.e., serum 25(OH)D ≥ 71 nmol/L, is associated with low limb and vertebral fracture risk in community-dwelling elderly women.

  17. [Complex program for the recovery of the vertebral column motor function].

    PubMed

    Kukareko, V P; Furmanov, A G

    2011-01-01

    This paper addresses the problems pertinent to the improvement of the efficacy of restoration of the vertebral column motor function based on the implementation of a comprehensive therapeutic program including massage, thermal procedures, and physical exercises. The program was realized in three phases, viz. preparatory, basic, and consolidating. The results of integral estimation of the whole body and vertebral column condition were taken into consideration. The experiment lasted 6 months and confirmed high efficiency of the comprehensive program.

  18. The use of non‐adult vertebral dimensions as indicators of growth disruption and non‐specific health stress in skeletal populations

    PubMed Central

    Gowland, Rebecca L.

    2015-01-01

    ABSTRACT Objective Traditional methods of detecting growth disruption have focused on deficiencies in the diaphyseal length of the long bones. This study proposes the implementation of vertebral measurements (body height and transverse diameter of the neural canal) from non‐adults (0–17 years) as a new methodology for the identification of growth disruption. Methods Measurements of vertebral body height and transverse diameter were taken from 96 non‐adult skeletons and 40 adult skeletons from two post‐medieval sites in England (Bow Baptist, London and Coronation Street, South Shields). Non‐adult measurements were plotted against dental age to construct vertebral growth profiles through which inter‐population comparisons could be made. Results Results demonstrated that both sites experienced some growth retardation in infancy, evident as deficiencies in transverse diameter. However, analysis of vertebral body height revealed different chronologies of growth disruption between the sites, with a later age of attainment of skeletal maturity recorded in the Bow Baptist sample. Discussion These vertebral dimensions undergo cessation of growth at different ages, with transverse diameter being “locked‐in” by ∼1–2 years of age, while vertebral body height may continue to grow into early adulthood. These measurements can therefore provide complementary information regarding the timing of growth disruption within archaeological populations. Non‐adult vertebral measurements can increase our osteobiographical understanding of the timings of episodes of health stress, and allow for the analysis of growth when other skeletal elements are fragmentary. Am J Phys Anthropol 158:155–164, 2015. © 2015 Wiley Periodicals, Inc. PMID:26118898

  19. Vertebral pneumatocyst. A case report.

    PubMed

    Laufer, L; Schulman, H; Hertzanu, Y

    1996-02-01

    This study illustrates intraosseous pneumatocyst of the vertebral body, a benign lesion. To review the incidence and location of this benign lesion during a 1-year period. Intraosseous pneumatocyst is a rare benign condition, commonly seen in iliac bone or sacrum. The etiology of this entity is unclear. Other locations of these lesions are very rare, and only a few isolated cases are reported in the literature. In the last year (1994-1995), vertebral pneumatocyst was incidentally found in four patients who underwent computed tomography examination for presumptive discal lesion. Axial computed tomography with 2- and 4-mm slice thickness was performed. The typical computed tomography patterns of intraosseous pneumatocyst involving the cervical, dorsal, or lumbar spine were found. The bony structure and joints were normal. To the best of our knowledge, intraosseous pneumatocyst located in the spinal process has not been reported. Intraosseous pneumatocyst is a benign lesion. Biopsy and follow-up are unnecessary.

  20. Osteoporosis and vertebral fractures in men aged 60-74 years.

    PubMed

    Frost, Morten; Wraae, Kristian; Abrahamsen, Bo; Høiberg, Mikkel; Hagen, Claus; Andersen, Marianne; Brixen, Kim

    2012-03-01

    limited information on the prevalence of osteoporosis and VFxs in men in high-risk populations is available. The choice of reference values for dual X-ray absorptiometry (DXA) is debated. We evaluated the prevalence of osteoporosis and vertebral deformities in a population-based sample of men. bone mineral density (BMD) was measured and vertebral deformities assessed using DXA and VFx assessment (VFA), respectively, in a random sample of 600 Danish men aged 60-74 years. Osteoporosis was defined as a T-score of -2.5 or less. the study population was comparable with the background population with regard to age, body mass index and co-morbidity. Osteoporosis was diagnosed in less than 1% of the participants at inclusion. Using Danish and NHANES III reference data, 10.2 and 11.5% of the study population had osteoporosis, respectively. In all, 6.3% participants had at least one VFx. BMD was significantly lower in participants with vertebral deformities, but only 24% of these cases had osteoporosis. osteoporosis and VFxs are prevalent in men aged 60-74 years. Although the majority of deformities were present in individuals without osteoporosis, BMD was lower in patients with VFxs at all sites investigated. Male osteoporosis was markedly underdiagnosed.

  1. Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauchi, Ruben J.; Sanchez-Pulido, Luis; Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk

    2010-08-15

    Uridine-rich small nuclear ribonucleoproteins (U snRNPs) play key roles in pre-mRNA processing in the nucleus. The assembly of most U snRNPs takes place in the cytoplasm and is facilitated by the survival motor neuron (SMN) complex. Discrete cytoplasmic RNA granules called U bodies have been proposed to be specific sites for snRNP assembly because they contain U snRNPs and SMN. U bodies invariably associate with P bodies, which are involved in mRNA decay and translational control. However, it remains unknown whether other SMN complex proteins also localise to U bodies. In Drosophila there are four SMN complex proteins, namely SMN,more » Gemin2/CG10419, Gemin3 and Gemin5/Rigor mortis. Drosophila Gemin3 was originally identified as the Drosophila orthologue of human and yeast Dhh1, a component of P bodies. Through an in silico analysis of the DEAD-box RNA helicases we confirmed that Gemin3 is the bona fide Drosophila orthologue of vertebrate Gemin3 whereas the Drosophila orthologue of Dhh1 is Me31B. We then made use of the Drosophila egg chamber as a model system to study the subcellular distribution of the Gemin proteins as well as Me31B. Our cytological investigations show that Gemin2, Gemin3 and Gemin5 colocalise with SMN in U bodies. Although they are excluded from P bodies, as components of U bodies, Gemin2, Gemin3 and Gemin5 are consistently found associated with P bodies, wherein Me31B resides. In addition to a role in snRNP biogenesis, SMN complexes residing in U bodies may also be involved in mRNP assembly and/or transport.« less

  2. Ecological Guild Evolution and the Discovery of the World's Smallest Vertebrate

    PubMed Central

    Rittmeyer, Eric N.; Allison, Allen; Gründler, Michael C.; Thompson, Derrick K.; Austin, Christopher C.

    2012-01-01

    Living vertebrates vary drastically in body size, yet few taxa reach the extremely minute size of some frogs and teleost fish. Here we describe two new species of diminutive terrestrial frogs from the megadiverse hotspot island of New Guinea, one of which represents the smallest known vertebrate species, attaining an average body size of only 7.7 mm. Both new species are members of the recently described genus Paedophryne, the four species of which are all among the ten smallest known frog species, making Paedophryne the most diminutive genus of anurans. This discovery highlights intriguing ecological similarities among the numerous independent origins of diminutive anurans, suggesting that minute frogs are not mere oddities, but represent a previously unrecognized ecological guild. PMID:22253785

  3. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  4. A right-handed signalling pathway drives heart looping in vertebrates

    PubMed Central

    Ocaña, Oscar H.; Coskun, Hakan; Minguillón, Carolina; Murawala, Prayag; Tanaka, Elly M.; Galcerán, Joan; Muñoz-Chapuli, Ramón; Nieto, M. Angela

    2017-01-01

    The majority of animals show external bilateral symmetry, precluding the observation of multiple internal left-right (L/R) asymmetries that are fundamental for organ packaging and function1,2. In vertebrates, left identity is mediated by the left-specific Nodal-Pitx2 axis that is repressed on the right-hand side by the epithelial-mesenchymal transition (EMT) inducer Snail13,4. Despite some existing evidence3,5, it remains unclear whether an equivalent instructive pathway provides right-hand specific information to the embryo. Here we show that in zebrafish, BMP mediates the L/R asymmetric activation of another EMT inducer, Prrx1a, in the lateral plate mesoderm (LPM) with higher levels on the right. Prrx1a drives L/R differential cell movements towards the midline leading to a leftward displacement of the cardiac posterior pole through an actomyosin-dependent mechanism. Downregulation of Prrx1a prevents heart looping and leads to mesocardia. Two parallel and mutually repressed pathways, respectively driven by Nodal and BMP on the left and right LPM, converge on the asymmetric activation of Pitx2 and Prrx1, two transcription factors that integrate left and right information to govern heart morphogenesis. This mechanism is conserved in the chicken embryo and, in the mouse, Snail1 fulfills the role played by Prrx1 in fish and chick. Thus, a differential L/R EMT produces asymmetric cell movements and forces, more prominent from the right, that drive heart laterality in vertebrates. PMID:28880281

  5. Turning maneuvers in sharks: Predicting body curvature from axial morphology.

    PubMed

    Porter, Marianne E; Roque, Cassandra M; Long, John H

    2009-08-01

    Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size-matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r(2) values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non-vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming. (c) 2009 Wiley-Liss, Inc.

  6. Built for speed: strain in the cartilaginous vertebral columns of sharks.

    PubMed

    Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H

    2014-02-01

    In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    PubMed

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  8. Expression of growth differentiation factor 6 in the human developing fetal spine retreats from vertebral ossifying regions and is restricted to cartilaginous tissues.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Gulati, Twishi; Fang, Zhimin; Pathmanandavel, Sarennya; Diwan, Ashish D

    2016-02-01

    During embryogenesis vertebral segmentation is initiated by sclerotomal cell migration and condensation around the notochord, forming anlagen of vertebral bodies and intervertebral discs. The factors that govern the segmentation are not clear. Previous research demonstrated that mutations in growth differentiation factor 6 resulted in congenital vertebral fusion, suggesting this factor plays a role in development of vertebral column. In this study, we detected expression and localization of growth differentiation factor 6 in human fetal spinal column, especially in the period of early ossification of vertebrae and the developing intervertebral discs. The extracellular matrix proteins were also examined. Results showed that high levels of growth differentiation factor 6 were expressed in the nucleus pulposus of intervertebral discs and the hypertrophic chondrocytes adjacent to the ossification centre in vertebral bodies, where strong expression of proteoglycan and collagens was also detected. As fetal age increased, the expression of growth differentiation factor 6 was decreased correspondingly with the progress of ossification in vertebral bodies and restricted to cartilaginous regions. This expression pattern and the genetic link to vertebral fusion suggest that growth differentiation factor 6 may play an important role in suppression of ossification to ensure proper vertebral segmentation during spinal development. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frese, Steven A.; Benson, Andrew K.; Tannock, Gerald W.

    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order tomore » differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.« less

  10. AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest.

    PubMed

    Holland, L Z; Schubert, M; Kozmik, Z; Holland, N D

    1999-01-01

    Amphioxus probably has only a single gene (AmphiPax3/7) in the Pax3/7 subfamily. Like its vertebrate homologs (Pax3 and Pax7), amphioxus AmphiPax3/7 is probably involved in specifying the axial musculature and muscularized notochord. During nervous system development, AmphiPax3/7 is first expressed in bilateral anteroposterior stripes along the edges of the neural plate. This early neural expression may be comparable to the transcription of Pax3 and Pax7 in some of the anterior neural crest cells of vertebrates. Previous studies by others and ourselves have demonstrated that several genes homologous to genetic markers for vertebrate neural crest are expressed along the neural plate-epidermis boundary in embryos of tunicates and amphioxus. Taken together, the early neural expression patterns of AmphiPax3/7 and other neural crest markers of amphioxus and tunicates suggest that cell populations that eventually gave rise to definitive vertebrate neural crest may have been present in ancestral invertebrate chordates. During later neurogenesis in amphioxus, AmphiPax3/7, like its vertebrate homologs, is expressed dorsally and dorsolaterally in the neural tube and may be involved in dorsoventral patterning. However, unlike its vertebrate homologs, AmphiPax3/7 is expressed only at the anterior end of the central nervous system instead of along much of the neuraxis; this amphioxus pattern may represent the loss of a primitive chordate character.

  11. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture

    PubMed Central

    Tzermiadianos, Michael N.; Renner, Susan M.; Phillips, Frank M.; Hadjipavlou, Alexander G.; Zindrick, Michael R.; Havey, Robert M.; Voronov, Michael

    2008-01-01

    This study investigated the effect of endplate deformity after an osteoporotic vertebral fracture in increasing the risk for adjacent vertebral fractures. Eight human lower thoracic or thoracolumbar specimens, each consisting of five vertebrae were used. To selectively fracture one of the endplates of the middle VB of each specimen a void was created under the target endplate and the specimen was flexed and compressed until failure. The fractured vertebra was subjected to spinal extension under 150 N preload that restored the anterior wall height and vertebral kyphosis, while the fractured endplate remained significantly depressed. The VB was filled with cement to stabilize the fracture, after complete evacuation of its trabecular content to ensure similar cement distribution under both the endplates. Specimens were tested in flexion-extension under 400 N preload while pressure in the discs and strain at the anterior wall of the adjacent vertebrae were recorded. Disc pressure in the intact specimens increased during flexion by 26 ± 14%. After cementation, disc pressure increased during flexion by 15 ± 11% in the discs with un-fractured endplates, while decreased by 19 ± 26.7% in the discs with the fractured endplates. During flexion, the compressive strain at the anterior wall of the vertebra next to the fractured endplate increased by 94 ± 23% compared to intact status (p < 0.05), while it did not significantly change at the vertebra next to the un-fractured endplate (18.2 ± 7.1%, p > 0.05). Subsequent flexion with compression to failure resulted in adjacent fracture close to the fractured endplate in six specimens and in a non-adjacent fracture in one specimen, while one specimen had no adjacent fractures. Depression of the fractured endplate alters the pressure profile of the damaged disc resulting in increased compressive loading of the anterior wall of adjacent vertebra that predisposes it to wedge fracture. This data suggests that

  12. Abdominal-pelvic scanning parameters revisited: a case for Z-axis reduction in patients with clinical suspicion for acute appendicitis.

    PubMed

    Patel, Darshan C; Huang, Yu-Hui; Meyer, Jonathan; Sepahdari, Amir

    2017-12-01

    The purpose of this study was to determine if CT for appendicitis can be abbreviated to begin at the top of the L2 vertebral body level and still maintain the detection rate of appendicitis and other symptomatic pathology without omitting significant incidental findings. Retrospective review of CT abdomen-pelvis exams for suspected appendicitis over a 5-month period was performed. The Z-axis scan length of the original full scans and theoretical limited scans from the top of L2 were recorded and calculated. Images were reviewed for incidental findings above the L2 vertebral body level and categorized by severity per American College of Radiology (ACR) white paper guidelines. Final diagnoses based on imaging findings were also recorded. One hundred nineteen patients (46 males, 73 females, mean age 29 ± 14) were included. Appendicitis was present in 26 cases (22%). Using a theoretical scan beginning at the top of the L2 vertebral body, none of the findings leading to diagnosis of appendicitis would have been missed. A total of 30 incidental findings were found above the L2 vertebral body. Per ACR white paper guidelines, 26 of these findings did not require additional imaging follow-up. Additional follow-up imaging was recommended for 3 of the findings above L2, and 1 right adrenal metastasis was found above L2 in a patient with previously undiagnosed NSCLC. This patient coincidentally also had appendicitis. No symptomatic pathology would have been missed had the scans begun at the top of the L2 vertebral body. Such an abbreviated scan would have resulted in a mean Z-axis reduction of 12.9 cm (30.3%). CT using abbreviated Z-axis scan length can reduce radiation dose and provide necessary imaging needed to diagnose appendicitis or other symptomatic pathology without omitting significant incidental findings.

  13. Lumbar vertebral hemangioma causing cauda equina syndrome: a case report.

    PubMed

    Ahn, Henry; Jhaveri, Subir; Yee, Albert; Finkelstein, Joel

    2005-11-01

    Case report. To report a case of lumbar hemangioma causing neurogenic claudication and early cauda equina, managed with hemostatic vertebroplasty and posterior decompression. This is the first report to our knowledge of a lumbar hemangioma causing neurogenic claudication and early cauda equina syndrome. Most hemangiomas causing neurologic symptoms occur in thoracic spine and cause spinal cord compression. Vertebroplasty as a method of hemostasis and for providing mechanical stability in this situation has not been discussed previously in the literature. L4 hemangioma was diagnosed in a 64-year-old woman with severe neurogenic claudication and early cauda equina syndrome. Preoperative angiograms showed no embolizable vessels. Posterior decompression was performed followed by bilateral transpedicular vertebroplasty. The patient received postoperative radiation to prevent recurrence. Complete relief of neurogenic claudication and cauda equina with less than 100 mL of blood loss. A lumbar hemangioma of the vertebral body, although rare, can cause neurogenic claudication and cauda equina syndrome. Intraoperative vertebroplasty can be an effective method of hemostasis and provide stability of the vertebra following posterior decompression.

  14. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    PubMed

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  15. [Comparison of classical 2D measurement of scoliosis and 3D measurement using vertebral vectors; advantages for prognosis and treatment evaluation].

    PubMed

    Illés, Tamás

    2011-03-01

    The EOS system is a new medical imaging device based on low-dose X-rays, gaseous detectors and dedicated software for 3D reconstruction. It was developed by Nobel prizewinner Georges Charpak. A new concept--the vertebral vector--is used to facilitate the interpretation of EOS data, especially in the horizontal plane. We studied 95 cases of idiopathic scoliosis before and after surgery by means of classical methods and using vertebral vectors, in order to compare the accuracy of the two approaches. The vertebral vector permits simultaneous analysis of the scoliotic curvature in the frontal, sagittal and horizontal planes, as precisely as classical methods. The use of the vertebral vector simplifies and facilitates the interpretation of the mass of information provided by EOS. After analyzing the horizontal data, the first goal of corrective intervention would be to reduce the lateral vertebral deviation. The reduction in vertebral rotation seems less important. This is a new element in the therapeutic management of spinal deformations.

  16. Surgical treatment of congenital thoracolumbar spondyloptosis in a 2-year-old child with vertebral column resection and posterior-only circumferential reconstruction of the spine column: case report.

    PubMed

    Gressot, Loyola V; Mata, Javier A; Luerssen, Thomas G; Jea, Andrew

    2015-02-01

    Spondyloptosis refers to complete dislocation of a vertebral body onto another. The L5-S1 level is frequently affected. As this condition is rare, few published reports describing its clinical features and surgical outcomes exist, especially in the pediatric patient population. The authors report the presentation, pathological findings, and radiographic studies of a 2-year-old girl who presented to Texas Children's Hospital with a history since birth of progressive spastic paraparesis. Preoperative CT and MRI showed severe spinal cord compression associated with T11-12 spondyloptosis. The patient underwent a single-stage posterior approach for complete resection of the dysplastic vertebral bodies at the apex of the spinal deformity with reconstruction and stabilization of the vertebral column using a titanium expandable cage and pedicle screws. At the 12-month follow-up, the patient remained neurologically stable without any radiographic evidence of instrumentation failure or loss of alignment. To the best of the authors' knowledge, there have been only 2 other children with congenital thoracolumbar spondyloptosis treated with the above-described strategy. The authors describe their case and review the literature to discuss the aggregate clinical features, surgical strategies, and operative outcomes for congenital thoracolumbar spondyloptosis.

  17. Evaluation of the effects of sildenafil citrate (viagra) on vertebral artery blood flow in patients with vertebro-basilar insufficiency.

    PubMed

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Tekatas, Aslan; Ogur, Erkin

    2008-01-01

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 +/- 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm(2) to 10.80 cm(2) at 45 minutes and 10.81 cm(2) at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs.

  18. V. Terrestrial vertebrates

    Treesearch

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  19. The eyes of Tullimonstrum reveal a vertebrate affinity.

    PubMed

    Clements, Thomas; Dolocan, Andrei; Martin, Peter; Purnell, Mark A; Vinther, Jakob; Gabbott, Sarah E

    2016-04-28

    Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata.

  20. The Glanerbrug Breccia: Evidence for a Separate L/LL-Chondritic Parent Body?

    NASA Astrophysics Data System (ADS)

    Welten, K. C.; Lindner, L.; Poorter, R. P. E.; Kallemeyn, G. W.; Rubin, A. E.; Wasson, J. T.

    1992-07-01

    INTRODUCTION. On April 7, 1990, a brecciated ordinary chondrite fell through the roof of a house near Glanerbrug in the Netherlands and was shattered to pieces. The total weight of the recovered fragments was about 800 g, the largest piece weighing 135 g. This main fragment clearly shows the inhomogeneous structure of the Glanerbrug: a dark-grey breccia occasionally containing blackish inclusions, separated from a light-grey breccia by a sharp boundary. Chondrules seem to be more common in the light grey parts. On the basis of earlier electron microprobe analyses of olivines and pyroxenes the light-grey portion was classified at the high Fa-Fs end of the L-field and the dark-grey part at the high Fa-Fs end of the LL-field [1]. Since it is not likely that the L and LL chondritic fragments originated on a single parent body, two alternative explanations were suggested: (i) The light-dark structure of the Glanerbrug is a characteristic feature of regolithic breccias, which once resided on or close to the surface of its parent body [2]. This lends some support to the idea that the light portion is an exotic clast in a dark host rock or vice versa; (ii) the two lithologies represent materials of a body having compositions between L and LL tentatively designated as L/LL [3,4]. Therefore additional electron microprobe analyses (EPMA) of silicates and kamacites in combination with neutron-activation analyses (INAA) of a light and a dark fragment and a noble gas analysis of a mixed light-dark fragment were undertaken. RESULTS and DISCUSSION. The light lithology in two thin sections shows olivine compositions in the L range (24.5+-0.3% Fa) and kamacite compositions (13.0+-1.3 mg/g Co) close to the LL range, plotting in the L/LL rather than in the L field on a kamacite-Co vs. olivine-Fa diagram [3,4]. Whereas only one aberrant olivine grain (out of 50) was found in the light portion, the dark portion is less homogeneous: one thin section shows olivine and kamacite

  1. Protein characterization of protein bodies from cotyledons of Mucuna pruriens (L.) DC.

    PubMed

    Bellani, Lorenza; Giglioni, Stefania; Muccifora, Simonetta

    2013-03-01

    Seeds of Mucuna pruriens (L.) DC. (Fabaceae) were analyzed for protein composition of protein bodies isolated from cotyledons. Protein bodies were successfully separated by Lympholyte and those of dry seeds, observed by scanning electron microscope, were elliptical or spherical in shape with a diameter of 5-12 μm. Protein content in dry seed protein bodies was 10.6 mg/g dry weight. Globulin was the largest protein fraction isolated (62.5 %), followed by albumin (18.3 %), glutelin (15.8 %) and prolamin (3.4 %). The prolamin fraction and high glutelin content are uncommon in legumes. SDS-PAGE of albumins, globulins, prolamins and glutelins provided different band numbers and molecular weights under reducing and non reducing conditions and suggested that the albumin fraction is rich in disulphide bonds.

  2. Variation in vertebral number and its morphological implication in Galaxias platei.

    PubMed

    Barriga, J P; Milano, D; Cussac, V E

    2013-11-01

    Variation in the vertebral number of the puyen grande Galaxias platei was examined for specimens from 22 localities that span the entire distribution range of the species (from 40° to 55° S). The mean vertebral number (NMW ) increases towards high latitudes, i.e. Jordan's rule is applicable to this species. Owing to the wide geographic variation of the species, not only in latitude but also in altitude, the most explicative variable for NMW was mean winter air temperature, showing negative dependence. Morphological data suggest that the increment in vertebral number lies in the pre-pelvic region of the trunk and in the caudal region, but not in the segment between pelvic-fin insertion and the origin of the anal fin. As these alterations in body shape have important consequences for hydrodynamics and swimming performance, vertebral number variation in G. platei also holds implications for both individual and population fitness. © 2013 The Fisheries Society of the British Isles.

  3. Surgical treatment of hematogenous vertebral Aspergillus osteomyelitis.

    PubMed

    Bridwell, K H; Campbell, J W; Barenkamp, S J

    1990-04-01

    Three cases of Aspergillus fumigatas vertebral osteomyelitis failed courses of medical treatment. Each was subsequently treated with anterior vertebral debridement and posterior segmental spinal instrumentation. Despite poor nutritional and immune systems, resolution of the infection and subsequent anterior ankylosis occurred in each patient, with follow-up ranging from 1 to 3 years. If patients with aspergillus vertebral osteomyelitis do not respond to medical treatment, early surgical debridement and stabilization in combination with intravenous amphotericin B can lead to resolution and bony ankylosis.

  4. The selenium content of SEPP1 versus selenium requirements in vertebrates

    PubMed Central

    Hamre, Kristin; Ellingsen, Ståle

    2015-01-01

    Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the circulatory system. For vertebrates, the Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species, but the reason for this variation remains unclear. Herein we provide evidence that vertebrate SEPP1 Sec content correlates positively with Se requirements. As the Se content of full length SEPP1 is genetically determined, this presents a unique case where a nutrient requirement can be predicted based on genomic sequence information. PMID:26734501

  5. Continuum theory of gene expression waves during vertebrate segmentation.

    PubMed

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-09-01

    The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.

  6. Continuum theory of gene expression waves during vertebrate segmentation

    PubMed Central

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-01-01

    Abstract The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time. PMID:28725158

  7. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading-a biomechanical investigation.

    PubMed

    Oberkircher, Ludwig; Krüger, Antonio; Hörth, Dominik; Hack, Juliana; Ruchholtz, Steffen; Fleege, Christoph; Rauschmann, Michael; Arabmotlagh, Mohammad

    2018-03-01

    failure was 1,000 N±258.2 N in Group A (no cement augmentation of the adjacent end plates, n=7); on average, 1,622.1±637.6 cycles were achieved. In Group B (cement augmentation of the adjacent end plates, n=6), the mean force at the end of loading was 1,766.7 N±320.4 N; an average of 3,572±920.6 cycles was achieved. Three specimens reached a load of 2,000 N. The differences between the two groups were significant (p=.006 and p=.0047) regarding load failure and number of cycles. Additional cement augmentation of the adjacent end plates during implantation of a vertebral body replacement in osteoporotic bone resulted in a significant increased stability of the cage in the axial cyclic loading test. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Congenital costo-vertebral fibrous band and congenital kyphoscoliosis: a previously unreported combination.

    PubMed

    Eid, Tony; Ghostine, Bachir; Kreichaty, Gaby; Daher, Paul; Ghanem, Ismat

    2013-05-01

    Congenital kyphoscoliosis (CKS) results from abnormal vertebral chondrification. Congenital fibrous bands occur in several locations with variable impact on vertebral development. We report a previously unreported case of a female infant with CKS presenting with an L2 hypoplastic vertebra and a costo-vertebral fibrous band extending to the skin in the form of a dimple. We also describe the therapeutic approach, consisting of surgical excision of the fibrous band and postoperative fulltime bracing, with a 7-year follow-up. We recommend a high index of suspicion in any unusual presentation of CKS and insist on case by case management in such cases.

  9. Differential segmental growth of the vertebral column of the rat (Rattus norvegicus).

    PubMed

    Bergmann, Philip J; Melin, Amanda D; Russell, Anthony P

    2006-01-01

    Despite the pervasive occurrence of segmental morphologies in the animal kingdom, the study of segmental growth is almost entirely lacking, but may have significant implications for understanding the development of these organisms. We investigate the segmental and regional growth of the entire vertebral column of the rat (Rattus norvegicus) by fitting a Gompertz curve to length and age data for each vertebra and each vertebral region. Regional lengths are calculated by summing constituent vertebral lengths and intervertebral space lengths for cervical, thoracic, lumbar, sacral, and caudal regions. Gompertz curves allow for the estimation of parameters representing neonatal and adult vertebral and regional lengths, as well as initial growth rate and the rate of exponential growth decay. Findings demonstrate differences between neonatal and adult rats in terms of relative vertebral lengths, and differential growth rates between sequential vertebrae and vertebral regions. Specifically, relative differences in the length of vertebrae indicate increasing differences caudad. Vertebral length in neonates increases from the atlas to the middle of the thoracic series and decreases in length caudad, while adult vertebral lengths tend to increase caudad. There is also a general trend of increasing vertebral and regional initial growth and rate of growth decay caudad. Anteroposterior patterns of growth are sexually dimorphic, with males having longer vertebrae than females at any given age. Differences are more pronounced (a) increasingly caudad along the body axis, and (b) in adulthood than in neonates. Elucidated patterns of growth are influenced by a combination of developmental, functional, and genetic factors.

  10. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates

    PubMed Central

    Peat, Julian R.; Ortega-Recalde, Oscar; Kardailsky, Olga; Hore, Timothy A.

    2017-01-01

    Background: Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates. Methods: We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii. Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates. Conclusions: Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation. PMID:28580133

  11. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates.

    PubMed

    Peat, Julian R; Ortega-Recalde, Oscar; Kardailsky, Olga; Hore, Timothy A

    2017-01-01

    Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates.  We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii . Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates.  Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation.

  12. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women.

    PubMed

    Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul

    2010-11-01

    The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.

  13. Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes?

    PubMed

    Sugahara, Fumiaki; Murakami, Yasunori; Adachi, Noritaka; Kuratani, Shigeru

    2013-08-01

    The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Relationship Between BMD and Prevalent Vertebral Fractures in Indian Women Older Than 50 Yr.

    PubMed

    Gupta, Yashdeep; Marwaha, Raman K; Kukreja, Subhash; Bhadra, Kuntal; Narang, Archana; Mani, Kalaivani; Mithal, Ambrish; Tandon, Nikhil

    2016-01-01

    The purpose of the study was to study the relationship of morphometric vertebral fractures with bone mineral density (BMD) in Indian women older than 50 yr. Four hundred fifteen healthy Indian women older than 50 yr (mean age: 62.8 yr) underwent lateral X-rays of the lumbar and thoracic spine. Genant's semiquantitative method was used to diagnose and classify morphometric vertebral fractures. BMD was measured by DXA at lumbar spine and total hip. Recruited subjects underwent anthropometric, biochemical, and hormonal evaluation. Vertebral fractures were present in 17.1% (95% confidence interval: 13.5, 20.8) subjects. Prevalence of osteoporosis based on BMD was 35.7%. By adding those with prevalent fractures, the number of women requiring therapy for osteoporosis would increase to 46.5%. The BMD measured at femur neck, total hip, and lumbar spine (L1eL4) was not found to be lower in women with vertebral fractures as compared with those without fractures. BMD was not found to be lower in women with vertebral fractures as compared with those without fractures. Significant number of additional subjects with BMD in the normal or osteopenic range become eligible for osteoporosis treatment when presence of vertebral fracture is used as an independent indication for such treatment. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  15. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review

    PubMed Central

    Pron, Gaylene; Holubowich, Corinne; Kaulback, Kellee

    2016-01-01

    Background Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. Methods We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. Results The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled

  16. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review.

    PubMed

    2016-01-01

    Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled trial comparing kyphoplasty

  17. The pre-vertebrate origins of neurogenic placodes.

    PubMed

    Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael

    2015-08-27

    The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.

  18. Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine

    PubMed Central

    2012-01-01

    Background The purpose of this study was to test the hypothesis that direct vertebral derotation by pedicle screws (PS) causes hypokyphosis of the thoracic spine in adolescent idiopathic scoliosis (AIS) patients, using computer simulation. Methods Twenty AIS patients with Lenke type 1 or 2 who underwent posterior correction surgeries using PS were included in this study. Simulated corrections of each patient’s scoliosis, as determined by the preoperative CT scan data, were performed on segmented 3D models of the whole spine. Two types of simulated extreme correction were performed: 1) complete coronal correction only (C method) and 2) complete coronal correction with complete derotation of vertebral bodies (C + D method). The kyphosis angle (T5-T12) and vertebral rotation angle at the apex were measured before and after the simulated corrections. Results The mean kyphosis angle after the C + D method was significantly smaller than that after the C method (2.7 ± 10.0° vs. 15.0 ± 7.1°, p < 0.01). The mean preoperative apical rotation angle of 15.2 ± 5.5° was completely corrected after the C + D method (0°) and was unchanged after the C method (17.6 ± 4.2°). Conclusions In the 3D simulation study, kyphosis was reduced after complete correction of the coronal and rotational deformity, but it was maintained after the coronal-only correction. These results proved the hypothesis that the vertebral derotation obtained by PS causes hypokyphosis of the thoracic spine. PMID:22691717

  19. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    PubMed

    Wren, Tishya A L; Aggabao, Patricia C; Poorghasamians, Ervin; Chavez, Thomas A; Ponrartana, Skorn; Gilsanz, Vicente

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as spondylolysis

  20. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents

    PubMed Central

    Aggabao, Patricia C.; Poorghasamians, Ervin; Chavez, Thomas A.

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys—a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9–13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as

  1. A Symptomatic Case of Thoracic Vertebral Hemangioma Causing Lower Limb Spastic Paresis.

    PubMed

    Alfawareh, Mohammad; Alotaibi, Tariq; Labeeb, Abdallah; Audat, Ziad

    2016-10-31

    BACKGROUND Despite being the most common tumor of the spine, vertebral hemangioma is rarely symptomatic in adults. In fact, only 0.9-1.2% of all vertebral hemangiomas may be symptomatic. When hemangiomas occur in the thoracic vertebrae, they are more likely to be symptomatic due to the narrow vertebral canal dimensions that mandate more aggressive management prior to the onset of severe neurological sequelae. CASE REPORT An 18-year-old male presented to the emergency room with a one-month history of mild to moderate mid-thoracic back pain, radiating to both lower limbs. It was associated with both lower limb weakness and decreased sensation. There was no history of bowel or bladder incontinence. Neurological examination revealed lower limb weakness with power 3/5, exaggerated deep tendon reflexes, bilateral sustained clonus, impaired sensation below the umbilicus, spasticity, and a positive Babinski sign. A CT scan showed a diffuse body lesion at the 8th thoracic vertebra with coarse trabeculations, corduroy appearance, or jail-bar sign. The patient underwent decompression and fixation. Biopsy of permanent samples showed proliferation of blood vessels with dilated spaces and no malignant cells, consistent with hemangioma. Postoperatively, spasticity improved, and the patient regained normal power. CONCLUSIONS Symptomatic vertebral hemangiomas are rare but should be considered as a differential diagnosis. They can present with severe neurological symptoms. When managed appropriately, patients regain full motor and sensory function. Decompression resulted in quick relief of symptoms, which was followed by an extensive rehabilitation program.

  2. Optimal angle of needle insertion for fluoroscopy-guided transforaminal epidural injection of L5.

    PubMed

    Ra, In-Hoo; Min, Woo-Kie

    2015-06-01

    Unlike other sites, there is difficulty in performing TFESI at the L5-S1 level because the iliac crest is an obstacle to needle placement. The objective of this study was to identify the optimal angle of fluoroscopy for insertion and advancement of a needle during L5 TEFSI. We conducted an observational study of patients undergoing fluoroscopy-guided L5 TFESI in the prone position. A total of 80 patients (40 men and 40 women) with radiating pain of lower limbs were enrolled. During TFESI, we measured the angle at which the L5 vertebral body forms a rectangular shape and compared men and women. Then, we measured area of safe triangle in tilting angle of fluoroscopy from 15° to 35° and compared men and women. The mean cephalocaudal angle, where the vertebral body takes the shape of a rectangle, was 11.0° in men and 13.9° in women (P = 0.007). In men, the triangular area was maximal at 18.3 mm² with an oblique view angle of 25°. In women, the area was maximal at 23.6 mm² with an oblique view angle of 30°. At an oblique view angle of 30° and 35°, the area was significantly greater in women (P < 0.05). When TFESI is performed at the L5 region in the prone position, placement of fluoroscopy at a cephalocaudal angle of 11.0° and an oblique angle of 25° in men and cephalocaudal angle of 13.9° and an oblique angle of 30° in women would be most reasonable. © 2014 World Institute of Pain.

  3. Vertebrate land invasions-past, present, and future: an introduction to the symposium.

    PubMed

    Ashley-Ross, Miriam A; Hsieh, S Tonia; Gibb, Alice C; Blob, Richard W

    2013-08-01

    The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the morphological and physiological mechanisms that underlie most life processes, among them movement, feeding, respiration, and reproduction. How did solutions to these functional challenges evolve? One approach to this question is to examine modern vertebrate species that face analogous demands; just as the first tetrapods lived at the margins of bodies of water and likely moved between water and land regularly, many extant fishes and amphibians use their body systems in both aquatic and terrestrial habitats on a daily basis. Thus, studies of amphibious vertebrates elucidate the functional demands of two very different habitats and clarify our understanding of the initial evolutionary challenges of moving onto land. A complementary approach is to use studies of the fossil record and comparative development to gain new perspectives on form and function of modern amphibious and non-amphibious vertebrate taxa. Based on the synthetic approaches presented in the symposium, it is clear that our understanding of aquatic-to-terrestrial transitions is greatly improved by the reciprocal integration of paleontological and neontological perspectives. In addition, common themes and new insights that emerged from this symposium point to the value of innovative approaches, new model species, and cutting-edge research techniques to elucidate the functional challenges and evolutionary changes associated with vertebrates' invasion of the land.

  4. Spinal manipulation force and duration affect vertebral movement and neuromuscular responses.

    PubMed

    Colloca, Christopher J; Keller, Tony S; Harrison, Deed E; Moore, Robert J; Gunzburg, Robert; Harrison, Donald D

    2006-03-01

    Previous study in human subjects has documented biomechanical and neurophysiological responses to impulsive spinal manipulative thrusts, but very little is known about the neuromechanical effects of varying thrust force-time profiles. Ten adolescent Merino sheep were anesthetized and posteroanterior mechanical thrusts were applied to the L3 spinous process using a computer-controlled, mechanical testing apparatus. Three variable pulse durations (10, 100, 200 ms, force = 80 N) and three variable force amplitudes (20, 40, 60 N, pulse duration = 100 ms) were examined for their effect on lumbar motion response (L3 displacement, L1, L2 acceleration) and normalized multifidus electromyographic response (L3, L4) using a repeated measures analysis of variance. Increasing L3 posteroanterior force amplitude resulted in a fourfold linear increase in L3 posteroanterior vertebral displacement (p < 0.001) and adjacent segment (L1, L2) posteroanterior acceleration response (p < 0.001). L3 displacement was linearly correlated (p < 0.001) to the acceleration response over the 20-80 N force range (100 ms). At constant force, 10 ms thrusts resulted in nearly fivefold lower L3 displacements and significantly increased segmental (L2) acceleration responses compared to the 100 ms (19%, p = 0.005) and 200 ms (16%, p = 0.023) thrusts. Normalized electromyographic responses increased linearly with increasing force amplitude at higher amplitudes and were appreciably affected by mechanical excitation pulse duration. Changes in the biomechanical and neuromuscular response of the ovine lumbar spine were observed in response to changes in the force-time characteristics of the spinal manipulative thrusts and may be an underlying mechanism in related clinical outcomes.

  5. Collagen type XI alpha1 may be involved in the structural plasticity of the vertebral column in Atlantic salmon (Salmo salar L.).

    PubMed

    Wargelius, A; Fjelldal, P G; Nordgarden, U; Grini, A; Krossøy, C; Grotmol, S; Totland, G K; Hansen, T

    2010-04-01

    Atlantic salmon (Salmo salar L.) vertebral bone displays plasticity in structure, osteoid secretion and mineralization in response to photoperiod. Other properties of the vertebral bone, such as mineral content and mechanical strength, are also associated with common malformations in farmed Atlantic salmon. The biological mechanisms that underlie these changes in bone physiology are unknown, and in order to elucidate which factors might be involved in this process, microarray assays were performed on vertebral bone of Atlantic salmon reared under natural or continuous light. Eight genes were upregulated in response to continuous light treatment, whereas only one of them was upregulated in a duplicate experiment. The transcriptionally regulated gene was predicted to code for collagen type XI alpha1, a protein known to be involved in controlling the diameter of fibrillar collagens in mammals. Furthermore, the gene was highly expressed in the vertebrae, where spatial expression was found in trabecular and compact bone osteoblasts and in the chordoblasts of the notochordal sheath. When we measured the expression level of the gene in the tissue compartments of the vertebrae, the collagen turned out to be 150 and 25 times more highly expressed in the notochord and compact bone respectively, relative to the expression in the trabecular bone. Gene expression was induced in response to continuous light, and reduced in compressed vertebrae. The downregulation in compressed vertebrae was due to reduced expression in the compact bone, while expression in the trabecular bone and the notochord was unaffected. These data support the hypothesis that this gene codes for a presumptive collagen type XI alpha1, which may be involved in the regulatory pathway leading to structural adaptation of the vertebral architecture.

  6. Evaluation of the Effects of Sildenafil Citrate (Viagra) on Vertebral Artery Blood Flow in Patients with Vertebro-Basilar Insufficiency

    PubMed Central

    Berilgen, Sait; Ozdemir, Huseyin; Tekatas, Aslan; Ogur, Erkin

    2008-01-01

    Objective To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). Materials and Methods The study included 21 patients with VBI (aged 31-76; mean 61.0 ± 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Results Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm2 to 10.80 cm2 at 45 minutes and 10.81 cm2 at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Conclusion Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs. PMID:19039262

  7. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis.

    PubMed

    Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin

    2015-08-01

    Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the

  8. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably lessmore » effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.« less

  9. [Multifaceted body. 3. The contextualised body].

    PubMed

    Bourquin, C; Wykretowicz, H; Saraga, M; Stiefel, F

    2015-02-11

    The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This third and last article focuses on the psychosomatic and socio-anthropological facets of the body and their contribution to its understanding.

  10. Vertebral Body Stapling versus Bracing for Patients with High-Risk Moderate Idiopathic Scoliosis

    PubMed Central

    Cuddihy, Laury; Danielsson, Aina J.; Cahill, Patrick J.; Samdani, Amer F.; Grewal, Harsh; Richmond, John M.; Mulcahey, M. J.; Gaughan, John P.; Antonacci, M. Darryl; Betz, Randal R.

    2015-01-01

    Purpose. We report a comparison study of vertebral body stapling (VBS) versus a matched bracing cohort for immature patients with moderate (25 to 44°) idiopathic scoliosis (IS). Methods. 42 of 49 consecutive patients (86%) with IS were treated with VBS and followed for a minimum of 2 years. They were compared to 121 braced patients meeting identical inclusion criteria. 52 patients (66 curves) were matched according to age at start of treatment (10.6 years versus 11.1 years, resp. [P = 0.07]) and gender. Results. For thoracic curves 25–34°, VBS had a success rate (defined as curve progression <10°) of 81% versus 61% for bracing (P = 0.16). In thoracic curves 35–44°, VBS and bracing both had a poor success rate. For lumbar curves, success rates were similar in both groups for curves measuring 25–34°. Conclusion. In this comparison of two cohorts of patients with high-risk (Risser 0-1) moderate IS (25–44°), in smaller thoracic curves (25–34°) VBS provided better results as a clinical trend as compared to bracing. VBS was found not to be effective for thoracic curves ≥35°. For lumbar curves measuring 25–34°, results appear to be similar for both VBS and bracing, at 80% success. PMID:26618169

  11. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner

    PubMed Central

    Mähler, Anja; Boschmann, Michael; Jeran, Stephanie

    2017-01-01

    Objective Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. Methods Validity was assessed among 32 participants (men, 50%) aged 20–58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25–66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. Results Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. Conclusions Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies. PMID:28672039

  12. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner.

    PubMed

    Adler, Carolin; Steinbrecher, Astrid; Jaeschke, Lina; Mähler, Anja; Boschmann, Michael; Jeran, Stephanie; Pischon, Tobias

    2017-01-01

    Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. Validity was assessed among 32 participants (men, 50%) aged 20-58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25-66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies.

  13. Thoracic corpectomy for neoplastic vertebral bodies using a navigated lateral extracavitary approach-a single-center consecutive case series: technique and analysis.

    PubMed

    Hartmann, Sebastian; Wipplinger, Christoph; Tschugg, Anja; Kavakebi, Pujan; Örley, Alexander; Girod, Pierre Pascal; Thomé, Claudius

    2018-04-01

    Thoracic myelopathy is often caused by vertebral body fractures resulting from neoplastic conditions, traumatic events, or infectious diseases. One of the preferred procedures for treating it is the lateral extracavitary approach (LECA) with single-level or multilevel decompressive corpectomy and reconstruction. The aim of this retrospective study was to analyze the thoracic lateral extracavitary approach with corpectomy using vertebral body replacement systems (VBR-S) and dorsal reconstruction. Twenty-four patients with metastatic or primary lesions of thoracic vertebrae T2-T12 underwent spinal decompression and ventral column reconstruction with correction of spinal deformity via a LECA. One-level to four-level corpectomies were performed with additional navigated dorsal pedicle screw fixation at an average of two levels above and below the corpectomy lesion. None of the patients received preoperative spinal embolization, and the majority of the patients were admitted to radiotherapy postoperatively. Their mean age was 56 years (± 15), with a female-to-male sex ratio of 8 to 16. Patients with a minimum follow-up period of 16 months were included. The Karnofsky index, preoperative and postoperative numeric rating scale (NRS), and Frankel scale were measured. In addition, intraoperative loss of blood (LOB), units of packed red blood cell (PRBC) transfusions, the duration of the operation, and the hospitalization period were evaluated and correlated with preoperative and postoperative values. The majority of the patients were suffering from metastatic lesions and were treated with a 1 level corpectomy (median 1 level, range 1 to 4). The mean duration of surgery was 288 min (± 121) and the mean LOB was 1626 mL (± 1486 mL), with approximately two PRBC units per patient used. All patients were transferred to the intensive care unit (ICU) postoperatively, with a mean ICU stay of 2.0 days (± 1 day). The mean hospitalization period was 13 days (± 7

  14. Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla.

    PubMed

    Liney, Gary P; Bernard, Clare P; Manton, David J; Turnbull, Lindsay W; Langton, Chris M

    2007-09-01

    To evaluate the efficacy of MR Spectroscopy (MRS) at 3.0 Tesla for the assessment of normal bone marrow composition and assess the variation in terms of age, gender, and skeletal site. A total of 16 normal subjects (aged between eight and 57 years) were investigated on a 3.0 Tesla GE Signa system. To investigate axial and peripheral skeleton differences, non-water-suppressed spectra were acquired from single voxels in the calcaneus and lumbar spine. In addition, spectra were acquired at multiple vertebral bodies to assess variation within the lumbar spine. Data was also correlated with bone mineral density (BMD) measured in six subjects using dual-energy X-ray absorptiometry (DXA). Fat content was an order of magnitude greater in the heel compared to the spine. An age-related increase was demonstrated in the spine with values greater in men compared to female subjects. Significant trends in vertebral bodies within the same subjects were also shown, with fat content increasing L5 > L1. Population coefficient of variation (CV) was greater for fat fraction (FF) compared to BMD. Significant normal variations of marrow composition have been demonstrated, which provide important data for the future interpretation of patient investigations. (c) 2007 Wiley-Liss, Inc.

  15. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.

    PubMed

    Singh, Kern; Samartzis, Dino; Vaccaro, Alexander R; Nassr, Ahmad; Andersson, Gunnar B; Yoon, S Tim; Phillips, Frank M; Goldberg, Edward J; An, Howard S

    2005-01-01

    Degenerative lumbar spinal stenosis manifests primarily after the sixth decade of life as a result of facet hypertrophy and degenerative disc disease. Congenital stenosis, on the other hand, presents earlier in age with similar clinical findings but with multilevel involvement and fewer degenerative changes. These patients may have subtle anatomic variations of the lumbar spine that may increase the likelihood of thecal sac compression. However, to the authors' knowledge, no quantitative studies have addressed various radiographic parameters of symptomatic, congenitally stenotic individuals to normal subjects. To radiographically quantify and compare the anatomy of the lumbar spine in symptomatic, congenitally stenotic individuals to age- and sex-matched, asymptomatic, nonstenotic controlled individuals. A prospective, control-matched, cohort radiographic analysis. Axial and sagittal magnetic resonance imaging (MRI) and lateral, lumbar, plain radiographs of 20 surgically treated patients who were given a clinical diagnosis of congenital lumbar stenosis by the senior author were randomized with images of 20, asymptomatic age- and sex-matched subjects. MRIs and lateral, lumbar, plain radiographs were independently quantitatively assessed by two individuals. Measurements obtained from the axial MRIs included: midline anterior-posterior (AP) vertebral body diameter, vertebral body width, midline AP canal diameter, canal width, spinal canal cross-sectional area, pedicle length, and pedicle width. From the sagittal MRIs, the following measurements were calculated: AP vertebral body diameter, vertebral body height, and AP canal diameter at the mid-vertebral level. On the lateral, lumbar, plain radiograph (L3 level), the AP diameters of the vertebral body spinal canal were measured. The images of these 40 individuals were then randomized and distributed in a blinded fashion to five separate spine surgeons who graded the presence and severity of congenital stenosis

  16. Body size distribution of the dinosaurs.

    PubMed

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  17. Body Size Distribution of the Dinosaurs

    PubMed Central

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  18. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  19. Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group

    NASA Technical Reports Server (NTRS)

    Ettinger, B.; Black, D. M.; Nevitt, M. C.; Rundle, A. C.; Cauley, J. A.; Cummings, S. R.; Genant, H. K.

    1992-01-01

    Among 2992 white women aged 65-70 years recruited from population-based listings, we measured radiographic vertebral dimensions of T5-L4 and calculated ratios of heights: anterior/posterior, mid/posterior, and posterior/posterior of either adjacent vertebra. The degree of deformity for each vertebra was analyzed in terms of the number of standard deviations (SD) that ratio differed from the mean ratio calculated for the same vertebral level in this population. We correlated the severity of each woman's worst vertebral deformity with back pain, back disability in six activities of daily living, and height loss since age 25. Only 39.4% of the cohort had no vertebral deformity; 10.2% had a deformity greater than or equal to 4 SD. Vertebral deformities less than 4 SD below the mean were not associated with increased back pain, disability, or loss of height. In contrast, women whose deformity was greater than or equal to 4 SD had a 1.9 (95% CI, 1.5-2.4) times higher risk of moderate to severe back pain and a 2.6 (95% CI, 1.7-3.9) times higher risk of disability involving the back; they were also 2.5 (95% CI, 2.0-3.2) times more likely to have lost greater than or equal to 4 cm in height. All three types of vertebral deformity (wedge, end plate, and crush) were equally associated with these outcomes. Multiple deformities less than 4 SD did not increase the likelihood of these three outcomes, but multiple deformities greater than or equal to 4 SD tended to be associated with increased back pain, disability, and height loss. This large cross-sectional study suggests that vertebral deformities cause substantial pain, disability, or loss of height only if vertebral height ratios fall 4 SD below the normal mean. Much back pain could not be attributed to vertebral deformities, suggesting other causes.

  20. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes.

    PubMed

    Mu, Qianqian; Fang, Xin; Li, Xiaoke; Zhao, Dandan; Mo, Fangfang; Jiang, Guangjian; Yu, Na; Zhang, Yi; Guo, Yubo; Fu, Min; Liu, Jun-Li; Zhang, Dongwei; Gao, Sihua

    2015-10-23

    Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 μM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Abdominal girth and vertebral column length can adjust spinal anesthesia for lower limb surgery, a prospective, observational study.

    PubMed

    Zhou, Qing-he; Zhu, Bo; Wei, Chang-na; Yan, Min

    2016-03-24

    Studies have shown that abdominal girth and vertebral column length have high predictive value for spinal spread after administering a dose of plain bupivacaine. we designed a study to identify the specific correlations between abdominal girth, vertebral column length and a 0.5% dosage of plain bupivacaine, which should provide a minimum upper block level (T12) and a suitable upper block level (T10) for lower limb surgeries. A suitable dose of 0.5% plain bupivacaine was administered intrathecally between the L3 and L4 vertebrae for lower limb surgeries. If the upper cephalad spread of the patient by loss of pinprick discrimination was T12 or T10, the patient was enrolled in this study. Five patient variables and intrathecal plain bupivacaine dose were recorded. Linear regression and multiple regression analyses were performed. Totals of 111 patients and 121 patients who lost pinprick discrimination at T12 and T10, respectively, were analyzed in this study. Linear regression analysis showed that only abdominal girth and plain bupivacaine dose were strongly correlated (r =-0.827 for T12, r = -0.806 for T10; both p < 0.0001). Multiple linear regression analysis showed that both abdominal girth and vertebral column length were the key determinants of plain bupivacaine dose (both p < 0.0001). R(2) was 0.874 and 0.860 for the loss of pinprick discrimination at T12 and T10, respectively. Our data indicated that vertebral column length and abdominal girth were strongly correlated with the dosage of intrathecal plain bupivacaine for the loss of pinprick discrimination at T12 and T10. The two regression equations were YT12 = 3.547 + 0.045X1-0.044X2 and YT10 = 3.848 + 0.047X1- 0.046X2 (Y, 0.5% plain bupivacaine volume; X1, vertebral column length;and X 2, abdominal girth), which can accurately predict the minimum and suitable intrathecal bupivacaine dose for lower limb surgery to a great extent, separately.

  2. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  3. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  4. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  5. Role of BMI and age in predicting pathologic vertebral fractures in newly diagnosed multiple myeloma patients: A retrospective cohort study.

    PubMed

    Chen, Yi-Lun; Liu, Yao-Chung; Wu, Chia-Hung; Yeh, Chiu-Mei; Chiu, Hsun-I; Lee, Gin-Yi; Lee, Yu-Ting; Hsu, Pei; Lin, Ting-Wei; Gau, Jyh-Pyng; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Liu, Jin-Hwang; Liu, Chia-Jen

    2018-04-01

    Vertebral fractures affect approximately 30% of myeloma patients and lead to a poor impact on survival and life quality. In general, age and body mass index (BMI) are reported to have an important role in vertebral fractures. However, the triangle relationship among age, BMI, and vertebral fractures is still unclear in newly diagnosed multiple myeloma (NDMM) patients. This study recruited consecutive 394 patients with NDMM at Taipei Veterans General Hospital between January 1, 2005 and December 31, 2015. Risk factors for vertebral fractures in NDMM patients were collected and analyzed. The survival curves were demonstrated using Kaplan-Meier estimate. In total, 301 (76.4%) NDMM patients were enrolled in the cohort. In the median follow-up period of 18.0 months, the median survival duration in those with vertebral fractures ≥ 2 was shorter than those with vertebral fracture < 2 (59.3 vs 28.6 months; P = 0.017). In multivariate Poisson regression, BMI < 18.5 kg/m 2 declared increased vertebral fractures compared with BMI ≥ 24.0 kg/m 2 (adjusted RR, 2.79; 95% CI, 1.44-5.43). In multivariable logistic regression, BMI < 18.5 kg/m 2 was an independent risk factor for vertebral fractures ≥ 2 compared with BMI ≥ 24.0 kg/m 2 (adjusted OR, 6.05; 95% CI, 2.43-15.08). Among age stratifications, patients with both old age and low BMI were at a greater risk suffering from increased vertebral fractures, especially in patients > 75 years and BMI < 18.5 kg/m 2 (adjusted RR, 12.22; 95% CI, 3.02-49.40). This is the first study that demonstrated that age had a significant impact on vertebral fractures in NDMM patients with low BMI. Elder patients with low BMI should consider to routinely receive spinal radiographic examinations and regular follow-up. Copyright © 2017 John Wiley & Sons, Ltd.

  6. VERTEBRAL DYSPLASIA IN YOUNG FISH EXPOSED TO THE HERBICIDE TRIFLURALIN

    EPA Science Inventory

    Sheepshead minnows, Cyprinodon variegatus Lacepede, exposed to 5-5 to 31 micrograms/l of the herbicide trifluralin, throughout their first 28 days of life, developed a heretofore, undescribed vertebral dysplasia. This dysplasia consisted of semisymmetrical hypertrophy of vertebra...

  7. Vertebral growth modulation by hemicircumferential electrocoagulation: an experimental study in pigs.

    PubMed

    Caballero, Alberto; Barrios, Carlos; Burgos, Jesús; Hevia, Eduardo; Correa, Carlos

    2011-08-01

    This experimental study in pigs was aimed at evaluating spinal growth disorders after partial arrest of the vertebral epiphyseal plates (EP) and neurocentral cartilages (NCC). Unilateral and multisegmental single or combined lesions of the physeal structures were performed by electrocoagulation throughout a video-assisted thoracoscopical approach. Thirty 4-week-old domestic pigs (mean weight 16 kg) were included in the experiments. The superior and inferior epiphyseal plates of T5 to T9 vertebra were damaged in ten animals by hemicircumferential electrocoagulation (group I). In other ten pigs (group II), right NCC at the same T5-T9 levels were damaged. Ten other animals underwent combined lesions of the ipsilateral hemiepiphyseal plates and NCC at the T5-T9 levels. A total of 26 animals could be evaluated after 12 weeks of follow-up using conventional X-rays, CT scans and histology. The pigs with hemicircumferential EP damage developed very slight concave non-structured scoliotic deformities without vertebral rotation.(mean 12° Cobb; range10-16°). Some of the damaged vertebra showed a marked wedgening with unilateral development alteration of the vertebral body, including the adjacent discs The animals with damage of the NCC developed mild scoliotic curves (mean 19° Cobb; range 16-24°) with convexity opposite to the damaged side and loss of physiological kyphosis. The injured segments showed an asymmetric growth with hypoplasia of the pedicle and costovertebral joints at the damaged side. The pigs undergoing combined EP and NCC lesions developed minimal non-structured curves, ranging from 10 to 12° Cobb. In these animals there was a lack of growth of a vertebral hemibody and disc hypoplasia at the damaged segments. Both damage of the NCC and the EP affect the height of the vertebral body. No spinal stenosis was found in any case. In most cases, the adjacent superior and inferior vertebral EP to damaged segments had a compensatory growth that maintained the

  8. Vertebral rotatory subluxation in degenerative scoliosis: facet joint tropism is related.

    PubMed

    Bao, Hongda; Zhu, Feng; Liu, Zhen; Bentley, Mark; Mao, Saihu; Zhu, Zezhang; Ding, Yitao; Qiu, Yong

    2014-12-15

    A cross-sectional study. To identify facet tropism as one of the possible risk factors leading to vertebral rotatory subluxation (VRS). VRS has been considered as one of the prognostic factors for degenerative scoliosis. Although several risk factors of VRS, including age and Cobb angle, have been investigated, few studies exist that have evaluated the correlation between VRS and anatomical structures of the vertebral column. This retrospective study recruited 23 patients diagnosed with degenerative lumbar scoliosis with VRS and 20 patients with degenerative scoliosis without VRS. The lateral translation on coronal radiographs was measured and 5 mm was used as the cutoff value to define rotatory subluxation. Computed tomographic scans for facet joints were made for all lumbar levels. The difference between right and left facet angles was recorded as ΔFA. Facet tropism was defined as a difference between the bilateral facet angles of more than 10°. In this study, VRS was most commonly found at the L3-L4 level (49%) and, with decreasing frequency at L2-L3 (24%), L4-L5 (20%), and L1-L2 (7%). On the convex side of the main curve, face joints at levels with VRS were more coronally oriented compared with those at levels without VRS (41.64° ± 11.65° vs. 36.30° ± 10.99°, P = 0.034). ΔFA was also significantly different between levels with and without VRS (P = 0.005). A strong correlation was found between ΔFA and lateral translation, with a coefficient of 0.33 (P < 0.001). In addition, ΔFA and a larger Cobb angle were found to be significantly associated with VRS based on binary regression analysis, with an odds ratio of 4.68 and 2.14, respectively. Facet tropism was more significantly observed at levels with VRS. On the convex side of the main curve, facet joints at levels with VRS were more coronally oriented. A larger Cobb angle and severe facet tropism in degenerative scoliosis should be considered to be related to VRS.

  9. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    PubMed

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  10. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates.

    PubMed

    Sinclair, Elizabeth A; Pramuk, Jennifer B; Bezy, Robert L; Crandall, Keith A; Sites, Jack W

    2010-05-01

    Naturally occurring unisexual reproduction has been documented in less than 0.1% of all vertebrate species. Among vertebrates, true parthenogenesis is known only in squamate reptiles. In all vertebrate cases that have been carefully studied, the clonal or hemiclonal taxa have originated through hybridization between closely related sexual species. In contrast, parthenogenetic reproduction has arisen in invertebrates by a variety of mechanisms, including likely cases of "spontaneous" (nonhybrid) origin, a situation not currently documented in natural populations of vertebrates. Here, we present molecular data from the Neotropical night lizard genus Lepidophyma that provides evidence of independent nonhybrid origins for diploid unisexual populations of two species from Costa Rica and Panama. Our mitochondrial and nuclear phylogenies are congruent with respect to the unisexual taxa. Based on 14 microsatellite loci, heterozygosity (expected from a hybrid origin) is low in Lepidophyma reticulatum and completely absent in unisexual L. flavimaculatum. The unique value of this system will allow direct comparative studies between parthenogenetic and sexual lineages in vertebrates, with an enormous potential for this species to be a model system for understanding the mechanisms of nonhybrid parthenogenesis.

  11. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis

    PubMed Central

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-01-01

    Background Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. Material/Methods Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. Results The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. Conclusions The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications. PMID:26876295

  12. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis.

    PubMed

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-02-15

    BACKGROUND Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. MATERIAL AND METHODS Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. RESULTS The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. CONCLUSIONS The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications.

  13. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    PubMed

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.

  14. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates

    PubMed Central

    Codron, Daryl; Carbone, Chris; Müller, Dennis W. H.; Clauss, Marcus

    2012-01-01

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals—the other dominant vertebrate group since the Mesozoic—have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism—based on an understanding of different ecological and evolutionary constraints across vertebrate groups—that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous–Tertiary (K–T) boundary, and how post-K–T mammals were able to diversify into larger size categories. PMID:22513279

  15. What Analytic Method Should Clinicians Use to Derive Spine T-scores and Predict Incident Fractures in Men? Results from the MrOS study

    PubMed Central

    Hansen, Karen E; Blank, Robert D; Palermo, Lisa; Fink, Howard A; Orwoll, Eric S

    2014-01-01

    Summary In this study, the area under the curve was highest when using the lowest vertebral body T-score to diagnose osteoporosis. In men for whom hip imaging is not possible, the lowest vertebral body T-score improves ability to diagnose osteoporosis in men who are likely to have an incident fragility fracture. Purpose Spine T-scores have limited ability to predict fragility fracture. We hypothesized that using lowest vertebral body T-score to diagnose osteoporosis would better predict fracture. Methods Among men enrolled in the Osteoporotic Fractures in Men Study, we identified cases with incident clinical fracture (n=484) and controls without fracture (n=1,516). We analyzed the lumbar spine BMD in cases and controls (n=2,000) to record the L1-L4 (referent), the lowest vertebral body and ISCD-determined T-scores using a male normative database, and the L1-L4 T-score using a female normative database. We compared the ability of method to diagnose osteoporosis and therefore predict incident clinical fragility fracture, using area under the receiver operator curves (AUC) and the net reclassification index (NCI) as measures of diagnostic accuracy. ISCD-determined T-scores were determined in only 60% of participants (n=1205). Results Among 1,205 men, the AUC to predict incident clinical fracture was 0.546 for L1-L4 male, 0.542 for the L1-L4 female, 0.585 for lowest vertebral body and 0.559 for ISCD-determined T-score. The lowest vertebral body AUC was the only method significantly different from the referent method (p=0.002). Likewise, a diagnosis of osteoporosis based on the lowest vertebral body T-score demonstrated a significantly better NRI than the referent method (net NRI +0.077, p=0.005). By contrast, the net NRI for other methods of analysis did not differ from the referent method. Conclusion Our study suggests that in men, the lowest vertebral body T-score is an acceptable method by which to estimate fracture risk. PMID:24850381

  16. Vertebral osteomyelitis and epidural abscess due to Aspergillus nidulans resulting in spinal cord compression: case report and literature review.

    PubMed

    Jiang, Zheng; Wang, Yunyan; Jiang, Yuquan; Xu, Yonghao; Meng, Bin

    2013-04-01

    Vertebral osteomyelitis caused by Aspergillus nidulans is rare and usually affects immunocompromised patients. This report presents a case of thoracic vertebral osteomyelitis with epidural abscesses due to A. nidulans in a 40-year-old immunocompetent female who presented with back pain, numbness and weakness of both lower limbs. Magnetic resonance imaging demonstrated osteomyelitis involving the thoracic (T)1-T3 vertebral bodies with epidural abscesses, resulting in spinal compression. The patient underwent a decompression laminectomy of T1-T3 and debridement of the thoracic epidural inflammatory granuloma. Histopathology revealed fungal granulomatous inflammation. The patient received 6 mg/kg voriconazole every 12 h (loading dose on day 1) followed by 4 mg/kg voriconazole twice daily for 1 month, administered intravenously. The patient returned with recurrent back pain 16 months after initial presentation. A. nidulans was identified by fungal culture and polymerase chain reaction. The patient showed no evidence of recurrence 1 year after a 6-month course of oral voriconazole. The key to the effective treatment of Aspergillus osteomyelitis is not to excise the abscess, but to administer systemic antifungal drug therapy.

  17. Grading apical vertebral rotation without a computed tomography scan: a clinically relevant system based on the radiographic appearance of bilateral pedicle screws.

    PubMed

    Upasani, Vidyadhar V; Chambers, Reid C; Dalal, Ali H; Shah, Suken A; Lehman, Ronald A; Newton, Peter O

    2009-08-01

    Bench-top and retrospective analysis to assess vertebral rotation based on the appearance of bilateral pedicle screws in patients with adolescent idiopathic scoliosis (AIS). To develop a clinically relevant radiographic grading system for evaluating postoperative thoracic apical vertebral rotation that would correlate with computed tomography (CT) measures of rotation. The 3-column vertebral body control provided by bilateral pedicle screws has enabled scoliosis surgeons to develop advanced techniques of direct vertebral derotation. Our ability to accurately quantify spinal deformity in the axial plane, however, continues to be limited. Trigonometry was used to define the relationship between the position of bilateral pedicle screws and vertebral rotation. This relationship was validated using digital photographs of a bench-top model. The mathematical relationships were then used to calculate vertebral rotation from standing postoperative, posteroanterior radiographs in AIS patients and correlated with postoperative CT measures of rotation. Fourteen digital photographs of the bench-top model were independently analyzed twice by 3 coauthors. The mathematically calculated degree of rotation was found to correlate significantly with the actual degree of rotation (r = 0.99; P < 0.001) and the intra- and interobserver reliability for these measurements were both excellent (kappa = 0.98 and kappa = 0.97, respectively). In the retrospective analysis of 17 AIS patients, the average absolute difference between the radiographic measurement of rotation and the CT measure was only 1.9 degrees +/- 2.0 degrees (r = 0.92; P < 0.001). Based on these correlations a simple radiographic grading system for postoperative apical vertebral rotation was developed. An accurate assessment of vertebral rotation can be performed radiographically, using screw lengths and screw tip-to-rod distances of bilateral segmental pedicle screws and a trigonometric calculation. These data support the use

  18. Use of 3D printer model to study vertebral artery anatomy and variations in developmental craniovertebral junction anomalies and as a preoperative tool—an institutional experience

    PubMed Central

    Chopra, Sanjeev; Kataria, Rashim; Sinha, Virendra Deo

    2017-01-01

    Background Spinal instrumentation using rods and screws have become procedure of choice for posterior fixation. Vertebral artery anatomy is highly variable in this region posing challenges during surgery. Our study used 3D printer model to understand the anatomy and variations in vertebral artery in live patients thereby providing an accurate idea about vertebral artery injury risk in these patients preoperatively and to rehearse the whole procedure. Methods Ten patients of developmental craniovertebral junction (CVJ) anomalies who were planned for operative intervention in the Department of Neurosurgery at SMS Hospital from February 2016 to December 2016 were analysed using a 3D printer model. Results Out of twenty vertebral arteries studied in ten patients, two were hypoplastic and out of these one could not be appreciated on 3D printer model. Out of remaining nineteen, thirteen arteries were found to lie outside the joint, three were in lateral third, one traversed the middle third of joint and one lied in medial third. In one patient, the vertebral artery was stretched and it traversed horizontally over the joint. Out of ten patients studied, nine were having occipitalised atlas and so entry of these vertebral arteries into cranium were classified as given by Wang et al. into four types. Conclusions By our study, 3D printer model was extremely helpful in analyzing joints and vertebral artery preoperatively and making the surgeon acquainted about the placement and trajectory of the screws accordingly. In our opinion, these models should be included as a basic investigation tool in these patients. PMID:29354734

  19. Establishment of the Vertebrate Germ Layers.

    PubMed

    Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T

    2017-01-01

    The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.

  20. Ultrasound guided V3 segment vertebral artery direct percutaneous puncture for basilar artery mechanical thrombectomy in acute stroke: a technical report.

    PubMed

    Desai, Jamsheed A; Almekhlafi, Mohammed A; Hill, Michael D; Goyal, Mayank; Eesa, Muneer

    2014-04-01

    A middle aged patient presented with acute ischemic stroke due to basilar artery occlusion. The patient clinically deteriorated despite intravenous thrombolysis and was referred for mechanical thrombectomy. The right vertebral artery was occluded and could not be accessed despite attempting various shaped catheters, even when a radial artery access was used. The left vertebral artery ended in the posterior inferior cerebellar artery. Eventually, ultrasound guided V3 segment vertebral artery direct puncture was successfully done and the procedure was completed. No access related complications were encountered. Direct cervical arterial puncture can be safely used by experienced operators as a last resort in acute stroke cases with difficult access.

  1. Nervous systems and scenarios for the invertebrate-to-vertebrate transition

    PubMed Central

    Holland, Nicholas D.

    2016-01-01

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728

  2. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    PubMed

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  3. Evolution of endothelin receptors in vertebrates.

    PubMed

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  4. Evolution and development of the vertebrate neck

    PubMed Central

    Ericsson, Rolf; Knight, Robert; Johanson, Zerina

    2013-01-01

    Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1–3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates. PMID:22697305

  5. New method for evaluation of cervical vertebral maturation based on angular measurements.

    PubMed

    Alhadlaq, Adel M; Al-Shayea, Eman I

    2013-04-01

    To investigate the validity of a new approach to assess the cervical vertebral maturation based on angular measurements of the lower border concavity of cervical vertebral bodies. Hand-wrist and lateral cephalometric radiographs of 197 male subjects with age range of 10-15 years attending the orthodontic clinic at King Saud University, Riyadh, Kingdom of Saudi Arabia were utilized. The study was carried out between September 2009 and May 2011. The study sample was divided into 6 groups (group 1: 10 years to group 6: 15 years) based on the chronological age of the subject. The skeletal age of the subjects was determined using Greulich and Pyle's standard radiographic atlas, and skeletal maturation was assessed by Fishman's skeletal maturity indicators. The cervical vertebral maturation (CVM) of subjects was determined using angular measurements of the second, third, and fourth cervical vertebral bodies. The validity of the newly developed method was assessed by examining the correlation between CVM stages determined by the angular measurements and the skeletal maturation level as determined by the standard hand-wrist methods. A significant correlation (r=0.94) was found between the angular CVM stages and the skeletal age determined by Greulich and Pyle's atlas from hand-wrist radiographs. Also, a high correlation (r=0.94) was found between the angular CVM stages and the Fishman's hand-wrist skeletal maturity indicators. The new angular measurement approach to determine CVM is valid and has the potential to be applied in assessing skeletal maturity level in growing male children.

  6. RNA expression in a cartilaginous fish cell line reveals ancient 3′ noncoding regions highly conserved in vertebrates

    PubMed Central

    Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2007-01-01

    We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856

  7. Comparison of Radiofrequency-targeted Vertebral Augmentation With Balloon Kyphoplasty for the Treatment of Vertebral Compression Fractures: 2-Year Results.

    PubMed

    Bornemann, Rahel; Jansen, Tom R; Kabir, Koroush; Pennekamp, Peter H; Stüwe, Brit; Wirtz, Dieter C; Pflugmacher, Robert

    2017-04-01

    A retrospective study. The aim of this study was the evaluation of the safety and effectiveness of radiofrequency-targeted vertebral augmentation (RF-TVA) in comparison with balloon kyphoplasty (BK) for the treatment of acute painful vertebral compression fractures (VCFs) on the basis of matched pairs. Vertebroplasty and BK are the common surgical interventions for the treatment of VCF. Both are effective and safe but pose some risks such as adjacent fractures and cement leakage. In 2009, RF-TVA was introduced as an innovative augmentation procedure for the treatment of VCF. A total of 192 patients (116 female; 51-90 y) with VCF (n=303) at 1 to 3 levels were treated with RF-TVA or BK. Functionality (Oswestry Disability Index), pain (visual analogue scale), vertebral height (anterior, middle), and kyphotic angle were evaluated over a 2-year period (postoperatively, 3-4 d, 3, 6, 12, and 24 mo). In addition, operating time and occurrence of cement leakage were recorded. Pain and functionality were significantly improved after both treatments. In both groups, there was an increase in the vertebral height and a decrease in the kyphotic angle, which remained relatively consistent during 24 months. The incidence of cement leakage was 9.4% (n=9) in the RF-TVA group and 24.0% (n=25) in the BK group. The mean operating time with radiofrequency kyphoplasty was 25.9±9.9 minutes, and with balloon kyphoplasty 48.0±18.4 minutes. RF-TVA is a safe and effective procedure for the treatment of vertebral compression fractures when compared with BK. Improvement in pain and functional scores after RF-TVA are durable through 24 months postprocedure and remained better than those after BK at long-term follow-up. Operating time for RF-TVA is shorter and the risk of cement leakage is lower. Both procedures provided similar results in vertebral height restoration and reduction in the kyphotic angle.

  8. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.

    PubMed

    Martinez-Morales, Juan R

    2016-07-01

    Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Worldwide prevalence and incidence of osteoporotic vertebral fractures.

    PubMed

    Ballane, G; Cauley, J A; Luckey, M M; El-Hajj Fuleihan, G

    2017-05-01

    We investigated the prevalence and incidence of vertebral fractures worldwide. We used a systematic Medline search current to 2015 and updated as per authors' libraries. A total of 62 articles of fair to good quality and comparable methods for vertebral fracture identification were considered. The prevalence of morphometric vertebral fractures in European women is highest in Scandinavia (26%) and lowest in Eastern Europe (18%). Prevalence rates in North America (NA) for White women ≥50 are 20-24%, with a White/Black ratio of 1.6. Rates in women ≥50 years in Latin America are overall lower than Europe and NA (11-19%). In Asia, rates in women above ≥65 are highest in Japan (24%), lowest in Indonesia (9%), and in the Middle East, Lebanon, rates are 20%. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Incidence data is less abundant and more heterogeneous. Age-standardized rates in studies combining hospitalized and ambulatory vertebral fractures are highest in South Korea, USA, and Hong Kong and lowest in the UK. Neither a North-South gradient nor a relation to urbanization is evident. Conversely, the incidence of hospitalized vertebral fractures in European patients ≥50 shows a North-South gradient with 3-3.7-fold variability. In the USA, rates in Whites are approximately 4-fold higher than in Blacks. Vertebral fractures variation worldwide is lower than observed with hip fractures, and some of highest rates are unexpectedly from Asia. Better quality representative studies are needed. We investigate the occurrence of vertebral fractures, worldwide, using published data current until the present. Worldwide, the variation in vertebral fractures is lower than observed for hip fractures. Some of the highest rates are from North America and unexpectedly Asia. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Better quality representative data is needed.

  10. Vertebral osteomyelitis with a rare etiology diagnosed by fine-needle aspiration cytology.

    PubMed

    B N, Nandeesh; Kini, Usha; Alexander, Betty

    2010-05-01

    Invasive fungal infections are rare in immunocompromised individuals, but are not uncommon in immunologically compromised patients. Bone involvement by these infections, though exceedingly rare, may occur due to direct extension of the infection from a neighboring organ or due to hematogenous dissemination in critically ill patients. Still rarer is the invasive aspergillosis involving either the vertebral body or the intervertebral disc with extension into the extradural space as an abscess. We report one such case of vertebral osteomyelitis due to Aspergillus diagnosed by FNAC in a well-controlled diabetic patient who presented with nonspecific symptoms and in whom a clinical and radiological diagnosis of Pott's spine was considered. The present case stresses the importance of early cytologic diagnosis of vertebral Aspergillus osteomyelitis, which in conjunction with appropriate timely medical and surgical treatment, offers good recovery without much sequelae or threat to life.

  11. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    PubMed

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  12. Body Composition within the First 3 Months: Optimized Correction for Length and Correlation with BMI at 2 Years.

    PubMed

    Hawkes, Colin P; Zemel, Babette S; Kiely, Mairead; Irvine, Alan D; Kenny, Louise C; O'B Hourihane, Jonathan; Murray, Deirdre M

    2016-01-01

    Although early infant growth has implications for future health, body composition reference data in infancy are limited. The aim of this study was to describe reference data for fat mass (FM) and fat-free mass (FFM) corrected for length (L) within the first 3 months and to evaluate if these measures predict the body mass index (BMI) at 2 years. Term infants had air displacement plethysmography performed at birth (n = 1,063) and approximately 2 months later (n = 922, between 49 and 86 days). Age- and sex-specific reference data were generated for FM, FFM, FM/L 3 and FFM/L 2 and compared with BMI at 2 years. FM/L 3 and FFM/L 2 were the optimal indices independent of length. In the first 3 months, mean FM/L 3 increased (males, from 2.7 to 5.9 kg/m 3 ; females, from 3.2 to 6.1 kg/m 3 ), whereas FFM/L 2 remained relatively stable (males, from 11.8 to 12.7 kg/m 2 ; females, from 12.8 to 12.1 kg/m 2 ). The odds of a BMI Z-score ≥2 at 2 years increased with increasing FM (OR 2.7, 95% CI 1.97-3.7) and weight (OR 2.27, 95% CI 1.64-3.13) Z-scores at 2 months. FM/L 3 and FFM/L 2 provide length-independent measures of FM and FFM in infancy. During the first 3 months, there is an increase in FM/L 3 , but not in FFM/L 2 . The weight Z-score at 2 months is as good at predicting BMI at 2 years as body composition parameters. © 2016 S. Karger AG, Basel.

  13. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  14. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension.

    PubMed

    Bennett, Charles R; DiAngelo, Denis J; Kelly, Brian P

    2015-01-01

    Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension.

  15. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension

    PubMed Central

    Bennett, Charles R.; DiAngelo, Denis J.

    2015-01-01

    Background Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Methods Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Results Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. Conclusions The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension. PMID:26273551

  16. Lower Jump Power Rather Than Muscle Mass Itself is Associated with Vertebral Fracture in Community-Dwelling Elderly Korean Women.

    PubMed

    Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Seo, Da Hea; Lee, Seung Won; Choi, Han Sol; Kim, Hyeon Chang; Youm, Yoosik; Kim, Chang Oh; Rhee, Yumie

    2017-06-01

    Sarcopenia is considered to be a risk factor for osteoporotic fracture, which is a major health problem in elderly women. In this study, we aimed to investigate the association of sarcopenia, with regard to muscle mass and function, with prevalent vertebral fracture in community-dwelling elderly women. We recruited 1281 women aged 64 to 87 years from the Korean Urban Rural Elderly cohort study. Muscle mass and function were measured using bioimpedance analysis and jumping mechanography. Skeletal muscle index (SMI) and jump power were used as an indicator of muscle mass and function, respectively. Among the participants, we observed 282 (18.9%) vertebral fractures and 564 (44.0%) osteoporosis. Although age, body mass index, and prevalence of osteoporosis increased as both SMI and jump power decreased, prevalence of vertebral fracture increased only when jump power decreased. In univariate analysis, compared with the highest quartile of jump power, the lowest quartile had a significant odds ratio of 2.80 (95% CI 1.79-4.36) for vertebral fracture. This association between jump power and vertebral fracture remained significant, with an odds ratio of 3.04 (95% CI 1.77-5.23), even after adjusting for other risk factors including age, bone mineral density, previous fracture, and cognitive function. In contrast, there was no association between SMI and vertebral fracture. Based on our results, low jump power, but not SMI, is associated with vertebral fracture in community-dwelling elderly Korean women. This finding suggests that jump power may have a more important role than muscle mass itself for osteoporotic fracture.

  17. Skeletal ontogeny of the vertebral column and of the fins in shi drum Umbrina cirrosa (Teleostei: Perciformes: Sciaenidae), a new candidate species for aquaculture.

    PubMed

    Neofytou, M; Sfakianakis, D G; Koumoundouros, G; Mylonas, C C; Kentouri, M

    2017-09-01

    The osteological development of the vertebral column and fins in shi drum Umbrina cirrosa was studied in order to improve knowledge for its introduction in Mediterranean aquaculture. The osteological development was studied in 171 individuals, of total length (L T ) from 2·7 to 30·2 mm that were reared under the mesocosm technique. Vertebral ontogeny starts at 3·4 and 4·0 mm L T , with the formation of the first cartilaginous neural and haemal arches, and spines, respectively, and is completed with the full attainment of epicentrals (12·5 mm L T ). The formation of vertebral centra occurs between 4·1 and 7·4 mm L T . Pectoral supports are the first fin elements to develop (3·0 mm L T ), followed by those of the caudal fin (3·8 mm L T ), pelvic fin (3·9 mm L T ) and finally by those of the dorsal and anal fins (4·5 mm L T ). The caudal fin is the first to develop fin rays and attain the full count of principal fin rays (4·5-6·8 mm L T ), but the last to be fully completed with the formation of procurrent fin rays (6·9-17·5 mm L T ). The next fins starting to present rays are the dorsal (5·3 mm L T ) and the pectoral fins (5·6 mm L T ), while the anal and pelvic fins are the last (5·7 mm L T ). Following the caudal principal fin rays (6·8 mm L T ), the dorsal, anal (6·9 mm L T ), pelvic (7·4 mm L T ) and pectoral fins (9·8 mm L T ) are the next with fully completed ray counts. Aggregation of qualitative changes, such as the appearance of cartilages, the beginning and the complement of the ossification process and the full complement of elements in U. cirrosa were measured as cumulative frequency counts. These measurements reveal three ontogenetic intervals: one very developmentally active period during early life stages (from 3 to 5·9 mm L T ), a second slower developmental period (from 6·0 to 8·9 mm L T ) and finally a period of ontogeny more focused on structure refinement up to metamorphosis and settlement (>9·0 mm L T ). © 2017 The

  18. Evaluation of Anterior Vertebral Interbody Fusion Using Osteogenic Mesenchymal Stem Cells Transplanted in Collagen Sponge.

    PubMed

    Yang, Wencheng; Dong, Youhai; Hong, Yang; Guang, Qian; Chen, Xujun

    2016-05-01

    The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups

  19. A Symptomatic Case of Thoracic Vertebral Hemangioma Causing Lower Limb Spastic Paresis

    PubMed Central

    Alfawareh, Mohammad; Alotaibi, Tariq; Labeeb, Abdallah; Audat, Ziad

    2016-01-01

    Patient: Male, 18 Final Diagnosis: Hemangioma Symptoms: Pain • weaknes of lower limbs Medication: — Clinical Procedure: Decompression and fixation Specialty: Neurosurgery Objective: Unusual clinical course Background: Despite being the most common tumor of the spine, vertebral hemangioma is rarely symptomatic in adults. In fact, only 0.9–1.2% of all vertebral hemangiomas may be symptomatic. When hemangiomas occur in the thoracic vertebrae, they are more likely to be symptomatic due to the narrow vertebral canal dimensions that mandate more aggressive management prior to the onset of severe neurological sequelae. Case Report: An 18-year-old male presented to the emergency room with a one-month history of mild to moderate midthoracic back pain, radiating to both lower limbs. It was associated with both lower limb weakness and decreased sensation. There was no history of bowel or bladder incontinence. Neurological examination revealed lower limb weakness with power 3/5, exaggerated deep tendon reflexes, bilateral sustained clonus, impaired sensation below the umbilicus, spasticity, and a positive Babinski sign. A CT scan showed a diffuse body lesion at the 8th thoracic vertebra with coarse trabeculations, corduroy appearance, or jail-bar sign. The patient underwent decompression and fixation. Biopsy of permanent samples showed proliferation of blood vessels with dilated spaces and no malignant cells, consistent with hemangioma. Postoperatively, spasticity improved, and the patient regained normal power. Conclusions: Symptomatic vertebral hemangiomas are rare but should be considered as a differential diagnosis. They can present with severe neurological symptoms. When managed appropriately, patients regain full motor and sensory function. Decompression resulted in quick relief of symptoms, which was followed by an extensive rehabilitation program. PMID:27795545

  20. Bone-density-specific fracture risk: A population-based study of the relationship between osteoporosis and vertebral fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, L.J.; Wahner, H.W.; Richelson, L.S.

    The search for a specific level of bone density that clearly distinguishes patients with osteoporosis from those without has been largely unsuccessful. A different, ''gradient of risk'' model was used to assess the effect of various degrees of osteoporosis on the prevalence of vertebral fractures. The authors measured spinal (L/sub 1/-L/sub 4/) bone mineral (BM) with dual photon absorptiometry in an age-stratified random sample of Rochester, Minnesota women greater than or equal to 35 years old to estimate the distribution of spinal BM in the population of adult woman. The authors also assessed BM among women in the sample whomore » had one or more vertebral fractures to estimate both the total number of women with vertebral fractures in the population and the distribution of spinal BM in such women. These population-based estimates were then used to calculate the prevalence rate of vertebral fracture at various levels of spinal BM. Women with spinal BM greater than or equal to 1.40 g/cm/sup 2/ were free of vertebral fractures. Among women with BM between 1.00 and 1.39 g/cm/sup 2/, the prevalence of vertebral fractures was about 7%. The prevalence rate increased as spinal BM decreased further. Among women with spinal BM<0.60 g/cm/sup 2/, all had at least one vertebral fracture (prevalence=100%). These data indicate that osteoporosis is a necessary cause of age-related vertebral fractures and, at certain low levels, is a sufficient cause of such fractures in conjunction with the activities of daily living.« less

  1. Stability at Potential Maxima: The L-4 and L-5 Points of the Restricted Three-Body Problem.

    ERIC Educational Resources Information Center

    Greenberg, Richard; Davis, Donald R.

    1978-01-01

    Describes a dynamical system which is stable at potential maxima. The maxima, called L-4 and L-5, are stable locations of the restricted three-body problem. Energy loss from the system will tend to drive it away from stability. (GA)

  2. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio)

    USGS Publications Warehouse

    Mukhi, S.; Pan, X.; Cobb, G.P.; Patino, R.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mg l-1 in two different tests. The estimated no-observed-effective- concentration (NOEC) values of RDX on lethality were 13.27 ?? 0.05 and 15.32 ?? 0.30 mg l-1; and the lowest-observed-effective- concentration (LOEC) values were 16.52 ?? 0.05 and 19.09 ?? 0.23 mg l-1 in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mg l-1, with NOEC and LOEC of 9.75 ?? 0.34 and 12.84 ?? 0.34 mg l-1, respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  4. Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia

    PubMed Central

    Peres, Carlos A.; Costa, Hugo C. M.

    2017-01-01

    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not “emptied” the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of

  5. Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia.

    PubMed

    Abrahams, Mark I; Peres, Carlos A; Costa, Hugo C M

    2017-01-01

    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not "emptied" the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of wildlife

  6. Analysis of Long Bone and Vertebral Failure Patterns.

    DTIC Science & Technology

    1982-03-01

    Roberts, B., 1976. Pathology of degenerative spondylosis in The Lumbar Spine and Back Pain (ed. M. Jayson), New York, Grune & Stratton, Inc., pp. 55-75...compressive loading failed by end plate or vertebral body fracture (Percy, 1957). The fractures were most common in the upper lumbar level, and the fracture...and upper lumbar regions which is supported Iby Perey’s findings (1957). The debris in the hematopoietic spaces appears Ito be bone fragments, but it

  7. Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution

    PubMed Central

    Crees, Jennifer J.; Hansford, James; Jeffree, Timothy E.; Crumpton, Nick; Kurniawan, Iwan; Setiyabudi, Erick; Paranggarimu, Umbu; Dosseto, Anthony; van den Bergh, Gerrit D.

    2017-01-01

    Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000–3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands. PMID:28855367

  8. [Initial clinical experience with radiofrequency-guided percutaneous vertebral augmentation in the treatment of vertebral compression fractures].

    PubMed

    Marosfoi, Miklós; Kulcsár, Zsolt; Berentei, Zsolt; Gubucz, István; Szikora, István

    2011-07-30

    Percutaenous Vertebroplasty (PVP) is effective in alleviating pain and facilitating early mobilization following vertebral compression fractures. The relatively high risk of extravertebral leakage due to uncontrolled delivery of low viscosity bone cement is an inherent limitation of the technique. The aim of this research is to investigate the ability of controlled cement delivery in decreasing the rate of such complications by applying radiofrequency heating to regulate cement viscosity. Thirty two vetebrae were treated in 28 patients as part of an Ethics Committee approved multicenter clinical trial using RadioFreqency assisted Percutaenous Vertebral Augmentation (RF-PVA) technique. This technique is injecting low viscosity polymethylmethacrylate (PMMA) bone cement using a pressure controlled hydraulic pump and applying radiofrequency heating to increase cement viscosity prior to entering the vertebral body. All patients were screened for any cement leakage by X-ray and CT scan. The intensity of pain was recorded on a Visual Analog Scale (VAS) and the level of physical activity on the Oswestry Disability Index (ODI) prior to, one day, one month and three months following procedure. All procedures were technically successful. There were no clinical complication, intraspinal or intraforaminal cement leakage. In nine cases (29%) a small amount of PMMA entered the intervertebral space through the broken end plate. Intensity of pain by VAS was reduced from a mean of 7.0 to 2.5 and physical inactivity dropped on the ODI from 52% to 23% three months following treatment. In this small series controlled cement injection using RF-PVA was capable of preventing clinically hazardous extravertebral cement leakage while achieving outcomes similar to that of conventional vertebroplasty.

  9. Pulmonary Embolism from Cement Augmentation of the Vertebral Body.

    PubMed

    Ignacio, Jose Manuel Fernando; Ignacio, Katrina Hannah Dizon

    2018-04-01

    Pulmonary cement embolism (PCE) can follow cement augmentation procedures for spine fractures due to osteoporosis, traumatic injuries, and painful metastatic lesions. PCE is underreported and it is likely that many cases remain undiagnosed. Risk factors for PCE have been identified, which can help alert clinicians to patients likely to develop the condition, and there are recommended techniques to reduce its incidence. Most patients with PCE are asymptomatic or only develop transient symptoms, although a few may exhibit florid cardiorespiratory manifestations which can ultimately be fatal. Diagnosis is mainly by radiographic means, commonly using simple radiographs and computed tomography scans of the chest with ancillary tests that assess the patient's cardiorespiratory condition. Management depends on the location and size of the emboli as well as the patient's symptomatology. The aim of this review is to raise awareness of the not uncommon complications of PCE following vertebral cement augmentation and the possibility of serious sequelae. Recommendations for the diagnosis and management of PCE are presented, based on the most recent literature.

  10. Estrogenic modulation of auditory processing: a vertebrate comparison

    PubMed Central

    Caras, Melissa L.

    2013-01-01

    Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849

  11. TIME COURSE FOR THE DEVELOPMENT OF MUSCLE HISTORY IN LUMBAR PARASPINAL MUSCLE SPINDLES ARISING FROM CHANGES IN VERTEBRAL POSITION

    PubMed Central

    Pickar, Joel G.; Ge, Weiqing

    2008-01-01

    Background Context In neutral spinal postures with low loading moments the lumbar spine is not inherently stable. Small compromises in paraspinal muscle activity may affect lumbar spinal biomechanics. Proprioceptive feedback from muscle spindles is considered important for control of muscle activity. Because skeletal muscle and muscle spindles are thixotropic, their length history changes their physical properties. The present study explores a mechanism that can affect the responsiveness of paraspinal muscle spindles in the lumbar spine. Purpose This study had two aims: to extend our previous findings demonstrating the history dependent effects of vertebral position on the responsiveness of lumbar paraspinal muscle spindles; and to determine the time course for these effects. Based upon previous studies, if a crossbridge mechanism underlies these thixotropic effects, then the relationship between the magnitude of spindle discharge and the duration of the vertebral position will be one of exponential decay or growth. Study Design/Setting A neurophysiological study using the lumbar spine of a feline model. Methods The discharge from individual muscle spindles afferents innervating lumbar paraspinal muscles in response to the duration and direction of vertebral position were obtained from teased filaments in the L6 dorsal roots of 30 Nembutal-anesthetized cats. The L6 vertebra was controlled using a displacement-controlled feedback motor and was held in each of 3 different conditioning positions for durations of 0, 0.5, 1, 1.5, and 2 seconds. Two of the conditioning positions stretched or shortened the lumbar muscles relative to an intermediate conditioning position. Conditioning positions for all cats ranged from 0.9 – 2.0 mm dorsal and ventralward relative to the intermediate position. These magnitudes were determined based upon the displacement that loaded the L6 vertebra to 50–60% of the cat’s body weight. Conditioning was thought to simulate a motion

  12. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development.

    PubMed

    Richardson, M K; Hanken, J; Gooneratne, M L; Pieau, C; Raynaud, A; Selwood, L; Wright, G M

    1997-08-01

    Embryos of different species of vertebrate share a common organisation and often look similar. Adult differences among species become more apparent through divergence at later stages. Some authors have suggested that members of most or all vertebrate clades pass through a virtually identical, conserved stage. This idea was promoted by Haeckel, and has recently been revived in the context of claims regarding the universality of developmental mechanisms. Thus embryonic resemblance at the tailbud stage has been linked with a conserved pattern of developmental gene expression - the zootype. Haeckel's drawings of the external morphology of various vertebrates remain the most comprehensive comparative data purporting to show a conserved stage. However, their accuracy has been questioned and only a narrow range of species was illustrated. In view of the current widespread interest in evolutionary developmental biology, and especially in the conservation of developmental mechanisms, re-examination of the extent of variation in vertebrate embryos is long overdue. We present here the first review of the external morphology of tailbud embryos, illustrated with original specimens from a wide range of vertebrate groups. We find that embryos at the tailbud stage - thought to correspond to a conserved stage - show variations in form due to allometry, heterochrony, and differences in body plan and somite number. These variations foreshadow important differences in adult body form. Contrary to recent claims that all vertebrate embryos pass through a stage when they are the same size, we find a greater than 10-fold variation in greatest length at the tailbud stage. Our survey seriously undermines the credibility of Haeckel's drawings, which depict not a conserved stage for vertebrates, but a stylised amniote embryo. In fact, the taxonomic level of greatest resemblance among vertebrate embryos is below the subphylum. The wide variation in morphology among vertebrate embryos is

  13. Efficacy on the risk of vertebral fracture with administration of once-weekly 17.5 mg risedronate in Japanese patients of established osteoporosis with prevalent vertebral fractures: a 156-week longitudinal observational study in daily practice.

    PubMed

    Soen, Satoshi; Umemura, Takashi; Ando, Tsuyoshi; Kamisaki, Toshiaki; Nishikawa, Masahiko; Muraoka, Ryoichi; Ikeda, Yoshinori; Takeda, Kyoko; Osawa, Mitsuharu; Nakamura, Toshitaka

    2017-07-01

    Currently, the only available evidence for the efficacy of once-weekly 17.5 mg risedronate in preventing vertebral fractures was obtained in a 48-week study in Japan. We performed a 156-week prospective, longitudinal, observational study to determine the efficacy of the 17.5 mg risedronate in preventing vertebral fractures. We included Japanese patients with established osteoporosis who were older than 50 years and had radiographically confirmed vertebral fractures. The primary endpoint was the incidence of vertebral fractures every 24 weeks, with the final interval spanning 36 weeks. We also calculated the change in bone mineral density of the lumbar spine (L 2-4 BMD) and urinary N-telopeptide of type I collagen (u-NTX), and assessed the incidence of adverse drug reactions and the drug adherence rate. Data from 241 patients were available for analysis of vertebral fracture prevention. The incidence rate of vertebral fractures decreased in a time-dependent manner (P = 0.0006; Poisson regression analysis). The risk ratio (fracture incidence per 100 person-years in the final 36 weeks versus that in the first 24 weeks) was 0.21 (95 % confidence interval 0.08-0.55). Compared to baseline values, L 2-4 BMD increased by 6.41 % at 156 weeks, while u-NTX decreased by 36 % at 24 weeks and was maintained thereafter (P < 0.0001). The incidence rate of adverse drug reactions was 9.18 %. Drug adherence rates assessed every 4 weeks were over 90 %. Our results indicate that 156 weeks of treatment with once-weekly 17.5 mg risedronate effectively reduced the risk of vertebral fracture in Japanese patients with established osteoporosis older than 50 years.

  14. Transmission of Ranavirus between Ectothermic Vertebrate Hosts

    PubMed Central

    Brenes, Roberto; Gray, Matthew J.; Waltzek, Thomas B.; Wilkes, Rebecca P.; Miller, Debra L.

    2014-01-01

    Transmission is an essential process that contributes to the survival of pathogens. Ranaviruses are known to infect different classes of lower vertebrates including amphibians, fishes and reptiles. Differences in the likelihood of infection among ectothermic vertebrate hosts could explain the successful yearlong persistence of ranaviruses in aquatic environments. The goal of this study was to determine if transmission of a Frog Virus 3 (FV3)-like ranavirus was possible among three species from different ectothermic vertebrate classes: Cope’s gray treefrog (Hyla chrysoscelis) larvae, mosquito fish (Gambusia affinis), and red-eared slider (Trachemys scripta elegans). We housed individuals previously exposed to the FV3-like ranavirus with naïve (unexposed) individuals in containers divided by plastic mesh screen to permit water flow between subjects. Our results showed that infected gray treefrog larvae were capable of transmitting ranavirus to naïve larval conspecifics and turtles (60% and 30% infection, respectively), but not to fish. Also, infected turtles and fish transmitted ranavirus to 50% and 10% of the naïve gray treefrog larvae, respectively. Nearly all infected amphibians experienced mortality, whereas infected turtles and fish did not die. Our results demonstrate that ranavirus can be transmitted through water among ectothermic vertebrate classes, which has not been reported previously. Moreover, fish and reptiles might serve as reservoirs for ranavirus given their ability to live with subclinical infections. Subclinical infections of ranavirus in fish and aquatic turtles could contribute to the pathogen’s persistence, especially when highly susceptible hosts like amphibians are absent as a result of seasonal fluctuations in relative abundance. PMID:24667325

  15. Vertebrate estrogen regulates the development of female characteristics in silkworm, Bombyx mori.

    PubMed

    Shen, Guanwang; Lin, Ying; Yang, Congwen; Xing, Runmiao; Zhang, Haiyan; Chen, Enxiang; Han, Chaoshan; Liu, Hongling; Zhang, Weiwei; Xia, Qingyou

    2015-01-01

    The vertebrate estrogens include 17-β-estradiol (E2), which has an analog in silkworm ovaries. In this study, the Bombyx mori vitellogenin gene (BmVg) was used as a biomarker to analyze the function of the E2 in silkworm. In most oviparous animals, Vg has female-specific expression. However, BmVg expression was also detected in B. mori males. Stage specific fluctuation of BmVg expression was similar in males and females, but expression levels in males were lower than in females. E2 treatment by injection or feeding of male larvae in the final instar stage induced and stimulated male BmVg transcription and protein synthesis. When silkworm ovary primordia were transplanted into males, BmVg was induced in male fat bodies. Transplanted ovaries primordia were also able to develop into ovaries and produce mature eggs. When females were treated with E2 promoted BmVg/BmVn protein accumulation in hemolymph, ovaries and eggs. However, BmVg transcription was decreased in female fat bodies. An E2 analog was identified in the hemolymph of day 3 wandering silkworms using high-performance liquid chromatography. Estradiol titers from fifth late-instar larvae to pupal stage were determined by enzyme-linked immunosorbent assay. The results suggested that silkworms synthesized a vertebrate E2 analog. This study found that E2 promoted the synthesis of BmVg, a female typical protein in silkworms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions.

    PubMed

    Balliu, E; Vilanova, J C; Peláez, I; Puig, J; Remollo, S; Barceló, C; Barceló, J; Pedraza, S

    2009-03-01

    The aim of this study is to evaluate the value of the apparent diffusion coefficient (ADC) obtained in diffusion-weighted (DW) MR sequences for the differentiation between malignant and benign bone marrow lesions. Forty-five patients with altered signal intensity vertebral bodies on conventional MR sequences were included. The cause of altered signal intensity was benign osteoporotic collapse in 16, acute neoplastic infiltration in 15, and infectious processes in 14; based on plain-film, CT, bone scintigraphy, conventional MR studies, biopsy or follow-up. All patients underwent isotropic DW MR images (multi-shot EPI, b values of 0 and 500 s/mm(2)). Signal intensity at DW MR images was evaluated and ADC values were calculated and compared between malignancy, benign edema and infectious spondylitis. Acute malignant fractures were hyperintense compared to normal vertebral bodies on the diffusion-weighted sequence, except in one patient with sclerotic metastases. Mean ADC value from benign edema (1.9+/-0.39 x 10(-3) mm(2)/s) was significantly (p<0.0001) higher than untreated metastasic lesions (0.9+/-1.3 x 10(-3)mm (2)/s). Mean ADC value of infectious spondilytis (0.96+/-0.49 x 10(-3) mm(2)/s) was not statistically (p>0.05) different from untreated metastasic lesions. ADC value was low (0.75 x 10(-3) mm(2)/s) in one case of subacute benign fracture. ADC values are a useful complementary tool to characterize bone marrow lesions, in order to distinguish acute benign fractures from malignant or infectious bone lesions. However, ADC values are not valuable in order to differentiate malignancy from infection.

  17. [Effect of different bone cement dispersion types in the treatment of osteoporotic vertebral compression fracture].

    PubMed

    Zhao, Yong-Sheng; Li, Qiang; Li, Qiang; Zheng, Yan-Ping

    2017-05-25

    To observe different bone cement dispersion types of PVP, PKP and manipulative reduction PVP and their effects in the treatment of senile osteoporotic vertebral compression fractures and the bone cement leakage rate. The clinical data of patients with osteoporotic vertebral compression fractures who underwent unilateral vertebroplasty from January 2012 to January 2015 was retrospectively analyzed. Of them, 56 cases including 22 males and 34 females aged from 60 to 78 years old were treated by PVP operation; Fouty-eight cases including 17 males and 31 females aged from 61 to 79 years old were treated by PKP operation; Forty-three cases including 15 males and 28 females aged from 60 to 76 years old were treated by manipulative reduction PVP operation. AP and lateral DR films were taken after the operation; the vertebral bone cement diffusion district area and mass district area were calculated with AutoCAD graphics processing software by AP and lateral DR picture, then ratio(K) of average diffusion area and mass area were calculated, defining K<50% as mass type, 50%<=K<=100% as mixed type and K>100% as diffusion type. Different bone cement dispersion types of PVP, PKP and manipulative reduction PVP operation were analyzed. According to bone cement dispersion types, patients were divided into diffusion type, mixed type and mass type groups.Visual analogue scale (VAS), vertebral body compression rate, JOA score and bone cement leakage rate were observed. All patients were followed up for 12-24 months with an average of 17.2 months. There was significant difference in bone cement dispersion type among three groups ( P <0.05). The constituent ratio of diffusion type, mixed type and mass type in PVP operation was 46.43%, 35.71%, 17.86%, in PKP was 16.67%, 37.50% , 45.83%, and in manipulative reduction PVP was 37.21%, 44.19% and 18.60%, respectively. PVP operation and manipulative reduction PVP were mainly composed of diffusion type and mixed type, while PKP was mainly

  18. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    PubMed

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (P<0.05). Both groups showed significant improvements in pain relief and functional capacity status after surgery (P<0.05). It was concluded that high-viscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  19. High l-Trp affinity of indoleamine 2,3-dioxygenase 1 is attributed to two residues located in the distal heme pocket.

    PubMed

    Yuasa, Hajime J

    2016-10-01

    Indoleamine 2, 3-dioxygenase (IDO) catalyzes the oxidative cleavage of the pyrrole ring of l-Trp to generate N-formyl-kynurenine. Two IDO genes, IDO1 and IDO2, are found in vertebrates. Mammalian IDO1s are high-affinity, l-Trp-degrading enzymes, whereas IDO2s generally have a relatively low affinity. It has been suggested that the distal-Ser (corresponding to Ser167 of human IDO1) was crucial for improvement in the affinity for l-Trp but this idea was insufficient to explain the high affinity shown by mammalian IDO1. In this study, the amino acid sequences of vertebrate ancestral IDO1 and ancestral IDO2 were inferred, and bacterially expressed ancestral IDOs were characterized. Although the amino acid sequences of the enzymes shared high identity (86%) with each other, they showed distinct enzymatic properties. In analyses of a series of ancestral IDO1/IDO2 chimeric enzymes and their variants, the distal-Tyr (corresponding to Tyr126 of human IDO1) was detected as another and was probably the most crucial residue for high l-Trp affinity. The two amino acid substitutions (distal-Ser to Thr and distal-Tyr to His) drastically decreased the l-Trp affinity and catalytic efficiency of IDO1s. Conversely, two substitutions (distal-Thr to Ser and distal-His to Tyr) were sufficient to bestow IDO1-like high affinity on ancestral and chicken IDO2. © 2016 Federation of European Biochemical Societies.

  20. Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa

    PubMed Central

    Coutelis, Jean-Baptiste; González-Morales, Nicanor; Géminard, Charles; Noselli, Stéphane

    2014-01-01

    Differentiating left and right hand sides during embryogenesis represents a major event in body patterning. Left–Right (L/R) asymmetry in bilateria is essential for handed positioning, morphogenesis and ultimately the function of organs (including the brain), with defective L/R asymmetry leading to severe pathologies in human. How and when symmetry is initially broken during embryogenesis remains debated and is a major focus in the field. Work done over the past 20 years, in both vertebrate and invertebrate models, has revealed a number of distinct pathways and mechanisms important for establishing L/R asymmetry and for spreading it to tissues and organs. In this review, we summarize our current knowledge and discuss the diversity of L/R patterning from cells to organs during evolution. PMID:25150102

  1. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5- to 18-year-old Japanese children.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Hwang, Dea-Seok; Park, Soo-Byung; Son, Woo-Sung

    2015-11-01

    The purpose of this study was to establish multivariable regression models for the estimation of skeletal maturation status in Japanese boys and girls using the cone-beam computed tomography (CBCT)-based cervical vertebral maturation (CVM) assessment method and hand-wrist radiography. The analyzed sample consisted of hand-wrist radiographs and CBCT images from 47 boys and 57 girls. To quantitatively evaluate the correlation between the skeletal maturation status and measurement ratios, a CBCT-based CVM assessment method was applied to the second, third, and fourth cervical vertebrae. Pearson's correlation coefficient analysis and multivariable regression analysis were used to determine the ratios for each of the cervical vertebrae (p < 0.05). Four characteristic parameters ((OH2 + PH2)/W2, (OH2 + AH2)/W2, D2, AH3/W3), as independent variables, were used to build the multivariable regression models: for the Japanese boys, the skeletal maturation status according to the CBCT-based quantitative cervical vertebral maturation (QCVM) assessment was 5.90 + 99.11 × AH3/W3 - 14.88 × (OH2 + AH2)/W2 + 13.24 × D2; for the Japanese girls, it was 41.39 + 59.52 × AH3/W3 - 15.88 × (OH2 + PH2)/W2 + 10.93 × D2. The CBCT-generated CVM images proved very useful to the definition of the cervical vertebral body and the odontoid process. The newly developed CBCT-based QCVM assessment method showed a high correlation between the derived ratios from the second cervical vertebral body and odontoid process. There are high correlations between the skeletal maturation status and the ratios of the second cervical vertebra based on the remnant of dentocentral synchondrosis.

  2. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    PubMed

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that

  3. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women.

    PubMed

    Sinaki, M; Itoi, E; Wahner, H W; Wollan, P; Gelzcer, R; Mullan, B P; Collins, D A; Hodgson, S F

    2002-06-01

    The long-term protective effect of stronger back muscles on the spine was determined in 50 healthy white postmenopausal women, aged 58-75 years, 8 years after they had completed a 2 year randomized, controlled trial. Twenty-seven subjects had performed progressive, resistive back-strengthening exercises for 2 years and 23 had served as controls. Bone mineral density, spine radiographs, back extensor strength, biochemical marker values, and level of physical activity were obtained for all subjects at baseline, 2 years, and 10 years. Mean back extensor strength (BES) in the back-exercise (BE) group was 39.4 kg at baseline, 66.8 kg at 2 years (after 2 years of prescribed exercises), and 32.9 kg at 10 years (8 years after cessation of the prescribed exercises). Mean BES in the control (C) group was 36.9 kg at baseline, 49.0 kg at 2 years, and 26.9 kg at 10 years. The difference between the two groups was still statistically significant at 10 year follow-up (p = 0.001). The difference in bone mineral density, which was not significant between the two groups at baseline and 2 year follow-up, was significant at 10 year follow-up (p = 0.0004). The incidence of vertebral compression fracture was 14 fractures in 322 vertebral bodies examined (4.3%) in the C group and 6 fractures in 378 vertebral bodies examined (1.6%) in the BE group (chi-square test, p = 0.0290). The relative risk for compression fracture was 2.7 times greater in the C group than in the BE group. To our knowledge, this is the first study reported in the literature demonstrating the long-term effect of strong back muscles on the reduction of vertebral fractures in estrogen-deficient women.

  4. The scaling and temperature dependence of vertebrate metabolism

    PubMed Central

    White, Craig R; Phillips, Nicole F; Seymour, Roger S

    2005-01-01

    Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the case for birds and mammals. To determine whether the influence of body mass on the metabolic rate of vertebrates is indeed universal, we compiled SMR measurements for 938 species spanning six orders of magnitude variation in mass. When normalized to a common temperature of 38 °C, the SMR scaling exponents of fish, amphibians, reptiles, birds and mammals are significantly heterogeneous. This suggests both that there is no universal metabolic allometry and that models that attempt to explain only quarter-power scaling of metabolic rate are unlikely to succeed. PMID:17148344

  5. X-ray motion analysis of the vertebral column during the startle response in striped bass, Morone saxatilis.

    PubMed

    Nowroozi, B N; Brainerd, E L

    2013-08-01

    Whole-body stiffness has a substantial impact on propulsive wave speed during axial undulatory locomotion in fishes. The connective tissues of the vertebral column may contribute to body stiffness, but without mechanical and kinematic analysis it is unclear whether the in vivo range of motion of intervertebral joints (IVJs) is great enough to stress IVJ tissues, thus generating stiffness. The present study used 2D videoradiography and 3D X-ray reconstruction of moving morphology (XROMM) to quantify vertebral kinematics during the startle response in striped bass (Morone saxatilis). X-ray video revealed two distinct patterns of bending: pattern I begins in the abdominal region and then proceeds to maximum IVJ angles in the caudal region, whereas pattern II begins in the cervical region and proceeds to maximum IVJ angles in the abdominal and then the caudal joints. In pattern II bends, the cervical joints exhibit a greater in vivo range of motion than previously reported in other species. XROMM analysis of caudal IVJs suggests primarily lateral bending: mean axial and dorsoventral rotations were less than 2 deg and inconsistent across 51 sequences analyzed from five individuals, whereas mean maximum lateral bending angles were 10.4±3.57 deg. These angles, combined with previous investigations of mechanical properties, reveal that the maximum angles all occur within the neutral zone of bending, indicating that little stress is experienced about the joint. This suggests that the IVJs of striped bass are quite compliant and likely do not contribute significantly to whole-body stiffness or elastic recoil during swimming in vivo.

  6. Fungal osteomyelitis with vertebral re-ossification.

    PubMed

    O Guinn, Devon J; Serletis, Demitre; Kazemi, Noojan

    2016-01-01

    We present a rare case of thoracic vertebral osteomyelitis secondary to pulmonary Blastomyces dermatitides. A 27-year-old male presented with three months of chest pains and non-productive cough. Examination revealed diminished breath sounds on the right. CT/MR imaging confirmed a right-sided pre-/paravertebral soft tissue mass and destructive lytic lesions from T2 to T6. CT-guided needle biopsy confirmed granulomatous pulmonary Blastomycosis. Conservative management with antifungal therapy was initiated. Neurosurgical review confirmed no clinical or profound radiographic instability, and the patient was stabilized with TLSO bracing. Serial imaging 3 months later revealed near-resolution of the thoracic soft tissue mass, with vertebral re-ossification from T2 to T6. Fungal osteomyelitis presents a rare entity in the spectrum of spinal infections. In such cases, lytic spinal lesions are classically seen in association with a large paraspinous mass. Fungal infections of the spinal column may be treated conservatively, with surgical intervention reserved for progressive cases manifesting with neurological compromise and/or spinal column instability. Here, we found unexpected evidence for vertebral re-ossification across the affected thoracic levels (T2-6) in response to IV antibiotic therapy and conservative bracing, nearly 3 months later. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Fungal osteomyelitis with vertebral re-ossification

    PubMed Central

    O′Guinn, Devon J.; Serletis, Demitre; Kazemi, Noojan

    2015-01-01

    Introduction We present a rare case of thoracic vertebral osteomyelitis secondary to pulmonary Blastomyces dermatitides. Presentation of case A 27-year-old male presented with three months of chest pains and non-productive cough. Examination revealed diminished breath sounds on the right. CT/MR imaging confirmed a right-sided pre-/paravertebral soft tissue mass and destructive lytic lesions from T2 to T6. CT-guided needle biopsy confirmed granulomatous pulmonary Blastomycosis. Conservative management with antifungal therapy was initiated. Neurosurgical review confirmed no clinical or profound radiographic instability, and the patient was stabilized with TLSO bracing. Serial imaging 3 months later revealed near-resolution of the thoracic soft tissue mass, with vertebral re-ossification from T2 to T6. Discussion Fungal osteomyelitis presents a rare entity in the spectrum of spinal infections. In such cases, lytic spinal lesions are classically seen in association with a large paraspinous mass. Fungal infections of the spinal column may be treated conservatively, with surgical intervention reserved for progressive cases manifesting with neurological compromise and/or spinal column instability. Here, we found unexpected evidence for vertebral re-ossification across the affected thoracic levels (T2-6) in response to IV antibiotic therapy and conservative bracing, nearly 3 months later. PMID:26692163

  8. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  9. Aspergillus vertebral osteomyelitis in immunocompetent patients.

    PubMed

    Sethi, Somika; Siraj, Fouzia; Kalra, Kl; Chopra, P

    2012-03-01

    Fungal infections are one of the important cause of morbidity and mortality in immunocompromised patients. Aspergillus vertebral osteomyelitis is extremely rare. We report two cases of aspergillus vertebral osteomyelitis in immunocompetent men in the absence of an underlying disorder. The clinical and radiological findings were suggestive of Pott's spine. The absolute CD4, CD8 counts and their ratio were normal. The HIV status was negative in both patients. Both patients underwent surgical decompression. The histopathology of tissue obtained were suggestive of aspergillus osteomyelitis. One patient had antifungal treatment for 3 months and was doing well at 1 year followup, whereas other patient did not turnup after 2 months.

  10. Aspergillus vertebral osteomyelitis in immunocompetent patients

    PubMed Central

    Sethi, Somika; Siraj, Fouzia; Kalra, KL; Chopra, P

    2012-01-01

    Fungal infections are one of the important cause of morbidity and mortality in immunocompromised patients. Aspergillus vertebral osteomyelitis is extremely rare. We report two cases of aspergillus vertebral osteomyelitis in immunocompetent men in the absence of an underlying disorder. The clinical and radiological findings were suggestive of Pott's spine. The absolute CD4, CD8 counts and their ratio were normal. The HIV status was negative in both patients. Both patients underwent surgical decompression. The histopathology of tissue obtained were suggestive of aspergillus osteomyelitis. One patient had antifungal treatment for 3 months and was doing well at 1 year followup, whereas other patient did not turnup after 2 months. PMID:22448068

  11. Body shape transformation along a shared axis of anatomical evolution in labyrinth fishes (Anabantoidei).

    PubMed

    Collar, David C; Quintero, Michelle; Buttler, Bernardo; Ward, Andrea B; Mehta, Rita S

    2016-03-01

    Major morphological transformations, such as the evolution of elongate body shape in vertebrates, punctuate evolutionary history. A fundamental step in understanding the processes that give rise to such transformations is identification of the underlying anatomical changes. But as we demonstrate in this study, important insights can also be gained by comparing these changes to those that occur in ancestral and closely related lineages. In labyrinth fishes (Anabantoidei), rapid evolution of a highly derived torpedo-shaped body in the common ancestor of the pikehead (Luciocephalus aura and L. pulcher) occurred primarily through exceptional elongation of the head, with secondary contributions involving reduction in body depth and lengthening of the precaudal vertebral region. This combination of changes aligns closely with the primary axis of anatomical diversification in other anabantoids, revealing that pikehead evolution involved extraordinarily rapid change in structures that were ancestrally labile. Finer-scale examination of the anatomical components that determine head elongation also shows alignment between the pikehead evolutionary trajectory and the primary axis of cranial diversification in anabantoids, with much higher evolutionary rates leading to the pikehead. Altogether, our results show major morphological transformation stemming from extreme change along a shared morphological axis in labyrinth fishes. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Ultrastructure of the hepatocytes in a vertebrate liver without bile ducts.

    PubMed Central

    Youson, J H; Sidon, E W; Peek, W D; Shivers, R R

    1985-01-01

    Thin sections and freeze fracture replicas were used to study the structure of the hepatocytes of the parasitic adult lamprey (Petromyzon marinus L.). Despite the absence of bile ducts and bile canaliculi, the hepatocytes have some features which resemble those of cells in the livers of other vertebrates. Hepatocytes are characterised by large gap junctions, many cytoplasmic inclusions, and large deposits of iron. The latter is present throughout the cytoplasmic matrix and within large inclusion bodies which may arise through sequestration of parts of the cytoplasm by membrane isolation. There is no evidence for the involvement of hepatocytes in glucose metabolism but their fine structure reflects the production of bile products and the processing of lipoproteins. The accumulation of bile products within cytoplasmic inclusions resembles the situation resulting from biliary atresia or other cholestatic conditions in higher organisms. There is little folding of the plasma membrane facing the perivascular space (of Dissé), perhaps indicating limited involvement of this surface in the transport of bile products. Nerve endings in close apposition to hepatocytes suggest possible nervous control or metabolic function or the presence of sensory receptors in lamprey liver. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:2999046

  13. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information.

    PubMed

    Irie, Naoki; Sehara-Fujisawa, Atsuko

    2007-01-12

    Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues

  14. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    PubMed

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Functional anatomy of the caudal thoracolumbar and lumbosacral spine in the horse.

    PubMed

    Stubbs, N C; Hodges, P W; Jeffcott, L B; Cowin, G; Hodgson, D R; McGowan, C M

    2006-08-01

    Research in spinal biomechanics and functional anatomy has advanced back pain research in man. Yet, despite the performance limiting nature of back pain in horses, there are few data for the equine spine. To describe aspects of functional anatomy of the equine thoracolumbar and lumbosacral (LS) spine and potential effects on performance. The first study investigated variations in LS vertebral formula by post mortem examination of 120 horses. Midline vertebral transection was carried out on 65 Thoroughbred (TB), 24 Standardbred (SB) and 31 other breeds. The second study investigated morphology and biomechanics of the deep stabilising epaxial muscles of 13 horses using MRI (n = 3), anatomical dissection (n = 11) and biomechanical analysis (n = 6). The spinous process angular orientation relative to the vertebral body, was analysed at vertebrae T13, T18, L3, L5, L6 and S1. LS variations were found in 33.3% of the total group, 40.0% TB and 45.2% others, but 0% SB. Sacralisation of lumbar vertebra (L) 6 with LS motion between L5 and L6 occurred in 32.3% TB and 29.0% others. Five segmental multifidus fascicles were identified originating from spinous processes and vertebral laminae running craniocaudally onto the mammillary processes and lateral border of the sacrum, crossing between 1-5 intervertebral discs. Sacrocaudalis dorsalis (SCD) lateralis muscle was an extension of multifidus from L4, L5 and L6 depending on the vertebral formula whereas SCD medialis mm originated from S3. Both inserted on caudal vertebrae. Based on the location and direction of fibres, the principal action of the deep epaxial muscles was dorsoventral sagittal rotation. This action was dependent on vertebral spinous process/body orientation. We hypothesise that equine multifidus and SCD lateralis muscles act as caudal sagittal rotators of their vertebra of origin, as is the case in man, allowing dynamic stabilisation during dorsoventral motion. Equine multifidus anatomy and function are

  16. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.

  17. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are

  18. Surface anatomy of major anatomical landmarks of the neck in an adult population: A Ct Evaluation of Vertebral Level.

    PubMed

    Badshah, Masroor; Soames, Roger; Ibrahim, Muhammad; Khan, Muhammad Jaffar; Khan, Adnan

    2017-09-01

    To compare the projectional surface anatomy of healthy individuals in an adult population with those with a thyroid mass, using computed tomography (CT). Sixteen slice CT images of 101 individuals were analyzed using a 32-bit Radiant DICOM viewer to establish the relationships among major anatomical landmarks in the neck and their vertebral levels. The structures investigated included: hard palate (HP), hyoid bone (HB) including body and lesser horns, soft palate (SP), thyroid gland (TG) (both superior and inferior poles), thyroid gland anteroposterior (APD) and superoinferior (SID) diameters, thyroid isthmus (TI) superoinferior dimension, epiglottis, vertebral arteries (right and left), and both right and left parotid glands (superior and inferior extents). The vertebral levels noted most frequently were: body of hyoid bone (C4, 42.71%); lesser horns of hyoid bone (C3, 36.46%); thyroid gland superior pole (C6, 31.25%); and thyroid gland inferior pole (T2, 30.2%). TG-ID, TG-APD, and TG-SID were not significantly different between males and females in the healthy group; however, there was a significant gender difference in thyroid gland inferior diameter in the pathology group [males 2.16(±1.16) vs. females 3.37(±1.30), P = 0.01, paired sample t-test]. Further studies are needed to determine whether neck pathology in those with a thyroid mass affects the dimensions of the thyroid gland. Moreover, the surface anatomy of the neck should be revisited using modern imaging techniques to address inconsistencies in anatomy and clinical reference texts. Clin. Anat. 30:781-787, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo.

    PubMed

    Takahashi, Yu; Yasuhiko, Yukuto; Takahashi, Jun; Takada, Shinji; Johnson, Randy L; Saga, Yumiko; Kanno, Jun

    2013-08-15

    The vertebrae are derived from the sclerotome of somites. Formation of the vertebral body involves a process called resegmentation, by which the caudal half of a sclerotome is combined with the rostral half of the next sclerotome. To elucidate the relationship between resegmentation and rostro-caudal patterning of somite, we used the Uncx4.1-LacZ transgene to characterize the resegmentation process. Our observations suggested that in the thoracic and lumbar vertebrae, the Uncx4.1-expressing caudal sclerotome gave rise to the intervertebral disc (IVD) and rostral portion of the vertebral body (VB). In the cervical vertebrae, the Uncx4.1-expressing caudal sclerotome appeared to contribute to the IVD and both caudal and rostral ends of the VB. This finding suggests that the rostro-caudal gene expression boundary does not necessarily coincide with the resegmentation boundary. This conclusion was supported by analyses of Mesp2 KO and Ripply1/2 double KO embryos lacking rostral and caudal properties, respectively. Resegmentation was not observed in Mesp2 KO embryos, but both the IVD and whole VB were formed from the caudalized sclerotome. Expression analysis of IVD marker genes including Pax1 in the wild-type, Mesp2 KO, and Ripply1/2 DKO embryos also supported the idea that a metameric pattern of IVD/VB is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somite. However, in the lumbar region, IVD differentiation appeared to be stimulated by the caudal property and suppressed by the rostral property. Therefore, we propose that rostro-caudal patterning of somites is not a prerequisite for metameric patterning of the IVD and VB, but instead required to stimulate IVD differentiation in the caudal half of the sclerotome. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis.

    PubMed

    Ponrartana, Skorn; Fisher, Carissa L; Aggabao, Patricia C; Chavez, Thomas A; Broom, Alexander M; Wren, Tishya A L; Skaggs, David L; Gilsanz, Vicente

    2016-09-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm(2); P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm(2); P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.

  1. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    PubMed

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  2. Prevalent and Incident Vertebral Deformities in Midlife Women: Results from the Study of Women's Health Across the Nation (SWAN).

    PubMed

    Greendale, Gail A; Wilhalme, Holly; Huang, Mei-Hua; Cauley, Jane A; Karlamangla, Arun S

    Vertebral fractures are the most common type of osteoporotic fracture among women, but estimates of their prevalence and incidence during middle-age are limited. The development of vertebral morphometry (VM) using dual energy X-ray absorptiometry (DXA) makes it more feasible to measure VM in large, longitudinal, observational studies. We conducted this study to: 1) contribute to the scant knowledge of the prevalence, incidence and risk factors for vertebral deformities in middle-aged women; and 2) to evaluate the performance of DXA-based VM measurement in a large, community based sample. The sample is derived from the Study of Women's Health Across the Nation (SWAN), a multi-site, community-based, longitudinal cohort study of the MT. Using Hologic QDR 4500A instruments, we acquired initial VM measurements in 1446 women during calendar years 2004-2007; in 2012-2013, a follow-up VM was obtained in 1108. Annually, lumbar spine (LS) and femoral neck (FN) bone mineral density (BMD) were measured and participant characteristics were assessed with standardized instruments. Multivariable logistic regression models examined the relations between prevalent deformity and relevant characteristics. Analyses of characteristics associated with prevalent deformity were restricted to 824 women who had not taken bone active medications since SWAN baseline. We calculated incident deformity per person year (PY) of observation, standardized to 1000 person-years. The cranial portion of the VM image yielded the lowest proportions of readable vertebrae: from T4 through T6, between 43% and 63% of vertebral bodies were evaluable. Greater BMI was associated with fewer readable levels (B = -0.088, p<0.0001). In the baseline sample of 1446 women, the prevalence of vertebral deformity was 3.2% (95% CI: 2.3, 4.1). The relative odds of deformity increased by 61% per SD decrement in baseline LS BMD (p = 0.02) and were 67% greater per SD decrement in baseline FN BMD (p = 0.04). Odds of prevalent

  3. Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrate skin

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Kaye, Jonathan; Benton, Mike; Orr, Patrick

    2017-04-01

    The soft tissues of many fossil vertebrates preserve melanosomes - micron-scale organelles used to inform on original integumentary coloration and the evolution of visual signalling strategies through time. In extant vertebrates, however, melanosomes also occur in internal tissues, and hence melanosomes preserved in fossils may not derive solely from the integument. Here, by analyzing the internal tissues of extant and fossil frogs, we show that non-integumentary melanosomes are extremely abundant; they are usually localised to the torso in fossils but can also occur in the limbs, presumably due to dispersal during decay. Melanosomes from the body outlines of fossils cannot, therefore, reliably inform on integumentary coloration. Crucially, non-integumentary and integumentary melanosomes differ in geometry in both fossil and modern frogs and, in fossils, occur as discrete layers. Analysis of melanosome geometry, distribution and size-specific layering is required to differentiate integumentary from non-integumentary melanosomes and is essential to any attempt to reconstruct the original colours of vertebrate skin.

  4. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    PubMed

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  5. The effect of l-arginine supplementation on body composition and performance in male athletes: a double-blinded randomized clinical trial.

    PubMed

    Pahlavani, N; Entezari, M H; Nasiri, M; Miri, A; Rezaie, M; Bagheri-Bidakhavidi, M; Sadeghi, O

    2017-04-01

    Athletes used a lot of dietary supplements to achieve the more muscle mass and improve their athletic performance. The objective of this study was to investigate the effect of l-arginine supplementation on sport performance and body composition in male soccer players. This double-blinded, randomized and placebo-controlled trial was conducted on 56 male soccer players, with age range of 16-35, who referred to sport clubs in Isfahan, Iran. Subjects were randomly assigned to either l-arginine or placebo groups. Athletes received daily either 2 g per day l-arginine supplement or the same amount of placebo (maltodextrin) for 45 days. Sport performance and also body mass index (BMI), body fat mass (BFM) and lean body mass (LBM) were measured at the beginning and end of the study. Also, 3-day dietary records were collected at three different time points (before, in the middle of, and at the end of the study). The mean age of subjects was 20.85±4.29 years. Sport performance (VO 2 max) significantly increased in l-arginine supplementation group (4.12±6.07) compared with placebo group (1.23±3.36) (P=0.03). This increase remained significant even after adjustment of baseline values, physical activity and usual dietary intake of subjects throughout the study. No significant effect of l-arginine supplementation was found on weight, BMI, BFM and LBM. l-arginine supplementation (2 g per day) could increase the sport performance in male athletes, but had no effect on anthropometric measurements, including BMI, BFM and LBM. So, further studies are needed to shed light our findings.

  6. Testing Skills in Vertebrates

    ERIC Educational Resources Information Center

    Funk, Mildred Sears; Tosto, Pat

    2007-01-01

    In this article, the authors present a project that gives students examples of basic skills that many vertebrate species develop as they grow and function in their ecosystem. These activities involve information gathering about surroundings, learning how to use objects, and tracking and searching skills. Different vertebrate species may acquire…

  7. Use of cervical vertebral dimensions for assessment of children growth.

    PubMed

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter-Neto, Francisco

    2007-04-01

    The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old) who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3) method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. The analysis of the Brazilian female children data showed that there was a statistically significant difference (p<0.05) between cervical vertebral bone age and chronological age and between bone age and chronological age. However no statistically significant difference (p>0.05) was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (p<0.05) between cervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (p<0.05). The findings of the present study suggest that the method for objectively evaluating skeletal maturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  8. The neural crest, a multifaceted structure of the vertebrates.

    PubMed

    Dupin, Elisabeth; Le Douarin, Nicole M

    2014-09-01

    In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals. © 2014 Wiley Periodicals, Inc.

  9. Facultative parthenogenesis in a critically endangered wild vertebrate.

    PubMed

    Fields, Andrew T; Feldheim, Kevin A; Poulakis, Gregg R; Chapman, Demian D

    2015-06-01

    Facultative parthenogenesis - the ability of sexually reproducing species to sometimes produce offspring asexually - is known from a wide range of ordinarily sexually reproducing vertebrates in captivity, including some birds, reptiles and sharks [1-3]. Despite this, free-living parthenogens have never been observed in any of these taxa in the wild, although two free-living snakes were recently discovered each gestating a single parthenogen - one copperhead (Agkistrodon contortrix) and one cottonmouth (Agkistrodon piscivorus) [1]. Vertebrate parthenogens are characterized as being of the homogametic sex (e.g., females in sharks, males in birds) and by having elevated homozygosity compared to their mother [1-3], which may reduce their viability [4]. Although it is unknown if either of the parthenogenetic snakes would have been carried to term or survived in the wild, facultative parthenogenesis might have adaptive significance [1]. If this is true, it is reasonable to hypothesize that parthenogenesis would be found most often at low population density, when females risk reproductive failure because finding mates is difficult [5]. Here, we document the first examples of viable parthenogens living in a normally sexually reproducing wild vertebrate, the smalltooth sawfish (Pristis pectinata). We also provide a simple approach to screen any microsatellite DNA database for parthenogens, which will enable hypothesis-driven research on the significance of vertebrate parthenogenesis in the wild. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis

    PubMed Central

    Zhang, Meng; Gao, Jiazi; Huang, Xu; Zhang, Min; Liu, Bei

    2017-01-01

    Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA. PMID:29065624

  11. Di- and tripeptide transport in vertebrates: the contribution of teleost fish models.

    PubMed

    Verri, Tiziano; Barca, Amilcare; Pisani, Paola; Piccinni, Barbara; Storelli, Carlo; Romano, Alessandro

    2017-04-01

    Solute Carrier 15 (SLC15) family, alias H + -coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.

  12. Thoracolumbar vertebral osteochondroma in a young dog.

    PubMed

    Santen, D R; Payne, J T; Pace, L W; Kroll, R A; Johnson, G C

    1991-10-15

    Osteosarcoma was diagnosed in a 7-month-old female German Shepherd Dog with hind limb paresis. Radiography revealed a circumscribed calcified mass in the dorsal vertebral lamina at T13-L1 resulting in extradural compression of the spinal cord. Surgical excision of the mass resulted in gradual return to normal neurologic function. Four weeks after surgery, the dog became severely atactic after rolling onto its back. A chip fracture of T13 was identified, and the dog was euthanatized at the owners' request.

  13. Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system.

    PubMed

    Thomas, Marianna S; Newman, David; Leinhard, Olof Dahlqvist; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N; Karlsson, Anette; Rosander, Johannes; Borga, Magnus; Toms, Andoni P

    2014-09-01

    To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19·32 L (SD9·1) and 19·28 L (SD9·12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1·0, 95% level of agreement -0·32-0·2 L). ICC for all automated test-retest muscle volumes were almost perfect (0·99-1·0) with 95% levels of agreement 1.8-6.6% of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1·68 L (2SD0·6) compared to automated 1·64 L (2SD 0·6), left lower leg: manual 1·69 L (2SD 0·64) compared to automated 1·63 L (SD0·61), correlation coefficients for automated and manual segmentation were 0·94-0·96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. Sarcopaenia is an important reversible complication of a number of diseases. Manual quantification of muscle volume is time-consuming and expensive. Muscles can be imaged using in and out of phase MRI. Automated atlas-based segmentation can identify muscle groups. Automated muscle volume segmentation is reproducible and can replace manual measurements.

  14. The Left Atrio-Vertebral Ratio: a new simple means for assessing left atrial enlargement on Computed Tomography.

    PubMed

    Montillet, Marie; Baqué-Juston, Marie; Tasu, Jean-Pierre; Bertrand, Sandra; Berthier, Frédéric; Zarqane, Naïma; Brunner, Philippe

    2018-03-01

    The purpose of this study is to describe a new method to quickly estimate left atrial enlargement (LAE) on Computed Tomography. Left atrial (LA) volume was assessed with a 3D-threshold Hounsfield unit detection technique, including left atrial appendage and excluding pulmonary venous confluence, in 201 patients with ECG-gated 128-slice dual-source CT and indexed to body surface area. LA and vertebral axial diameter and area were measured at the bottom level of the right inferior pulmonary vein ostium. Ratio of LA diameter and surface on vertebra (LAVD and LAVA) were compared to LA volume. In accordance with the literature, a cutoff value of 78 ml/m 2 was chosen for maximal normal LA volume. 18% of LA was enlarged. The best cutoff values for LAE assessment were 2.5 for LAVD (AUC: 0.65; 95% CI: 0.58-0.73; sensitivity: 57%; specificity: 71%), and 3 for LAVA (AUC: 0.78; 95% CI: 0.72-0.84; sensitivity: 67%; specificity: 79%), with higher accuracy for LAVA (P=0.015). Inter-observer and intra-observer variability were either good or excellent for LAVD and LAVA (respective intraclass coefficients: 0.792 and 0.910; 0.912 and 0.937). A left atrium area superior to three times the vertebral area indicates LAE with high specificity. • Left atrial enlargement is a frequent condition associated with poor cardiac outcome. • Left atrial enlargement is highly time-consuming to diagnose on CT. • The left atrio-vertebral ratio quickly assesses left atrial enlargement. • A left atrial area > three times vertebral area is highly specific.

  15. The ‘Tully monster’ is a vertebrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.

    Abstract Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica'(1), particularly the 'weird wonders'(2) of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium(3), popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million yearsmore » ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans(4,5), polychaetes(4), gastropods(4), conodonts(6), and the stem arthropod Opabinia(4). Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes(3-6). We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys(7-9), a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years« less

  16. Effects of thrust amplitude and duration of high velocity low amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement

    PubMed Central

    Cao, Dong-Yuan; Reed, William R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    OBJECTIVE Mechanical characteristics of high velocity low amplitude spinal manipulations (HVLA-SM) can be variable. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor’s local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether an HVLA-SM’s thrust amplitude or duration altered neural responsiveness of lumbar muscle spindles to either vertebral movement or position. METHODS Anesthetized cats (n=112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3mm) they received. Cats in each cohort received 8 thrust durations (0–250ms). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (MIF) during the baseline period preceding the ramps (ΔMIFresting), during ramp movements (ΔMIFmovement), and with the vertebra held in the new position (ΔMIFposition) were compared. RESULTS Thrust duration had a small but statistically significant effect on ΔMIFresting at all six thrust amplitudes compared to control (0ms thrust duration). The lowest amplitude thrust displacement (1mm) increased ΔMIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ΔMIFresting was not consistent and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ΔMIFmovement and ΔMIFposition were not significantly different from control. Conclusion Relatively low amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust was

  17. L1 and L2 Distance Effects in Learning L3 Dutch

    ERIC Educational Resources Information Center

    Schepens, Job J.; der Slik, Frans; Hout, Roeland

    2016-01-01

    Many people speak more than two languages. How do languages acquired earlier affect the learnability of additional languages? We show that linguistic distances between speakers' first (L1) and second (L2) languages and their third (L3) language play a role. Larger distances from the L1 to the L3 and from the L2 to the L3 correlate with lower…

  18. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  19. A minimally invasive vertebral hemangioma.

    PubMed

    Van den Broeck, S; Mailleux, P; Joris, J P

    2010-01-01

    We describe a very unusual vertebral hemangioma presenting with a mixture of aggressive-like pattern (epidural extension, T1 hyposignal) and quiescent, inactive lesion (fatty infiltration), in association with a spiculated calcified epidural component.This paper emphasizes that CT and/or MR findings are accurate enough to make formal assessment of vertebral hemangioma, preventing patient's anguish and moreover unnecessary treatment. Furthermore this attractive case proposes a poorly known characteristic of vertebral hemangioma which is usually encountered and described only in skull hemangiomas.

  20. The surgical treatment of vertebral deformities in achondroplastic dwarfism.

    PubMed

    Parisini, P; Greggi, T; Casadei, R; Martini, A; De Zerbi, M; Campanacci, L; Perozzi, M

    1996-01-01

    The authors analyzed 15 patients affected with achondroplastic dwarfism with vertebral deformity treated surgically between 1976 and 1994. The forms represented were: achondroplasia; diastrophic dwarfism; spondyloepiphyseal achondroplasia. The types of vertebral deformity were: kyphosis: 12 (angular: 6; regular: 6); scoliosis: 1; kyphoscoliosis: 2. Neurological symptoms were present in 10 patients. Treatment was as follows: laminectomy: 8; posterior fusion with instrumentation: 2; anterior fusion: 2; anterior fusion with laminectomy and posterior fusion: 3. There were postoperative neurological complications in 4 cases (27%). Fusion must be performed early in angular kyphosis in the adult in order to prevent neurological symptoms. Wide laminectomies do not require associated fusion because they do not cause late vertebral instability.

  1. Synaptic scaffold evolution generated components of vertebrate cognitive complexity

    PubMed Central

    Nithianantharajah, J.; Komiyama, N.H.; McKechanie, A.; Johnstone, M.; Blackwood, D. H.; St Clair, D.; Emes, R.D.; van de Lagemaat, L. N.; Saksida, L.M.; Bussey, T.J.; Grant, S.G.N.

    2014-01-01

    The origins and evolution of higher cognitive functions including complex forms of learning, attention and executive functions are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 My ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in all four Dlg paralogs show simple associative learning required Dlg4, while Dlg2 and Dlg3 diversified to play opposing roles in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed Dlg2’s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 My. Dlg family mutations underlie psychiatric disorders suggesting genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness. PMID:23201973

  2. Globally threatened vertebrates on islands with invasive species

    PubMed Central

    Spatz, Dena R.; Zilliacus, Kelly M.; Holmes, Nick D.; Butchart, Stuart H. M.; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R.; Croll, Donald A.

    2017-01-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth’s terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth’s highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss. PMID:29075662

  3. Globally threatened vertebrates on islands with invasive species.

    PubMed

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  4. Hormonally active phytochemicals and vertebrate evolution.

    PubMed

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  5. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@mgh.harvard.edu; Seco, Joao; Eaton, Bree R.

    Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac inmore » the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results: IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions: Advanced proton techniques can sufficiently reduce the dose to the

  6. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients.

    PubMed

    Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R; Simeone, F Joseph; Kooy, Hanne; Yock, Torunn I; Tarbell, Nancy J; DeLaney, Thomas F; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M

    2017-05-01

    At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (-35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Advanced proton techniques can sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children

  7. 3,5-Diiodo-L-Thyronine (3,5-T2) Exerts Thyromimetic Effects on Hypothalamus-Pituitary-Thyroid Axis, Body Composition, and Energy Metabolism in Male Diet-Induced Obese Mice

    PubMed Central

    Lietzow, Julika; Wohlgemuth, Franziska; Hoefig, Carolin S.; Wiedmer, Petra; Schweizer, Ulrich; Köhrle, Josef; Schürmann, Annette

    2015-01-01

    Effective and safe antiobesity drugs are still needed in face of the obesity pandemic worldwide. Recent interventions in rodents revealed 3,5-diiodo-L-thyronine (3,5-T2) as a metabolically active iodothyronine affecting energy and lipid metabolism without thyromimetic side effects typically associated with T3 administration. Accordingly, 3,5-T2 has been proposed as a potential hypolipidemic agent for treatment of obesity and hepatic steatosis. In contrast to other observations, our experiments revealed dose-dependent thyromimetic effects of 3,5-T2 akin to those of T3 in diet-induced obese male C57BL/6J mice. 3,5-T2 treatment exerted a negative feedback regulation on the hypothalamus-pituitary-thyroid axis, similar to T3. This is demonstrated by decreased expression of genes responsive to thyroid hormones (TH) in pituitary resulting in a suppressed thyroid function with lower T4 and T3 concentrations in serum and liver of 3,5-T2-treated mice. Analyses of hepatic TH target genes involved in lipid metabolism revealed T3-like changes in gene expression and increased type I-deiodinase activity after application of 3,5-T2 (2.5 μg/g body weight). Reduced hepatic triglyceride and serum cholesterol concentrations reflected enhanced lipid metabolism. Desired increased metabolic rate and reduction of different fat depots were, however, compromised by increased food intake preventing significant body weight loss. Moreover, enlarged heart weights indicate potential cardiac side effects of 3,5-T2 beyond hepatic thyromimetic actions. Altogether, the observed thyromimetic effects of 3,5-T2 in several mouse TH target tissues raise concern about indiscriminate administration of 3,5-T2 as powerful natural hormone for the treatment of hyperlipidemia and pandemic obesity. PMID:25322465

  8. 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice.

    PubMed

    Jonas, Wenke; Lietzow, Julika; Wohlgemuth, Franziska; Hoefig, Carolin S; Wiedmer, Petra; Schweizer, Ulrich; Köhrle, Josef; Schürmann, Annette

    2015-01-01

    Effective and safe antiobesity drugs are still needed in face of the obesity pandemic worldwide. Recent interventions in rodents revealed 3,5-diiodo-L-thyronine (3,5-T2) as a metabolically active iodothyronine affecting energy and lipid metabolism without thyromimetic side effects typically associated with T3 administration. Accordingly, 3,5-T2 has been proposed as a potential hypolipidemic agent for treatment of obesity and hepatic steatosis. In contrast to other observations, our experiments revealed dose-dependent thyromimetic effects of 3,5-T2 akin to those of T3 in diet-induced obese male C57BL/6J mice. 3,5-T2 treatment exerted a negative feedback regulation on the hypothalamus-pituitary-thyroid axis, similar to T3. This is demonstrated by decreased expression of genes responsive to thyroid hormones (TH) in pituitary resulting in a suppressed thyroid function with lower T4 and T3 concentrations in serum and liver of 3,5-T2-treated mice. Analyses of hepatic TH target genes involved in lipid metabolism revealed T3-like changes in gene expression and increased type I-deiodinase activity after application of 3,5-T2 (2.5 μg/g body weight). Reduced hepatic triglyceride and serum cholesterol concentrations reflected enhanced lipid metabolism. Desired increased metabolic rate and reduction of different fat depots were, however, compromised by increased food intake preventing significant body weight loss. Moreover, enlarged heart weights indicate potential cardiac side effects of 3,5-T2 beyond hepatic thyromimetic actions. Altogether, the observed thyromimetic effects of 3,5-T2 in several mouse TH target tissues raise concern about indiscriminate administration of 3,5-T2 as powerful natural hormone for the treatment of hyperlipidemia and pandemic obesity.

  9. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool

    PubMed Central

    van de Pol, Iris; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent

  10. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates.

    PubMed

    Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas

    2015-09-01

    Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.

  11. The biogeography of threatened insular iguanas and opportunities for invasive vertebrate management

    USGS Publications Warehouse

    Tershy, Bernie R.; Newton, Kelly M.; Spatz, Dena R.; Swinnerton, Kirsty; Iverson, John B.; Fisher, Robert N.; Harlow, Peter S.; Holmes, Nick D.; Croll, Donald A.; Iverson, J.B.; Grant, T. D.; Knapp, C. R.; Pasachnik, S. A.

    2016-01-01

    Iguanas are a particularly threatened group of reptiles, with 61% of species at risk of extinction. Primary threats to iguanas include habitat loss, direct and indirect impacts by invasive vertebrates, overexploitation, and human disturbance. As conspicuous, charismatic vertebrates, iguanas also represent excellent flagships for biodiversity conservation. To assist planning for invasive vertebrate management and thus benefit threatened iguana recovery, we identified all islands with known extant or extirpated populations of Critically Endangered and Endangered insular iguana taxa as recognized by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. For each island, we determined total area, sovereignty, the presence of invasive alien vertebrates, and human population. For the 23 taxa of threatened insular iguanas we identified 230 populations, of which iguanas were extant on 185 islands and extirpated from 45 islands. Twenty-one iguana taxa (91% of all threatened insular iguana taxa) occurred on at least one island with invasive vertebrates present; 16 taxa had 100% of their population(s) on islands with invasive vertebrates present. Rodents, cats, ungulates, and dogs were the most common invasive vertebrates. We discuss biosecurity, eradication, and control of invasive vertebrates to benefit iguana recovery: (1) on islands already free of invasive vertebrates; (2) on islands with high iguana endemicity; and (3) for species and subspecies with small total populations occurring across multiple small islands. Our analyses provide an important first step toward understanding how invasive vertebrate management can be planned effectively to benefit threatened insular iguanas.

  12. Analysis of the Factors Contributing to Vertebral Compression Fractures After Spine Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce-Fappiano, David; Elibe, Erinma; Schultz, Lonni

    Purpose: To determine our institutional vertebral compression fracture (VCF) rate after spine stereotactic radiosurgery (SRS) and determine contributory factors. Methods and Materials: Retrospective analysis from 2001 to 2013 at a single institution was performed. With institutional review board approval, electronic medical records of 1905 vertebral bodies from 791 patients who were treated with SRS for the management of primary or metastatic spinal lesions were reviewed. A total of 448 patients (1070 vertebral bodies) with adequate follow-up imaging studies available were analyzed. Doses ranging from 10 Gy in 1 fraction to 60 Gy in 5 fractions were delivered. Computed tomography and magnetic resonancemore » imaging were used to evaluate the primary endpoints of this study: development of a new VCF, progression of an existing VCF, and requirement of stabilization surgery after SRS. Results: A total of 127 VCFs (11.9%; 95% confidence interval [CI] 9.5%-14.2%) in 97 patients were potentially SRS induced: 46 (36%) were de novo, 44 (35%) VCFs progressed, and 37 (29%) required stabilization surgery after SRS. Our rate for radiologic VCF development/progression (excluding patients who underwent surgery) was 8.4%. Upon further exclusion of patients with hematologic malignancies the VCF rate was 7.6%. In the univariate analyses, females (hazard ratio [HR] 1.54, 95% CI 1.01-2.33, P=.04), prior VCF (HR 1.99, 95% CI 1.30-3.06, P=.001), primary hematologic malignancies (HR 2.68, 95% CI 1.68-4.28, P<.001), thoracic spine lesions (HR 1.46, 95% CI 1.02-2.10, P=.02), and lytic lesions had a significantly increased risk for VCF after SRS. On multivariate analyses, prior VCF and lesion type remained contributory. Conclusions: Single-fraction SRS doses of 16 to 18 Gy to the spine seem to be associated with a low rate of VCFs. To the best of our knowledge, this is the largest reported experience analyzing SRS-induced VCFs, with one of the lowest event rates reported.« less

  13. The role of physical activity in bone health: a new hypothesis to reduce risk of vertebral fracture.

    PubMed

    Sinaki, Mehrsheed

    2007-08-01

    Locomotion has always been a major criterion for human survival. Thus, it is no surprise that science supports the dependence of bone health on weight-bearing physical activities. The effect of physical activity on bone is site-specific. Determining how to perform osteogenic exercises, especially in individuals who have osteopenia or osteoporosis, without exceeding the biomechanical competence of bone always poses a dilemma and must occur under medical advice. This article presents the hypothesis that back exercises performed in a prone position, rather than a vertical position, may have a greater effect on decreasing the risk for vertebral fractures without resulting in compression fracture. The risk for vertebral fractures can be reduced through improvement in the horizontal trabecular connection of vertebral bodies.

  14. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women.

    PubMed

    Kim, Kyong-Chol; Chun, Hyejin; Lai, ChaoQiang; Parnell, Laurence D; Jang, Yangsoo; Lee, Jongho; Ordovas, Jose M

    2015-03-01

    Contrary to the traditional belief that obesity acts as a protective factor for bone, recent epidemiologic studies have shown that body fat might be a risk factor for osteoporosis and bone fracture. Accordingly, we evaluated the association between the phenotypes of osteoporosis or vertebral fracture and variants of obesity-related genes, peroxisome proliferator-activated receptor-gamma (PPARG), runt-related transcription factor 2 (RUNX2), leptin receptor (LEPR), and adiponectin (ADIPOQ). In total, 907 postmenopausal healthy women, aged 60-79 years, were included in this study. BMD and biomarkers of bone health and adiposity were measured. We genotyped for four single nucleotide polymorphisms (SNPs) from four genes (PPARG, RUNX2, LEPR, ADIPOQ). A general linear model for continuous dependent variables and a logistic regression model for categorical dependent variables were used to analyze the statistical differences among genotype groups. Compared with the TT subjects at rs7771980 in RUNX2, C-carrier (TC + CC) subjects had a lower vertebral fracture risk after adjusting for age, smoking, alcohol, total calorie intake, total energy expenditure, total calcium intake, total fat intake, weight, body fat. Odds ratio (OR) and 95% interval (CI) for the vertebral fracture risk was 0.55 (95% CI 0.32-0.94). After adjusting for multiple variables, the prevalence of vertebral fracture was highest in GG subjects at rs1501299 in ADIPOQ (p = 0.0473). A high calcium intake (>1000 mg/day) contributed to a high bone mineral density (BMD) in GT + TT subjects at rs1501299 in ADIPOQ (p for interaction = 0.0295). Even if the mechanisms between obesity-related genes and bone health are not fully established, the results of our study revealed the association of certain SNPs from obesity-related genes with BMD or vertebral fracture risk in postmenopausal Korean women.

  15. Are the determinants of vertebral endplate changes and severe disc degeneration in the lumbar spine the same? A magnetic resonance imaging study in middle-aged male workers.

    PubMed

    Kuisma, Mari; Karppinen, Jaro; Haapea, Marianne; Niinimäki, Jaakko; Ojala, Risto; Heliövaara, Markku; Korpelainen, Raija; Kaikkonen, Kaisu; Taimela, Simo; Natri, Antero; Tervonen, Osmo

    2008-04-16

    Modic changes are bone marrow lesions visible in magnetic resonance imaging (MRI), and they are assumed to be associated with symptomatic intervertebral disc disease, especially changes located at L5-S1. Only limited information exists about the determinants of Modic changes. The objective of this study was to evaluate the determinants of vertebral endplate (Modic) changes, and whether they are similar for Modic changes and severe disc degeneration focusing on L5-S1 level. 228 middle-aged male workers (159 train engineers and 69 sedentary factory workers) from northern Finland underwent sagittal T1- and T2-weighted MRI. Modic changes and disc degeneration were analyzed from the scans. The participants responded to a questionnaire including items of occupational history and lifestyle factors. Logistic regression analysis was used to evaluate the associations between selected determinants (age, lifetime exercise, weight-related factors, fat percentage, smoking, alcohol use, lifetime whole-body vibration) and Modic type I and II changes, and severe disc degeneration (= grade V on Pfirrmann's classification). The prevalences of the Modic changes and severe disc degeneration were similar in the occupational groups. Age was significantly associated with all degenerative changes. In the age-adjusted analyses, only weight-related determinants (BMI, waist circumference) were associated with type II changes. Exposure to whole-body vibration, besides age, was the only significant determinant for severe disc degeneration. In the multivariate model, BMI was associated with type II changes at L5-S1 (OR 2.75 per one SD = 3 unit increment in BMI), and vibration exposure with severe disc degeneration at L5-S1 (OR 1.08 per one SD = 11-year increment in vibration exposure). Besides age, weight-related factors seem important in the pathogenesis of Modic changes, whereas whole-body vibration was the only significant determinant of severe disc degeneration.

  16. Are the determinants of vertebral endplate changes and severe disc degeneration in the lumbar spine the same? A magnetic resonance imaging study in middle-aged male workers

    PubMed Central

    Kuisma, Mari; Karppinen, Jaro; Haapea, Marianne; Niinimäki, Jaakko; Ojala, Risto; Heliövaara, Markku; Korpelainen, Raija; Kaikkonen, Kaisu; Taimela, Simo; Natri, Antero; Tervonen, Osmo

    2008-01-01

    Background Modic changes are bone marrow lesions visible in magnetic resonance imaging (MRI), and they are assumed to be associated with symptomatic intervertebral disc disease, especially changes located at L5-S1. Only limited information exists about the determinants of Modic changes. The objective of this study was to evaluate the determinants of vertebral endplate (Modic) changes, and whether they are similar for Modic changes and severe disc degeneration focusing on L5-S1 level. Methods 228 middle-aged male workers (159 train engineers and 69 sedentary factory workers) from northern Finland underwent sagittal T1- and T2-weighted MRI. Modic changes and disc degeneration were analyzed from the scans. The participants responded to a questionnaire including items of occupational history and lifestyle factors. Logistic regression analysis was used to evaluate the associations between selected determinants (age, lifetime exercise, weight-related factors, fat percentage, smoking, alcohol use, lifetime whole-body vibration) and Modic type I and II changes, and severe disc degeneration (= grade V on Pfirrmann's classification). Results The prevalences of the Modic changes and severe disc degeneration were similar in the occupational groups. Age was significantly associated with all degenerative changes. In the age-adjusted analyses, only weight-related determinants (BMI, waist circumference) were associated with type II changes. Exposure to whole-body vibration, besides age, was the only significant determinant for severe disc degeneration. In the multivariate model, BMI was associated with type II changes at L5-S1 (OR 2.75 per one SD = 3 unit increment in BMI), and vibration exposure with severe disc degeneration at L5-S1 (OR 1.08 per one SD = 11-year increment in vibration exposure). Conclusion Besides age, weight-related factors seem important in the pathogenesis of Modic changes, whereas whole-body vibration was the only significant determinant of severe disc

  17. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    PubMed

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  18. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis

    PubMed Central

    2016-01-01

    Background Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. Methods We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. Results The base case considered each of

  19. Hyperconcavity of the lumbar vertebral endplates in the elite football lineman.

    PubMed

    Moorman, Claude T; Johnson, David C; Pavlov, Helene; Barnes, Ronnie; Warren, Russell F; Speer, Kevin P; Guettler, Joseph H

    2004-09-01

    Hyperconcavity of the vertebral endplates is a previously unreported radiologic phenomenon. To analyze hyperconcavity of the vertebral endplates with expansion of the disk space in pre-National Football League lineman and to determine its clinical significance. Descriptive anatomical study. Over a 2-year period (1992-1993), 266 elite football linemen were evaluated at the National Football League scouting combine held in Indianapolis, Indiana. Evaluation focused on the lumbosacral spine and included history, physical examination, and lateral radiographs. Measurements were taken of all the vertebral endplate defects of involved vertebrae and compared with an age-matched control group of 110 patients. The analyzed data revealed the following: (1) hyperconcavity of the vertebral endplates appeared as a distinct entity in a high percentage of pre-National Football League lineman (33%) compared with age-matched controls (8%), (2) there was a trend toward a lower incidence of lumbosacral spine symptoms in those players who displayed hyperconcavity of the vertebral endplates (16%) versus those who did not (25%), and (3) when hyperconcavity of the vertebral endplates was present, all 5 lumbosacral disk spaces were commonly affected. Hyperconcavity of the vertebral endplates and hypertrophy of the disk space are likely adaptive changes occurring over time in response to the repetitive high loading and axial stress experienced in football line play.

  20. Conserved form and function of the germinal epithelium through 500 million years of vertebrate evolution.

    PubMed

    Grier, Harry J; Uribe, Mari Carmen; Lo Nostro, Fabiana L; Mims, Steven D; Parenti, Lynne R

    2016-08-01

    The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates

  1. Role of lipids in the transmission of the infective stage (L3) of Strongylus vulgaris (Nematoda: Strongylida).

    PubMed

    Medica, D L; Sukhdeo, M V

    1997-10-01

    Infective larvae (L3) of Strongylus vulgaris have limited energy stores for host finding and for infection. For transmission to occur, the larvae must have sufficient energy to (a) migrate onto grass, where they are ingested by their equine host (host finding), and (b) penetrate into the host gut. This study is designed to test the hypothesis that L3 larvae of S. vulgaris partition their energy stores between locomotory activity (used in host finding) and infection activity (penetration). Chronic locomotory activity was stimulated by incubating S. vulgaris L3 larvae at a constant temperature (38 C). After 8 days of treatment, locomotory activity ceased (exhaustion). Exhausted L3 larvae had significantly decreased total lipid when compared to controls (P < 0.05), but there was no decrease in levels of protein of carbohydrate. Lipids of S. vulgaris L3 larvae are comprised of 9 fatty acids, some of which are depleted in exhausted worms (14:0, 14:1, 16:0, 16:1, 18:1, 18:2), whereas others (18:0, 20:4, 24:0) remain unchanged. These data suggest that specific fatty acids provide the energy source for locomotory activity in S. vulgaris. Exhausted L3 larvae were also less able to penetrate host cecal tissue in in vitro penetration assays when compared to controls (P < 0.05), suggesting that the depletion of individual fatty acids during locomotory activity also reduced infectivity. These data do not support the hypothesis that S. vulgaris L3 larvae partition their energy stores between host-finding and infection activities. A comparison of lipid storage profiles in the L3 larvae of 4 nematode species with similar transmission strategies (S. vulgaris, Strongylus edentatus, Strongylus equinus, and Haemonchus contortus) revealed similarities in the fatty acid composition of these species. These data suggest a relationship between transmission patterns and energy storage strategies in the L3 larvae of nematode parasites of vertebrates.

  2. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.

    PubMed

    Holmes, Roger S

    2015-06-05

    Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Body temperatures of selected amphibian and reptile species.

    PubMed

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  4. Clinical anthropometrics and body composition from 3D whole-body surface scans

    PubMed Central

    Ng, BK; Hinton, BJ; Fan, B; Kanaya, AM; Shepherd, JA

    2017-01-01

    BACKGROUND/OBJECTIVES Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). SUBJECTS/METHODS Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. RESULTS 3D body scan measurements correlated strongly to criterion methods: waist circumference R2 = 0.95, hip circumference R2 = 0.92, surface area R2 = 0.97 and volume R2 = 0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R2 = 0.95, root mean square error (RMSE) = 2.4 kg; fat-free mass R2 = 0.96, RMSE = 2.2 kg) and arms, legs and trunk (R2 = 0.79–0.94, RMSE = 0.5–1.7 kg). Visceral fat prediction showed moderate agreement (R2 = 0.75, RMSE = 0.11 kg). CONCLUSIONS 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders. PMID:27329614

  5. Clinical anthropometrics and body composition from 3D whole-body surface scans.

    PubMed

    Ng, B K; Hinton, B J; Fan, B; Kanaya, A M; Shepherd, J A

    2016-11-01

    Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. 3D body scan measurements correlated strongly to criterion methods: waist circumference R 2 =0.95, hip circumference R 2 =0.92, surface area R 2 =0.97 and volume R 2 =0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R 2 =0.95, root mean square error (RMSE)=2.4 kg; fat-free mass R 2 =0.96, RMSE=2.2 kg) and arms, legs and trunk (R 2 =0.79-0.94, RMSE=0.5-1.7 kg). Visceral fat prediction showed moderate agreement (R 2 =0.75, RMSE=0.11 kg). 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders.

  6. The vertebral remains of the late Miocene great ape Hispanopithecus laietanus from Can Llobateres 2 (Vallès-Penedès Basin, NE Iberian Peninsula).

    PubMed

    Susanna, Ivette; Alba, David M; Almécija, Sergio; Moyà-Solà, Salvador

    2014-08-01

    Here we describe the vertebral fragments from the partial skeleton IPS18800 of the fossil great ape Hispanopithecus laietanus (Hominidae: Dryopithecinae) from the late Miocene (9.6 Ma) of Can Llobateres 2 (Vallès-Penedès Basin, Catalonia, Spain). The eight specimens (IPS18800.5-IPS18800.12) include a fragment of thoracic vertebral body, three partial bodies and four neural arch fragments of lumbar vertebrae. Despite the retention of primitive features (moderately long lumbar vertebral bodies with slightly concave ventrolateral sides), these specimens display a suite of derived, modern hominoid-like features: thoracic vertebrae with dorsally-situated costal foveae; lumbar vertebrae with non-ventrally-oriented transverse processes originating from a robust pedicle, caudally-long laminae with caudally-oriented spinous process, elliptical end-plates, and moderately stout bodies reduced in length and with no ventral keel. These features, functionally related to orthograde behaviors, are indicative of a broad and shallow thorax with a moderately short and stiff lumbar region in Hispanopithecus. Despite its large body mass (ca. 39-40 kg), its vertebral morphology is more comparable to that of hylobatids and Ateles than to extant great apes. This is confirmed by our morphometric analyses, also indicating that Hispanopithecus most closely resembles Pierolapithecus and Morotopithecus among Miocene apes, whereas Proconsul and Nacholapithecus resemble pronograde monkeys. Only in a few features (craniocaudally short and transversely wide pedicles, transverse processes situated on the pedicle, and slight ventral wedging), Hispanopithecus is more derived towards the extant great ape condition than other Miocene apes. Overall, the vertebral morphology of Hispanopithecus supports previous inferences of an orthograde body plan with suspensory and climbing adaptations. However, given similarities with Ateles and the retention of a longer and more flexible spine than in extant

  7. Association of QCT Bone Mineral Density and Bone Structure With Vertebral Fractures in Patients With Multiple Myeloma.

    PubMed

    Borggrefe, Jan; Giravent, Sarah; Thomsen, Felix; Peña, Jaime; Campbell, Graeme; Wulff, Asmus; Günther, Andreas; Heller, Martin; Glüer, Claus C

    2015-07-01

    Computed tomography (CT) is used for staging osteolytic lesions and detecting fractures in patients with multiple myeloma (MM). In the OsteoLysis of Metastases and Plasmacell-infiltration Computed Tomography 2 study (OLyMP-CT) study we investigated whether patients with and without vertebral fractures show differences in bone mineral density (BMD) or microstructure that could be used to identify patients at risk for fracture. We evaluated whole-body CT scans in a group of 104 MM patients without visible osteolytic lesions using an underlying lightweight calibration phantom (Image Analysis Inc., Columbia, KY, USA). QCT software (StructuralInsight) was used for the assessment of BMD and bone structure of the T11 or T12 vertebral body. Age-adjusted standardized odds ratios (sORs) per SD change were derived from logistic regression analyses, and areas under the receiver operating characteristics (ROC) curve (AUCs) analyses were calculated. Forty-six of the 104 patients had prevalent vertebral fractures (24/60 men, 22/44 women). Patients with fractures were not significantly older than patients without fractures (mean ± SD, 64 ± 9.2 versus 62 ± 12.3 years; p = 0.4). Trabecular BMD in patients with fractures versus without fractures was 169 ± 41 versus 192 ± 51 mg/cc (AUC = 0.62 ± 0.06, sOR = 1.6 [1.1 to 2.5], p = 0.02). Microstructural variables achieved optimal discriminatory power at bone thresholds of 150 mg/cc. Best fracture discrimination for single microstructural variables was observed for trabecular separation (Tb.Sp) (AUC = 0.72 ± 0.05, sOR = 2.4 (1.5 to 3.9), p < 0.0001). In multivariate models AUCs improved to 0.77 ± 0.05 for BMD and Tb.Sp, and 0.79 ± 0.05 for Tb.Sp and trabecular thickness (Tb.Th). Compared to BMD values, these improvements of AUC values were statistically significant (p < 0.0001). In MM patients, QCT-based analyses of bone structure derived from routine CT

  8. A proposed radiographic classification scheme for congenital thoracic vertebral malformations in brachycephalic "screw-tailed" dog breeds.

    PubMed

    Gutierrez-Quintana, Rodrigo; Guevar, Julien; Stalin, Catherine; Faller, Kiterie; Yeamans, Carmen; Penderis, Jacques

    2014-01-01

    Congenital vertebral malformations are common in brachycephalic "screw-tailed" dog breeds such as French bulldogs, English bulldogs, Boston terriers, and pugs. The aim of this retrospective study was to determine whether a radiographic classification scheme developed for use in humans would be feasible for use in these dog breeds. Inclusion criteria were hospital admission between September 2009 and April 2013, neurologic examination findings available, diagnostic quality lateral and ventro-dorsal digital radiographs of the thoracic vertebral column, and at least one congenital vertebral malformation. Radiographs were retrieved and interpreted by two observers who were unaware of neurologic status. Vertebral malformations were classified based on a classification scheme modified from a previous human study and a consensus of both observers. Twenty-eight dogs met inclusion criteria (12 with neurologic deficits, 16 with no neurologic deficits). Congenital vertebral malformations affected 85/362 (23.5%) of thoracic vertebrae. Vertebral body formation defects were the most common (butterfly vertebrae 6.6%, ventral wedge-shaped vertebrae 5.5%, dorsal hemivertebrae 0.8%, and dorso-lateral hemivertebrae 0.5%). No lateral hemivertebrae or lateral wedge-shaped vertebrae were identified. The T7 vertebra was the most commonly affected (11/28 dogs), followed by T8 (8/28 dogs) and T12 (8/28 dogs). The number and type of vertebral malformations differed between groups (P = 0.01). Based on MRI, dorsal, and dorso-lateral hemivertebrae were the cause of spinal cord compression in 5/12 (41.6%) of dogs with neurologic deficits. Findings indicated that a modified human radiographic classification system of vertebral malformations is feasible for use in future studies of brachycephalic "screw-tailed" dogs. © 2014 American College of Veterinary Radiology.

  9. [Minimally invasive cement augmentation of osteoporotic vertebral compression fractures with the new radiofrequency kyphoplasty].

    PubMed

    Mattyasovszky, S G; Kurth, A A; Drees, P; Gemidji, J; Thomczyk, S; Kafchitsas, K

    2014-10-01

    Minimally invasive cement augmentation of painful osteoporotic vertebral compression fractures in elderly patients. Painful osteoporotic vertebral compression fractures in elderly patients (> 65 years of age) after conservative therapy failure. Painful aggressive primary tumors of the spine or osteolytic metastases to the spine with high risk of vertebral fracture in the palliative care setting. General contraindications for surgical interventions. Local soft-tissue infection. Osteomyelitis, discitis or systemic infection. Coagulopathy refractory to treatment or bleeding diathesis. Asymptomatic vertebral compression fractures. Burst of the posterior vertebral column with high degree of spinal canal stenosis. Primary or metastatic spinal tumors with epidural growth. Prone position on a radiolucent operating table. Fluoroscopic localization of the fractured vertebra using two conventional C-arm devices (anteroposterior and lateral views). Fluoroscopic localization of the fractured vertebra using two conventional C-arm devices (anteroposterior and lateral views). An introducer is inserted through a small skin incision into the pedicle under fluoroscopic guidance. To create a site- and size-specific three-dimensional cavity in the center of the fractured vertebra, the navigational VertecoR™ MidLine Osteotome was inserted through the correctly sited introducer and guided fluoroscopically. As the MidLine Osteotome allows angulation of the tip up to 90° by rotating the handle, a cavity over the midline of the vertebral body can mainly be created through one pedicle. The radiofrequency activated cohesive ultrahigh viscosity PMMA cement (ER(2) bone cement) is injected stepwise on demand by remote control under continuous pressure from the hydraulic assembly into the vertebral body. Bed rest for 6 h postoperatively in supine position. Early mobilization without a corset on the day of surgery. Specific back and abdominal exercises that strengthen the back and abdominal

  10. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  11. The posterior skeletal thorax: rib-vertebral angle and axial vertebral rotation asymmetries in adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Aujla, R K; Freeman, B J C; Dangerfield, P H; Cole, A A; Kirby, A S; Polak, F J; Pratt, R K; Moulton, A

    2008-01-01

    The deformity of the ribcage in thoracic adolescent idiopathic scoliosis (AIS) is viewed by most as being secondary to the spinal deformity, though a few consider it primary or involved in curve aggravation. Those who consider it primary ascribe pathogenetic significance to rib-vertebra angle asymmetry. In thoracic AIS, supra-apical rib-vertebra angle differences (RVADs) are reported to be associated with the severity of the Cobb angle. In this paper we attempt to evaluate rib and spinal pathomechanisms in thoracic and thnoracolumbar AIS using spinal radiographs and real-time ultrasound. On the radiographs by costo-vertebral angle asymmetries (rib-vertebral angle differences RVADs, and rib-spinal angle differences RSADs), apical vertebral rotation (AV) and apical vertebral translation (AVT) were measured; and by ultrasound, spine-rib rotation differences (SRRDs) were estimated. RVADs are largest at two and three vertebral levels above the apex where they correlate significantly and positively with Cobb angle and AVT but not AVR. In right thoracic AIS, the cause(s) of the RVA asymmetries is unknown: it may result from trunk muscle imbalance, or from ribs adjusting passively within the constraint of the fourth column of the spine to increasing spinal curvature from whatever cause. Several possible mechanisms may drive axial vertebral rotation including, biplanar spinal asymmetry, relative anterior spinal overgrowth, dorsal shear forces in the presence of normal vertebral axial rotation, asymmetry of rib linear growth, trunk muscle imbalance causing rib-vertebra angle asymmetry weakening the spinal rotation-defending system of bipedal gait, and CNS mechanisms.

  12. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.

    PubMed

    Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng

    2007-04-20

    This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.

  13. Oral l-tyrosine supplementation augments the vasoconstriction response to whole-body cooling in older adults.

    PubMed

    Lang, James A; Smaller, Kevin A

    2017-07-01

    What is the central question of this study? Ageing is associated with altered sympathetic responses to stress, which are explained in part by reduced noradrenergic function. The impact of supplementation with oral l-tyrosine, the amino acid precursor for catecholamine synthesis, on the effector responses to cold and exercise stress has yet to be examined. What is the main finding and its importance? Oral l-tyrosine ingestion augmented the sympathetically mediated vasoconstriction response to cold exposure in aged skin. This suggests that l-tyrosine supplementation might improve thermoregulatory function in older adults. l-Tyrosine is the primary substrate for noradrenaline biosynthesis within sympathetic axon terminals. In stressful conditions requiring increased catecholamine production, the axonal l-tyrosine concentration may limit the full expression of the sympathetic effector response and this may be particularly evident in older adults. We hypothesize that oral l-tyrosine supplementation will increase the sympathetic response to whole-body cooling and muscle metaboreflex activation. In a randomized, double-blind design, 11 young (Y = 24 ± 1 years) and 11 older participants (O = 68 ± 4 years) ingested either 150 mg kg -1 of l-tyrosine or placebo before commencing 30 min of whole-body cooling to induce a gradual decline in skin temperature from 34 to 30.5°C. Laser Doppler flux (LDF) was measured at the ventral forearm, and cutaneous vascular conductance (CVC) was calculated as CVC = LDF/mean arterial pressure and expressed as a percentage change from baseline (%ΔCVC). Two minutes of static hand-grip exercise (35% maximal voluntary contraction) followed by 3 min of postexercise ischaemia were implemented before and toward the end of the cooling bout. l-Tyrosine supplementation did not affect blood pressure or heart rate responses to exercise or postexercise ischaemia. However, the blunted vasoconstriction response to whole-body cooling in

  14. Light adaptation and the evolution of vertebrate photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  15. Median sternotomy and ventral stabilisation using pins and polymethylmethacrylate for a comminuted T5 vertebral fracture in a Miniature Schnauzer.

    PubMed

    Guiot, L P; Allman, D A

    2011-01-01

    A 2.9 kg Miniature Schnauzer was referred to our clinic, the Emergency & Critical Care Medicine Service at the Michigan State University Veterinary Teaching Hospital, following a dog fight. Physical examination findings upon admission included multiple thoracic wounds, absence of hindlimb deep pain, and marked Schiff-Sherrington syndrome. Computed tomography imaging revealed thoracic wall penetration and a comminuted T5 vertebral fracture. Thoracic exploration and thoracic wall repair were performed through a median sternotomy. The vertebral fracture was exposed and stabilised intra-thoracically through the same approach using pins and polymethylmethacrylate. The pins were placed percutaneously into the vertebral bodies of the adjacent vertebrae. Recovery was uncomplicated and fracture healing was documented eight weeks postoperatively. Spinal trauma secondary to dog fights is relatively common. The presence of concurrent penetrating thoracic injury negatively affects prognosis and necessitates thoracic exploration as soon as feasible. The approach should allow complete thoracic exploration to repair parietal and visceral damage, thus indicating the need for median sternotomy rather than an intercostal approach. The present case report suggested that median sternotomy can be used to safely apply stabilisation devices for the treatment of concurrent spinal trauma. Direct visualisation of the vertebral bodies permitted optimal implant anchorage as compared to potentially more hazardous techniques such as dorsal pinning.

  16. L-3 Com AVISYS civil aviation self-protection system

    NASA Astrophysics Data System (ADS)

    Carey, Jim

    2006-05-01

    In early 2004, L-3 Com AVISYS Corporation (hereinafter referred to as L-3 AVISYS or AVISYS) completed a contract for the integration and deployment of an advanced Infrared Countermeasures self-protection suite for a Head of State Airbus A340 aircraft. This initial L-3 AVISYS IRCM Suite was named WIPPS (Widebody Integrated Platform Protection System). The A340 WIPPS installation provisions were FAA certified with the initial deployment of the modified aircraft. WIPPS is unique in that it utilizes a dual integrated missile warning subsystem to produce a robust, multi-spectral, ultra-low false alarm rate threat warning capability. WIPPS utilizes the Thales MWS-20 Pulsed Doppler Radar Active MWS and the EADS AN/AAR-60 Ultraviolet Passive MWS. These MWS subsystems are integrated through an L-3 AVISYS Electronic Warfare Control Set (EWCS). The EWCS also integrates the WIPPS MWS threat warning information with the A340 flight computer data to optimize ALE-47 Countermeasure Dispensing System IR decoy dispensing commands, program selection and timing. WIPPS utilizes standard and advanced IR Decoys produced by ARMTEC Defense and Alloy Surfaces. WIPPS demonstrated that when IR decoy dispensing is controlled by threat range and time-to-go information provided by an Active MWS, unsurpassed self protection levels are achievable. Recognizing the need for high volume civil aviation protection, L-3 AVISYS configured a variant of WIPPS optimized for commercial airline reliability requirements, safety requirements, supportability and most importantly, affordability. L-3 AVISYS refers to this IRCM suite as CAPS (Commercial Airliner Protection System). CAPS has been configured for applications to all civil aircraft ranging from the small Regional Jets to the largest Wide-bodies. This presentation and paper will provide an overview of the initial WIPPS IRCM Suite and the important factors that were considered in defining the CAPS configuration.

  17. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  18. Solitary vertebral metastasis of primary clear cell carcinoma of the liver: a case report and review of literature

    PubMed Central

    Maharajan, Karthikeyan; Tham, Ivan; Thamboo, Thomas Paulraj; Wong, Alvin; Khan, Irfan Sagir; Kumar, Naresh

    2017-01-01

    Primary clear cell carcinoma of liver (PCCCL) is an uncommon variant of primary hepatocellular carcinoma. Though the literature describes a better prognosis in relation to the proportion of clear cells in the tumour when compared to the other variants, there is no general consensus in the management due to its rarity and unclear clinicopathological and prognostic factors. There is dearth of evidence with regard to the metastasizing nature of PCCCL and its management. In addition, the management of recurrent spinal tumours both primary and metastatic is not clear as the available evidence is mostly based on case reports. We describe an unusual presentation of PCCCL with solitary spinal metastasis and further complicated by tumour recurrence in a 71-year-old male. Such presentation has never been described before. He presented with low back pain and incomplete neurological deficits involving both lower limbs. On detailed evaluation, he was found to have a solitary metastasis at L3 vertebra secondary to PCCCL. He underwent radical excision of tumour and reconstruction for the solitary metastasis at L3 vertebral body and trans arterial chemo embolisation (TACE) for the hepatic lesion. Pt was asymptomatic until 9 months post operatively when he developed tumour recurrence at L3 vertebra. Patient subsequently underwent 2 stage palliative surgery followed by radiotherapy and chemotherapy. At his latest follow-up (1 year), the patient’s overall general condition has improved with residual neurological deficits in the lower limb. PCCCL is a rare type of hepatocellular carcinoma which can present as “solitary metastasis” to the spine. Although the literature suggests a good prognosis for this histological type, this case did not have a good outcome. In addition to providing information for the management of similar cases in the future, this case report highlights that every patient has to be managed on a case-by-case basis. PMID:28744515

  19. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  20. Nanotechnology for treating osteoporotic vertebral fractures

    PubMed Central

    Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei

    2015-01-01

    Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746

  1. Vertebral architecture in the earliest stem tetrapods.

    PubMed

    Pierce, Stephanie E; Ahlberg, Per E; Hutchinson, John R; Molnar, Julia L; Sanchez, Sophie; Tafforeau, Paul; Clack, Jennifer A

    2013-02-14

    The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.

  2. A novel zf-MYND protein, CHB-3, mediates guanylyl cyclase localization to sensory cilia and controls body size of Caenorhabditis elegans.

    PubMed

    Fujiwara, Manabi; Teramoto, Takayuki; Ishihara, Takeshi; Ohshima, Yasumi; McIntire, Steven L

    2010-11-24

    Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species.

  3. Alternative approaches for vertebrate ecotoxicity tests in the ...

    EPA Pesticide Factsheets

    The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments (ERA) has even been banned, and in other situations the numbers of organisms tested has been dramatically reduced, or the severity of the procedure refined. However, there is still a long way to go to achieve replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is not just based on ethical considerations but also to reduce the cost of performing vertebrate ecotoxicity tests and in some cases to provide better information aimed at improving ERAs. The present focus paper provides an overview of the considerable advances that have been made towards alternative approaches for ecotoxicity assessments over the last few decades. The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organi

  4. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.

    PubMed

    Nakatani, Yoichiro; Takeda, Hiroyuki; Kohara, Yuji; Morishita, Shinichi

    2007-09-01

    Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.

  5. Comparison of high-viscosity cement vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures.

    PubMed

    Wang, Cheng-hu; Ma, Jin-zhu; Zhang, Chuan-chen; Nie, Lin

    2015-01-01

    Percutaneous vertebroplasty is a widely used vertebral augmentation procedure for treating osteoporotic vertebral compression fractures (OVCFs). But high cement leakage rate caused by a low-viscosity cement and high injection pressure has limited its general use. Balloon kyphoplasty (BKP) and high-viscosity cement vertebroplasty (HVCV) are 2 modifications of vertebroplasty designed to decrease cement leakage. To assess the safety and efficacy of HVCV compared with BKP. A prospective cohort study. Department of Spine Surgery, an affiliated hospital of a medical university. One hundred seven patients suffering from painful OVCFs were randomly assigned into HVCV or BKP groups. Visual Analog Scale (VAS), Oswestry Disability Index (ODI), cement leakage, and vertebral height restoration were evaluated. All occurring complications and injected cement volumes were recorded. The follow-up time was one year. VAS and ODI scores improved in both groups, and did not differ significantly between the 2 groups. More cement was used in the BKP group than in HVCV group (4.22 vs. 3.31 mL, P < 0.0001). The incidence of cement leakage in the HVCV group was lower than that of the BKP group (13.24% vs 30.56%, P < 0.05). No symptomatic cement leakages occurred in the HVCV group. In the BKP group, one patient experienced discogenic back pain related to a disc leak, and another patient had asymptomatic cement emboli in the lung related to venous leakage. The mean compression rate before the procedure was 29.98% in the HVCV group and 28.67% in the BKP group (P = 0.94). The vertebral height was improved significantly and maintained at one-year follow-up in both groups. BKP was more effective in vertebral height restoration than HVCV (44.87% vs. 23.93%, P < 0.0001). There was one case of a new adjacent vertebral fracture in the HVCV group (2%), and 4 cases of new nonadjacent vertebral fractures in the BKP group (7.84%) (P = 0.18). A single-center and relatively small-sample size study. HVCV

  6. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development.

    PubMed

    Furumoto, T A; Miura, N; Akasaka, T; Mizutani-Koseki, Y; Sudo, H; Fukuda, K; Maekawa, M; Yuasa, S; Fu, Y; Moriya, H; Taniguchi, M; Imai, K; Dahl, E; Balling, R; Pavlova, M; Gossler, A; Koseki, H

    1999-06-01

    During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells. Copyright 1999 Academic Press.

  7. Does a 3-month multidisciplinary intervention improve pain, body composition and physical fitness in women with fibromyalgia?

    PubMed

    Carbonell-Baeza, Ana; Aparicio, Virginia A; Ortega, Francisco B; Cuevas, Ana M; Alvarez, Inmaculada C; Ruiz, Jonatan R; Delgado-Fernandez, Manuel

    2011-12-01

    To determine the effects of a 3-month multidisciplinary intervention on pain (primary outcome), body composition and physical fitness (secondary outcomes) in women with fibromyalgia (FM). 75 women with FM were allocated to a low-moderate intensity 3-month (three times/week) multidisciplinary (pool, land-based and psychological sessions) programme (n=33) or to a usual care group (n=32). The outcome variables were pain threshold, body composition (body mass index and estimated body fat percentage) and physical fitness (30 s chair stand, handgrip strength, chair sit and reach, back scratch, blind flamingo, 8 feet up and go and 6 min walk test). The authors observed a significant interaction effect (group*time) for the left (L) and right (R) side of the anterior cervical (p<0.001) and the lateral epicondyle R (p=0.001) tender point. Post hoc analysis revealed that pain threshold increased in the intervention group (positive) in the anterior cervical R (p<0.001) and L (p=0.012), and in the lateral epicondyle R (p=0.010), whereas it decreased (negative) in the anterior cervical R (p<0.001) and L (p=0.002) in the usual care group. There was also a significant interaction effect for chair sit and reach. Post hoc analysis revealed improvement in the intervention group (p=0.002). No significant improvement attributed to the training was observed in the rest of physical fitness or body composition variables. A 3-month multidisciplinary intervention three times/week had a positive effect on pain threshold in several tender points in women with FM. Though no overall improvements were observed in physical fitness or body composition, the intervention had positive effects on lower-body flexibility.

  8. Vertebral formula in red-crowned crane (Grus japonensis) and hooded crane (Grus monacha).

    PubMed

    Hiraga, Takeo; Sakamoto, Haruka; Nishikawa, Sayaka; Muneuchi, Ippei; Ueda, Hiromi; Inoue, Masako; Shimura, Ryoji; Uebayashi, Akiko; Yasuda, Nobuhiro; Momose, Kunikazu; Masatomi, Hiroyuki; Teraoka, Hiroki

    2014-04-01

    Red-crowned cranes (Grus japonensis) are distributed separately in the east Eurasian Continent (continental population) and in Hokkaido, Japan (island population). The island population is sedentary in eastern Hokkaido and has increased from a very small number of cranes to over 1,300, thus giving rise to the problem of poor genetic diversity. While, Hooded cranes (Grus monacha), which migrate from the east Eurasian Continent and winter mainly in Izumi, Kagoshima Prefecture, Japan, are about eight-time larger than the island population of Red-crowned cranes. We collected whole bodies of these two species, found dead or moribund in eastern Hokkaido and in Izumi, and observed skeletons with focus on vertebral formula. Numbers of cervical vertebrae (Cs), thoracic vertebrae (Ts), vertebrae composing the synsacrum (Sa) and free coccygeal vertebrae (free Cos) in 22 Red-crowned cranes were 17 or 18, 9-11, 13 or 14 and 7 or 8, respectively. Total number of vertebrae was 47, 48 or 49, and the vertebral formula was divided into three types including 9 sub-types. Numbers of Cs, Ts, vertebrae composing the Sa and free Cos in 25 Hooded cranes were 17 or 18, 9 or 10, 12-14 and 6-8, respectively. Total number of vertebrae was 46, 47, 48 or 49, and the vertebral formula was divided into four types including 14 sub-types. Our findings clearly showed various numerical vertebral patterns in both crane species; however, these variations in the vertebral formula may be unrelated to the genetic diversity.

  9. Vertebral Formula in Red-Crowned Crane (Grus japonensis) and Hooded Crane (Grus monacha)

    PubMed Central

    HIRAGA, Takeo; SAKAMOTO, Haruka; NISHIKAWA, Sayaka; MUNEUCHI, Ippei; UEDA, Hiromi; INOUE, Masako; SHIMURA, Ryoji; UEBAYASHI, Akiko; YASUDA, Nobuhiro; MOMOSE, Kunikazu; MASATOMI, Hiroyuki; TERAOKA, Hiroki

    2013-01-01

    ABSTRACT Red-crowned cranes (Grus japonensis) are distributed separately in the east Eurasian Continent (continental population) and in Hokkaido, Japan (island population). The island population is sedentary in eastern Hokkaido and has increased from a very small number of cranes to over 1,300, thus giving rise to the problem of poor genetic diversity. While, Hooded cranes (Grus monacha), which migrate from the east Eurasian Continent and winter mainly in Izumi, Kagoshima Prefecture, Japan, are about eight-time larger than the island population of Red-crowned cranes. We collected whole bodies of these two species, found dead or moribund in eastern Hokkaido and in Izumi, and observed skeletons with focus on vertebral formula. Numbers of cervical vertebrae (Cs), thoracic vertebrae (Ts), vertebrae composing the synsacrum (Sa) and free coccygeal vertebrae (free Cos) in 22 Red-crowned cranes were 17 or 18, 9–11, 13 or 14 and 7 or 8, respectively. Total number of vertebrae was 47, 48 or 49, and the vertebral formula was divided into three types including 9 sub-types. Numbers of Cs, Ts, vertebrae composing the Sa and free Cos in 25 Hooded cranes were 17 or 18, 9 or 10, 12–14 and 6–8, respectively. Total number of vertebrae was 46, 47, 48 or 49, and the vertebral formula was divided into four types including 14 sub-types. Our findings clearly showed various numerical vertebral patterns in both crane species; however, these variations in the vertebral formula may be unrelated to the genetic diversity. PMID:24334828

  10. Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes.

    PubMed

    Shu, Chang; Wang, Shanchen; Xu, Tianjun

    2015-05-01

    Dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN/CD209) and liver/lymph node-specific ICAM-grabbing non-integrin (L-SIGN/CD299) which are homologues of DC-SIGN are important members in C-type lectin receptors family as key molecules to recognize and eliminate pathogens in the innate immune system. DC-SIGN and L-SIGN have become hot topics in recent studies which both served as cell adhesion and phagocytic pathogen recognition receptors in mammals. However, there have been almost no studies of DC-SIGN and L-SIGN structure and characters in fish, only DC-SIGN in the zebrafish had been studied. In our study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) DC-SIGN (mmDC-SIGN) and L-SIGN (mmL-SIGN) genes. The sequence analysis results showed that mmDC-SIGN and mmL-SIGN have the same domains with other vertebrates except primates, and share some conserved motifs in CRD among all the vertebrates which play a crucial role in interacting with Ca(2+) and for recognizing mannose-containing motifs. Gene synteny of DC-SIGN and L-SIGN were analyzed for the first time and gene synteny of L-SIGN was conserved among the five fishes. Interestingly, one gene next to L-SIGN from gene synteny had high similarity with L-SIGN gene that was described as L-SIGN-like in fish species. While only one L-SIGN gene existed in other vertebrates, two L-SIGN in fish may be in consequence of the fish-specific genome duplication to adapt the specific environment. The evolutionary analysis showed that the ancestral lineages of L-SIGN gene in fishes experienced purifying selection and the current lineages of L-SIGN gene in fishes underwent positive selection, indicating that the ancestral lineages and current lineages of L-SIGN gene in fishes underwent different evolutionary patterns. Both mmDC-SIGN and mmL-SIGN were expressed in all tested tissues and ubiquitously up-regulated in infected liver, spleen and kidney at different sampling time points

  11. Transfer to the Collinear Libration Point L3 in the Sun-Earth+Moon System

    NASA Technical Reports Server (NTRS)

    Hou, Xi-yun; Tang, Jing-shi; Liu, Lin

    2007-01-01

    The collinear libration point L3 of the sun-earth+moon system is an ideal place for some space missions. Although there has been a great amount of work concerning the applications of the other two collinear libration points L1 and L2, little work has been done about the point L3. In this paper, the dynamics of the libration points was briefly introduced first. Then a way to transfer the spacecraft to the collinear libration point L3 via the invariant manifolds of the other two collinear libration points was proposed. Theoretical works under the model of circular restricted three-body problem were done. For the sun-earth+moon system, this model is a good approximation. The results obtained are useful when a transfer trajectory under the real solar system is designed.

  12. Characterization of little skate (Leucoraja erinacea) recombinant transthyretin: Zinc-dependent 3,3',5-triiodo-l-thyronine binding.

    PubMed

    Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi

    2015-01-01

    Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Surgical treatment of pyogenic vertebral osteomyelitis with spinal instrumentation

    PubMed Central

    Chen, Wei-Hua; Jiang, Lei-Sheng

    2006-01-01

    Pyogenic vertebral osteomyelitis responds well to conservative treatment at early stage, but more complicated and advanced conditions, including mechanical spinal instability, epidural abscess formation, neurologic deficits, and refractoriness to antibiotic therapy, usually require surgical intervention. The subject of using metallic implants in the setting of infection remains controversial, although more and more surgeons acknowledge that instrumentation can help the body to combat the infection rather than to interfere with it. The combination of radical debridement and instrumentation has lots of merits such as, restoration and maintenance of the sagittal alignment of the spine, stabilization of the spinal column and reduction of bed rest period. This issue must be viewed in the context of the overall and detailed health conditions of the subjecting patient. We think the culprit for the recurrence of infection is not the implants itself, but is the compromised general health condition of the patients. In this review, we focus on surgical treatment of pyogenic vertebral osteomyelitis with special attention to the role of spinal instrumentation in the presence of pyogenic infection. PMID:17106664

  14. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  15. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  16. Biomechanical simulations of costo-vertebral and anterior vertebral body tethers for the fusionless treatment of pediatric scoliosis.

    PubMed

    Aubin, Carl-Éric; Clin, Julien; Rawlinson, Jeremy

    2018-01-01

    Compression-based fusionless tethers are an alternative to conventional surgical treatments of pediatric scoliosis. Anterior approaches place an anterior (ANT) tether on the anterolateral convexity of the deformed spine to modify growth. Posterior, or costo-vertebral (CV), approaches have not been assessed for biomechanical and corrective effectiveness. The objective was to biomechanically assess CV and ANT tethers using six patient-specific, finite element models of adolescent scoliotic patients (11.9 ± 0.7 years, Cobb 34° ± 10°). A validated algorithm simulated the growth and Hueter-Volkmann growth modulation over a period of 2 years with the CV and ANT tethers at two initial tensions (100, 200 N). The models without tethering also simulated deformity progression with Cobb angle increasing from 34° to 56°, axial rotation 11° to 13°, and kyphosis 28° to 32° (mean values). With the CV tether, the Cobb angle was reduced to 27° and 20° for tensions of 100 and 200 N, respectively, kyphosis to 21° and 19°, and no change in axial rotation. With the ANT tether, Cobb was reduced to 32° and 9° for 100 and 200 N, respectively, kyphosis unchanged, and axial rotation to 3° and 0°. While the CV tether mildly corrected the coronal curve over a 2-year growth period, it had sagittal lordosing effect, particularly with increasing initial axial rotation (>15°). The ANT tether achieved coronal correction, maintained kyphosis, and reduced the axial rotation, but over-correction was simulated at higher initial tensions. This biomechanical study captured the differences between a CV and ANT tether and indicated the variability arising from the patient-specific characteristics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:254-264, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Management of vertebral compression fracture in general practice: BEACH program.

    PubMed

    Megale, Rodrigo Z; Pollack, Allan; Britt, Helena; Latimer, Jane; Naganathan, Vasi; McLachlan, Andrew J; Ferreira, Manuela L

    2017-01-01

    The pain associated with vertebral compression fractures can cause significant loss of function and quality of life for older adults. Despite this, there is little consensus on how best to manage this condition. To describe usual care provided by general practitioners (GPs) in Australia for the management of vertebral compression fractures. Data from the Bettering the Evaluation And Care of Health (BEACH) program collected between April 2005 and March 2015 was used for this study. Each year, a random sample of approximately 1,000 GPs each recorded information on 100 consecutive encounters. We selected those encounters at which vertebral compression fracture was managed. Analyses of management options were limited to encounters with patients aged 50 years or over. i) patient demographics; ii) diagnoses/problems managed; iii) the management provided for vertebral compression fracture during the encounter. Robust 95% confidence intervals, adjusted for the cluster survey design, were used to assess significant differences between group means. Vertebral compression fractures were managed in 211 (0.022%; 95% CI: 0.018-0.025) of the 977,300 BEACH encounters recorded April 2005- March 2015. That provides a national annual estimate of 26,000 (95% CI: 22,000-29,000) encounters at which vertebral fractures were managed. At encounters with patients aged 50 years or over (those at higher risk of primary osteoporosis), prescription of analgesics was the most common management action, particularly opioids analgesics (47.1 per 100 vertebral fractures; 95% CI: 38.4-55.7). Prescriptions of paracetamol (8.2; 95% CI: 4-12.4) or non-steroidal anti-inflammatory drugs (4.1; 95% CI: 1.1-7.1) were less frequent. Non-pharmacological treatment was provided at a rate of 22.4 per 100 vertebral fractures (95% CI: 14.6-30.1). At least one referral (to hospital, specialist, allied health care or other) was given for 12.3 per 100 vertebral fractures (95% CI: 7.8-16.8). The prescription of oral

  18. L^1 -optimality conditions for the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Chen, Zheng

    2016-11-01

    In this paper, the L^1 -minimization for the translational motion of a spacecraft in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory Appl 11(5):441-486, 1973; Zelikin and Borisov in Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994; in J Math Sci 114(3):1227-1344, 2003). The sufficient optimality conditions for the L^1 -minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J Control Optim 54(3):1245-1265, 2016). In the current paper, we establish second-order conditions for optimal control problems with more general final conditions defined by a smooth submanifold target. In addition, the numerical implementation to check these optimality conditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an L^1 -minimization trajectory for the translational motion of a spacecraft is computed by combining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn Astron 114:137-150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178-3202, 2012). The local optimality of the computed trajectory is asserted thanks to the second-order optimality conditions developed.

  19. Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study.

    PubMed

    Hasserius, R; Karlsson, M K; Nilsson, B E; Redlund-Johnell, I; Johnell, O

    2003-01-01

    The aim of this study was to evaluate whether a prevalent vertebral deformity predicts mortality and fractures in both men and women. In the city of Malmö, 598 individuals (298 men, 300 women; age 50-80 years) were selected from the city's population and were included in the Swedish part of the European Vertebral Osteoporosis Study (EVOS). At baseline the participants answered a questionnaire and lateral spine radiographs were performed. The prevalence of subjects with vertebral deformity was assessed using a morphometric method. The mortality during a 10-year follow-up period was determined through the register of the National Swedish Board of Health and Welfare. Eighty-five men and 43 women died during the study period. The subsequent fracture incidence during the follow-up period was ascertained by postal questionnaires, telephone interviews and by a survey of the archives of the Department of Radiology in the city hospital. Thirty-seven men and 69 women sustained a fracture during the study period. Data are presented as hazard ratios (HR) with 95% confidence interval (95% CI) within brackets. Prevalent vertebral deformity, defined as a reduction by more than 3 standard deviations (SD) in vertebral height ratio, predicted mortality during the forthcoming decade in both men [age-adjusted HR 2.4 (95% CI 1.6-3.9)] and women [age-adjusted HR 2.3 (95% CI 1.3-4.3)]. In men there was an increased mortality due to cardiovascular and pulmonary diseases and in women due to cancer. Prevalent vertebral deformity predicted an increased risk of any fracture during the forthcoming decade in both men [age-adjusted HR 2.7 (95% CI 1.4-5.3)] and women [age-adjusted HR 1.8 (95% CI 1.1-2.9)]. Prevalent vertebral deformity predicted an increased risk of any subsequent fragility fracture in women [age-adjusted HR 2.0 (95% CI 1.1-3.5)]; however, in men the increased risk was nonsignificant [age-adjusted HR 1.9 (95% CI 0.7-5.1)]. In summary, a prevalent vertebral deformity can predict

  20. Unicameral bone cyst of a cervical vertebral body and lateral mass with associated pathological fracture in a child. Case report and review of the literature.

    PubMed

    Snell, B E; Adesina, A; Wolfla, C E

    2001-10-01

    The authors present the case of a 10-year-old girl with a history of cervical trauma in whom a cystic lesion was found to involve all three columns of C-7 with evidence of pathological fracture. Computerized tomography scanning revealed a lytic lesion with sclerotic margins involving the left vertebral body, pedicle, lateral mass, and lamina of C-7 with an associated pathological compression fracture. Magnetic resonance imaging demonstrated mixed signal on both T1- and T2-weighted sequences, with cystic and enhancing solid portions. Magnetic resonance angiography demonstrated anterior displacement of the left vertebral artery at C-7. The patient underwent C-7 subtotal corpectomy and posterior resection of the tumor mass; anterior and posterior fusion were performed in which instrumentation was placed. Histological examination disclosed cystic areas lined by fibromembranous tissue with calcification and osteoid deposits consistent with unicameral bone cyst. Of the four previously reported cases of unicameral bone cysts in the cervical spine, none involved all three columns simultaneously or was associated with pathological fracture. The most common differential diagnostic considerations for cystic lesions in the spine are aneurysmal bone cyst, osteoblastoma, or giant cell tumor of bone. Unicameral bone cyst, in this location, although rare, must be considered in the differential diagnosis and may require resection and spinal reconstruction.

  1. Health economic aspects of vertebral augmentation procedures.

    PubMed

    Borgström, F; Beall, D P; Berven, S; Boonen, S; Christie, S; Kallmes, D F; Kanis, J A; Olafsson, G; Singer, A J; Åkesson, K

    2015-04-01

    We reviewed all peer-reviewed papers analysing the cost-effectiveness of vertebroplasty and balloon kyphoplasty for osteoporotic vertebral compression fractures. In general, the procedures appear to be cost effective but are very dependent upon model input details. Better data, rather than new models, are needed to answer outstanding questions. Vertebral augmentation procedures (VAPs), including vertebroplasty (VP) and balloon kyphoplasty (BKP), seek to stabilise fractured vertebral bodies and reduce pain. The aim of this paper is to review current literature on the cost-effectiveness of VAPs as well as to discuss the challenges for economic evaluation in this research area. A systematic literature search was conducted to identify existing published studies on the cost-effectiveness of VAPs in patients with osteoporosis. Only peer-reviewed published articles that fulfilled the criteria of being regarded as full economic evaluations including both morbidity and mortality in the outcome measure in the form of quality-adjusted life years (QALYs) were included. The search identified 949 studies, of which four (0.4 %) were identified as relevant with one study added later. The reviewed studies differed widely in terms of study design, modelling framework and data used, yielding different results and conclusions regarding the cost-effectiveness of VAPs. Three out of five studies indicated in the base case results that VAPs were cost effective compared to non-surgical management (NSM). The five main factors that drove the variations in the cost-effectiveness between the studies were time horizon, quality of life effect of treatment, offset time of the treatment effect, reduced number of bed days associated with VAPs and mortality benefit with treatment. The cost-effectiveness of VAPs is uncertain. In answering the remaining questions, new cost-effectiveness analysis will yield limited benefit. Rather, studies that can reduce the uncertainty in the underlying data

  2. Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate β-Galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal)

    PubMed Central

    Teppa, Roxana E.; Petit, Daniel; Plechakova, Olga; Cogez, Virginie; Harduin-Lepers, Anne

    2016-01-01

    Cell surface of eukaryotic cells is covered with a wide variety of sialylated molecules involved in diverse biological processes and taking part in cell–cell interactions. Although the physiological relevance of these sialylated glycoconjugates in vertebrates begins to be deciphered, the origin and evolution of the genetic machinery implicated in their biosynthetic pathway are poorly understood. Among the variety of actors involved in the sialylation machinery, sialyltransferases are key enzymes for the biosynthesis of sialylated molecules. This review focus on β-galactoside α2,3/6-sialyltransferases belonging to the ST3Gal and ST6Gal families. We propose here an outline of the evolutionary history of these two major ST families. Comparative genomics, molecular phylogeny and structural bioinformatics provided insights into the functional innovations in sialic acid metabolism and enabled to explore how ST-gene function evolved in vertebrates. PMID:27517905

  3. Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.

    PubMed

    Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G

    2006-02-01

    The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.

  4. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    PubMed

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Significance of fixation of the vertebral column for spinal cord injury experiments.

    PubMed

    Liu, Fei; Luo, Zhuo-Jin; You, Si-Wei; Jiao, Xi-Ying; Meng, Xiao-Mei; Shi, Ming; Wang, Chun-Ting; Ju, Gong

    2003-08-01

    consistently far better than the unfixed group. The quantitative analyses were as follows (fixed/unfixed): 1)volume of secondary degeneration: 1.07 +/- 0.20/1.81 +/- 0.43 mm3 (P < 0.01); 2) volume of meningeal scar: 2.38 +/- 0.55/4.34 +/- 1.40 mm3 (P < 0.05); 3) distance between cord stumps: 1.38 +/- 0.34/2.35 +/- 0.79 mm (P < 0.05); 4) the mean thinnest dimension of the meningeal scar: 0.90 +/- 0.43/1.98 +/- 0.85 mm (P < 0.05). Vertebral column fixation is a crucial procedure for spinal cord animal experiments.

  6. Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Red-eyed Libraries Staff Contact Us NMNH Home › Research & Collections › Department of Vertebrate Zoology the study of animals with backbones. Research in the department covers fishes, amphibians, reptiles

  7. Supplementation of l-Alanyl-l-Glutamine and Fish Oil Improves Body Composition and Quality of Life in Patients With Chronic Heart Failure.

    PubMed

    Wu, Christina; Kato, Tomoko S; Ji, Ruiping; Zizola, Cynthia; Brunjes, Danielle L; Deng, Yue; Akashi, Hirokazu; Armstrong, Hilary F; Kennel, Peter J; Thomas, Tiffany; Forman, Daniel E; Hall, Jennifer; Chokshi, Aalap; Bartels, Matthew N; Mancini, Donna; Seres, David; Schulze, P Christian

    2015-11-01

    Skeletal muscle dysfunction and exercise intolerance are clinical hallmarks of patients with heart failure. These have been linked to a progressive catabolic state, skeletal muscle inflammation, and impaired oxidative metabolism. Previous studies suggest beneficial effects of ω-3 polyunsaturated fatty acids and glutamine on exercise performance and muscle protein balance. In a randomized double-blind, placebo-controlled trial, 31 patients with heart failure were randomized to either l-alanyl-l-glutamine (8 g/d) and polyunsaturated fatty acid (6.5 g/d) or placebo (safflower oil and milk powder) for 3 months. Cardiopulmonary exercise testing, dual-energy x-ray absorptiometry, 6-minute walk test, hand grip strength, functional muscle testing, echocardiography, and quality of life and lateral quadriceps muscle biopsy were performed at baseline and at follow-up. Oxidative capacity and metabolic gene expression were analyzed on muscle biopsies. No differences in muscle function, echocardiography, 6-minute walk test, or hand grip strength and a nonsignificant increase in peak VO2 in the treatment group were found. Lean body mass increased and quality of life improved in the active treatment group. Molecular analysis revealed no differences in muscle fiber composition, fiber cross-sectional area, gene expression of metabolic marker genes (PGC1α, CPT1, PDK4, and GLUT4), and skeletal muscle oxidative capacity. The combined supplementation of l-alanyl-l-glutamine and polyunsaturated fatty acid did not improve exercise performance or muscle function but increased lean body mass and quality of life in patients with chronic stable heart failure. These findings suggest potentially beneficial effects of high-dose nutritional polyunsaturated fatty acids and amino acid supplementations in patients with chronic stable heart failure. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534663. © 2015 American Heart Association, Inc.

  8. Lumbar vertebral haemangioma causing pathological fracture, epidural haemorrhage, and cord compression: a case report and review of literature.

    PubMed

    Vinay, S; Khan, S K; Braybrooke, J R

    2011-01-01

    Vertebral haemangiomas are recognized to be one of the commonest benign tumours of the vertebral column, occurring mostly in the thoracic spine. The vast majority of these are asymptomatic. Infrequently, these can turn symptomatic and cause neurological deficit (cord compression) through any of four reported mechanisms: (1) epidural extension; (2) expansion of the involved vertebra(e) causing spinal canal stenosis; (3) spontaneous epidural haemorrhage; (4) pathological burst fracture. Thoracic haemangiomas have been reported to be more likely to produce cord compression than lumbar haemangiomas. A forty-nine year old male with acute onset spinal cord compression from a pathological fracture in a first lumbar vertebral haemangioma. An MRI delineated the haemangioma and extent of bleeding that caused the cord compression. These were confirmed during surgery and the haematoma was evacuated. The spine was instrumented from T12 to L2, and a cement vertebroplasty was performed intra-operatively. Written consent for publication was obtained from the patient. The junctional location of the first lumbar vertebra, and the structural weakness from normal bone being replaced by the haemangioma, probably caused it to fracture under axial loading. This pathological fracture caused bleeding from the vascularized bone, resulting in cord compression.

  9. Back pain caused by a pseudo-tumorous vertebral collapse: atypical presentation of primary vertebral hydatidosis.

    PubMed

    Mrabet, D; Rekik, S; Khiari, H; Mizouni, H; Meddeb, N; Cheour, I; Elleuch, M; Mnif, E; Mrabet, A; Sahli, H; Sellami, S

    2011-03-24

    Hydatidosis, also known as echinococcosis, is a rare but serious parasitic disease in endemic areas. Primary spinal location is extremely rare. This case report describes a rare instance of hydatid cyst that caused severe and progressive low-back pain and neurologic dysfunction. Spine MRI showed a unique vertebral collapse of Th12 body with multicystic lesions filling the spinal canal. In addition, hydatidosis serodiagnostic test was positive at 1/725. Treatment depended on the actual surgical removal of the cysts. Surgery consisted in excision and extirpation of the cysts, associated with decompressive laminectomy. The diagnosis was confirmed on the basis of histological results. No coincidental hydatid visceral involvement was found. Antihelminthic drugs (Albendazole) were promptly given before surgery for a long period. The outcome was satisfactorily marked by total regression of the motor deficit and sphincter disorders.

  10. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.

    2002-01-01

    During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. Copyright 2002 Wiley-Liss, Inc.

  11. Multi-detector thoracic CT findings in cerebro-costo-mandibular syndrome: rib gaps and failure of costo-vertebral separation.

    PubMed

    Watson, Tom Anthony; Arthurs, Owen John; Muthialu, Nagarajan; Calder, Alistair Duncan

    2014-02-01

    Cerebro-costo-mandibular syndrome (CCMS) describes a triad of mandibular hypoplasia, brain dysfunction and posterior rib defects ("rib gaps"). We present the CT imaging for a 2-year-old girl with CCMS that highlights the rib gap defects and shows absent transverse processes with abnormal fusion of the ribs directly to the vertebral bodies. We argue that this is likely to relate to abnormal lateral sclerotome development in embryology, with the failure of normal costo-vertebral junctions compounding impaired thoracic function. The case also highlights the use of CT for specific indications in skeletal dysplasia.

  12. HEMATOPOIETIC PROGENITOR CELL CONTENT OF VERTEBRAL BODY MARROW USED FOR COMBINED SOLID ORGAN AND BONE MARROW TRANSPLANTATION

    PubMed Central

    Rybka, Witold B.; Fontes, Paulo A.; Rao, Abdul S.; Winkelstein, Alan; Ricordi, Camillo; Ball, Edward D.; Starzl, Thomas E.

    2010-01-01

    While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WOIBM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion ofWO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. PMID:7701582

  13. Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signalling cascade in the vertebrate adult brain

    PubMed Central

    Than-Trong, Emmanuel; Ortica-Gatti, Sara; Mella, Sébastien; Nepal, Chirag; Alunni, Alessandro

    2018-01-01

    ABSTRACT Neural stem cells (NSCs) in the adult vertebrate brain are found in a quiescent state and can preserve long-lasting progenitor potential (stemness). Whether and how these two properties are linked, and to what extent they can be independently controlled by NSC maintenance pathways, is unresolved. We have previously identified Notch3 signalling as a major quiescence-promoting pathway in adult NSCs of the zebrafish pallium. We now show that Notch3 also controls NSC stemness. Using parallel transcriptomic characterizations of notch3 mutant NSCs and adult NSC physiological states, we demonstrate that a set of potentially direct Notch3 target genes distinguishes quiescence and stemness control. As a proof of principle, we focus on one ‘stemness’ target, encoding the bHLH transcription factor Hey1, that has not yet been analysed in adult NSCs. We show that abrogation of Hey1 function in adult pallial NSCs in vivo, including quiescent NSCs, leads to their differentiation without affecting their proliferation state. These results demonstrate that quiescence and stemness are molecularly distinct outputs of Notch3 signalling, and identify Hey1 as a major Notch3 effector controlling NSC stemness in the vertebrate adult brain. PMID:29695612

  14. Allometry and Scaling of the Intraocular Pressure and Aqueous Humour Flow Rate in Vertebrate Eyes.

    PubMed

    Zouache, Moussa A; Eames, Ian; Samsudin, Amir

    2016-01-01

    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac(0.67), where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma.

  15. Allometry and Scaling of the Intraocular Pressure and Aqueous Humour Flow Rate in Vertebrate Eyes

    PubMed Central

    Zouache, Moussa A.; Eames, Ian; Samsudin, Amir

    2016-01-01

    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac0.67, where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma. PMID:26990431

  16. Metamerism in cephalochordates and the problem of the vertebrate head.

    PubMed

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  17. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study

    PubMed Central

    Jaremko, Jacob Lester; Siminoski, Kerry; Firth, Gregory; Matzinger, Mary Ann; Shenouda, Nazih; Konji, Victor N.; Roth, Johannes; Sbrocchi, Anne Marie; Reed, Martin; O’Brien, Kathleen; Nadel, Helen; McKillop, Scott; Kloiber, Reinhard; Dubois, Josée; Coblentz, Craig; Charron, Martin; Ward, Leanne M.

    2015-01-01

    Children with glucocorticoid-treated illnesses are at risk for osteoporotic vertebral fractures and growing awareness has led to increased monitoring for these fractures. However scant literature describes developmental changes in vertebral morphology that can mimic fractures. The goal of this paper is to aid in distinguishing between normal variants and fractures. We illustrate differences using lateral spine radiographs obtained annually from children recruited to the Canada-wide STeroid-Associated Osteoporosis in the Pediatric Population (STOPP) observational study, in which 400 children with glucocorticoid-treated leukemia, rheumatic disorders, and nephrotic syndrome were enrolled near glucocorticoid initiation and followed prospectively for 6 years. Normal variants mimicking fractures exist in all regions of the spine and fall into two groups. The first group comprises variants mimicking pathological vertebral height loss, including not-yet-ossified vertebral apophyses superiorly and inferiorly which can lead to a vertebral shape easily over-interpreted as anterior wedge fracture, physiologic beaking, and spondylolisthesis associated with shortened posterior vertebral height. The second group includes variants mimicking other radiologic signs of fractures: anterior vertebral artery groove resembling an anterior buckle fracture, Cupid’s bow balloon disk morphology, Schmorl nodes mimicking concave endplate fractures, and parallax artifact resembling endplate interruption or biconcavity. If an unexpected vertebral body contour is detected, careful attention to its location, detailed morphology, and (if available) serial changes over time may clarify whether it is a fracture requiring change in management or simply a normal variant. Awareness of the variants described in this paper can improve accuracy in the diagnosis of pediatric vertebral fractures. PMID:25828359

  18. Expression, characterization of a novel nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward mandelonitrile present in active inclusion bodies.

    PubMed

    Sun, Huihui; Gao, Wenyuan; Wang, Hualei; Wei, Dongzhi

    2016-03-01

    To identify a novel nitrilase with S-selectivity toward mandelonitrile that can produce (S)-mandelic acid in one step. A novel nitrilase PpL19 from Pseudomonas psychrotolerans L19 was discovered by genome mining. It showed S-selectivity with an enantiomeric excess of 52.7 % when used to hydrolyse (R, S)-mandelonitrile. No byproduct was observed. PpL19 was overexpressed in Escherichia coli BL21 (DE3) and formed inclusion bodies that were active toward mandelonitrile and stable across a broad range of temperature and pH. In addition, PpL19 hydrolysed nitriles with diverse structures; arylacetonitriles were the optimal substrates. Homology modelling and docking studies of both enantiomers of mandelonitrile in the active site of nitrilase PpL19 shed light on the enantioselectivity. A novel nitrilase PpL19 from P. psychrotolerans L19 was mined and distinguished from other nitrilases as it was expressed as an active inclusion body and showed S-selectivity toward mandelonitrile.

  19. The Effects of L2 Experience on L3 Perception

    ERIC Educational Resources Information Center

    Onishi, Hiromi

    2016-01-01

    This study examines the influence of experience with a second language (L2) on the perception of phonological contrasts in a third language (L3). This study contributes to L3 phonology by examining the influence of L2 phonological perception abilities on the perception of an L3 at the beginner level. Participants were native speakers of Korean…

  20. Isolation of cis-3-Amino-l-Proline from Cultured Mycelia of Morchella esculenta Fr

    PubMed Central

    Moriguchi, Mitsuaki; Sada, Shin-Ichi; Hatanaka, Shin-Ichi

    1979-01-01

    cis-3-Amino-l-proline, identified once as a nonprotein amino acid from the fruiting bodies of Morchella esculenta Fr., was isolated also from the growth medium and cultured mycelia of the same fungus. PMID:16345456