Sample records for la-doped stannate basno3

  1. Origins of n -type doping difficulties in perovskite stannates

    NASA Astrophysics Data System (ADS)

    Weston, L.; Bjaalie, L.; Krishnaswamy, K.; Van de Walle, C. G.

    2018-02-01

    The perovskite stannates (A SnO3 ; A = Ba, Sr, Ca) are promising for oxide electronics, but control of n -type doping has proved challenging. Using first-principles hybrid density functional calculations, we investigate La dopants and explore the formation of compensating acceptor defects. We find that La on the A site always behaves as a shallow donor, but incorporation of La on the Sn site can lead to self-compensation. At low La concentrations and in O-poor conditions, oxygen vacancies form in BaSnO3. A -site cation vacancies are found to be dominant among the native compensating centers. Compared to BaSnO3, charge compensation is a larger problem for the wider-band-gap stannates, SrSnO3 and CaSnO3, a trend we can explain based on conduction-band alignments. The formation of compensating acceptor defects can be inhibited by choosing oxygen-poor (cation-rich) growth or annealing conditions, thus providing a pathway for improved n -type doping.

  2. Behavior of lanthanum containing barium stannate nanoparticles synthesized by cetyltriammonium bromide assisted wet chemistry route

    NASA Astrophysics Data System (ADS)

    Kumar, Astakala Anil; Kumar, Ashok; Quamara, J. K.

    2018-02-01

    In present study, we report dielectric, ferroelectric and pyroelectric behavior of pristine and La3+ containing barium stannate nanoparticles synthesized via wet chemical route involving cetyltriammonium bromide assisted thermal decomposition of binary precursors. The X-ray diffraction patterns of pristine and La3+ (2, 4 and 6 at%) doped BaSnO3 nanoparticles showed the formation of cubic perovskite phase. On substitution of Ba2+ lattice sites by La3+ at the La content of 6 at%, the sample exhibited fourfold increase in conductivity in comparison to pristine BaSnO3. Polarization hysteresis (P-E) curves of La containing barium stannate nanoparticles showed anti-ferroelectric behavior. The pyroelectric coefficient of pristine and La (2, 4 and 6 at%) containing BaSnO3 nanoparticles at 473 K were found to be 7.8, 11.6, 14.1 and 17.2 μCm-2K-1, respectively. Further, the responsivity and detectivity values were higher in comparison to the materials, such as AlN, GaN, CdS and ZnO.

  3. High mobility La-doped BaSnO3 on non-perovskite MgO substrate

    NASA Astrophysics Data System (ADS)

    Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin

    (Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.

  4. Moss-Burstein shift in La-doped BaSnO3; A novel electron transport layer material for hybrid halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Taya, Ankur; Rani, Priti; Kashyap, Manish K.

    2018-04-01

    Highly efficient hybrid (organic-inorganic) halide perovskite solar cells (PSCs) employ TiO2 as electron transport layer (ETL) but it impedes the device stability under solar illumination. Therefore, there is an imperative need to study the materials that can be the ideal replacement for TiO2 as ETL. With its growth at mild conditions recently by Shin et al. [Science, 356, 167 (2017)], La-doped BaSnO3 (LBSO) emerges out as an efficient candidate for ETL in PSCs. In this direction, we represent first-principles electronic properties and optical response of pristine and La-doped BaSnO3 using full potential linear augmented plane wave (FPLAPW) method within time efficient orbital independent modified Becke Johnson (mBJ) approach. Post La-doping, Moss-Burtsein shift is observed in BaSnO3 that establishes it as an excellent n-type transparent conducting oxide. The optical absorption spectra of LBSO has been analyzed to prove almost full transmittivity for energy ≤ 4eV which affirms LBSO as an ideal material for ETL in various PSCs.

  5. Effects of La-doped BaSnO3epitaxial electrode on the ferroelectric properties of BaTiO3

    NASA Astrophysics Data System (ADS)

    Lee, Hahoon; Kim, Young Mo; Kim, Youjung; Shin, Juyeon; Char, Kookrin

    In order to integrate the newly discovered high-mobility perovskite semiconductor BaSnO3 with a ferroelectric perovskite, we have grown epitaxial ferroelectric BaTiO3 (BTO) on top of the 4 % La-doped BaSnO3 (BLSO). X-ray diffraction measurement suggests that the BTO film on top of BLSO electrode is tensilely strained due to the larger lattice constant of BLSO. An all epitaxial sandwich structure of BLSO/BTO/BLSO was fabricated in order to measure the ferroelectric properties of the BTO under tensile strain. The polarization-electric field (P-E) hysteresis curve will be discussed from the viewpoint of the tensile strain. In addition, the breakdown field will be measured to evaluate the potential of BTO for a gate oxide on top of BLSO. Samsung science and technology foundation.

  6. P-type field effect transistor based on Na-doped BaSnO3

    NASA Astrophysics Data System (ADS)

    Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin

    We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.

  7. Modulation doping at BaSnO3LaInO3

    NASA Astrophysics Data System (ADS)

    Char, Kookrin; Shin, Juyeon; Kim, Young Mo; Kim, Youjung

    We recently reported on the conductance enhancement at the interface between two band insulators: LaInO3 (LIO) and BaSnO3 (BSO). These two-dimensional electron gas-like (2DEG) states at the LIO/Ba1-xLaxSnO3 (BLSO) polar interface display the stability, the controllability of the local carrier concentration, and the high electron mobility of BLSO. Search for the origin of enhanced conductance at the interface has been carried out, and one of the findings is that the doping level of BSO is a critical parameter for the polar charge contribution . We have also investigated a new modulated heterostructure by inserting an undoped BSO spacer layer at the LIO/BLSO interface. As increasing the thickness of the spacer layer, the carrier concentration and the mobility continually decreased. We attribute the results to the modified band bending as the thickness of the spacer layer varies and to the dislocation-limited transport. However, when we controlled the band bending by field effect, improved mobility was observed in these modulated heterostructures. This new modulated heterostructures of the LIO/BSO polar interface look promising not only for higher electron mobility devices but also for elucidating the mechanism of the 2DEG-like behavior. Samsung science and technology foundation.

  8. High-mobility BaSnO 3 grown by oxide molecular beam epitaxy

    DOE PAGES

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; ...

    2016-01-28

    High-mobility perovskite BaSnO 3 films are of significant interest as newwide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO 3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO x. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO 3. We demonstrate room temperature electron mobilities of 150 cm 2 V -1 s -1 in films grownmore » on PrScO 3. Lastly, the results open up a wide range of opportunities for future electronic devices.« less

  9. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Seong Sik; Yeom, Eun Joo; Yang, Woon Seok; Hur, Seyoon; Kim, Min Gyu; Im, Jino; Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2017-04-01

    Perovskite solar cells (PSCs) exceeding a power conversion efficiency (PCE) of 20% have mainly been demonstrated by using mesoporous titanium dioxide (mp-TiO2) as an electron-transporting layer. However, TiO2 can reduce the stability of PSCs under illumination (including ultraviolet light). Lanthanum (La)-doped BaSnO3 (LBSO) perovskite would be an ideal replacement given its electron mobility and electronic structure, but LBSO cannot be synthesized as well-dispersible fine particles or crystallized below 500°C. We report a superoxide colloidal solution route for preparing a LBSO electrode under very mild conditions (below 300°C). The PSCs fabricated with LBSO and methylammonium lead iodide (MAPbI3) show a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO2 device. The LBSO-based PSCs could retain 93% of their initial performance after 1000 hours of full-Sun illumination.

  10. Infrared absorption and visible transparency in heavily doped p-type BaSnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-30

    The recent experimental work shows that perovskite BaSnO 3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO 3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightlymore » negative, but very small reflecting the heavier valence bands relative to the conduction bands.« less

  11. Luminescence properties of Sm3+-doped alkaline earth ortho-stannates

    NASA Astrophysics Data System (ADS)

    Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas

    2014-05-01

    A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.

  12. Tuning operating temperature of BaSnO3 gas sensor for reducing and oxidizing gases

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Pugh, David; Dasgupta, Daipayan; Sarin, Neha; Parkin, Ivan; Luthra, Vandna

    2018-05-01

    Barium stannate (BaSnO3) was prepared by solid state ceramic route. The crystalline phase of the prepared sample was confirmed by X-Ray Diffraction (XRD) pattern. Gas sensing behaviour of barium stannate was investigated for reducing and oxidizing gases; such as butane, ethanol, CO and NO2; from 5 ppm to 50 ppm levels of concentration. Barium stannate sensors were optimized for highest responsiveness by varying operating temperature between 270 °C to 550 °C. Its highest response was observed for ethanol at 300°C. The gas sensing response of ethanol was better than other gases at all the operating temperatures. Such studies in conjunction with gas sensing tests can be used for setting the optimum operating temperatures and can be used for low concentration ethanol sensing applications.

  13. P-type hole mobility measurement in Na-doped BaSnO3

    NASA Astrophysics Data System (ADS)

    Hong, Sungyun; Jang, Yeaju; Park, Jisung; Char, Kookrin

    P-type doping in oxide materials has been a difficult task because of the oxygen vacancies. Taking advantage of the excellent oxygen stability in BaSnO3 (BSO), we replaced Ba with Na in BSO to achieve p-type doping. Ba1-xNaxSnO3 (BNSO) films with varying dopant ratios were epitaxially grown by the pulsed laser deposition technique. We confirmed that the BNSO films were properly grown and determined their lattice constants with respect to the dopant ratio by x-ray diffraction. Due to the high resistance of the films at room temperature, we measured the transport properties of the BNSO films at temperatures ranging from 200 C to 400 C. Hall resistance measurements in a +/- 5 kG magnetic field were performed to confirm that the films are indeed p-type. As the temperature increased, the hole carrier concentration of the films increased while the film resistance decreased. The hole mobility values, in the tens of cm2/Vsec range, were found to decrease with the temperature. We will present the complete doping rate and temperature dependence of the hole mobility and compare their behavior with those of n-type La-doped BSO. Samsung science and technology foundation.

  14. THz characterization and demonstration of visible-transparent/terahertz-functional electromagnetic structures in ultra-conductive La-doped BaSnO3 Films.

    PubMed

    Arezoomandan, Sara; Prakash, Abhinav; Chanana, Ashish; Yue, Jin; Mao, Jieying; Blair, Steve; Nahata, Ajay; Jalan, Bharat; Sensale-Rodriguez, Berardi

    2018-02-23

    We report on terahertz characterization of La-doped BaSnO 3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.

  15. Melt growth and properties of bulk BaSnO3 single crystals

    NASA Astrophysics Data System (ADS)

    Galazka, Z.; Uecker, R.; Irmscher, K.; Klimm, D.; Bertram, R.; Kwasniewski, A.; Naumann, M.; Schewski, R.; Pietsch, M.; Juda, U.; Fiedler, A.; Albrecht, M.; Ganschow, S.; Markurt, T.; Guguschev, C.; Bickermann, M.

    2017-02-01

    We present the first-time growth of bulk BaSnO3 single crystals from the melt by direct solidification, their basic electrical and optical properties as well as their structural quality. Our measurement of the melting point (MP) of BaSnO3 amounts to 1855 °C  ±  25 K. At this temperature an intensive decomposition and non-stoichiometric evaporation takes place as the partial pressure of SnO(g) is about 90 times higher than that of BaO(g). X ray powder diffraction identified only the BaSnO3 perovskite phase, while narrow rocking curves having a full width at half maximum of 26 arcsec and etch pit densities below 106 cm-2 confirm a high degree of structural perfection of the single crystals. In this respect they surpass the structural properties of those single crystals that were reported in the literature. The electrical conductivity of nominally undoped crystals depends on the growth conditions and ranges from insulating to medium n-type conductivity. After post-growth annealing in an oxidizing atmosphere undoped crystals are generally insulating. Doping the crystals with lanthanum during growth results in a high n-type conductivity. For a La doping concentration of 0.123 wt.% we measured an electron concentration of 3.3  ×  1019 cm-3 and an electron mobility of 219 cm2 V-1 s-1. Based on optical absorption measurements we determined an energy of 3.17  ±  0.04 eV at 5 K and of 2.99  ±  0.04 eV at 297 K for the indirect band gap of BaSnO3.

  16. Structural and dielectric studies of Ce doped BaSnO3 perovskite nanostructures

    NASA Astrophysics Data System (ADS)

    Angel, S. Lilly; Deepa, K.; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Cerium (Ce) doped BaSnO3(BSO) nanostructures were synthesized by co-precipitation method. The cubic structure and perovskite phase were confirmed by X-ray diffraction (XRD). The crystallite size of BSO is 41nm and when Ce ion concentration is increased, the crystallite sizesdecreased. The nanocube, nanocuboids and nanorods are observed from SEM analysis. The purity of the undoped and doped samples are confirmed by EDS spectrum. For larger defects, wide band gap was obtained from UV-Vis and PL spectrum. The dielectric constants are increased at low frequencies when Ce impurities are introduced in the BSO matrix at Sn site.

  17. Synthesis, Structural and Morphological Property of BaSnO3 Nanopowder Prepared by Solid State Ceramic Method

    NASA Astrophysics Data System (ADS)

    John, Jibi; Mahadevan Pillai, V. P.; Thomas, Anitta Rose; Philip, Reji; Joseph, Jaison; Muthunatesan, S.; Ragavendran, V.; Prabhu, Radhakrishna

    2017-05-01

    BaSnO3 is a cubic perovskite-type oxide that behaves as an n-type semiconductor with a wide band gap of 3.4 eV and remains stable at temperatures up to 1000°C. It has wide applications such as thermally stable capacitors, humidity sensors, gas sensors, etc. Barium stannate has also been used in optical applications, in capacitors and ceramic boundary layers, and as a promising material to produce gas phase sensors for the detection of carbon monoxide and carbon dioxide. BaSnO3 powder was prepared by solid state ceramic method. X-ray diffraction pattern of the prepared sample presents all the characteristic peaks of cubic phase of BaSnO3 (JCPDScard no: 15 -0780). The lattice constant for the compound was calculated and found to be 4.101A0 which is in agreement with the reported value (4.112A0). The average size of the crystallites estimated by Debye Scherrer’s formula was found to be 49 nm shows the nanostructured nature. The Raman bands observed ~ 139, 833 and 1122 cm-1 can be assigned on the basis of the fundamental vibrations of SnO6 octahedron which has Oh symmetry, in the distorted perovskite structure. The SEM image shows a porous surface morphology with grains of cuboidal structure with well-defined grain boundaries. UV-Visible spectra shows BaSnO3powder exhibit high reflectance in the 400-700 nm range.

  18. Augmentation de la densité de courant critique par dopage de YBCO texturé au BaSnO3

    NASA Astrophysics Data System (ADS)

    Lepropre, M.; Monot, I.; Delamare, M. P.; Hervieu, M.; Simon, Ch.; Provost, J.; Desgardin, G.; Raveau, B.

    1994-11-01

    We have performed critical current density measurements (DC current) on melt textured YBaCuO doped with BaSnO3 which exhibits transport values at 77 K as high as 7.1 × 10^4 A cm^{-2} in zero field and 1.1 × 10^4 A cm^{-2} at 20 T. A systematic study of this ceramic has been carried out using SEM and HREM observations in correlation with J_c measurements. A textured microstructure is observed containing numerous green phase inclusions (size leq 10 μm) as well as a few numbers of BaSnO3 inclusions (size < 1 μm). It has been found that transport J_c data are distributed over a wide range (2.5 × 10^3-7.1 × 10^4 A cm^{-2}). Nevertheless, magnetic J_c measurements suggest that cracks of the order of several microns may appear in some regions of the material leading to a dramatic decrease of transport J_c for the corresponding sample. On the other hand, HREM observations demonstrate that extended defects cannot be considered as the major factor for vortex pinning in textured 123 material. The presence or the absence of inhomogeneity at the nanoscale does not seem to influence the critical current density. Finally, it has been determined that pinning can be ascribed to lamellar microstructure rather than to BaSnO3 inclusions. Nous avons mesuré la densité de courant critique de transport (courant continu) J_c, dans une céramique texturée YBaCuO dopée au BaSnO3. Elle présente des valeurs de J_c (77 K) de 7,1 × 10^4 A cm^{-2} en champ magnétique nul et de 1.1 × 10^4 A cm^{-2} sous 20 T. Une étude systématique de cette céramique a été entreprise. La microstructure et la nanostructure observées respectivement en microscopie électronique à balayage SEM et en microscopie à haute résolution HREM ont été corrélées avec les mesures de J_c. On observe dans cette céramique une microstructure texturée contenant de nombreuses inclusions de phase verte (taille leq 10 μm) et un très faible nombre d'inclusions de BaSnO3 (taille < 1 μm). Les valeurs de J

  19. Variation of the conductance enhancement at BaSnO3/LaInxGa1-xO3 polar Interface

    NASA Astrophysics Data System (ADS)

    Kim, Young Mo; Shin, Juyeon; Kim, Youjung; Char, Kookrin

    We have recently reported that La-doped BaSnO3 (BLSO) displayed conductance enhancement by more than 104 times when LaInO3 (LIO) layer was grown on top of the BLSO layer. The conductance enhancement implies the two-dimensional electron gas (2DEG) formation at the interface. To identify the origin of the conductance enhancement, we developed other heterostructures based on different overlayers. Since LaGaO3 is also a polar perovskite like the LIO with its band gap of 4.4 eV and its lattice constant of 3.9, we investigated the variation of the conductance enhancement at LaIn1-xGaxO3 (LIGO)/BLSO interface while varying the Ga ratio. We first checked the interfacial epitaxial growth of LIGO on BSO by x-ray diffraction measurement and transmission electron microscopy. The sheet conductances of BLSO layer before and after the deposition of LIGO layer were measured. Putting together the structural and electrical properties of the LIGO/BLSO interfaces with various Ga compositions, we will discuss the origin of the conductance enhancement in terms of the strain-induced polarization in the LIGO layer. Samsung Science and Technology Foundation.

  20. 2DEGs at Perovskite Interfaces between KTaO3 or KNbO3 and Stannates

    PubMed Central

    Fan, Xiaofeng; Zheng, Weitao; Chen, Xin; Singh, David J.

    2014-01-01

    We report density functional studies of electron rich interfaces between KTaO3 or KNbO3 and CaSnO3 or ZnSnO3 and in particular the nature of the interfacial electron gasses that can be formed. We find that depending on the details these may occur on either the transition metal or stannate sides of the interface and in the later case can be shifted away from the interface by ferroelectricity. We also present calculations for bulk KNbO3, KTaO3, CaSnO3, BaSnO3 and ZnSnO3, showing the different transport and optical properties that may be expected on the two sides of such interfaces. The results suggest that these interfaces may display a wide range of behaviors depending on conditions, and in particular the interplay with ferroelectricity suggests that electrical control of these properties may be possible. PMID:24626191

  1. pn junctions based on a single transparent perovskite semiconductor BaSnO3

    NASA Astrophysics Data System (ADS)

    Kim, Hoon Min; Kim, Useong; Park, Chulkwon; Kwon, Hyukwoo; Lee, Woongjae; Kim, Tai Hoon; Kim, Kee Hoon; Char, Kookrin; Mdpl, Department Of Physics; Astronomy Team; Censcmr, Department Of Physics; Astronomy Team

    2014-03-01

    Successful p doping of transparent oxide semiconductor will further increase its potential, especially in the area of optoelectronic applications. We will report our efforts to dope the BaSnO3 (BSO) with K by pulsed laser deposition. Although the K doped BSO exhibits rather high resistivity at room temperature, its conductivity increases dramatically at higher temperatures. Furthermore, the conductivity decreases when a small amount of oxygen was removed from the film, consistent with the behavior of p type doped oxides. We have fabricated pn junctions by using K doped BSO as a p type and La doped BSO as an n type material. I_V characteristics of these devices show the typical rectifying behavior of pn junctions. We will present the analysis of the junction properties from the temperature dependent measurement of their electrical properties, which shows that the I_V characteristics are consistent with the material parameters such as the carrier concentration, the mobility, and the bandgap. Our demonstration of pn junctions based on a single transparent perovskite semiconductor further enhances the potential of BSO system with high mobility and stability.

  2. Enhanced electron mobility at the two-dimensional metallic surface of BaSnO3 electric-double-layer transistor at low temperatures

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi

    2017-05-01

    Wide-bandgap oxides exhibiting high electron mobility hold promise for the development of useful electronic and optoelectronic devices as well as for basic research on two-dimensional electron transport phenomena. A perovskite-type tin oxide, BaSnO3, is currently one of such targets owing to distinctly high mobility at room temperature. The challenge to overcome towards the use of BaSnO3 thin films in applications is suppression of dislocation scattering, which is one of the dominant scattering origins for electron transport. Here, we show that the mobility of the BaSnO3 electric-double-layer transistor reaches 300 cm2 V-1 s-1 at 50 K. The improved mobility indicates that charged dislocation scattering is effectively screened by electrostatically doped high-density charge carriers. We also observed metallic conduction persisting down to 2 K, which is attributed to the transition to the degenerate semiconductor. The experimental verification of bulk-level mobility at the densely accumulated surface sheds more light on the importance of suppression of dislocation scattering by interface engineering in doped BaSnO3 thin films for transparent electrode applications.

  3. Structure and magnetism of Fe-doped BaSnO 3 thin films

    DOE PAGES

    Alaan, Urusa S.; N’Diaye, Alpha T.; Shafer, Padraic; ...

    2017-02-28

    BaSnO 3 is an excellent candidate system for developing a new class of perovskite-based dilute magnetic semiconductors. Here in this study, we show that BaSn 0.95Fe 0.05O 3 can be grown from a background pressure of ~2×10-3 mTorr to oxygen pressures of 300 mTorr with high crystallinity and excellent structural quality. When grown in vacuum, the films may be weakly ferromagnetic with a nonzero x-ray magnetic circular dichroism signal on the Fe L 3 edge. Growth with oxygen flow appears to suppress magnetic ordering. Even for very thick films grown in 100 mTorr O 2, the films are paramagnetic. Finally,more » the existence of ferromagnetism in vacuum-grown BaSnO 3 may be attributed to the F-center exchange mechanism, which relies on the presence of oxygen vacancies to facilitate the ferromagnetism. However, other possible extrinsic contributions to the magnetic ordering, such as clusters of Fe 3O 4 and FeO or contamination can also explain the observed behavior.« less

  4. Tuning optical properties of transparent conducting barium stannate by dimensional reduction

    DOE PAGES

    Li, Yuwei; Zhang, Lijun; Ma, Yanming; ...

    2015-01-30

    We report calculations of the electronic structure and optical properties of doped n-type perovskite BaSnO 3 and layered perovskites. While doped BaSnO 3 retains its transparency for energies below the valence to conduction band onset, the doped layered compounds exhibit below band edge optical conductivity due to transitions from the lowest conduction band. This gives absorption in the visible for Ba 2SnO 4. It is important to minimize this phase in transparent conducting oxide (TCO) films. Ba 3Sn 2O 7 and Ba 4Sn 3O 10 have strong transitions only in the red and infrared, respectively. Thus, there may be opportunitiesmore » for using these as wavelength filtering TCO.« less

  5. Effects of oxygen vacancy on the photoconductivity in BaSnO3

    NASA Astrophysics Data System (ADS)

    Park, Jisung; Char, Kookrin; Institute of Applied Physics, Department of Physics; Astronomy, Seoul National University Team

    We have found the photoconductive behavior of BaSnO3, especially their magnitude and time dependence, is very sensitive to the oxygen vacancy concentration. We made epitaxial BaSnO3 film with BaHfO3 buffer layer by pulsed laser deposition. As we had reported before, MgO substrate with its large band gap size about 7.8 eV was used to exclude any photoconductance from the substrate. BaHfO3 layer was used to reduce the threading dislocation density in BaSnO3 film. To control the oxygen vacancy concentration in the BaSnO3 film, we annealed the sample in Ar or O2 atmosphere with varying annealing conditions. After each annealing process, photoconductivity of BaSnO3 was measured during illumination of UV light. The result showed that the magnitude of photoconductivity of BaSnO3 increased after annealing at higher temperature in Ar atmosphere, while the changes in the dark current remains minimal. The result can be explained by a hole trap mechanism. Higher Fermi level due to the increased oxygen vacancy concentration can cause occupation of deep acceptor levels in dislocations of the BaSnO3 film. These occupied deep acceptor levels in turn trap photo-generated holes so that the recombination of electron-hole pair is deterred. Samsung Science and Technology Foundation.

  6. First-principles study of the atomic and electronic properties of (1 0 0) stacking faults in BaSnO3 crystal

    NASA Astrophysics Data System (ADS)

    Xue, Yuanbin; Wang, Wenyuan; Guo, Yao

    2018-02-01

    We investigated the atomic and electronic properties of (1 0 0) stacking fault (SF) in undoped and La-doped BaSnO3 by first-principles calculations. It was found that 1/2[1 1 1] (1 0 0) SF is energetically favorable when Ba atoms occupy the interface while 1/2 (1 0 0) [1 0 1] SF becomes the most stable when the SF interface is occupied by Sn atoms. SF influences the distribution of La dopant and the electric properties of the system. In the presence of SF, electronic states near the Fermi level decrease and the bandgap expands by about 0.6 eV. Our results suggest that SF is one of the possible origins for the performance degradation.

  7. Investigation of physical and mechanical properties of (BaSnO3)x(Bi,Pb)-2223 composite

    NASA Astrophysics Data System (ADS)

    Habanjar, K.; Barakat, M. M. E.; Awad, R.

    2017-07-01

    The effect of BaSnO3 nanoparticles addition on the structural and mechanical properties of (Bi,Pb)-2223 superconducting phase by means of X-rays diffraction analysis (XRD), scanning electron microscope (SEM), electrical resistance and Vickers microhardness measurement was studied. BaSnO3 nanomaterial and (BaSnO3)x(Bi,Pb)-2223 superconducting samples were prepared using co-precipitation method and standard solid-state reaction techniques, respectively. From XRD data, the addition of BaSnO3 into (Bi,Pb)-2223 phase does not affect the tetragonal structure and the lattice parameters. SEM images indicate that the microstructure of (Bi,Pb)-2223 was enhanced by adding BaSnO3 nanoparticles by filling its pores and voids. The superconducting transition temperature Tc as well as the critical transport current density Jc, estimated from electrical resistivity measurements, are increased up to x = 0.5 wt%, then decreased with further increase in x. Vickers microhardness measurements Hv were carried out at room temperature as a function of applied. The experimental Hv results were analysed in view of Meyer’s law, Hays and Kendall (HK) approach, elastic/plastic deformation (EPD) and proportional specimen resistance (PSR). All samples exhibit normal indentation size effect (ISE), in addition to that, the analysis shows that the Hays and Kendall model is the most suitable one to describe the load independent microhardness for (BaSnO3)x(Bi,Pb)-2223 superconducting samples.

  8. Flux Pinning Enhancement in YBa2Cu3O7-x Films with BaSnO3 Nanoparticles

    DTIC Science & Technology

    2008-10-01

    SUPERCONDUCTOR SCIENCE AND TECHNOLOGY Supercond. Sci. Technol. 19 (2006) L37 –L41 doi:10.1088/0953-2048/19/10/L01 RAPID COMMUNICATION Flux pinning enhancement in...2006 Online at stacks.iop.org/SUST/19/ L37 Abstract Nanoparticles of BaSnO3 were incorporated into YBa2Cu3O7−x (YBCO) films on LaAlO3 substrates for...0953-2048/06/100037+05$30.00 © 2006 IOP Publishing Ltd Printed in the UK L37 1 Rapid Communication materials and sintered together to form a composite

  9. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Xu, Hua-lan; Zhong, Sheng-liang; Wang, Lei

    2017-07-01

    Rare-earth stannate (Ln2Sn2O7 (Ln = Y, La-Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, pH value, and alkali source on the preparation was investigated. The results revealed that the pH value plays an important role in the formation process of gadolinium stannate (Gd2Sn2O7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the pH value of 11.5. A possible formation mechanism was briefly proposed. Gd2Sn2O7:Eu3+ nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd2Sn2O7 nanoparticles were paramagnetic. The other rare-earth stannate Ln2Sn2O7 (Ln = Y, La-Lu) nanocrystals were prepared by similar approaches.

  10. Enhancement of ferromagnetic properties in composites of BaSnO3 and CoFe2O4

    NASA Astrophysics Data System (ADS)

    Manju, M. R.; Ajay, K. S.; D'Souza, Noel M.; Hunagund, Shivakumar; Hadimani, R. L.; Dayal, Vijaylakshmi

    2018-04-01

    In this paper, we report structural and magnetic properties of BaSnO3(BSO)(1-x)-CoFe2O4 (CFO)(x) composite (with x = 0%, 1% (C1), 2% (C2) and 5% (C3) in molar ratio) synthesized using nitrate precursor method. The X-ray diffraction (XRD) pattern of the composite powder confirmed presence of both BaSnO3 with the cubic perovskite structure and CoFe2O4 with the cubic spinel structure. No signature of any other phases in pure BaSnO3, CoFe2O4 and composites have been detected either in XRD or energy dispersive X-ray (EDS) analysis. The temperature dependent zero field cooled (ZFC) & field cooled (FC) magnetization and magnetic field dependence magnetization measurements have been carried at room temperature of the pure BaSnO3. We observe a weak ferromagnetic (FM) behavior at room temperature in pure BaSnO3 even though it is non-magnetic in nature. The room temperature Raman spectroscopy and electron spin resonance measurements of the sample confirm the presence of oxygen vacancy and formation of F-center, which is responsible for the FM behavior. The oxidation state and elemental analysis have been carried out using X-ray photoelectron spectroscopy (XPS). The magnetic field dependence of magnetization of the composite samples reveal increase of saturation magnetization (Ms), remanence magnetization (Mr) and coercivity (Hc) with increase in ferrite content in the composite. Significant enhancement in FM components is observed with lowering of temperature.

  11. Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx

    NASA Astrophysics Data System (ADS)

    Chepikov, V.; Mineev, N.; Degtyarenko, P.; Lee, S.; Petrykin, V.; Ovcharov, A.; Vasiliev, A.; Kaul, A.; Amelichev, V.; Kamenev, A.; Molodyk, A.; Samoilenkov, S.

    2017-12-01

    An industrial R&D programme is ongoing at SuperOx, aimed at improving 2G HTS wire performance in magnetic field. We introduce perovskite artificial pinning centres (APC) into the HTS layer matrix. In contrast to most studies described in the literature, we use the high rate production processing parameters and PLD equipment at SuperOx. This paper reports the results of Phase I of this programme. We fabricated 2G HTS wires by pulsed laser deposition of GdBCO films doped with 6%, 12% and 18% (molar) of BaSnO3 and 6% (molar) of BaZrO3, and compared their performance with an undoped reference sample. The depositions were carried out at production growth rates of 375, 560 and 750 nm min-1 by varying laser pulse frequency. BaZrO3 and BaSnO3 formed columnar semi-coherent nanoinclusions in the GdBCO film matrix. The average transverse size of the nanocolumns was about 5 nm, and their volume density correlated with the dopant concentration. All doped samples exhibited much lower angular anisotropy of in-field critical current and higher lift-factors than the undoped sample. Samples containing 6% BaSnO3 and deposited at the lower growth rates, had higher I c than the undoped sample in the entire temperature range, in a wide range of magnetic field (B//c). The sample containing 6% BaZrO3 had higher I c than the undoped sample at 20 and 4.2 K. These results are an encouraging start of our programme, as they show a positive impact of APC introduced into 2G HTS wires fabricated at production throughput. Phase II work will be focussed on maximising the improvements in specific temperature and field conditions, as well as on the verification of reproducibility of the improvements in production wires.

  12. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    NASA Astrophysics Data System (ADS)

    Althammer, Matthias; Mishra, Rohan; Borisevich, Albina J.; Singh, Amit Vikam; Keshavarz, Sahar; Yurtisigi, Mehmet Kenan; Leclair, Patrick; Gupta, Arunava

    We experimentally investigate the structural, magnetic and electrical transport properties of La0.67Sr0.33MnO3 based magnetic tunnel junctions with a SrSnO3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier the observed tunnel magnetoresistance is comparable to tunnel junctions with a better lattice matched SrTiO3 barrier, reaching values of up to 350 % at T = 5 K . Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease of the TMR with increasing bias voltage. Our results suggest that by reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future. We gratefully acknowledge financial support via NSF-ECCS Grant No. 1509875.

  13. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

    PubMed

    Lian, J; Helean, K B; Kennedy, B J; Wang, L M; Navrotsky, A; Ewing, R C

    2006-02-09

    The lanthanide stannates, Ln2Sn2O7, Ln=La-Lu and Y, have the isometric pyrochlore structure, A2B2O7, and their structural properties have been refined by Rietveld analysis of powder neutron and synchrotron X-ray diffraction data. In this study, the enthalpies of formation of selected stannate pyrochlores, Ln=La, Nd, Sm, Eu, Dy, and Yb, were measured by high-temperature oxide melt solution calorimetry. Their radiation response was determined by 1 MeV Kr2+ ion irradiation combined with in situ TEM observation over the temperature range of 25 to 1000 K. The enthalpy of formation from binary oxides of stannate pyrochlores became more endothermic (from -145 to -40 kJ/mol) as the size of the lanthanide in the A-site decreases. A more exothermic trend of the enthalpy of formation was observed in stannate pyrochlores with larger lanthanide ions, particularly La, possibly as a result of increased covalency in the Sn-O bond. In contrast to lanthanide titanate pyrochlores, Ln2Ti2O7, that are generally susceptible to radiation-induced amorphization and zirconate pyrochlores, Ln2Zr2O7, that are generally resistant to radiation-induced amorphization, the lanthanide stannate pyrochlores show a much greater variation in their response to ion irradiation. La, Nd, and Gd stannates experience the radiation-induced transformation to the aperiodic state, and the critical amorphization temperatures are approximately 960, 700, and 350 K, respectively. Y and Er stannate pyrochlores cannot be amorphized by ion beam irradiation, even at 25 K, and instead disorder to a defect fluorite structure. Comparison of the calorimetric and ion irradiation data for titanate, zirconate, and stannate pyrochlores reveals a strong correlation among subtle changes in crystal structure with changing composition, the energetics of the disordering process, and the temperature above which the material can no longer be amorphized. In summary, as the structure approaches the ideal, ordered pyrochlore structure

  14. Structural Properties of Barium Stannate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported bymore » density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.« less

  15. Structural properties of barium stannate

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.

  16. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    DOE PAGES

    Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit; ...

    2016-12-16

    In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less

  17. Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit

    In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less

  18. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  19. Structural, microstructural and electrical characterization of BaSnO3 and Ba0.90Y0.10SnO3 synthesized by solution combustion method

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Yadav, Dharmendra; Upadhyay, Shail; Thakur, Anukul K.

    2018-04-01

    Powder of perovskite oxides BaSnO3 and Ba0.90Y0.10SnO3 have been synthesized by solution combustion method. Rietveld profile analysis shows that the phases crystallize with cubic unit cell in the space group pm3m. Further purity of the synthesized powders was checked by Fourier transform of infrared (FTIR) spectroscopy. The average grain size of the sintered samples was obtained using Scanning electron microscopy (SEM) and found to be 4.9 and 2.8 1m for BaSnO3 and Ba0.90Y0.10SnO3, respectively. The AC conductivity (σac) of synthesized samples was measured in the frequency range from 24Hz-1MHz and temperature range 100 - 600°C. Conductivity spectra of both the samples followed universal Johnscher's power law at different temperatures. The value of bulk or dc conductivity (σdc) at different temperatures has been extracted by fitting the Johnscher's power law to AC conductivity spectra. The activation energy for σc has been obtained from the least square linear fit of data points and found to be 0.53 eV and 0.43 eV, respectively for BaSnO3 and Ba0.90Y0.10SnO3. Based on the value of activation energy it is proposed that conduction in these samples is govern via hopping of (OH)•. The value of conductivity at temperature 550°C of Ba0.90Y0.10SnO3 is 0.00406 S-cm-1 higher than BaSnO3 (0.00173 S-cm-1) at the same temperature.

  20. Preparation and Luminescent Properties of the antibacterial materials of the La3+ Doped Sm3+-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Lv, Yuguang; Shi, Qi; Jin, Yuling; Ren, Hengxin; Qin, Yushan; Wang, Bo; Song, Shanshan

    2018-03-01

    In this paper, the La3+-doped Sm3+ hydroxyapatite (La/Sm/HAP) complexes were prepared by a precipitation method. The sample was defined by IR spectra, fluorescence spectra and X ray diffraction analysis et al. The structure of complexes were discussed. The emission wavelength of heat treatment of Sm3+ do not change, but will affect the intensity of the peak Sm3+ luminescence properties and the occupy hydroxyapatite in the lattice Ca( II )and Ca( I ) loci with Sm3+ doped concentration and the proportion of the sintering temperature change and change: The nano hydroxyapatite complex of the La3+ doped samarium obtain the good fluorescence intensity, by La3+ doping content of Sm3+ were hydroxyapatite 6% (La3+, Sm3+ mole ratio) device. The complex of La3+ doped samarium HAP have Stable chemical property, fluorescence property and excellent biological activity. The ligand HAP absorbs energy or captures an electron-hole pair and then transfers it to the lanthanide ions. The catalytic activity influence of the La3+-doped Sm3+hydroxyapatite was discussed, the La/Sm/HAP had excellent antibacterial property, which used as potential biological antibacterial material.

  1. Cadmium stannate selective optical films for solar energy applications

    NASA Technical Reports Server (NTRS)

    Haacke, G.

    1975-01-01

    Efforts concentrated on reducing the electrical sheet resistance of sputtered cadmium stannate films, installing and testing equipment for spray coating experiments, and sputter deposition of thin cadmium sulfide layers onto cadmium stannate electrodes. In addition, single crystal silicon wafers were coated with cadmium stannate. Work also continued on the development of the backwall CdS solar cell.

  2. Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO3

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaye; Han, Shaobo; Luo, Weihuang; Xiang, Shuhuai; Zou, Jianli; Oropeza, Freddy E.; Gu, Meng; Zhang, Kelvin H. L.

    2018-04-01

    Transparent oxide semiconductors hold great promise for many optoelectronic devices such as transparent electronics, UV-emitting devices, and photodetectors. A p-n heterojunction is the most ubiquitous building block to realize these devices. In this work, we report the fabrication and characterization of the interface properties of a transparent heterojunction consisting of p-type NiO and n-type perovskite BaSnO3. We show that high-quality NiO thin films can be epitaxially grown on BaSnO3 with sharp interfaces because of a small lattice mismatch (˜1.3%). The diode fabricated from this heterojunction exhibits rectifying behavior with a ratio of 500. X-ray photoelectron spectroscopy reveals a type II or "staggered" band alignment with valence and conduction band offsets of 1.44 eV and 1.86 eV, respectively. Moreover, a large upward band bending potential of 0.90 eV for BaSnO3 and a downward band bending potential of 0.15 eV for NiO were observed in the interface region. Such electronic properties have important implication for optoelectronic applications as the large built-in potential provides favorable energetics for photo-generated electron-hole separation/migration.

  3. On the possibility of room temperature ferromagnetism on chunk-shape BaSnO3/ZnO core/shell nanostructures

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.

  4. Dielectric characteristics of Mn-doped LaTiO3+δ ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Cui, Yimin

    A series of ceramic composites of Mn-doped La1- x MnxTiO3+ δ and LaMnxTi1- x O3+ δ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K <= T <= 360 K) and frequency (100 Hz <= f <= 1 MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent ( 6) appear at low frequency (100 Hz) in LaMn0.2Ti0.8O3+ δ , which is 8 times larger than that of LaMn0.1Ti0.9O3+ δ , which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.

  5. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films.

    PubMed

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-12-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10(-3) Ω(-1) was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10(-5) Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10(-4) Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes.

  6. Structural and dielectric studies on Ag doped nano ZnSnO3

    NASA Astrophysics Data System (ADS)

    Deepa, K.; Angel, S. Lilly; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Ag-doped nano Zinc Stannate (ZSO) ternary oxide were prepared by co-precipitation method. The crystallographic, morphological and optical properties of the synthesized nanoparticles were studied using X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM). The electrical properties of the synthesized samples were studied by dielectric measurements. Higher concentration Ag doped ZSO nanoparticles exhibit higher dielectric constant at low frequency.

  7. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  8. Magnetic Properties of Electron-Doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Keisuke; Sato, Mika; Koyama, Shun-Ichi; Nojima, Tsutomu; Kajimoto, Ryoichi; Ji, Sungdae; Iwasa, Kazuaki

    2017-09-01

    We studied electron-doped LaCo1 - yTey6 + O3 by magnetization measurements and neutron scattering. The effective Bohr magneton, estimated by Curie-Weiss fitting around room temperature, is independent of y. This suggests that magnetic Co3+(HS), not nonmagnetic Co3+(LS), is mainly replaced by doped magnetic Co2+(HS). At the lowest temperatures, a Brillouin-function-like saturating behavior persists in the magnetization curves even in the high-y samples, and neither a clear magnetic reflection nor magnetic dispersion is observed by neutron scattering. These findings indicate that the magnetic correlation is very weak, in contrast to the well-known hole-doped LaCoO3 accompanied by a drastic transition to a ferromagnetic metal. However, we also found that the low-y samples exhibit nonnegligible enhancement of the saturated magnetization by ˜2μB per a doped electron. All these characteristics are discussed in the light of the activation and inactivation of a spin-state blockade.

  9. Methanol adsorption and dissociation on LaMnO 3 and Sr doped LaMnO 3 (001) surfaces

    DOE PAGES

    Beste, Ariana

    2017-06-20

    Using density functional theory, we investigate in this paper methanol adsorption and dissociation on the MnO 2- and LaO-terminated LaMnO 3 (001) surface as a function of Sr dopant enrichment in and near the surface. In response to bulk cleavage, we find electron depletion of the negatively charged MnO 2 surface layer that is enhanced by Sr doping in the subsurface. In contrast, we observe electron accumulation in the positively charged LaO surface layer that is reduced by Sr doping in the surface layer. Methanol adsorbs dissociatively on the LaO termination of the LaMnO 3 (001) surface. Methanol adsorption onmore » the LaO termination is strongly preferred over adsorption on the MnO 2 termination. While moderate doping has a small influence on methanol adsorption and dissociation, when 100% of La is replaced by Sr in the surface or subsurface, the adsorption preference of methanol is reversed. Finally, if the surface is highly dopant enriched, methanol favours dissociative adsorption on the MnO 2-terminated surface.« less

  10. Methanol adsorption and dissociation on LaMnO 3 and Sr doped LaMnO 3 (001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana

    Using density functional theory, we investigate in this paper methanol adsorption and dissociation on the MnO 2- and LaO-terminated LaMnO 3 (001) surface as a function of Sr dopant enrichment in and near the surface. In response to bulk cleavage, we find electron depletion of the negatively charged MnO 2 surface layer that is enhanced by Sr doping in the subsurface. In contrast, we observe electron accumulation in the positively charged LaO surface layer that is reduced by Sr doping in the surface layer. Methanol adsorbs dissociatively on the LaO termination of the LaMnO 3 (001) surface. Methanol adsorption onmore » the LaO termination is strongly preferred over adsorption on the MnO 2 termination. While moderate doping has a small influence on methanol adsorption and dissociation, when 100% of La is replaced by Sr in the surface or subsurface, the adsorption preference of methanol is reversed. Finally, if the surface is highly dopant enriched, methanol favours dissociative adsorption on the MnO 2-terminated surface.« less

  11. Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single-doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malengreaux, Charline M.; Pirard, Sophie L.; Léonard, Géraldine

    An aqueous sol-gel process, previously developed for producing undoped and Cu 2+, Ni 2+, Zn 2+ or Pb 2+ doped TiO 2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped TiO 2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO 2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 M ssbauer. The active crystalline phase is obtained without requiring any calcination step andmore » all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m 2 g -1. In this study, the effect of the NO 3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe 3+ or La 3+ single-doped as well as in the case of La 3+-Fe 3+ and Eu 3+-Fe 3+ co-doped catalysts. In the case of Cr 3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu 3+ single-doped catalysts. In conclusion, the role of the different dopants in modulating the photocatalytic activity is discussed.« less

  12. Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single-doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing

    DOE PAGES

    Malengreaux, Charline M.; Pirard, Sophie L.; Léonard, Géraldine; ...

    2016-08-30

    An aqueous sol-gel process, previously developed for producing undoped and Cu 2+, Ni 2+, Zn 2+ or Pb 2+ doped TiO 2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped TiO 2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO 2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 M ssbauer. The active crystalline phase is obtained without requiring any calcination step andmore » all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m 2 g -1. In this study, the effect of the NO 3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe 3+ or La 3+ single-doped as well as in the case of La 3+-Fe 3+ and Eu 3+-Fe 3+ co-doped catalysts. In the case of Cr 3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu 3+ single-doped catalysts. In conclusion, the role of the different dopants in modulating the photocatalytic activity is discussed.« less

  13. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, Er) at high pressure

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Tracy, Cameron L.; Mao, Wendy L.; Ewing, Rodney C.

    2017-12-01

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare their response to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant feature that influences their response on compression. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the 〈Sn-O〉 bond in stannate pyrochlore is more covalent than the 〈B-O〉 bonds in titanates, zirconate, and hafnates. In stannates, based on in situ Raman spectroscopy, pyrochlore cation and anion sublattices begin to disorder with the onset of compression, first measured at 0.3 GPa. The extent of sublattice disorder versus pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to an orthorhombic, cotunnite-like structure at ~28 GPa similar transitions have been observed in titanate, zirconate, and hafnate pyrochlores at varying pressures (18-40 GPa) with cation radius ratio. The extent of the phase transition versus pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multi-scale defect-fluorite  +  weberite-type structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlores under similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B 0, of stannates varies linearly and inversely with cation radius ratio from 1 1 1 GPa (Nd2Sn2O7) to 251 GPa (Er2Sn2O7). The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates and suggest that the size of the Ln3+ cation is the primary determining factor of B 0. Additionally, when normalized to r A

  14. Atomistic modeling of La3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia.

    PubMed

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H R; Faller, Roland

    2018-05-16

    The effect of La3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations. The simulation revealed the segregation of La3+ at eight tilt grain boundary (GB) structures and predicted an average grain boundary (GB) energy decrease of 0.25 J m-2, which is close to the experimental values reported in the literature. Cation stabilization was found to be the main reason for the GB energy decrease, and energy fluctuations near the grain boundary are smoothed out with La3+ segregation. Both dynamic and energetic analysis on the Σ13(510)/[001] GB structure revealed La3+ doping hinders O2- diffusion in the GB region, where the diffusion coefficient monotonically decreases with increasing La3+ doping concentration. The effect was attributed to the increase in the site-dependent migration barriers for O2- hopping caused by segregated La3+, which also leads to anisotropic diffusion at the GB.

  15. Stabilization of cubic Li7La3Hf2O12 by Al-doping

    NASA Astrophysics Data System (ADS)

    Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.

    2018-07-01

    In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.

  16. Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface.

    PubMed

    Lee, M; Arras, R; Warot-Fonrose, B; Hungria, T; Lippmaa, M; Daimon, H; Casanove, M J

    2017-11-01

    The structure of Ir-doped LaAlO 3 /SrTiO 3 (001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO 3 film as a function of the Ir concentration in the topmost SrTiO 3 layer. It is shown that the LaAlO 3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L 2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.

  17. First-principles study of direct and indirect optical absorption in BaSnO3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Peelaers, Hartwin; Krishnaswamy, Karthik; Van de Walle, Chris G.

    2018-02-01

    We report first-principles results for the electronic structure and the optical absorption of perovskite BaSnO3 (BSO). BSO has an indirect fundamental gap, and hence, both direct and indirect transitions need to be examined. We assess direct absorption by calculations of the dipole matrix elements. The phonon-assisted indirect absorption spectrum at room temperature is calculated using a quasiclassical approach. Our analysis provides important insights into the optical properties of BSO and addresses several inconsistencies in the results of optical absorption experiments. We shed light on the variety of bandgap values that have been previously reported, concluding that the indirect gap is 2.98 eV and the direct gap is 3.46 eV.

  18. Growth, improved thermal stability and spectral properties of Yb3+-ions doped high temperature phase α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions

    NASA Astrophysics Data System (ADS)

    Pan, Shangke; Zhang, Jianyu; Pan, Jianguo

    2018-02-01

    To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.

  19. Phase Constitution in Sr and Mg doped LaGaO3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, F; Bordia, Rajendra K.; Pederson, Larry R.

    Sr and Mg doped lanthanum gallate perovskites (La1-xSrxGa1-yMgyO3-delta, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X = Y = 0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05)more » were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 degreesC for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 degreesC). (C) 2003 Elsevier Ltd. All rights reserved« less

  20. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  1. Very fast doped LaBr.sub.3 scintillators and time-of-flight PET

    DOEpatents

    Shah, Kanai S.

    2006-10-31

    The present invention concerns very fast scintillator materials capable of resolving the position of an annihilation event within a portion of a human body cross-section. In one embodiment, the scintillator material comprises LaBr.sub.3 doped with cerium. Particular attention is drawn to LaBr.sub.3 doped with a quantity of Ce that is chosen for improving the timing properties, in particular the rise time and resultant timing resolution of the scintillator, and locational capabilities of the scintillator.

  2. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  3. Up-conversion luminescence properties and energy transfer of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Mei, Lefu, E-mail: mlf@cugb.edu.cn; Deng, Junru

    2015-11-15

    Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} up-conversion (UC) phosphors were successfully synthesized by high temperature solid-state reaction method. The X-ray diffraction (XRD) results show that synthesized phosphor co-doped with 0.75% Tm/10% Yb has the optimum pure phase of BaLa{sub 2}ZnO{sub 5} among different co-doping concentrations. The structure of BaLa{sub 2}ZnO{sub 5}:0.75% Tm/10% Yb phosphor was refined by the Rietveld method and results show the decreased unit cell parameters and cell volume after doping Tm{sup 3+}/Yb{sup 3+}, indicating that Tm{sup 3+}/Yb{sup 3+} have successfully replaced La{sup 3+}. Under excitation at 980 nm, Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} phosphorsmore » present bright blue emission near 478 nm generated by the {sup 1}G{sub 4}→{sup 3}H{sub 6} transition and weak red emissions around 653 nm and 692 nm generated by the {sup 1}G{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 3}→{sup 3}H{sub 6} transitions of Tm{sup 3+}, respectively. The UC luminescence properties of BaLa{sub 2}ZnO{sub 5} phosphors co-doped with different Tm{sup 3+}/Yb{sup 3+} concentrations were investigated, and the related UC mechanisms of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} depending on pump power were studied in detail. - Graphical abstract: Up-conversion luminescence of BaLa{sub 2}ZnO{sub 5}:Tm{sup 3+}/Yb{sup 3+} and its crystal structure and up-conversion mechanisms. - Highlights: • Up-conversion phosphors BaLa{sub 2}ZnO{sub 5} co-doped with Tm{sup 3+}/Yb{sup 3+} were synthesized by high temperature solid-state reaction method. • The crystal structure of BaLa{sub 2}ZnO{sub 5} and the changes of cell parameters and volume of BaLa{sub 2}ZnO{sub 5} after doping Tm{sup 3+} and Yb{sup 3+} have been discussed. • Up-conversion luminescence properties and energy transfer between Tm{sup 3+} and Yb{sup 3+} in BaLa{sub 2}ZnO{sub 5} have been discussed in detail.« less

  4. Studies of doped LaMnO3 samples prepared by citrate combustion process

    NASA Astrophysics Data System (ADS)

    Dimri, M. Chandra; Khanduri, H.; Mere, A.; Stern, R.

    2018-04-01

    La0.95A0.05MnO3 (where A=Na, Sr, Er, Dy and Ce) powder samples were synthesized by chemical solution route and the magnetic and structural properties are reported in this paper. The pervoskite structure was confirmed from X-ray diffraction patterns and Raman spectra at room temperature in all of these doped samples. Curie transition temperatures in doped LaMnO3 bulk samples were around 250K, which are much higher than the ideal value (˜140 K) in undoped samples. The increase in the magnetic transition temperatures can be related to non-stoichiometry and cation vacancies created due to higher valence substitutions for the univalent La1+ ions.

  5. Magnetic order and polaron formation in hole-doped LaMnO_3

    NASA Astrophysics Data System (ADS)

    Terashita, Hirotoshi; Neumeier, John J.; Mitchell, J. F.

    2003-03-01

    We report the magnetic properties of hole-doped La_1-xCa_xMnO3 (0 <= x <= 0.14). A ferromagnetic saturation moment M_sat develops linearly with Mn^4+ concentration. The slope of M_sat versus Mn^4+ concentration is 27 μ_B/(Mn-ion) per substututed Mn^4+, which is about 3 times larger in magnitude than that of electron-doped CaMnO3 [1]. This result suggests differences in the formation of magnetic polarons of the A-type antiferromagnet LaMnO3 versus that of the G-type antiferromagnet CaMnO_3. Supported by NSF Grant DMR9982834 and the USDOE under contract W-31-109-ENG-38. [1] J. J. Neumeier and J. L. Cohn, Phys. Rev. B 61, 14319 (2000).

  6. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  7. The effect of temperature and addition of reducing agent on sodium stannate preparation from cassiterite by the alkaline roasting process

    NASA Astrophysics Data System (ADS)

    Lalasari, Latifa Hanum; Andriyah, Lia; Arini, Tri; Firdiyono, F.

    2018-04-01

    Sodium stannate is an intermediate compound with the formula Na2SnO3. This compound is easily dissolved in water and has many applications in the electroplating industry, tin alloy production, and catalysts for organic synthesis. In this occasion was investigated the effect of temperature and the addition of reducing agent on making of sodium stannate phase from cassiterite by an alkaline roasting process using sodium carbonate (Na2CO3). Firstly, cassiterite was roasted at 700 °C for 3 hours and continued leaching process using 10% HCl solution at 110 °C for 2 hours. The cassiterite residue than was dried at 110 °C and mixed homogenously with a Na2CO3 decomposer at a mass ratio Na2CO3/cassiterite as 5:3 for the decomposition process. It was done by variation temperatures (300 °C, 700 °C, 800 °C, 870 °C, 900 °C) for 3 hours, variation times (3, 4, 5 hours) at a roasting temperature of 700 °C and addition of reducing agent such as sub-bituminous coal. The result of the experiment shows that cassiterite prepared by roasting and acid leaching process has the chemical composition as follows: 59.98% Sn, 22.58% O, 3.20% Ce, 3.15% La, 2.57% Nd, 1.67% Ti, 1.56% Fe, 1.24% P, 0.62% Ca and others. The Na2SnO3 phase begins to form at a roasting temperature of 870 °C for 3 hours. Although the roasting times was extended from 3 hours to 5 hours at 700 °C, the Na2SnO3 phase also has not yet formed. In other conditions, the addition of coal reducing agent to the roasting process would cause formations of Sn metal besides Na2SnO3 phase at 870 °C. At temperatures lower than 870 °C, the addition of coal only forms Sn metal, whereas the sodium stannate phase is not formed.

  8. Phase constitution in Sr and Mg doped LaGaO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R

    2004-01-03

    Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, andmore » 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)« less

  9. Colossal permittivity and the polarization mechanism of (Mg, Mn) co-doped LaGaO3 ceramics

    NASA Astrophysics Data System (ADS)

    Luo, Tingting; Liu, Zhifu; Zhang, Faqiang; Li, Yongxiang

    2018-03-01

    Mg and Mn co-doped LaGa0.7-xMgxMn0.3O3 (x = 0, 0.05, 0.10, 0.15) ceramics were prepared by a solid-state reaction method. The electrical properties of the LaGa0.7-xMgxMn0.3O3 ceramics were studied in detail by dielectric spectra, impedance spectra, and I-V characteristic analysis. Colossal permittivity up to 104 could be obtained across the frequency range up to 104 Hz. The impedance analysis of the co-doped LaGaO3 ceramics indicated that the Mott's variable range hopping (VRH) polarization should be the main origin of colossal permittivity. Mg and Mn co-doping suppressed the formation of Mn3+ and enhanced the VRH polarization, resulting in increased permittivity. Partial localization of electrons by Mg reduced the long-range electron hopping and led to the decrease in dielectric loss.

  10. Modulated two-dimensional charge-carrier density in LaTiO3-layer-doped LaAlO3/SrTiO3 heterostructure.

    PubMed

    Nazir, Safdar; Bernal, Camille; Yang, Kesong

    2015-03-11

    The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.

  11. Growth of a Lightly Doped Pr^3+:LaCl3 Crystal to Determine Radiative Transition Rates

    NASA Astrophysics Data System (ADS)

    Watters, J. Michael; Ganem, Joseph; Shaw, L. B.; Bowman, S. R.; Feldman, B. J.

    1996-03-01

    The recent demontration of 5.2 and 7.2 micron lasers using Pr^3+:LaCl3 ,(S. R. Bowman, Joseph Ganem, B. J. Feldman and A. W. Kueny, IEEE J. Quant. Elect. 30, 2925(1994).)^,(S. R. Bowman, L. B. Shaw, B. J. Feldman and Joseph Ganem, postdeadline paper CPD 26 at CLEO(1995).) the longest known wavelengths for any rare earth solid-state laser, has motivated further studies of this material. Design of mid-infrared lasers that use Pr^3+:LaCl3 would benefit from the ability to model population dynamics under different pumping conditions of the lower levels of the Pr^3+ ion. The lower levels, that are the basis for the new mid-infrared lasers, have many energetic overlaps resulting in several competing energy transfer processes when Pr^3+ concentrations approach 1 percent or higher. To minimize these processes we have grown and studied a lightly doped Pr^3+:LaCl3 crystal in order to determine the underlying radiative transition rates. We report how knowledge of the radiative rates can be incorporated into a model describing energy transfer processes in more heavily doped crystals.

  12. Magnetic and electronic properties of La3 MO7 and possible polaron formation in hole-doped La3 MO7 (M  =  Ru and Os)

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Weng, Yakui; Zhang, Jun-Jie; Zhang, Huimin; Zhang, Yang; Dong, Shuai

    2017-03-01

    Oxides with 4d/5d transition metal ions are physically interesting for their particular crystalline structures as well as the spin-orbit coupled electronic structures. Recent experiments revealed a series of 4d/5d transition metal oxides R 3 MO7 (R: rare earth; M: 4d/5d transition metal) with unique quasi-one-dimensional M chains. Here first-principles calculations have been performed to study the electronic structures of La3OsO7 and La3RuO7. Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state (3 t 2g orbitals occupied), are attributed to the strong p  -  d hybridization with oxygen ions, instead of the spin-orbit coupling. The Ca-doping to La3OsO7 and La3RuO7 can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped 5d transition metal oxides. In addition, our calculations predict that the Ca-doping can trigger ferromagnetism in La3RuO7 but not in La3OsO7.

  13. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    PubMed

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  15. Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.

    2018-04-01

    The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.

  16. Spin-state polarons as a precursor to ferromagnetism and metallicity in hole-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Podlesnyak, A.; Russina, M.; Pomjakushina, E.; Conder, K.; Khomskii, D.

    2008-03-01

    Lightly doped cobaltites La1-xSrxCoO3 exhibit magnetic properties at low temperatures, in strong contrast to the diamagnetic LaCoO3. We undertook an inelastic neutron scattering study with the goal to identify the energy spectrum and magnetic state of cobalt ions in the doped system with x=0.002. In distinguish to the parent compound, where no excitations have been found for T<30 K, an inelastic peak at δE ˜0.75 meV was observed in La0.998Sr0.002CoO3 at T=1.5 K. The intensity of this excitation is much higher than what is expected from an estimated concentration of doped holes. Furthermore, strong Zeeman splitting of the inelastic peak corresponds to an unusually high effective magnetic moment ˜15 μB. Neighboring low-spin (LS) Co^4+ and intermediate-spin Co^3+ ions can share an eg electron by swapping configuration. The t2g electrons, in their turn, couple ferromagnetically. Therefore, we propose that the holes introduced in the LS state of LaCoO3 are extended over the neighboring Co sites forming spin-state polarons and transforming the involved Co^3+ ions to the higher spin state. Grows of spin-state polarons with hole doping finally results in a metallic ferromagnetic state for x > 0.3.

  17. Atomistic modeling of La 3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia

    DOE PAGES

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H. R.; ...

    2018-01-01

    The effect of La 3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations.

  18. Mobility Optimization in LaxBa1-xSnO3 Thin Films Deposited via High Pressure Oxygen Sputtering

    NASA Astrophysics Data System (ADS)

    Postiglione, William Michael

    BaSnO3 (BSO) is one of the most promising semiconducting oxides currently being explored for use in future electronic applications. BSO possesses a unique combination of high room temperature mobility (even at very high carrier concentrations, > 1019 cm-3), wide band gap, and high temperature stability, making it a potentially useful material for myriad applications. Significant challenges remain however in optimizing the properties and processing of epitaxial BSO, a critical step towards industrial applications. In this study we investigate the viability of using high pressure oxygen sputtering to produce high mobility La-doped BSO thin films. In the first part of our investigation we synthesized, using solid state reaction, phase-pure stoichiometric polycrystalline 2% La-doped BaSnO 3 for use as a target material in our sputtering system. We verified the experimental bulk lattice constant, 4.117 A, to be in good agreement with literature values. Next, we set out to optimize the growth conditions for DC sputtering of La doped BaSnO3. We found that mobility for all our films increased monotonically with deposition temperature, suggesting the optimum temperature for deposition is > 900 °C and implicating a likely improvement in transport properties with post-growth thermal anneal. We then preformed systematic studies aimed at probing the effects of varying thickness and deposition rate to optimize the structural and electronic transport properties in unbuffered BSO films. In this report we demonstrate the ability to grow 2% La BSO thin films with an effective dopant activation of essentially 100%. Our films showed fully relaxed (bulk), out-of-plane lattice parameter values when deposited on LaAlO3, MgO, and (LaAlO3)0.3(Sr2 TaAlO6)0.7 substrates, and slightly expanded out-of-plane lattice parameters for films deposited on SrTiO3, GdScO3, and PrScO3 substrates. The surface roughness's of our films were measured via AFM, and determined to be on the nm scale or better

  19. Ce3+-doped LaF3 nanoparticles: Wet-chemical synthesis and photo-physical characteristics "optical properties of LaF3:Ce nanomaterials"

    NASA Astrophysics Data System (ADS)

    Tabatabaee, F.; Sabbagh Alvani, A. A.; Sameie, H.; Moosakhani, S.; Salimi, R.; Taherian, M.

    2014-01-01

    The most effective process parameters were determined to synthesize spherical LaF3 nanoparticles with controllable size based on ethylenediaminetetraacetic acid (EDTA) via co-precipitation technique. Thermogravimetricdifferential thermal analysis, X-ray diffraction, scanning electron microscopy, dynamic light scattering and FT-IR spectroscopy were used to characterize the resulting powders. Detailed investigations revealed that the optimal LaF3 host nano-material was obtained when NH4F was used as a fluoride source in the presence of EDTA at pH = 5. Furthermore, photoluminescence spectra showed an intense double emission peak at 289 and 302 nm for cerium-doped LaF3 nanocrystals excited at 253 nm, which was assigned to the well-known 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+ levels due to luminescence center mechanism. The experimental results indicate that the synthesized LaF3:0.05Ce powders with a band gap of 5.3 eV are promising phosphors for high density scintillators.

  20. Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries.

    PubMed

    Liu, Xiao; Gong, Hao; Wang, Tao; Guo, Hu; Song, Li; Xia, Wei; Gao, Bin; Jiang, Zhongyi; Feng, Linfei; He, Jianping

    2018-03-02

    Perovskite-type oxides based on rare-earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite-type LaMnO 3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO 3 , the element cobalt is doped into perovskite-type LaMnO 3 through a sol-gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn 1-x Co x O 3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn 1-x Co x O 3 . If x=0.3, LaMn 0.7 Co 0.3 O 3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO 3 . Furthermore, the results demonstrate that LaMn 0.7 Co 0.3 O 3 is a promising cost-effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Down-shifting in Ce3+-Tb3+ co-doped SiO2-LaF3 nano-glass-ceramics for photon conversion in solar cells

    NASA Astrophysics Data System (ADS)

    Velázquez, J. J.; Rodríguez, V. D.; Yanes, A. C.; del-Castillo, J.; Méndez-Ramos, J.

    2012-10-01

    95SiO2-5LaF3 sol-gel derived nano-glass-ceramics single doped with Ce3+ or Tb3+ and co-doped with Ce3+-Tb3+ were synthesized by thermal treatment of precursor glasses. Precipitation of LaF3 nanocrystals during ceramming process was confirmed by X-ray diffraction with mean size ranging from 12 to 15 nm. An exhaustive spectroscopic analysis has been carried out. As a result, it was found that the green emission of Tb3+ ions was greatly enhanced through down shifting process, due to efficient energy transfer from Ce3+ to Tb3+ ions in the glass-ceramics, which is favored by the reduction of the interionic distances when the dopant ions are partitioned into LaF3 nanocrystals. These results suggest the use of these materials to improve the efficiency of solar cells.

  2. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  3. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  4. Ferromagnetism in Co-doped (La,Sr)TiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, T.; Liberati, M.; Aubriet, H.

    2009-04-21

    The origin of ferromagnetism in Co-doped (La,Sr)TiO{sub 3} epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10 K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.

  5. Enhanced photocatalytic hydrogen production from water-ethanol solution by Ruthenium doped La-NaTaO3

    NASA Astrophysics Data System (ADS)

    Husin, H.; Alam, P. N.; Zaki, M.; Sofyana; Jakfar; Husaini; Hasfita, F.

    2018-04-01

    The photocatalytic hydrogen production from ethanol aqueous solution, with the use ruthenium doped La-NaTaO3 has been investigated. Ruthenium doped La-NaTaO3 catalysts are prepared by impregnation method. The catalysts are by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Ru co-catalyst demonstrated from the TEM image shows a good dispersion on the surface of La-C-NaTaO3 with an average particle size between 4-5 nm. The photocatalytic reaction is carried out in a closed reactor with a gas circulation system. The catalytic activity of La-NaTaO3 improved markedly (6.6 times from pure water) when Ru is loaded onto its surface. The hydrogen production is notably enhanced in the presence of ethanol as electron donors. This result is much higher when compared with the rate of hydrogen production in the sample without co- catalysts about 9.4 times higher after Ru deposition from ethanol aqueous solution. Increasing the production of hydrogen on the Ru/La-NaTaO3 closely related to the decrease in recombination between electron-hole pairs.

  6. Magnetothermopower of δ-doped LaTiO3/SrTiO3 interfaces in the Kondo regime

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Joshi, P. C.; Rastogi, A.; Hossain, Z.; Budhani, R. C.

    2014-08-01

    Measurements of magnetothermopower [S (H,T)] of interfacial δ-doped LaTiO3/SrTiO3 (LTO/STO) heterostructure by an isostructural antiferromagnetic perovskite LaCrO3 are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is ≈118 μV /K, but increases dramatically on δ doping. The observed linear temperature dependence of S (T) over the temperature range 100 to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S (T) displays a distinct enhancement in the temperature range (T < 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S (T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo-model-based interpretation of S (H,T).

  7. Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance

    NASA Astrophysics Data System (ADS)

    Rakibuddin, Md; Kim, Haekyoung; Ehtisham Khan, Mohammad

    2018-09-01

    A novel g-C3N4/N doped-LaTiO3 organic-inorganic hybrid (CLT) is synthesized via a sol-gel polymerized complex method followed by a facile solid state transformation route. The as synthesized hybrid is characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffuse reflectance spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis. The results show that the band gap of LaTiO3 is narrowed and also could absorb visible light after doping of N into the LaTiO3 lattice. It is observed that N-doped LaTiO3 nanoparticles are wrapped with the g-C3N4 nano-sheet layers, forming a heterojunction structure, in the CLT hybrid. The CLT hybrid exhibits not only longer wavelength absorption in the visible region but also an enhancement in the photocatalytic and photocurrent activity under visible light compared to pure N-doped LaTiO3 and g-C3N4. Moreover, the hybrid is photo-stable and reusable. The improved visible light photocatalytic activity of the CLT hybrid is ascribed to its suitable band edge potential, better separation of photoinduced charge carriers owing to the heterojunction, and the synergistic effect of g-C3N4 and N-LaTiO3. Based on the results of photoluminescence, electrochemical impedance, and radical scavenger studies, a possible photocatalytic mechanism for the hybrid is also proposed. The g-C3N4/N-LaTiO3 hetero-structure is expected to provide new insight for the application of rare-earth-metal based perovskite oxides in environmental remediation and could be suitable for water splitting and other energy related applications as well.

  8. Structural, dielectric and impedance spectroscopy studies in Co doped La0.7Te0.3MnO3

    NASA Astrophysics Data System (ADS)

    Uthaman, Bhagya; Revathy, R.; Job, Rojerce Brown; Varma, Manoj Raama

    2018-05-01

    The effect of cobalt doping on the structural and dielectric properties of the electron-doped manganite La0.7Te0.3Mn1-xCoxO3 (x=0, 0.1, 0.3 and 0.5) has been investigated. Cobalt substitution induces a structural transition from rhombohedral structure (R-3 c space group) to orthorhombic structure (Pbnm space group). It is observed that, dielectric constant decreases with Co concentration which could be due to suppression of double exchange (DE) interaction between Mn2+ and Mn3+. Also, the effect of the grain and grain boundary density on the dielectric response is studied using Cole-Cole plots.

  9. Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3.

    PubMed

    Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk

    2017-01-25

    Rare-earth-doped ferromagnetic manganites La 0.63 RE 0.07 Sr 0.30 MnO 3 (RE  =  Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites  ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd 3+ ions, whereas Kramers ions Dy 3+ and non-Kramers ions Ho 3+ contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb 3+ is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb 3+ doping leads also to a notably increased coercivity compared to other La 0.63 RE 0.07 Sr 0.30 MnO 3 systems.

  10. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1

    PubMed Central

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-01-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm−1. Significantly, these films show room temperature mobilities up to 120 cm2 V−1 s−1 even at carrier concentrations above 3 × 1020 cm−3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III–N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality. PMID:28474675

  11. Spin-state transitions and magnetic polaron in lightly doped La1-xSrxCoO3.

    NASA Astrophysics Data System (ADS)

    Podlesnyak, A.; Haverkort, M. W.; Conder, K.; Pomyakushina, E.; Khomskii, Daniel

    2007-03-01

    Using the inelastic neutron scattering (INS) technique, we identified the energy levels of the thermally excited states of Co^3+ ions in both LaCoO3 and La0.998Sr0.002CoO3. In LaCoO3 an excitation at ˜0.6 meV appears at T>30K, whose intensity follows the bulk magnetization. Within a model including crystal field interaction and spin-orbit coupling we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. Since the g-factor obtained from the field dependence of the INS is g˜ 3, we interpret this state as a high-spin state of Co^3+ . The lightly doped material x˜0:002 exhibits paramagnetic properties at low temperatures. An INS peak at energy transfer ˜0.75 meV was observed in it already at T = 1:5 K. We propose that the holes introduced in the LS state of LaCoO3 by doping are extended over the neighboring Co sites, forming thus magnetic polaron and transforming all the involved Co ions (e.g. 6 of them) to the high-spin state. Similarly to LaCoO3, we interpret the INS transition at 0.75 meV as that on these high-spin Co^3+ ions.

  12. Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat

    2017-11-01

    Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.

  13. Structural and mechanical properties of lanthanide doped La1/3Nb0.8Ta0.2O3 thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Brunckova, Helena; Medvecky, Lubomir; Kovalcikova, Alexandra; Fides, Martin; Mudra, Erika; Durisin, Juraj; Skvarla, Jiri; Kanuchova, Maria

    2017-04-01

    Transparent Eu and Nd doped lanthanum niobate tantalate La1/3Nb0.8Ta0.2O3 (LNT) thin films (˜150 nm) were prepared by sol-gel/spin-coating process on Pt/SiO2/Si substrates and annealing at 1100 °C. The x-ray diffraction analysis of films confirmed formation of the perovskite La1/3NbO3 and La1/3TaO3 phases with traces of pyrochlore LaNbO4. Eu and Nd doped LNT films were smoother with roughness 17.1 and 25.4 nm in comparison with LNT (43.3 nm). In all films was observed heterogeneous microstructure with the perovskite spherical and pyrochlore needle-like particles. The mechanical properties of films were characterized for the first time by conventional and continuous stiffness (CSM) nanoindentation. The Eu and Nd doped LNT film modulus (E) and hardness (H) were higher than LNT (˜99.8 and 4.4 GPa) determined by conventional nanoindentation. It was measured the significant effect of substrate on properties of Eu or Nd films (H ˜ 5.9 or 4.9 GPa and E ˜ 107.3 or 104.1 GPa) by CSM nanoindentation.

  14. Microscopic origin of the magnetoelectronic phase separation in Sr-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Szabó, András; Knížek, Karel; Sikora, Marcin; Chernikov, Roman; Sas, Norbert; Bogdán, Csilla; Nagy, Dénes Lajos; Vankó, György

    2013-07-01

    The nanoscopic magnetoelectronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by Mössbauer spectroscopy in the studied doping range of 0.05 ≤ x ≤ 0.25 both at room temperature and in the low-temperature magnetic phase. Extended with current synchrotron-based x-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases and the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping-driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content.

  15. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    PubMed

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  16. Signature of enhanced spin-orbit interaction in the magnetoresistance of LaTiO3/SrTiO3 interfaces on δ doping

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Hossain, Z.; Budhani, R. C.

    2016-09-01

    We present a study of modulation of spin-orbit interaction (SOI) at the interface of LaTiO3/SrTiO3 by δ doping with an isostructural ferromagnetic perovskite LaCoO3. The sheet carrier density at the interface decreases exponentially with δ -doping thickness. We have explored that the spin-orbit scattering time (τs o) can be decreased by nearly three orders of magnitude, whereas the inelastic scattering time (τi) remains almost constant with δ -doping thickness. We have also observed that the τi varies almost inversely proportional to temperature and τs o remains insensitive to temperature, which suggest that the spin relaxation in these interfaces follows D'yakonov-Perel mechanism. The observed in-plane anisotropic magnetoresistance is attributed to the mixing of the spin-up and spin-down states of the d band at the Fermi level due to SOI.

  17. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua

    2018-04-01

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

  18. Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1

    DOE PAGES

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...

    2017-05-05

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less

  19. Influence of Fe doped on the magnetocaloric behavior of La_{{2}/{3}} Ca_{{1}/{3}} Mn1-x Fe x O3 compounds: a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.

    2018-02-01

    The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x  =  0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.

  20. The upconversion luminescence and magnetism in Yb3+/Ho3+ co-doped LaF3 nanocrystals for potential bimodal imaging

    NASA Astrophysics Data System (ADS)

    Syamchand, Sasidharanpillai S.; George, Sony

    2016-12-01

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity ( r 1) of 0.12 s-1 mM-1 and transverse relaxivity ( r 2) of 28.18 s-1 mM-1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential

  1. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    NASA Astrophysics Data System (ADS)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  2. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  3. Cathodoluminescence emission of REE (Dy, Pr and Eu) doped LaAlO3 phosphors

    NASA Astrophysics Data System (ADS)

    Boronat, C.; Rivera, T.; Garcia-Guinea, J.; Correcher, V.

    2017-01-01

    Luminescence emission from rare earth (REE) ions doped materials are being of interest since can be employed as scintillators, catalysts, battery and magnetic materials, etc. We herein report on the preliminary results obtained from the cathodoluminescence (CL) properties of undoped LaAlO3 (LAO) and LaAlO3: REE3+ (REE=Dy3+, Pr3+ and Eu3+) samples synthesized by a sol-gel process based on the Pechini's method with a spray-drying technique. The samples, previously characterized by means of Environmental Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis Spectrometry, display CL spectra with well-defined peaks that could specifically be associated with the LAO structure (in the range of 300-450 nm) and point defects (from 450 to 800 nm) spectral regions. The observed wavebands are as follows: (i) 480 and 570 from the Dy-doped LAO correspond respectively to 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions, (ii) 490-638 from the Pr-doped LAO is linked to 3P0→3H4, 1D2→3H4 transitions and (iii) 590 and 620 where the dopant Eu3+ gives rise to 5D0→7F1 and 5D0→7F2 transitions and (iv) a UV-blue broad band is associated with NBHOC in undoped LAO. Such emissions are due to the presence of the 4f electrons of rare earth ions that are shielded by the outer 5s and 5p electrons, the intra-4f emission spectra of REE that induce sharp and narrow wavebands.

  4. La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study

    NASA Astrophysics Data System (ADS)

    López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.

    2008-11-01

    La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.

  5. Prominent blue emission through Tb3+ doped La2O3 nano-phosphors for white LEDs

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr; Srivastava, Amit; Mishra, S. K.; Singh, Jai

    2018-06-01

    In this article, we report the tunable luminescence emission of Tb3+ doped La2O3 nanophosphors synthesized by a facile and effective Polyol method. The structural and surface morphological studies have been carried out by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies elucidate the proper phase formation and the results emanate from Raman spectroscopy of the as synthesized nanophosphor affirms it. The optical properties of the as fabricated nanoparticles have been investigated by Raman and photoluminescence (PL) spectroscopy. The PL spectroscopy shows the occurrence of excitation peaks at 305, 350 and 375 nm for 543 nm emissions, correspond to transition 5D4 →7F5. Emission spectra with 305 nm excitation exhibits characteristic emission peaks of Tb3+ion at 472, 487, 543 and 580 nm. The intensity of emission increases with Tb3+ concentration and is most prominent for 7 at% Tb3+ ion. The characteristic emissions of Tb3+ ion owes to the transition in which intensities of blue and green emission are prominent. The dominant intensity has been found for 472 nm (for blue emission). Commission international d 'Eclairage (CIE) co-ordinates have found in the light blue to green region. The research work provides a new interesting insight dealing with tunable properties with Tb3+ doping in La2O3 nanophosphors, to be useful for display devices, solar cells, LEDs and optoelectronic devices.

  6. Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3

    NASA Astrophysics Data System (ADS)

    Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.

    2014-10-01

    In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose.

  7. Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3

    PubMed Central

    Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.

    2014-01-01

    In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose. PMID:25346028

  8. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  9. Metal Doping to Enhance the Photoelectrochemical Behavior of LaFeO3 Photocathodes.

    PubMed

    Díez-García, María Isabel; Gómez, Roberto

    2017-06-09

    The development of tandem devices for water photosplitting requires the preparation of photocathodic materials based on earth-abundant elements that show long-term stability in aqueous electrolytes. Ternary metal oxides seem to be a viable option, among which perovskites stand out. In this context, transparent and compact LaFeO 3 thin-film electrodes have been prepared by a sol-gel process, both undoped and doped with metals (M) such as Mg or Zn. Pristine electrodes support the development of cathodic photocurrents in 0.1 m NaOH aqueous solutions, particularly in the presence of oxygen, with an onset potential as high as 1.4 V versus the reversible hydrogen electrode. Doping with Mg or Zn leads to an important enhancement of the photocurrent, which peaks for a stoichiometry of LaFe 0.95 M 0.05 O 3 with a sixfold enhancement with respect to the pristine material. Such an improvement is attributed to an increase in both the density and mobility of the majority carriers, although a contribution of surface passivation cannot be excluded. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    PubMed

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  11. Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals

    NASA Astrophysics Data System (ADS)

    Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2017-12-01

    The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.

  12. La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.

    2008-11-15

    La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less

  13. Effect of cobalt doping on structural and dielectric properties of nanocrystalline LaCrO3

    NASA Astrophysics Data System (ADS)

    Zarrin, Naima; Husain, Shahid

    2018-05-01

    Pure and Co doped Lanthanum chromite (LaCrO3) nanoparticles, LaCr1-xCoxO3 (0≤x≤0.3), have been synthesized through sol-gel process and their structural, morphological and dielectric properties have been studied. X ray diffraction patterns reveal that the samples are in single phase having orthorhombic structure with Pnma space group. Structural parameters are refined by Rietveld refinement using Fullprof software. Lattice parameters and unit cell volume are found to decrease with increase in Co doping. Crystallite size is calculated using Scherrer equation and is also found to decrease with increase in Co concentration. Surface morphology is examined using SEM-EDX analysis, which confirms the formation of regular and homogeneous samples without any impurities. The value of dielectric constant (ɛ') decreases with the increase in frequency while it enhances with the increase in Co concentration. The log (ɛ'×f) versus log (f) graphs have been plotted to verify the universal dielectric response (UDR) model. All the samples follow UDR model in the low frequency range.

  14. Spin-orbit interaction in Kondo regime of δ-doped LaTiO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Rastogi, A.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The formation of a 2-dimensional electron gas (2DEG) at the interface of LaTiO3/SrTiO3 (LTO/STO) has evoked a keen interest in the condensed matter physics community due to the observation of many collective electronic phenomena in the 2DEG. In order to address some puzzling issues related to the mechanism of 2DEG formation at the LTO/STO interface and to identify the dominant scattering process that control the nature of Magnetoresistance (MR) in this system, we have used a novel approach of delta (δ) doping with iso-structural perovskite LaCrO3 at the interface, which dramatically alters the properties of 2DEG. We have observed a reduction in the sheet carrier density with doping thickness, prominence of the resistivity upturn at low temperatures seen in LTO/STO 2DEG, shift of resistivity minimum towards higher temperature, enhancement of weak anti-localization (WAL) below 10K and strong anisotropic magnetoresistance. The observed in-plane MR is attributed to Kondo-type scattering by localized Ti3+ moments which gets normalized by spin-orbit interaction at T < 10K. With increasing the Cr3+ ions concentration at the interface, WAL effect becomes more prominent below 10K.

  15. Luminescence of Er 3+-doped nanostructured SiO 2-LaF 3 glass-ceramics prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. D.; Del Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Torres, M.; Peraza, J.

    2007-07-01

    Transparent glass ceramics with composition of 95SiO2-5LaF3 doped with 0.1 mol% of Er3+ were synthesized by thermal treatment of precursor sol-gel glasses. Segregated LaF3 nanocrystals in the glass were confirmed from a structural analysis performed by X-ray diffraction. Blue, green and red efficient up-conversion emissions were observed under 980 nm excitation at room temperature. Under this excitation near infrared down-conversion at 1.55 μm is also observed. These results could be attributed to the precipitation of LaF3 nanocrystals and the incorporation of most Er3+ ions in these nanocrystals. The mechanisms involved in the up-conversion emissions could be ascribed to two and three photon processes.

  16. Sol-gel syntheses of pentaborate β-LaB5O9 and the photoluminescence by doping with Eu3+, Tb3+, Ce3+, Sm3+, and Dy3+

    NASA Astrophysics Data System (ADS)

    Yang, Ruirui; Sun, Xiaorui; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2018-02-01

    Rare earth (RE) borates have been extensively studied as good photoluminescent materials, however, the target hosts were limited to "RE3BO6", REBO3, and REB3O6 in the RE2O3-B2O3 phase diagram until the recent discovery of rare earth pentaborate. For the first time, the sol-gel method was employed to synthesize β-LaB5O9 doped with Eu3+, Tb3+, Ce3+, Sm3+, Dy3+. In comparison to the previous synthetic methods, the sol-gel method possesses superiorities including easily-controllable doping concentration, high yield and emission efficiency. Solid solutions of phosphors were prepared and carefully analyzed by powder X-ray diffraction. Concentration quenching or saturation was observed in Eu3+, Tb3+ and Ce3+ doped phosphors at round 10 at%. Eu3+, Tb3+, Sm3+, and Dy3+ emit red, green, orange, and close-to-white light, respectively. The absolute emission efficiency of Ce3+ is high and in the UV range, suggesting the function of being sensitizer once combined with other activators.

  17. Electronic Structure and Reactivity of TM-Doped La1-xSrxCoO3 (TM = Ni, Fe) Catalysts

    NASA Astrophysics Data System (ADS)

    Grice, S. C.; Flavell, W. R.; Thomas, A. G.; Warren, S.; Marr, P. G.; Jewitt, D. E.; Khan, N.; Dunwoody, P. M.; Jones, S. A.

    The catalytic properties of LaCoO3 in the oxidation of organic molecules in aqueous solution are explored as a function of doping with both Sr substitution for La and Fe and Ni substitution for Co. VUV photoemission is used to explore the surface reactivity of the ceramic catalysts in aqueous solution, using H2O as a probe molecule. These measurements are complemented by EXAFS and XANES measurements designed to probe the local defect structure and by GC measurements of catalytic activity in the aqueous epoxidation of crotyl alcohol. We relate the observed catalytic activity to the defect structure of the doped materials. In Ni-doped materials, oxygen vacancies appear to be the predominant defect, whereas in Fe-doped samples, electron holes are stabilised on Fe, leading to very different behaviour in oxidation. The surface reactivity to water is also influenced by the TM d electron count, with water binding more strongly to Fe-doped materials than to those containing Ni. The influence of these factors on the rate of the unwanted hydrogen peroxide decomposition reaction and hence on activity in epoxidation is discussed.

  18. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Jbeli, R.; Boukhachem, A.; Ben Jemaa, I.; Mahdhi, N.; Saadallah, F.; Elhouichet, H.; Alleg, S.; Amlouk, M.; Ezzaouïa, H.

    2017-09-01

    Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La2O3:Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460 °C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La2O3:Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09 eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La2O3 character from hydrophobic (θ > 90°) to hydrophilic (θ < 90°).

  19. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature.

    PubMed

    Jbeli, R; Boukhachem, A; Ben Jemaa, I; Mahdhi, N; Saadallah, F; Elhouichet, H; Alleg, S; Amlouk, M; Ezzaouïa, H

    2017-09-05

    Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La 2 O 3 :Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460°C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La 2 O 3 :Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La 2 O 3 character from hydrophobic (θ>90°) to hydrophilic (θ<90°). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electronic and optical properties of La-doped S r3I r2O7 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Souri, M.; Terzic, J.; Johnson, J. M.; Connell, J. G.; Gruenewald, J. H.; Thompson, J.; Brill, J. W.; Hwang, J.; Cao, G.; Seo, A.

    2018-02-01

    We have investigated structural, transport, and optical properties of tensile strained (Sr1-xL ax ) 3I r2O7 (x =0 , 0.025, 0.05) epitaxial thin films. While high-Tc superconductivity is predicted theoretically in the system, we have observed that all of the samples remain insulating with finite optical gap energies and Mott variable-range hopping characteristics in transport. Cross-sectional scanning transmission electron microscopy indicates that structural defects such as stacking faults appear in this system. The insulating behavior of the La-doped S r3I r2O7 thin films is presumably due to disorder-induced localization and ineffective electron doping of La, which brings to light the intriguing difference between epitaxial thin films and bulk single crystals of the iridates.

  1. Photovoltaic devices comprising zinc stannate buffer layer and method for making

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.

    2001-01-01

    A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.

  2. La-doped Al2O3 supported Au nanoparticles: highly active and selective catalysts for PROX under PEMFC operation conditions.

    PubMed

    Lin, Qingquan; Qiao, Botao; Huang, Yanqiang; Li, Lin; Lin, Jian; Liu, Xiao Yan; Wang, Aiqin; Li, Wen-Cui; Zhang, Tao

    2014-03-14

    La-doped γ-Al2O3 supported Au catalysts show high activity and selectivity for the PROX reaction under PEMFC operation conditions. The superior performance is attributed to the formation of LaAlO3, which suppresses H2 oxidation and strengthens CO adsorption on Au sites, thereby improving competitive oxidation of CO at elevated temperature.

  3. Neutron diffraction studies of magnetic ordering in Ni-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Rajeevan, N. E.; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi; Kaushik, S. D.

    2015-11-01

    Research in rare earth cobaltite has recently been intensified due to its fascinating magnetic properties. LaCoO3, an important cobaltite, exhibits two prominent susceptibility features at 90 K and 500 K in low field measurement. The magnetic behavior below 100 K is predominantly antiferromagnetic (AFM), but absence of pure AFM ordering and emergence of ferromagnetic coupling on further decreasing temperature made situation more intricate. The present work of studying the effect of Ni substitution at Co site in polycrystalline LaCo1-xNixO3 (0≤x≤0.3) is motivated by the interesting changes in magnetic and electronic properties. For lucid understanding, temperature dependent neutron diffraction (ND) study was carried out. ND patterns fitted with rhombohedral structure in perovskite form with R-3c space group, elucidated information on phase purity. Further temperature dependent cell parameter, Co-O bond-length and Co-O-Co bond angle were calculated for the series of Ni doped LaCoO3. The results are explained in terms of decrease in the crystal field energy which led to the transition of cobalt from low Spin (LS) state to intermediate spin state (IS).

  4. Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.

    2013-12-01

    Thermoelectric properties of SrTiO3 ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO3 ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO3 ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr0.8La0.18Yb0.02TiO3 ceramics were prepared, whose ZT value at 1 023 K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr0.8La0.2TiO3 (ZT = 0.26).

  5. The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials

    NASA Astrophysics Data System (ADS)

    Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.

    2017-11-01

    Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1-x RE x SnO3 (RE  =  La and Sr) materials with x  =  0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1-x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1-x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.

  6. Fabrication and characterization of millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} ceramic hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haoting; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya

    2016-04-15

    Highlights: • Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} hollow spheres have been prepared. • The diameters of the prepared hollow spheres are 500–1300μm. • The degree of sphericity for the prepared hollow spheres is above 98%. • The mechanisms of transparency are discussed. - Abstract: Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} ceramic hollow spheres have been successfully prepared using the oil-in-water (paraffin-in-alumina sol) droplets as precursors made by self-made T-shape micro-emulsion device. The main crystalline phase of the obtained hollow sphere is alpha alumina. The prepared translucent La{sub 2}O{sub 3}-containing Al{sub 2}O{sub 3} ceramic hollow spheresmore » have diameters of 500–1300 μm, wall thickness of about 23 μm and the degree of sphericity of above 98%. With the increase of the La{sub 2}O{sub 3} content, grains and grain-boundaries of the alumina spherical shell for the prepared millimeter-scale hollow spheres become regular and clear gradually. When the La{sub 2}O{sub 3} content is 0.1 wt.%, the crystal surface of the obtained Al{sub 2}O{sub 3} spherical shell shows optimal grains and few pores, and its transmittance reaches 42% at 532 nm laser light. This method provides a promising technique of preparing millimeter-scale translucent ceramic hollow spheres for laser inertial confined fusion.« less

  7. Ultraviolet and near-infrared luminescence of LaBO3:Ce3+,Yb3+

    NASA Astrophysics Data System (ADS)

    Wei, Heng-Wei; Shao, Li-Ming; Jiao, Huan; Jing, Xi-Ping

    2018-01-01

    Ce3+ or Yb3+ singly doped LaBO3 and Ce3+-Yb3+ co-doped LaBO3 were prepared by conventional solid state reactions at 1100 °C and their photoluminescence (PL) properties were investigated. The emission spectrum of LaBO3:Ce3+,Yb3+ contains both the Ce3+ ultraviolet (UV) emissions (355 nm and 380 nm) and the Yb3+ near infrared (NIR) emission (975 nm) when excited by the UV light at 270 nm. By using the data of the Ce3+ decay curves and the PL intensities of both Ce3+ and Yb3+, the energy transfer efficiency (η) from Ce3+ to Yb3+, the actual energy transfer efficiency (AE) and the quantum efficiency (Q) of the Yb3+ emission were calculated. In the Ce3+-Yb3+ co-doped LaBO3, Ce3+ can transfer its absorbed energy to Yb3+ efficiently (η can be over 60%), and Yb3+ shows the Q value over 50% when it accepts the energy from Ce3+, which results in the low AE value ∼30%. The energy transfer process from Ce3+ to Yb3+ may be understood by the charge transfer mechanism: Ce3+ + Yb3+ ↔ Ce4+ + Yb2+. Particularly the Ce3+-Yb3+ co-doped LaBO3 phosphor gives the emissions mainly in the UV range and the NIR range with a portion of visible emissions in eye-insensitive range. This unique property may be suitable for applications in anti-counterfeiting techniques and public security affairs.

  8. Assessment of growth and spectral properties of Cr3+-doped La0.83Y0.29Sc2.88(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Huang, Yisheng; Sun, Shijia; Lin, Zhoubin; Zhang, Lizhen; Wang, Guofu

    2017-10-01

    This paper reports the spectral characteristic of Cr3+-doped La0.83Y0.29 Sc2.88 (BO3)4 crystal. Cr3+-doped La0.83Y0.29Sc2.88 (BO3)4 crystal was grown from a flux of Li6B4O9 by the top seeded Solution growth method. Cr3+:La0.83Y0.29 Sc2.88 (BO3)4 crystal exhibits broad absorption and emission bands of Cr3+ ions. The absorption cross-section σa is 3.38 × 10-20 cm2 at 467 nm and 4.40 × 10-20 cm2 at 656 nm for E//c, respectively. The emission band with a peak at 906 nm has a full width at half maximum (FWHM) of 188 nm for E//c. The emission cross-section σe at 906 nm is 2.35 × 10-20 cm2 for E//c axis and 2.03 × 10-20 cm2 for E⊥c axis. The fluorescence lifetime of 4T2 → 4A2 transition is 37.7 μs. The investigated result indicates that it may be considered as a potential CW tunable laser crystal material.

  9. Site-selective doping and superconductivity in (La1-yPry)(Ba2-xLax)Cu3O7+δ

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feffer, P. T.; Newsam, J. M.; Webb, D. J.; Klavins, P.; Jacobson, A. J.; Kapitulnik, A.

    1988-10-01

    Samples in the quaternary system (La1-yPry)(Ba2-xLax)Cu3O7+δ have been prepared and characterized using x-ray and neutron diffraction, thermogravimetric analysis, and transport and magnetic measurements. Pr substitutes on the oxygen-depleted La layers for y>0.0, while La substitutes on the Ba sites for x>0.0. The effect of doping on each site is inferred to be primarily local, affecting immediately adjacent Cu-O layers. The similar suppression of superconductivity that accompanies doping on each of the two distinct sites apparently correlates with the degree of oxidation of the Cu-O sheets (and not the chains), indicating that the sheets support the high temperature superconductivity. Comparison of orthorhombic and tetragonal samples with similar Ba:La ratios (and y=0) demonstrates that the orthorhombic phase yields the largest Meissner signals and highest transition temperatures in the La(Ba2-xLax)Cu3O7+δ system. The effect on superconductivity of oxygen-vacancy configuration in the Cu-O chain layers is proposed to derive, indirectly, from their influence on the Cu-O sheets. In addition, optimally superconducting La(Ba2-xLax)Cu3O7+δ samples exhibit interesting normal-state magnetic properties, with a paramagnetic susceptibility that decreases steadily with temperature between 350 K and Tc.

  10. The enhancement in optical and magnetic properties of Na-doped LaFeO3

    NASA Astrophysics Data System (ADS)

    Devi, E.; Kalaiselvi, B. J.

    2018-04-01

    La1-xNaxFeO3(x=0.00 and 0.05) were synthesized by sol-gel auto-combustion method. No evidence of impurity phase and the peak (121) slightly shift towards lower angle is confirmed by X-ray diffraction analysis (XRD). The UV-visible spectra show strong absorption peak centered at approximately 231 nm and the calculated optical band gap are found to be 2.73eV, 2.36eV for x = 0.00 and 0.05, respectively. The M-H loop of pure sample is anti-ferromagnetic, whereas those of the Na doped sample shows enhanced ferromagnetic behavior. The remnant magnetization (Mr), saturation magnetization (Ms) and coercive field (Hc) of Na-doped sample are enhanced to 1.06emu/g, 5.39emu/g and 182.84kOe, respectively.

  11. Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3

    NASA Astrophysics Data System (ADS)

    Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.

    2011-10-01

    X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.

  12. Investigation of luminescent properties of LaF3:Nd3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wyrwas, Marek; Miluski, Piotr; Zmojda, Jacek; Kochanowicz, Marcin; Jelen, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2015-09-01

    Lanthanum fluoride nanoparticles doped with Nd3+ ions obtained via solvothermal method have been presented. Doped nanoparticles were prepared in two-step method. Firstly rare-earth chlorides were synthesized from oxides and then they were used to prepare LaF3 particles. The luminescence spectra shows typical for crystalline materials Stark splitting at 880 nm corresponding 4F3/2 to 4I9/2 level transition and 1060 nm matching 4F3/2 to 4I11/2 level transition. The highest luminescence intensity was achieved for sample doped with 0.75% wt. of Nd3+, and the longest decay time for sample doped with 0.5% wt. which reached 328 μs. The XRD pattern analysis confirmed that obtained material consists of crystalline LaF3, the grain size was estimated from Sherrer's formula and equaled about 25nm.

  13. AC conductivity studies of La doped Ba0.5Sr0.5TiO3

    NASA Astrophysics Data System (ADS)

    D'Souza, Slavia Deeksha; Rohith, Kotla Surya; Bhatnagar, Anil K.; Kumar, A. Sendil

    2017-05-01

    Ferroelectric material with high dielectric constant of Ba0.5Sr0.5TiO3 is synthesized through Solid State Reaction and fraction of Lanthanum is substituted to introduce hole concentration. XRay Diffraction shows all the samples are stabilized in cubic crystal structure. With La doped samples the Cole-Cole plot is modified and AC conductivity increases at higher temperatures as well as higher frequencies compared to undoped sample.

  14. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.

    2014-08-01

    We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.

  15. Large Thermopower of δ-doped LaTiO3/SrTiO3 Interfaces and it's Field Dependence

    NASA Astrophysics Data System (ADS)

    Budhani, R. C.; Das, Shubhankar; Joshi, P. C.; Rastogi, A.; Hossain, Z.

    2015-03-01

    We will present the magneto-thermopower (S(T, H)) of interfacial delta doped LaTiO3/SrTiO3 heterostructure by an iso-structural antiferromagnetic perovskite LaCrO3. The thermoelectric power of 2-dimensional electron gas (2DEG) of pure LaTiO3/SrTiO3 at 300 K is ~ 118 μV/K, but increases dramatically to 337 μV/K on inserting 5 uc LaCrO3 at the interface. The negative sign of the thermoelectric power confirms the electron as major carriers in these interfaces. A linear temperature dependence of S(T) has been observed in the temperature range 100 K to 300 K which is in agreement with the theory of diffusion thermopower of 2DEG. The S(T) shows a distinct enhancement at temperature <100 K, where a Kondo-type minimum has been observed in sheet resistance. We attribute this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spin at the interface. The S in this temperature range is suppressed significantly (<= 20%) by moderate magnetic field (<= 13 T) applied either perpendicular or parallel to the film surface. The isotropic nature of the suppression of S by magnetic field further strengthen the Kondo based interpretation of S(T, H). We acknowledge IIT Kanpur and CSIR India for funding this research work.

  16. The preparation and characterization of La doped TiO 2 nanoparticles and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liqiang, Jing; Xiaojun, Sun; Baifu, Xin; Baiqi, Wang; Weimin, Cai; Honggang, Fu

    2004-10-01

    In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.

  17. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.

    PubMed

    Blanc, Frédéric; Middlemiss, Derek S; Gan, Zhehong; Grey, Clare P

    2011-11-09

    Doped lanthanum gallate perovskites (LaGaO(3)) constitute some of the most promising electrolyte materials for solid oxide fuel cells operating in the intermediate temperature regime. Here, an approach combining experimental multinuclear NMR spectroscopy with density functional theory total energy and GIPAW NMR calculations yields a comprehensive understanding of the structural and defect chemistries of Sr- and Mg-doped LaGaO(3) anionic conductors. The DFT energetics demonstrate that Ga-V(O)-Ga (V(O) = oxygen vacancy) environments are favored (vs Ga-V(O)-Mg, Mg-V(O)-Mg and Mg-O-Mg-V(O)-Ga) across a range y = 0.0625, 0.125, and 0.25 of fractional Mg contents in LaGa(1-y)Mg(y)O(3-y/2). The results are interpreted in terms of doping and mean phase formation energies (relative to binary oxides) and are compared with previous calculations and experimental calorimetry data. Experimental multinuclear NMR data reveal that while Mg sites remain six-fold coordinated across the range of phase stoichiometries, albeit with significant structural disorder, a stoichiometry-dependent minority of the Ga sites resonate at a shift consistent with Ga(V) coordination, demonstrating that O vacancies preferentially locate in the first anion coordination shell of Ga. The strong Mg-V(O) binding inferred by previous studies is not observed here. The (17)O NMR spectra reveal distinct resonances that can be assigned by using the GIPAW NMR calculations to anions occupying equatorial and axial positions with respect to the Ga(V)-V(O) axis. The disparate shifts displayed by these sites are due to the nature and extent of the structural distortions caused by the O vacancies.

  18. The synthesis and luminescence properties of a novel red-emitting phosphor: Eu3+-doped Ca9La(PO4)7

    NASA Astrophysics Data System (ADS)

    Liang, Zehui; Mu, Zhongfei; Wang, Qiang; Zhu, Daoyun; Wu, Fugen

    2017-10-01

    A series of novel red-emitting phosphors Ca9La1- x (PO4)7: xEu3+ were synthesized by high-temperature solid state reactions. The photoluminescence excitation and photoluminescence spectra of these phosphors were investigated in detail. O2--Eu3+ charge transfer band peaking at about 261 nm is dominant in the PLE spectra of Eu3+-doped Ca9La(PO4)7, indicating that the phosphors are suitable for tricolor fluorescent lamps. The phosphors also show a good absorption in near ultraviolet (around 395 nm) and blue (around 465 nm) spectral region, which indicates that it can be pumped with NUV and blue chips for white light-emitting diodes. The transition of 5D0 → 7F2 of Eu3+ in this lattice can emit bright red light. Ca9La(PO4)7 could accommodate a large amount of Eu3+ with an optimal concentration of 60 mol%. The dipole-dipole interaction between Eu3+ is the dominant mechanism for concentration quenching of Eu3+. The calculated color coordinates lie in red region ( x = 0.64, y = 0.36), which is close to Y2O3: 0.05Eu3+ ( x = 0.65, y = 0.34). The integral emission intensity of Ca9La0.4(PO4)7: 0.6Eu3+ is 1.9 times stronger than that of widely used commercial red phosphor Y2O3: 0.05Eu3+. All these results indicate that Eu3+-doped Ca9La(PO4)7 is a promising red-emitting phosphor which can be used in tricolor fluorescent lamps and white light-emitting diodes.

  19. Influence of La content on magnetic properties of Cu doped M-type strontium hexaferrite: Structural, magnetic, and Mossbauer spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ghimire, M.; Yoon, S.; Wang, L.; Neupane, D.; Alam, J.; Mishra, S. R.

    2018-05-01

    The present study investigates the influence of Cu2+ and La3+-Cu2+ doping on the magnetic properties of Sr1-xLaxFe12-xCuxO19 (x = 0.0-0.5) hexaferrite (SrM) compounds. The samples were prepared via facile autocombustion technique followed by sintering. X-ray powder diffraction patterns show the formation of the pure phase of M-type hexaferrite for all x. Invariance in lattice parameters was observed with only Cu2+ substitution while lattice contraction along c-axis was observed with co-doping La3+-Cu2+ in SrM. The magnetic property of these compounds is explained based on Cu2+ occupancy in the absence and presence of La3+ in SrM magnetoplumbite structure. The Cu2+ doped SrFe12-xCuxO19 sample showed a monotonic decrease in Ms value while La3+-Cu2+ showed a noticeable increase in Ms value with x. Furthermore, while coercivity of Cu2+ doped SrM reduced with x, the coercivity of La3+-Cu2+ doped SrM showed a marked 12% increase in coercivity at x = 0.1 (Hc = 4391 Oe) from that of x = 0.0 (3918 Oe). Interestingly, Cu2+ doped SrM displayed invariance in Tc ∼ 458.6 °C with x, while La3+-Cu2+ doping reduced Tc by 5% from its x = 0 (Tc = 451.9 °C) to 429.6 °C. The room temperature Mossbauer spectral analysis confirmed a Cu2+ preference for the 12k site and its occupancy is observed to be influenced by the presence of La3+ ion at the Sr2+ site.

  20. Synthesis and characterization of Ca-doped LaMnAsO

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki; Islam, Farhan; Heitmann, Thomas W.; McQueeney, Robert J.; Vaknin, David

    2018-05-01

    We report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La3 + site by Ca2 +. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La1 -xCax)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤0.01 . Magnetic susceptibility of the parent and the x =0.002 (xnom=0.04 ) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of both the tetragonal (P 4 /n m m ) structure upon doping and the antiferromagnetic ordering temperature, TN=355 ±5 K.

  1. Water- and humidity-enhanced UV detector by using p-type La-doped ZnO nanowires on flexible polyimide substrate.

    PubMed

    Hsu, Cheng-Liang; Li, Hsieh-Heng; Hsueh, Ting-Jen

    2013-11-13

    High-density La-doped ZnO nanowires (NWs) were grown hydrothermally on flexible polyimide substrate. The length and diameter of the NWs were around 860 nm and 80-160 nm, respectively. All XRD peaks of the La-doped sample shift to a larger angle. The strong PL peak of the La-doped sample is 380 nm, which is close to the 3.3 eV ZnO bandgap. That PL dominated indicates that the La-doped sample has a great amount of oxygen vacancies. The lattice constants ~0.514 nm of the ZnO:La NW were smaller when measured by HR-TEM. The EDX spectrum determined that the La-doped sample contains approximately 1.27 at % La. The La-doped sample was found to be p-type by Hall Effect measurement. The dark current of the p-ZnO:La NWs decreased with increased relative humidity (RH), while the photocurrent of the p-ZnO:La nanowires increased with increased RH. The higher RH environment was improved that UV response performance. Based on the highest 98% RH, the photocurrent/dark current ratio was around 47.73. The UV response of water drops on the p-ZnO:La NWs was around 2 orders compared to 40% RH. In a water environment, the photocurrent/dark current ratio of p-ZnO:La NWs was 212.1, which is the maximum UV response.

  2. Enhanced fluoride removal by La-doped Li/Al layered double hydroxides.

    PubMed

    Cai, Jianguo; Zhao, Xin; Zhang, Yanyang; Zhang, Quanxing; Pan, Bingcai

    2018-01-01

    In this study La intercalated Li/Al layered double hydroxide (LDH) was developed for efficient water defluoridation. The La-modified material, i.e., La doped Li/Al-LDH, exhibits more preferable fluoride adsorption than Li/Al-LDH in a broad pH range of 5-9, with the working capacity twice of the latter and seven times of magnitude higher than activated alumina. The fluoride removal kinetics is well fitted by pseudo-second order model, and the adsorption isotherm is well described by Freundlich model. Effect of pH and competing ions was examined during fluoride sequestration. The underlying mechanism for such enhanced adsorption of fluoride by La doped Li/Al-LDH was further revealed based on XPS and FTIR analysis. The presence of La and Al was found to be responsible for the satisfactory defluoridation of La doped Li/Al-LDH, and chloride replacement with fluoride occurred from both LDHs during fluoride adsorption. Also, the capacity of La doped Li/Al-LDH could be refreshed by alkaline solution (pH = 12) for cyclic runs. All the results implied that La doped Li/Al-LDH could serve asa potential adsorbent for efficient fluoride removal from water. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Conduction band edge effective mass of La-doped BaSnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming; Raghavan, Santosh

    2016-06-20

    BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  4. La-doped SrTiO3 films with large cryogenic thermoelectric power factors

    NASA Astrophysics Data System (ADS)

    Cain, Tyler A.; Kajdos, Adam P.; Stemmer, Susanne

    2013-05-01

    The thermoelectric properties at temperatures between 10 K and 300 K of La-doped SrTiO3 thin films grown by hybrid molecular beam epitaxy (MBE) on undoped SrTiO3 substrates are reported. Below 50 K, the Seebeck coefficients exhibit very large magnitudes due to the influence of phonon drag. Combined with high carrier mobilities, exceeding 50 000 cm2 V-1 s-1 at 2 K for the films with the lowest carrier densities, this leads to thermoelectric power factors as high as 470 μWcm-1 K-2. The results are compared with other promising low temperature thermoelectric materials and discussed in the context of coupling with phonons in the undoped substrate.

  5. Infrared Optical Absorption in Low-spin Fe2+-doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comes, Ryan B.; Kaspar, Tiffany C.; Heald, Steve M.

    2016-01-06

    Band gap engineering in SrTiO3 and related titanate perovskites has long been explored due to the intriguing properties of the materials for photocatalysis and photovoltaic applications. A popular approach in the materials chemistry community is to substitutionally dope aliovalent transition metal ions onto the B site in the lattice to alter the valence band. However, in such a scheme there is limited control over the dopant valence, and compensating defects often form. Here we demonstrate a novel technique to controllably synthesize Fe2+- and Fe3+-doped SrTiO3 thin films without formation of compensating defects by co-doping with La3+ ions on the Amore » site. We stabilize Fe2+-doped films by doping with two La ions for every Fe dopant, and find that the Fe ions exhibit a low-spin electronic configuration, producing optical transitions in the near infrared regime and degenerate doping. The novel electronic states observed here offer a new avenue for band gap engineering in perovskites for photocatalytic and photovoltaic applications.« less

  6. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  7. Structural and magnetic properties of pure and Ca-doped LaCoO3 nanopowders obtained by a sol-gel route.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Maragno, Cinzia; Tondello, Eugenio; Caneschi, Andrea; Sangregorio, Claudio; Gialanella, Stefano

    2006-04-01

    Pure and Ca-doped LaCoO3 nanopowders were prepared by a non-alkoxidic sol-gel route using cobalt(II) acetate, lanthanum(III) nitrate and calcium(II) acetate as oxide precursors. The structural evolution and magnetic properties of the samples were studied as a function of thermal treatments in air up to 1273 K. In particular, the microstructure and composition of the systems were analyzed by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Both pure and calcium-doped samples annealing at 973 K resulted in the formation of cubic LaCoO3 (average crystallite size <30 nm). This phase was fully retained in the calcium-doped materials even after annealing at higher temperatures, whereas a transition to the rhomboedral polymorph was detected in the pure samples at 1073 K. The magnetic behavior of the nanopowders was investigated as a function of temperature and applied field using both dynamic and static susceptibility measurements. Pure lanthanum cobaltite samples underwent a transition to an ordered state at 88 K, and their magnetic properties changed as a function of thermal treatments. As concerns calcium-doped samples, they ordered ferromagnetically at 171 and 185 K depending on the annealing temperature and displayed open hysteresis loops with coercive fields as large as 1.75 T at low temperatures.

  8. Dielectric properties of A- and B-site doped BaTiO 3: Effect of La and Ga

    NASA Astrophysics Data System (ADS)

    Gulwade, Devidas; Gopalan, Prakash

    2009-06-01

    Extremely small amounts of La and Ga doping on the A- and B-site of BaTiO 3, respectively, resulting in a solid solution of the type Ba 1-3xLa 2xTi 1-3yGa 4yO 3 have been investigated. The present work dwells on the influence of the individual dopants, namely La and Ga, on the dielectric properties of BaTiO 3. The compositions have been prepared by solid-state reaction. X-ray diffraction (XRD) reveals the presence of tetragonal (P4/mmm) phase. The XRD data has been analyzed using FULLPROF, a Rietveld refinement package. The microstructure have been studied by orientation imaging microscopy (OIM). The compositions have been characterized by dielectric spectroscopy between room temperature and 250 °C. Further, the nature of phase transition has been studied using high temperature XRD. The resulting compounds exhibit high dielectric constant, enhanced diffuseness and low temperature coefficient of capacitance.

  9. Optical temperature sensing of Er3+/Yb3+ doped LaGdO3 based on fluorescence intensity ratio and lifetime thermometry

    NASA Astrophysics Data System (ADS)

    Siaï, A.; Haro-González, P.; Horchani Naifer, K.; Férid, M.

    2018-02-01

    The investigation of the fluorescence intensity ratio and the lifetime thermometry techniques for two rare earth perovskites-type oxide (LaGdO3:Er3+ and LaGdO3:Er3+/Yb3+) has been carried out. We have demonstrated that the intensity ratio of thermally coupled levels of erbium (2H11/2 and 4S3/2) is temperature dependant in the range from 283 to 393 K. The sensitivity parameter was found to reach a maximum value of 31 × 10-4 K-1 and 34 × 10-4 K-1 at 393 K and the temperature resolution to be equivalent to 1.61 and 3.1 K, for Er3+ and Er3+/Yb3+ doped oxide, respectively. By studying the temperature dependence of the normalized lifetimes in the range from 293 to 348 K, we proved that the sensitivity of the green emission (4S3/2) is higher than the red one (4F9/2) for both samples, and that it increases from 144 × 10-4 K-1 for LaGdO3:Er3+ to 179 × 10-4 K-1 for LaGdO3:Er3+/Yb3+. The thermal coefficients were quite large in comparison to those calculated for different luminescent materials and reported in literature. The repeatability of measurements was tested by performing heating and cooling cycles for both methods and the results show that these optical techniques have a good repeatability performance. Hence, the LaGdO3: Er3+, Yb3+ oxide has a precise and a satisfying sensitivity associated to a good thermal and chemical stability, suggesting that it can be a potential candidate in temperature sensing.

  10. Synthesis and characterization of Ca-doped LaMnAsO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki

    Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less

  11. Synthesis and characterization of Ca-doped LaMnAsO

    DOE PAGES

    Liu, Yong; Straszheim, Warren E.; Das, Pinaki; ...

    2018-05-18

    Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less

  12. Effect of cobalt doping on structural and optical properties of nanocrystalline La0.8Pb0.2CrO3 orthochromite

    NASA Astrophysics Data System (ADS)

    Zarrin, Naima; Shahidhusain

    2018-04-01

    We have synthesized nanocrystalline La0.8Pb0.2Cr1-xCoxO3 (0≤x≤0.3) through sol-gel process and studied their structural and optical properties. X-ray diffraction patterns reveal that the samples conform in the orthorhombic crystal symmetry with Pnma space group. Structural parameters are refined by Rietveld Refinement using Fullprof software. Lattice parameters and unit cell volume of doped samples are found to decrease with increase in Co doping. The optical energy band gapdecreases whereas Urbach energy increases with the increase in Co content.

  13. Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yu, Benfang; Li, Meiya; Liu, Jun; Guo, Dongyun; Pei, Ling; Zhao, Xingzhong

    2008-03-01

    Pure, La3+ doped at A site, V5+ doped at B site, and La3+ and V5+ co-doped multiferroic BiFeO3 ceramics: BiFeO3 (BFO), Bi0.85La0.15FeO3 (BLF), BiFe0.97V0.03O3 (BFV), Bi0.85La0.15Fe0.97V0.03O3 (BLFV), etc were successfully prepared by a rapid liquid sintering technique. X-ray diffraction indicated that these ceramics were of polycrystalline perovskite structures, accompanied with a tiny residual Bi2O3 phase. It was found that, among these ceramics, BLFV ceramic exhibited the best electrical properties. The leakage current density of BLFV ceramic was only 2.1 × 10-6 A cm-2 at 10 kV cm-1, two and one orders of magnitude lower than those of the BLF and BFV ceramics, respectively. In the measuring frequency of 4 KHz-1 MHz, the dielectric constants and losses of this sample exhibited slight variation and the lowest loss tangent was 0.08. The sample had a relatively saturated ferroelectric hysteresis loop. These suggested that the co-doped BiFeO3 ceramic by La3+ and V5+ at A and B sites showed advantages in application over the pure BFO, doped BLF and BFV ceramics, respectively.

  14. Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in

    2016-05-23

    Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.

  15. THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS

    NASA Astrophysics Data System (ADS)

    Xu, Jing; He, Bo; Liu, Han Xing

    It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.

  16. Two-dimensional superconductivity induced by high-mobility carrier doping in LaTiO3/SrTiO3 hetero-structures

    NASA Astrophysics Data System (ADS)

    Biscaras, Johan; Hurand, S.; Palma, C.; Lesueur, J.; Bergeal, N.; Leboeuf, D.; Proust, C.; Rastogi, A.; Budhani, R. C.

    2013-03-01

    Transition metal oxides display a great variety of quantum electronic behaviors where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial materials where new electronic orders take place. It has been shown recently that a two-dimensional electron gas 2DEG could form at the interface of two insulators such as LaAlO3 and SrTiO3, or LaTiO3 (a Mott insulator) and SrTiO3. We show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose properties can be modulated by field effect using a metallic gate on the back of the substrate. The gas consists of two types of carriers : a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electrons spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by field effect.

  17. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    NASA Astrophysics Data System (ADS)

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  18. Competing exchange bias and field-induced ferromagnetism in La-doped BaFe O3

    NASA Astrophysics Data System (ADS)

    Fita, I.; Wisniewski, A.; Puzniak, R.; Iwanowski, P.; Markovich, V.; Kolesnik, S.; Dabrowski, B.

    2017-04-01

    An exchange bias (EB) effect was observed in mixed valent L axB a1 -xFe O3 (x =0.125 , 0.25, 0.33) perovskites exhibiting the antiferromagnetic (AFM) helical order among F e4 + ions coexisting with the ferromagnetic (FM) cluster phase in the ground state. The L a3 + ions for B a2 + site substitution, associated with increase in number of the AFM coupled F e3 + - F e4 + pairs as well as some F e3 + - F e3 + pairs, leads to strengthening of the AFM phase and consequently to the alteration of the EB characteristics, which depend on level of the La doping x . At low doping x ≤0.25 , an abnormal dependence of the EB field, HEB, on the cooling field, Hcool, was found. The HEB increases rapidly with increasing cooling field at low Hcool, but it falls suddenly at cooling fields higher than 20 kOe, reducing by an order of magnitude at 90 kOe. The suppression of EB is caused by the field-induced increased volume of the FM phase, due to the transformation of the AFM helical spin structure into the FM one. Thus, low-doped L axB a1 -xFe O3 demonstrates a competition of two alternate cooling-field-induced effects, one of which leads to the EB anisotropy and another one to the enhanced ferromagnetism. In contrast, the x =0.33 sample, having a strong AFM constituent, shows no field-induced FM and no drop in the EB field. Accordingly, the HEB vs Hcool dependence was found to be well explained in the framework of a model describing phase-separated AFM-FM systems, namely, the model assuming isolated FM clusters of size ˜4 nm embedded in the AFM matrix.

  19. NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}, Er{sup 3+}/Yb{sup 3+}) microspheres: the synthesis and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiyi; Wang, Zhiying; Fu, Linlin

    The strong green upconversion (UC) emission were observed in various Er{sup 3+}, Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} samples synthesized via a hydrothermal route. The UC intensity depends on the dopant concentration, and the optimal UC emission was obtained in NaLa(MoO{sub 4}){sub 2}: 0.02Er{sup 3+}/0.10 Yb{sup 3+}. - Highlights: • The NaLa(MoO{sub 4}){sub 2} microspheres doped with Eu{sup 3+}, Sm{sup 3+} and Er{sup 3+}/Yb{sup 3+} were synthesized by a hydrothermal method. • The effects of the EDTA in the initial solution crystal phase and morphology were studied. • The down-conversion luminescence properties of NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+}more » = Eu{sup 3+}, Sm{sup 3+}) were investigated. • The UC luminescence properties and mechanism of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} was discussed. - Abstract: NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}) microspheres have been synthesized at 180 °C via a facile EDTA-mediated hydrothermal route. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectra were employed to characterize the samples. It was found that the amount of EDTA in the initial solution was responsible for crystal phase and shape determination. The effect of Eu{sup 3+} and Sm{sup 3+} doping concentrations on the luminescent intensity was also investigated in details. Furthermore, the up-conversion (UC) emissions have been observed in a series of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} samples. Concentration dependent studies revealed that the optimal composition was realized for a 2% Er{sup 3+} and 10% Yb{sup 3+}-doping concentration.« less

  20. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  1. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-06-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.

  2. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Okada, Go; Kawaguchi, Noriaki; Fujimoto, Yutaka; Masai, Hirokazu; Yanagida, Takayuki

    2016-12-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO3-Al(PO3)3 (NAP) glasses. The NAP glasses doped with a series of RE ions (La-Yb, except Pm) with a consistent concentration (0.3 wt%) were prepared by the conventional melt-quenching method. The PL and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components from 15 to 100 ns were due to the host or 5d-4f transition emission, and the slow components from 15 μs to 5 ms were due to the 4f-4f transitions of RE. The thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400 °C in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy. Among the samples tested, Nd and Tb doped glasses showed higher signal by at least one order of magnitude than those of non-doped and other RE-doped samples. Over the dose range tested, the TSL signals are linearly related with the incident X-ray dose, showing a potential for practical applications.

  3. Humidity Sensor Based on PEDOT:PSS and Zinc Stannate Nano-composite

    NASA Astrophysics Data System (ADS)

    Aziz, Shahid; Chang, Dong Eui; Doh, Yang Hoi; Kang, Chul Ung; Choi, Kyung Hyun

    2015-10-01

    A composite of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and zinc stannate (ZnSnO3) has been introduced for impedance-based humidity sensing, owing to its high sensitivity, good stability, very fast response (˜0.2 s) and recovery time (˜0.2 s), small hysteresis, repeatability, low-cost fabrication and wide range of sensitivity. Both materials were mixed in three different weight percentage ratios, to optimize the performance of the sensors. Best response was observed for 5 wt.% PEDOT:PSS and 5 wt.% ZnSnO3. The impedance of the sensor was dropped immensely from 1.5 MΩ to 50 kΩ by changing relative humidity from 0% to 90%. The reason for this improvement in sensitivity was analyzed by virtue of sensing mechanisms and different characterizations (three dimensional (3D) nano-profiler, optical microscope, and fourier transform infra-red (FTIR) spectroscopy) revealing the surface morphology and chemical structure of the film. Due to its response and ability to sense human breath and skin humidity, it is suitable for environmental, artificial skin and food industry applications.

  4. Synthesis and Luminescence Properties of Novel Ce(3+)- and Eu(2+)-Doped Lanthanum Bromothiosilicate La3Br(SiS4)2 Phosphors for White LEDs.

    PubMed

    Lee, Szu-Ping; Liu, Shuang-De; Chan, Ting-Shan; Chen, Teng-Ming

    2016-04-13

    Novel Ce(3+)- and Eu(2+)-doped lanthanum bromothiosilicate La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors were prepared by solid-state reaction in an evacuated and sealed quartz glass ampule. The La3Br(SiS4)2:Ce(3+) phosphor generates a cyan emission upon excitation at 375 nm, whereas the La3Br(SiS4)2:Eu(2+) phosphor could be excited with extremely broad range from UV to blue region (300 to 600 nm) and generates a reddish-orange broadband emission centered at 640 nm. In addition, thermal luminescence properties of La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors from 20 to 200 °C were investigated. The combination of a 450 nm blue InGaN-based LED chip with the red-emitting La3Br(SiS4)2:Eu(2+) phosphor, and green-emitting BOSE:Eu(2+) commercial phosphor produced a warm-white light with the CRI value of ∼95 and the CCT of 5,120 K. Overall, these results show that the prepared phosphors may have potential applications in pc-WLED.

  5. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.

    2016-04-01

    Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma- chi- theta- eta-alumina," the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma-alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 °C. This makes the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full

  6. Synthesis and characterization of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} thin film grown on LaAlO{sub 3} substrate by pulsed laser deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Irshad, E-mail: bhat.amu85@gmail.com; Husain, Shahid; Patil, S. I.

    2015-06-24

    We report the structural, morphological and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} (LTMO) thin film grown on (001) LaAlO{sub 3} single crystal substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) results confirm that the film has good crystalline quality, single phase, and c-axis orientation. The atomic force microscopy (AFM) results have revealed that the film consists of grains with the average size in a range of 20–30 nm and root-mean square (rms) roughness of 0.27nm. The resistivity versus temperature measurement exhibits an insulator to metal transition (MIT). We have noticed a huge value of magnetoresistance (∼93%)more » close to MIT in presence of 8T field. X-ray photoemission spectroscopy confirms the electron doping and suggests that Te ions could be in the Te{sup 4+} state, while the Mn ions stay in the Mn{sup 2+} and Mn{sup 3+} valence state.« less

  7. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping.

    PubMed

    Biscaras, J; Bergeal, N; Hurand, S; Grossetête, C; Rastogi, A; Budhani, R C; LeBoeuf, D; Proust, C; Lesueur, J

    2012-06-15

    In this Letter, we show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose transition temperature can be modulated by a back-gate voltage. The gas consists of two types of carriers: a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electron spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by the field effect.

  8. Disordered dimer state in electron-doped Sr 3 Ir 2 O 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Tom; Dally, Rebecca; Upton, Mary

    2016-09-06

    Spin excitations are explored in the electron-doped spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7. As this bilayer square lattice system is doped into the metallic regime, long-range antiferromagnetism vanishes, yet a spectrum of gapped spin excitation remains. Excitation lifetimes are strongly damped with increasing carrier concentration, and the energy-integrated spectral weight becomes nearly momentum independent as static spin order is suppressed. Local magnetic moments, absent in the parent system, grow in metallic samples and approach values consistent with one J=12 impurity per electron doped. Our combined data suggest that the magnetic spectra of metallic (Sr 1-xLa x) 3Irmore » 2O 7 are best described by excitations out of a disordered dimer state.« less

  9. Luminescent properties and energy transfer in the green phosphors LaBSiO5:Tb3+, Ce3+.

    PubMed

    Wang, Zhengliang; Cheng, Ping; He, Pei; Liu, Yong; Zhou, Yayun; Zhou, Qiang

    2015-09-01

    LaBSiO5 phosphors doped with Ce(3+) and Tb(3+) were synthesized using the conventional solid-state method at 1100 °C. The phase purity and luminescent properties of these phosphors are investigated. LaBSiO5:Tb(3+) phosphors show intense green emission, and LaBSiO5 phosphors doped with Ce(3+) show blue-violet emission under UV light excitation. LaBSiO5 phosphors co-doped with Ce(3+) and Tb(3+) exhibit blue-violet and green emission under excitation by UV light. The blue-violet emission is due to the 5d-4f transition of Ce(3+) and the green emission is ascribed to the (5) D4 → (7) F5 transition of Tb(3+). The spectral overlap between the excitation band of Tb(3+) and the emission band of Ce(3+) supports the occurrence of energy transfer from Ce(3+) to Tb(3+), and the energy transfer process was investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Electrochemical sensing of modified ABO3 perovskite: LaFe0.8 R0.2O3(R= Cr, Co, Al)

    NASA Astrophysics Data System (ADS)

    Vidya Rajan, N.; Alexander, L. K.

    2017-06-01

    Perovskite LaFeO3 with orthorhombic structure has been synthesized by citric acid mediated solution method. The effectiveness of ionic radii and Oxidation state of the doping material on ionic conductivity of the host matrix was evaluated by B-site (Fe) doping on LaFeO3 with Cr, Co and Al, resulting LaFe0.8 R0.2O3 (R = Cr, Co, Al). XRD with Rietveld refinement and Raman spectroscopic analysis demonstrate successful synthesis. The effect of the 20% B site doping on electrochemical activity is reported. The doped materials exhibit a decrease in sensing activity towards the non enzymatic detection of H2O2.

  11. Structural, photoluminescence and radioluminescence properties of Eu{sup 3+} doped La{sub 2}Hf{sub 2}O{sub 7} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu

    This study presents the structural, optical, and radioluminescent characterization of newly synthesized europium-doped lanthanum hafnate (La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+}, x=0 to 35) nanoparticles (NPs) for use as phosphors and scintillation materials. Samples prepared through a combined co-precipitation and molten salt synthetic process were found to crystalize in the pyrochlore phase, a radiation tolerant structure related to the fluorite structure. These samples exhibit red luminescence under ultraviolet and X-ray excitation. Under these excitations, the optical intensity and quantum yield of the La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+} NPs depend on the Eu{sup 3+} concentration and are maximized at 5%. It ismore » proposed that there is a trade-off between the quenching due to defect states/cross-relaxation and dopant concentration. An optimal dopant concentration allows the La{sub 2}Hf{sub 2}O{sub 7}:5 mol%Eu{sup 3+} NPs to show the best luminescent properties of all the samples. - Graphical abstract: Incident X-ray and UV photons interact with La{sub 2}Hf{sub 2}O{sub 7}: xmol%Eu{sup 3+}(x=1–35) nanoparticles (NPs) to yield strong red luminescence centered at 612 nm. Colored spheres inside NP diagram represent pyrochlore coordination environment of La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+}. Blue, red, yellow, green and black spheres represent hafnium(IV) atoms, lanthanum(III)/europium(III) atoms, oxygen atoms at 48f site, oxygen atoms at 8b site and oxygen vacancies, respectively. - Highlights: • La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+} (x=0–35) nanoparticles with weakly-ordered pyrochlore structures were synthesized. • Optically and X-ray excited emission spectra showed strong luminescence centered at 612 nm. • Photoluminescence quantum yield increases with doping concentration up to 5% and decreases at higher concentrations.« less

  12. Critical exponent analysis of lightly germanium-doped La0.7Ca0.3Mn1-xGexO3 (x = 0.05 and x = 0.07)

    NASA Astrophysics Data System (ADS)

    Nanto, Dwi; Kurniawan, Budhy; Soegijono, Bambang; Ghosh, Nilotpal; Hwang, Jong-Soon; Yu, Seong-Cho

    2018-04-01

    We have used a critical behavior study of La0.7Ca0.3MnO3 (LCMO) manganite perovskites whose Mn sites have been doped with Ge to explore magnetic interactions. Light Ge doping of 5 or 7 percent tended to produce LCMOs with second order magnetic transitions. The critical parameters of 5- and 7-percent Ge-doped LCMO were determined to be TC = 185 K, β = 0.331 ± 0.019, and γ = 1.15 ± 0.017; and TC = 153 K, β = 0.496 ± 0.011, and γ = 1.03 ± 0.046, respectively, via the modified Arrott plot method. Isothermal magnetization data collected near the Curie temperature (TC) was split into a universal function with two branches M(H,ɛ) = |ɛ|βf±(H/|ɛ|β+γ), where ɛ=(T-TC)/TC is the reduced temperature. f+ is used when T>TC, while f̲ is used when Tdoped LCMOs. Notably, doping with Ge at high concentrations tends to generate long-range ferromagnetic order.

  13. Tuning the magnetic phase transition and the magnetocaloric properties of La0.7Ca0.3MnO3 compounds through Sm-doping

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Dung, Nguyen Thi; Van Dang, Nguyen; Bau, Le Viet; Piao, Hong-Guang; Phan, The Long; Huyen Yen, Pham Duc; Hau, Kieu Xuan; Kim, Dong-Hyun; Yu, Seong-Cho

    2018-05-01

    In this work, we point out that the width and the nature of the magnetic phase transition, TC value, and as well as magnetocaloric effect in La0.7-xSmxCa0.3MnO3 compounds can be easily modified through Sm-doped into La-site. With an increasing Sm concentration, a systematic decrease in the magnetization, TC, and magnetic entropy change (ΔSm) are observed. The Arrott-plot proveds that the samples with x = 0 and 0.1 undergoing a first-order phase transition. Meanwhile, sample x = 0.2 undergoes a second-order phase transition, which exhibits a high value of the relative cooling power (81.5 J/kg at ΔH = 10 kOe). An analysis of the critical behavior based on the modified Arrott plots method has been done for sample x = 0.2. The results proved a coexistence of the long- and short-range interactions in La0.5Sm0.2Ca0.3MnO3 compound.

  14. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    NASA Astrophysics Data System (ADS)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  15. X-ray absorption and magnetic circular dichroism of LaCoO3 , La0.7Ce0.3CoO3 , and La0.7Sr0.3CoO3 films: Evidence for cobalt-valence-dependent magnetism

    NASA Astrophysics Data System (ADS)

    Merz, M.; Nagel, P.; Pinta, C.; Samartsev, A.; v. Löhneysen, H.; Wissinger, M.; Uebe, S.; Assmann, A.; Fuchs, D.; Schuppler, S.

    2010-11-01

    Epitaxial thin films of undoped LaCoO3 , of electron-doped La0.7Ce0.3CoO3 , and of hole-doped La0.7Sr0.3CoO3 exhibit ferromagnetic order with a transition temperature TC≈84K , 23 K, and 194 K, respectively. The spin-state structure for these compounds was studied by soft x-ray magnetic circular dichroism and by near-edge x-ray absorption fine structure at the CoL2,3 and OK edges. It turns out that superexchange between Co3+ high-spin and Co3+ low-spin states is responsible for the ferromagnetism in LaCoO3 . For La0.7Ce0.3CoO3 the Co3+ ions are in a low-spin state and the spin and orbital moments are predominantly determined by a Co2+ high-spin configuration. A spin blockade naturally explains the low transition temperature and the insulating characteristics of La0.7Ce0.3CoO3 . For La0.7Sr0.3CoO3 , on the other hand, the magnetic moments in the epitaxial films originate from high-spin Co3+ and high-spin Co4+ states. Ferromagnetism is induced by t2g double exchange between the two high-spin configurations. For all systems, a strong magnetic anisotropy is observed, with the magnetic moments essentially oriented within the film plane.

  16. Green light emitting nanostructures of Tb3+ doped LaOF prepared via ultrasound route applicable in display devices

    NASA Astrophysics Data System (ADS)

    Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka

    2017-05-01

    For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.

  17. Transparent Oxyfluoride Nano-Glass-Ceramics Doped with Pr3+ and Pr3+-Yb3+ for NIR Emission

    NASA Astrophysics Data System (ADS)

    Gorni, Giulio; Cosci, Alessandro; Pelli, Stefano; Pascual, Laura; Durán, Alicia; Pascual, M. J.

    2016-12-01

    Pr3+-Yb3+ co-doped oxyfluoride glasses and glass-ceramics (GC) containing LaF3 nanocrystals have been prepared to obtain NIR emission of Yb3+ ions upon Pr3+ excitation in the blue region of the visible spectrum. Two different compositions have been tested 0.1-0.5 Pr-Yb and 0.5-1 Pr-Yb, in addition to Pr3+ singly doped samples. The crystallization mechanism of the nano-glass-ceramics was studied by DTA revealing that it occurs from a constant number of nuclei, the crystal growth being limited by diffusion. HR-TEM demonstrated that phase separation acts as precursor for LaF3 crystallization and a detailed analysis of the chemical composition (EDXS) revealed the enrichment in RE3+ ions inside the initial phase separated droplets, from which the LaF3 crystals are formed. The RE3+ ions incorporation inside LaF3 crystals was also proved by photoluminescence measurements showing Stark splitting of the RE3+ ions energy levels in the glass-ceramic samples. Lifetimes measurements showed the existence of a better energy transfer process between Pr3+ and Yb3+ ions in the glass-ceramics compared to the as made glass, and the highest value of energy transfer efficiency is 59% and the highest theoretical quantum efficiency is 159%, obtained for glass-ceramics GC0.1-0.5 Pr-Yb treated at 620 ºC-40 h.

  18. Structural, optical, and ferromagnetic characterization of Sm-doped LaOCl nanocrystalline synthesized by solvothermal route: Significant effect of hydrogen post treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dakhel, A.A.

    Pure and Sm-doped lanthanum oxychloride (LaOCl) nanomaterials were synthesized by solvothermal route followed by a subsequent heat treatment process. The objective of the present work is to study and develop conditions required to create stable room-temperature ferromagnetic (RT-FM) properties in LaOCl. To achieve that aim, magnetic samarium Sm{sup 3+} ions were used as dopant sources for stable FM properties. Systematic structural, optical, and magnetic properties of undoped and Sm-doped LaOCl samples were investigated as function of post-annealing conditions (temperature and atmosphere). The optical absorption properties were studied by diffuse reflection spectroscopy (DRS). The magnetic measurements reveal that Sm-doped LaOCl nanopowdersmore » have partial RT-FM properties due to the doped ions. The variations of magnetic properties with pre-annealing temperature were investigated. Furthermore, the electronic medium of host LaOCl crystalline lattice, which carries the spin-spin (S.S) exchange interaction between localised dopant Sm{sup 3+}(4f{sup 5}) spins, was developed by annealing in hydrogen gas (hydrogenation). It was established that annealing in hydrogen atmosphere boosts the RT-FM properties so that the saturation magnetisation could be increased by more than 100%. Physical explanations and discussions were given in this paper. Thus, it was proved that the magnetic properties could be tailored to diamagnetic LaOCl compound by Sm-doping and post treatment under H{sub 2} atmosphere. Therefore, LaOCl nanocrystals could be used as a potential candidate for optical phosphor applications with magnetic properties. - Graphical abstract: M-H dependence of Sm-doped LaOCl powders. Study the effect of hydrogenation. - Highlights: • Synthesis of Sm-doped LaOCl nanoparticles. • DM LaOCl transforms to FM with dilute concentration of Sm doping. • Annealing under H{sub 2} atmosphere induces drastic boost in the FM properties. • Saturation magnetization attained

  19. Polar-antipolar transition and weak ferromagnetism in Mn-doped Bi0.86La0.14FeO3

    NASA Astrophysics Data System (ADS)

    Khomchenko, V. A.; Karpinsky, D. V.; Troyanchuk, I. O.; Sikolenko, V. V.; Többens, D. M.; Ivanov, M. S.; Silibin, M. V.; Rai, R.; Paixão, J. A.

    2018-04-01

    Having been considered as a prime example of a room-temperature magnetoelectric multiferroic, BiFeO3 continues to attract much interest. Since functional properties of this material can be effectively influenced by chemical, electrical, magnetic, mechanical and thermal stimuli, it can serve as a model for the investigation of cross-coupling phenomena in solids. Special attention is currently paid to the study of chemical pressure-driven magneto-structural transformations. In this paper, we report on the effect of the Mn doping on the crystal structure and magnetic behavior of the Bi1‑x La x FeO3 multiferroics near their polar-antipolar (antiferromagnetic-weak ferromagnetic) phase boundary. Synchrotron x-ray and neutron powder diffraction measurements of the Bi0.86La0.14Fe1‑x Mn x O3 (x  =  0.05, 0.1, 0.15) compounds have been performed. The diffraction data suggest that the Mn substitution results in the suppression of the ferroelectric polarization and gives rise to the appearance of the antiferroelectric (generally, PbZrO3-related) phase characteristic of the phase diagrams of the Bi1‑x RE x FeO3 (RE  =  rare-earth) systems. Depending on the Mn concentration (determining phase composition of the Bi0.86La0.14Fe1‑x Mn x O3 samples at room temperature), either complete or partial revival of the polar phase can be observed with increasing temperature. Magnetic measurements of the samples indicate that the Mn doping affects the stability of the cycloidal antiferromagnetic order specific to the polar phase, thus resulting in the formation of a ferroelectric and weak ferromagnetic state.

  20. Quadratic general rotary unitized design for doping concentrations and up-conversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiashi, E-mail: sunjs@dlmu.edu.cn; Shi, Linlin; Li, Shuwei

    Highlights: • NaLa(MoO4)2: Er3+/Yb3+ phosphor is synthesized by solid state method. • QGRUD is first applied to the codoping concentration option. • Optimized phosphor presents more stable UC emissions than the commercial phosphor. - Abstract: It is still a great challenge that designing proper codoping concentrations of rare earth ions for achieving intensest expected emission from the studied phosphor. In this work, the quadratic general rotary unitized design (QGRUD) was introduced into the codoping concentration option of NaLa(MoO{sub 4}){sub 2}: Er{sup 3+}/Yb{sup 3+} phosphor for upconversion (UC) applications, and the optimum doping concentrations of Er{sup 3+} and Yb{sup 3+} formore » achieving maximum UC luminescence intensity, which is close to commercial NaYF{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor, were obtained. The two-photon process was assigned to the green UC emissions in the optimized NaLa(MoO{sub 4}){sub 2}: Er{sup 3+}/Yb{sup 3+} phosphor. It was also demonstrated that the optimized phosphor presented more stable upconversion emissions than the commercial NaYF{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor.« less

  1. La Doped Disorder in LaxCa2-xFeMoO6 Ferrimagnet: Magnetic and Thermoelectric Study

    NASA Astrophysics Data System (ADS)

    Muthuselvam, I. Panneer; Bhowmik, R. N.; Poddar, Asok

    2011-06-01

    We report the magnetic and thermo-electric properties of LaxCa2-xFeMoO6 (x = 0 to 0.8) ferrimagnet. The ferromagnetic ordering temperature (TC) changes with increasing La doping. The band structure modification due to La doping in double perovskite structure was understood by correlating the electrical conductivity and thermoelectric power (S). S(T) curve of different samples was fitted with the proposed equation S(T) = S0+S1T+S3/2T3/2+S3T4 and each term has been interpreted in this paper.

  2. Direct measurement of the low temperature spin state transitions in La1-xSrxCoO3 (0.05 < x < 0.3)

    NASA Astrophysics Data System (ADS)

    Gulec, A.; Klie, R. F.

    2014-12-01

    Sr-doped LaCoO3 has a complex magnetic phase diagram, which is believed to be directly correlated to changes in the crystal structure and ordering of the Co3+ spin states. In this work, we study the low temperature Co3+-ion spin state transitions in Sr-doped LaCoO3 around the critical doping concentration where a metal to insulator transition has been observed using electron energy-loss spectroscopy of the O K-edge combined with the Co L-edge fine structure. We measure the local spin state of the Co3+-ions and we demonstrate that the Co3+ spin-state transition only occurs in La0.95Sr0.05CoO3 single-crystal materials in the temperature range accessible by LN2 in-situ cooling, while no structural symmetry change is observed. The presence of this low-temperature spin-state transition in La1-xSrxCoO3 (x < 0.17) has been proposed as the origin of the percolative magnetic ordering in doped LaCoO3.

  3. Spectroscopic properties of Nd3+ doped transparent oxyfluoride glass ceramics.

    PubMed

    Yu, Yunlong; Chen, Daqin; Ma, En; Wang, Yuansheng; Hu, Zhongjian

    2007-07-01

    In this paper, the spectroscopic properties of Nd(3+) doped transparent oxyfluoride glass ceramics containing LaF(3) nano-crystals were systematically studied. The formation and distribution of LaF(3) nano-crystals in the glass matrix were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on Judd-Ofelt theory, the intensity parameters Omega(t) (t=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency, width of the emission line and stimulated emission cross-section of Nd(3+) were evaluated. Particularly, the effect of Nd(3+) doping level on them was discussed. With the increase of Nd(3+) concentration in the glass ceramic, the experimental luminescence lifetime, radiative quantum efficiency and stimulated emission cross-section vary from 353.4 micros, 78.3% and 1.86 x 10(-20)cm(2) to 214.7 micros, 39.9% and 1.52 x 10(-20)cm(2), respectively. The comparative study of Nd(3+) spectroscopic parameters in different hosts suggests that the investigated glass ceramic system is potentially applicable as laser materials for 1.06 microm emission.

  4. Upconversion fluorescence tyrosine doped LaF3:Dy quantum dots useful in biolabeling and biotagging

    NASA Astrophysics Data System (ADS)

    Singh, Amit T.; Khandpekar, M. M.

    2018-04-01

    Water soluble hexahedral colloidal quantum dots (QDOTs) of Tyrosine doped LaF3:Dy have been synthesized by wet chemical route. The nanoparticles have been irradiated by microwave during synthesis for drying and also to reduce agglomeration. The coating of the LaF3:Dy nanoparticles by the amino acid tyrosine results in colloidal quantum dots. XRD studies indicates hexagonal lattice and confirms JCPDS data. The average particle size obtained by XRD and SEM are 22.89nm and 25.5nm respectively. The average sizes of nanorods obtained from TEM are 55 nm. The presence of elements has been verified with EDAX and ICP-AES technique. The SAED pattern of the samples shows sharp concentric rings indicating the crystalline nature of the synthesized nanoparticles. The FTIR spectra have been used to study the surface modification of the nanoparticles. The optical studies have been done using UV-visible and PL spectra. The PL spectra showed upconversion nature of the synthesized nanoparticles with sharp emission at 618 nm. The nanoparticles synthesized have potential application as biomaterials in bio imaging and biotagging.

  5. Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.

    2011-04-01

    Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.

  6. Surfactant-free synthesis, luminescent properties, and drug-release properties of LaF3 and LaCO3F hollow microspheres.

    PubMed

    Lv, Ruichan; Gai, Shili; Dai, Yunlu; He, Fei; Niu, Na; Yang, Piaoping

    2014-01-21

    Uniform LaF3 and LaCO3F hollow microspheres were successfully synthesized through a surfactant-free route by employing La(OH)CO3 colloidal microspheres as a sacrificial template and NaBF4 as the fluorine source. The synthetic process consists of two steps: the preparation of a La(OH)CO3 precursor via a facile urea-based precipitation and the following formation of lanthanide fluoride hollow microspheres under aqueous conditions at low temperature (50 °C) and short reaction time (3 h), without using any surfactant and catalyst. The formation of hollow spheres with controlled size can be assigned to the Kirkendall effect. It is found that the phase and structure of the products can be simply tuned by changing the pH values of the solution. Time-dependent experiments were employed to study the possible formation process. N2 adsorption/desorption results indicate the mesoporous nature of LaF3 hollow spheres. Yb(3+)/Er(3+) (Ho(3+)) and Yb(3+)/Tm(3+)-doped LaF3 hollow spheres exhibit characteristic up-conversion (UC) emissions of Er(3+) (Ho(3+)) and Tm(3+) under 980 nm laser-diode excitation, and Ce(3+)/Tb(3+)-doped LaF3 and LaCO3F emit bright yellow-green and near-white light under UV irradiation, respectively. In particular, LaF3:Yb/Er and LaCO3F:Ce/Tb hollow microspheres exhibit obvious sustained and pH-dependent doxorubicin release properties. The luminescent properties of the carriers allow them to be tracked or monitored during the release or therapy process, suggesting their high potential in the biomedical field.

  7. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    DOE PAGES

    Glazoff, Michael V.

    2016-03-14

    Abstract Transition aluminas doped with Cr find widespread application in the dehydrogenation industry, while La-stabilized transition aluminas are used extensively for high temperature application as catalytic supports. In this work, a detailed synchrotron XAFS-spectroscopy studies were conducted to shed light upon the atomic mechanisms of catalysis and/or catalytic support stabilization. It has been demonstrated that in the samples of different transition aluminas doped with Cr, the atoms of chromium are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and –chi-alumina. In the row “gamma – chi – theta –more » eta-alumina” the change of properties (in particular, of the coloration of different samples) takes place because of dramatic reduction in the average size of Cr clusters and, possibly, their appearance on the Al2O3 surface. It has been also demonstrated that the substantial change in the local coordination of the La atoms in the samples of gamma-alumina doped with La, takes place only upon heating up to 1400°C, thereby making the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g. catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). It has been proved that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amounts of this expensive rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the bulk of alumina crystal, could be a major reason of the increased thermal stability of

  8. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazoff, Michael V.

    Abstract Transition aluminas doped with Cr find widespread application in the dehydrogenation industry, while La-stabilized transition aluminas are used extensively for high temperature application as catalytic supports. In this work, a detailed synchrotron XAFS-spectroscopy studies were conducted to shed light upon the atomic mechanisms of catalysis and/or catalytic support stabilization. It has been demonstrated that in the samples of different transition aluminas doped with Cr, the atoms of chromium are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and –chi-alumina. In the row “gamma – chi – theta –more » eta-alumina” the change of properties (in particular, of the coloration of different samples) takes place because of dramatic reduction in the average size of Cr clusters and, possibly, their appearance on the Al2O3 surface. It has been also demonstrated that the substantial change in the local coordination of the La atoms in the samples of gamma-alumina doped with La, takes place only upon heating up to 1400°C, thereby making the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g. catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). It has been proved that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amounts of this expensive rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the bulk of alumina crystal, could be a major reason of the increased thermal stability of

  9. Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia.

    PubMed

    Shlapa, Yulia; Kulyk, Mykola; Kalita, Viktor; Polek, Taras; Tovstolytkin, Alexandr; Greneche, Jean-Marc; Solopan, Sergii; Belous, Anatolii

    2016-12-01

    Fe-doped La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.

  10. Sign change of the thermoelectric power in LaCoO {3}

    NASA Astrophysics Data System (ADS)

    Maignan, A.; Flahaut, D.; Hébert, S.

    2004-05-01

    The substitution of 1%-Ce4 + for La3 + in LaCoO3 is found to change the sign of the Seebeck coefficient at room temperature. This demonstrates that not only holes but also electrons can be created in LaCoO3. The result is compatible with the Heikes formula for doping levels close to the “pure” trivalent Co3 + state. Nonetheless, the physical properties such as magnetic susceptibility, magnetization, thermal conductivity and resistivity are found to be asymmetric for hole and electron-doped LaCoO3. Such a different behaviour is ascribed to the very different spin-states of Co4 + (low-spin, t 2 g 5 e g 0) and Co2 + (high-spin, t 2 g 5 e g 2).

  11. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.

    PubMed

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-09-28

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  12. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    PubMed Central

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-01-01

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925

  13. Enhancement of magnetocaloric effect in mischmetal doped La-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaofeng; Zhao, Zengru; Zhang, Xuefeng; Ma, Qiang; Li, Yongfeng; Liu, Yanli; Mu, Lijuan; Zhang, Yan

    2018-05-01

    The influence of partial substitution of mischmetal on the structure, Curie temperature and magnetocaloric effect has been investigated in La1-xMxFe11.5Si1.5 alloys. X-ray diffraction patterns indicate the alloys crystallize mainly in NaZn13-type cubic structure and the amount of secondary α-Fe phase obviously reduces in the mischmetal doped alloys. As the content of mischmetal increases, the Curie temperature is reduced from 198.1 K for x = 0 to 184.2 K for x = 0.3 and the thermal hysteresis is enlarged from 3.5 K for x = 0 to 8.2 K for x = 0.3. Upon a field change from 0 to 3 T, the obtained maximum isothermal entropy change values are 17.2, 19.8, 37.8 and 47.9 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The entropy changes due to the latent heat of first-order transitions are estimated to be 11.3, 14.7, 18.5 and 23.4 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The enhancement of giant magnetocaloric MCE in La1-xMxFe11.5Si1.5 alloys originates from the strengthened itinerant electron metamagnetic transitions by adding the mischmetal. Our result suggests that the mischmetal doped NaZn13-type La-Fe-Si alloys are potential candidates of refrigerants for magnetic refrigeration.

  14. Investigating new activators for small-bandgap LaX3 (X = Br, I) scintillators

    NASA Astrophysics Data System (ADS)

    Rutstrom, Daniel; Collette, Robyn; Stand, Luis; Loyd, Matthew; Wu, Yuntao; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya

    2018-02-01

    Luminescence and scintillation properties of Bi3+, Sb3+, and Eu2+-doped LaI3 and LaBr3 were explored. Out of the three dopants investigated, Eu2+ was the most promising new activator for small-bandgap LaX3 (X = Br, I) and was further studied in the mixed-halide LaBr3-xIx. Crystals were grown from the melt using the vertical Bridgman method. LaBr3:Eu2+ 0.5% (mol) had the most favorable scintillation properties with a light output of 43,000 ph/MeV and 6% energy resolution at 662 keV. Performance of LaBr3-xIx:Eu2+ worsened for most samples as iodide concentration was increased. Room-temperature scintillation of LaI3:Eu2+ 0.1% and 0.5% was observed and is the first case of room-temperature emission reported for doped LaI3.

  15. Reentrant metal-insulator transition in the Cu-doped manganites La1-x Pbx MnO3 (x˜0.14) single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, B. C.; Song, W. H.; Ma, Y. Q.; Ang, R.; Zhang, S. B.; Sun, Y. P.

    2005-10-01

    Single crystals of La1-x Pbx Mn1-y-z Cuy O3 ( x˜0.14 ; y=0 ,0.01,0.02,0.04,0.06; z=0.02 ,0.08,0.11,0.17,0.20) are grown by the flux growth technique. The effect of Cu doping at the Mn-site on magnetic and transport properties is studied. All studied samples undergo a paramagnetic-ferromagnetic transition. The Curie temperature TC decreases and the transition becomes broader with increasing Cu-doping level. The high-temperature insulator-metal (I-M) transition moves to lower temperature with increasing Cu-doping level. A reentrant M-I transition at the low temperature T* is observed for samples with y⩾0.02 . In addition, T* increases with increasing Cu-doping level and is not affected by applied magnetic fields. Accompanying the appearance of T* , there exists a large, almost constant magnetoresistance (MR) below T* except for a large MR peak near TC . This reentrant M-I transition is ascribed to charge carrier localization due to lattice distortion caused by the Cu doping at Mn sites.

  16. Synthesis of humidity sensitive zinc stannate nanomaterials and modelling of Freundlich adsorption isotherm model

    NASA Astrophysics Data System (ADS)

    Sharma, Alfa; Kumar, Yogendra; Shirage, Parasharam M.

    2018-04-01

    The chemi-resistive humidity sensing behaviour of as prepared and annealed ZnSnO3 nanoparticles synthesized using a wet chemical synthesis method was investigated. The effect of stirring temperature over the evolution of varied nanomorphology of zinc stannate is in accordance to Ostwald's ripening law. At room temperature, an excellent humidity sensitivity of ˜800% and response/recovery time of 70s./102s. is observed for ZnSnO3 sample within 08-97% relative humidity range. The experimental data observed over the entire range of RH values well fitted with the Freundlich adsorption isotherm model, and revealing two distinct water adsorption regimes. The excellent humidity sensitivity observed in the nanostructures is attributed to Grotthuss mechanism considering the availability and distribution of available adsorption sites. This present result proposes utilization of low cost synthesis technique of ZnSnO3 holds the promising capabilities as potential candidate for the fabrication of next generation humidity sensors.

  17. Synthesis and characterization of indium doped La{sub 3}Co{sub 4}Sn{sub 13} skutterudite superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neha, P.; Srivastava, P.; Shruti,

    2016-05-06

    We report the synthesis and characterization of a novel superconductor La{sub 3}Co{sub 4}Sn{sub 12.35}In{sub 0.65} by Indium doping at Tin site in parent compound La{sub 3}Co{sub 4}Sn{sub 13}. We observe enhanced T{sub c} along with improved superconducting properties as onset compared to parent compound. By transport measurements we get superconducting transition with T{sub c}{sup onset} = 4.7 K and T{sub c}{sup zero} = 3.2 K. In magnetization measurements (ZFC-FC) superconducting transition is observed at 5.1 K. Upper critical field (H{sub c2}) and lower critical field (H{sub c1}) calculated by magneto resistance and M-H loop measurement are found to be 1.65more » T and 0.0026 T respectively. Hall measurement shows the majority charge carrier as electrons with carrier density of the order of 10{sup 19} cm{sup −3}. TEP measurement also support the Hall data as the Seebeck coefficient is negative over whole temperature range of measurement.« less

  18. Phase Stability and Mechanisms of Transformation of La-Doped γ-Alumina.

    PubMed

    Ren, Tianqi; Nforbi, Lum-Ngwegia N; Kanakala, Raghunath; Graeve, Olivia A

    2018-03-19

    We report the phase stability of cubic γ-Al 2 O 3 with respect to lanthanum dopant amount and describe a complete phase transition sequence up to a temperature of 1800 °C, which proceeds from La-doped γ-Al 2 O 3 to LaAlO 3 /γ-Al 2 O 3 to LaAl 11 O 18 . For this purpose, lanthanum contents from 0.81 to 10.0 atom % were incorporated into Al 2 O 3 powders. X-ray diffraction analyses show that only γ-Al 2 O 3 phase was present after heat treatment at 1000 °C for 2 h with 0.81, 1.68, 2.24, and 2.62 atom % lanthanum concentrations. The phase stabilization can be mainly attributed to the combined effects of small crystallite size of the Al 2 O 3 powders and the presence of the lanthanum dopant, which occupies the Al 2 O 3 octahedral sites. At compositions of 3.63, 5.00, 7.49, and 10.0 atom %, the amount of LaAlO 3 phase formed by the solid phase reaction between Al 2 O 3 and La 3+ ions becomes detectable under X-ray diffraction.

  19. Ag modified LaCoO3 perovskite oxide for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Jayapandi, S.; Prakasini, V. Anitha; Anitha, K.

    2018-04-01

    The present investigation has been carried out to develop a novel photocatalytic material based on lanthanum cobaltite (LaCoO3) and silver (Ag) doped LaCoO3 perovskite oxide. Pure LaCoO3 and 5 Mol% Ag doped LaCoO3 (Ag-LaCoO3) have been synthesized by simple co-precipitation method and characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and photoluminescence (PL) techniques and its photocatalytic activity was evaluated by photodegradation of methylene blue under sunlight irradiation. The observed XRD, UV and PL results indicate that Ag influences on the crystallite size and absorption coefficient of LaCoO3 perovskite oxide. The percentage of dye degradations was calculated as 60% and 99 % for LaCoO3 and 5 Mol% Ag-LaCoO3 pervoskite oxides respectively for 10 minutes (10 min) exposure to sunlight, which indicates that 5 mol% of Ag-LaCoO3, has better photodegradation activity. Hence, the present investigation confirms that Ag influences the photocatalytic activity of a material and the observations will be helpful for further developing new photocatalytic materials.

  20. Modified Pechini's method to prepare LaAlO3:RE thermoluminescent materials

    NASA Astrophysics Data System (ADS)

    Rivera-Montalvo, T.; Morales-Hernandez, A.; Barrera-Angeles, A. A.; Alvarez-Romero, R.; Falcony, C.; Zarate-Medina, J.

    2017-11-01

    This work presents an alternative method to prepare rare-earth doped lanthanum aluminates materials for thermoluminescent (TL) dosimetry applications. Modified Pechini´s method was using to prepare praseodymium doped LaAlO3 powders. LaAlO3:Pr3+ powders were prepared using La(NO3)3·6H2O, Al(NO3)3·6H2O, Pr(NO3)3·6H2O, citric acid, and ethylene glycol. The solution was heated to 80 °C for its polyesterification reaction. The obtained powders were submitted at different thermal treatment from 700 up to 1600 °C. The structural and morphological characterizations were carried out using X-ray diffraction (XRD) and scanning electron microscopy techniques. TL glow curves of the X-ray irradiated samples showed one peak for europium and praseodymium dopants, meanwhile for powders doped with dysprosium ion showed two peaks. The technique is low cost, faster and it produces homogeneous particles can be used as thermoluminescent phosphors.

  1. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

    PubMed Central

    Peng, Ya-Pei; Yuan, Xinqiang; Zhang, Junjie; Zhang, Long

    2014-01-01

    A germanate-tellurite glass (GeO2-TeO2-K2O-Nb2O5-La2O3) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm3+ around 1.8 μm can reach 1.46 × 10−20 cm2, which indicated that the germanate-tellurite glass may provide high gain as a good medium for efficient 1.8 μm laser system. PMID:24918516

  2. Theoretical insights on the electron doping and Curie temperature in La-doped Sr2CrWO6.

    PubMed

    Wang, Jing; Meng, Jian; Wu, Zhijian

    2011-11-30

    The structure and electronic and magnetic properties of La(x)Sr(2-x)CrWO(6) (x = 0.0, 0.5, 1.0, 1.5, 2.0) were investigated by using the density functional theory. With the increase of La doping, the extra electrons are injected into W 5d orbitals, which makes the spin moments of W increase. In addition, the calculated Curie temperature and total magnetic moments decrease with the increase of the electron doping, in agreement with the experimental observation. This also means that the decrease of Curie temperature with the electron doping is intrinsic. Half metallic properties are obtained for x = 0.0, 0.5, 1.5, and 2.0, whereas for x = 1.0, the compound is semiconducting. Copyright © 2011 Wiley Periodicals, Inc.

  3. Structure and Stoichiometry in Supervalent Doped Li 7La 3 Zr 2O 12

    DOE PAGES

    Mukhopadhyay, Saikat; Thompson, Travis; Sakamoto, Jeff; ...

    2015-04-20

    The oxide garnet material Li 7La 3 Zr 2O 12 shows remarkably high ionic conductivity when doped with supervalent ions that are charge compensated by Li vacancies and is currently one of the best candidates for development of a technologically relevant solid electrolyte. Determination of optimal dopant concentration, however, has remained a persistent problem due to the extreme difficulty of establishing the actual (as compared to nominal) stoichiometry of intentionally doped materials and by the fact that it is still not entirely clear what level of lattice expansion/contraction best promotes. ionic diffusion. By combining careful synthesis, neutron diffraction, high-resolution X-raymore » diffraction (XRD), Raman measurements, and density functional theory calculations, we show that structure and stoichiometry are intimately related such that the former can in many cases be used as a gauge of the latter. We show that different Li-vacancy creating supervalent ions (Al 3+ vs Ta 5+) affect the structure very differently, both in terms of the lattice constant, which is easily measurable, and hi terms of the local structure, which can be difficult or impossible to access experimentally but may have important ramifications for conduction. We carefully correlate the lattice constant to dopant type/concentration via Vegard's law and then further correlate these quantities to relevant local structural parameters. In conclusion, our work opens the possibility of developing a codopant scheme that optimizes the Li vacancy concentration and the lattice size simultaneously.« less

  4. Influence of difference quantity La-doped TiO{sub 2} photoanodes on the performance of dye-sensitized solar cells: A strategy for choosing an appropriate doping quantity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zige; Li, Guoxiang; Cui, Zijian

    2016-05-15

    Facilitated by TiO{sub 2} particles adsorbing lanthanide ions in hydrosol, La-doped TiO{sub 2} was produced by a hydrothermal method. The structure, optical and photoluminescence properties of down-converting photoelectrode with the La{sup 3+} were characterized by X-ray (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray detector (EDX) and N{sub 2} adsorption-desorption isotherms measurement. The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) fabricated with 0.05 g-La/TiO{sub 2} reached 7.02%, which gave an efficiency improved by 10.36% compared with that of cells fabricated from pure TiO{sub 2}. The improvement in efficiency was ascribed to more dyes adsorbed on the surface of TiO{submore » 2}. - Graphical abstract: (a) J–V curves of La-doped photoelectrodes with different La(NO{sub 3}){sub 3}·6H{sub 2}O amounts; (b) the curves of efficiency changing with the amount of La(NO{sub 3}){sub 3}·6H{sub 2}O. The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) fabricated with 0.05 g-La/TiO{sub 2} reached 7.02%, which gave an efficiency improved by 10.36% compared with that of cells fabricated from pure TiO{sub 2}.« less

  5. Thermoelectric properties of the ceramic oxide Sr1- x La x TiO3

    NASA Astrophysics Data System (ADS)

    Mahmud, Iqbal; Yoon, Man-Soon; Kim, Il-Ho; Choi, Moon-Kwan; Ur, Soon-Chul

    2016-01-01

    The effect of lanthanum on the electric and the thermoelectric properties of the ceramic oxide Sr1- x La x TiO3 (where x = 0.0, 0.04, 0.06, 0.08 and 0.12 mole) have been studied. La-doped SrTiO3 was prepared by using the conventional mixed-oxide reaction method. XRD patterns indicated that almost all the La atoms incorporated into the SrTiO3 crystal provided charge carriers. The lattice parameter increases with increasing La doping content. The relative densities of all the samples varied from 89.6% to 94.8%. The electrical conductivity increased with La doping up to 0.08 moles and then decreased as the content of La was increased above 0.08 moles. The thermal conductivity decreased with increasing La content. The largest absolute value of the Seebeck coefficient, 394 μVK-1 at 973 K, was observed at x = 0.04. The Sr0.92La0.08TiO3 sample showed its maximum electrical conductivity at 773 K and its largest ZT value of 0.20 at 973 K.

  6. Unraveling Pr3+ 5d-4f emission in LiLa9(SiO4)6O2 crystals doped with Pr3+ ions

    NASA Astrophysics Data System (ADS)

    Ivanovskikh, Konstantin V.; Shi, Qiufeng; Bettinelli, Marco; Pustovarov, Vladimir A.

    2018-05-01

    LiLa9(SiO4)6O2 (LLSO) crystals doped with Pr3+ ions were grown using the slow cooling flux method. The crystals were characterized by means of luminescence and optical spectroscopy and luminescence decay measurements upon excitation in UV, VUV and X-ray range including using synchrotron radiation sources. The spectroscopic data revealed the presence Pr3+ 5d↔4f emission and excitation bands related to Pr3+ ions replacing La3+ in two nonequivalent positions, and features related Pr3+ 4f→4f emission. The photon cascade emission is not observed in LLSO:Pr3+, since Pr3+1S0 state is above the bottom of 4fn-15d mixed-states band. Apart from the emission features related to Pr3+, a defect-related emission was observed upon UV, VUV, and ionizing radiation excitation. Presence of the defects was shown with thermoluminescence measurements and suggested to be the main reason for suppression the 5d→4f emission. Peculiarities of host-to-impurity energy transfer are analyzed and discussed.

  7. Disorder induced magnetism and electrical conduction in La doped Ca2FeMoO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Poddar, Asok; Bhowmik, R. N.; Muthuselvam, I. Panneer

    2010-11-01

    We report the magnetism and electrical transport properties of La doped Ca2FeMoO6 double perovskite. Reduction in magnetic moment, nonmonotonic variation in magnetic ordering temperature (TC), increasing magnetic hardness, low temperature resistivity upturn, and loss of metallic conductivity are some of the major changes that we observed due to La doping induced disorder in double perovskite structure. The increase in magnetic disorder in La doped samples and its effect on TC is more consistent with the mean field theory. The modification in electronic band structure due to La doping is understood by establishing a correlation between the temperature dependence of electrical conductivity and thermoelectric power.

  8. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  9. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  10. Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Kajdos, Adam Paul

    Two-dimensional electron gases (2DEGs) in SrTiO3 have attracted considerable attention for exhibiting a variety of interesting physical phenomena, such as superconductivity and magnetism. So far, most of the literature has focused on interfaces between nonpolar SrTiO3 and polar perovskite oxides (e.g. LaAlO3 or rare-earth titanates), where high carrier density 2DEGs (˜3 x 1014 cm-2) are generated by polar discontinuity. Modulation doping is an alternative approach to generating a 2DEG that has been explored extensively in III-V semiconductors but has not heretofore been explored in complex oxides. This approach involves interfacing an undoped semiconductor with a doped semiconductor whose conduction band edge lies at a higher energy, which results in electrons diffusing into the undoped semiconductor transport channel, where scattering from ionized dopants is minimized. Realizing a high-mobility modulation-doped structure with a SrTiO3 transport channel therefore requires both the optimization of the transport channel by minimizing native defects as well as the development of a perovskite oxide which has a suitable band offset with SrTiO3 and can be electron-doped. The growth of high electron mobility SrTiO3 as a suitable transport channel material was previously demonstrated using the hybrid molecular beam epitaxy (MBE) approach, where Sr is delivered via a solid source and Ti is delivered using a metal-organic precursor, titanium (IV) tetra-isopropoxide (TTIP). Expanding on this, in-situ reflection high-energy electron diffraction (RHEED) is used to track the surface and resulting film cation stoichiometry of homoepitaxial SrTiO3 (001) thin films grown by hybrid MBE. It is shown that films with lattice parameters identical to bulk single-crystal substrates within the detection limit of high-resolution X-ray diffraction (XRD) measurements exhibit an evolution in surface reconstruction with increasing TTIP beam-equivalent pressure. The change in the observed

  11. Observation of long phase-coherence length in epitaxial La-doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Yun, Yu; Ma, Yang; Tao, Songsheng; Xing, Wenyu; Chen, Yangyang; Su, Tang; Yuan, Wei; Wei, Jian; Lin, Xi; Niu, Qian; Xie, X. C.; Han, Wei

    2017-12-01

    The search for long electron phase-coherence length, which is the length that an electron can keep its quantum wavelike properties, has attracted considerable interest in the last several decades. Here, we report the long phase-coherence length of ˜3.7 μm in La-doped CdO thin films at 2 K. Systematical investigations of the La doping and the temperature dependences of the electron mobility and the electron phase-coherence length reveal contrasting scattering mechanisms for these two physical properties. Furthermore, these results show that the oxygen vacancies could be the dominant scatters in CdO thin films that break the electron phase coherence, which would shed light on further investigation of phase-coherence properties in oxide materials.

  12. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses.

    PubMed

    Yang, Hucheng; Lakshminarayana, G; Zhou, Shifeng; Teng, Yu; Qiu, Jianrong

    2008-04-28

    Aluminum-lanthanum-silicate glasses with different Eu doping concentration have been synthesized by conventional melt-quenching method at 1680 degrees C in reductive atmosphere. Under 395nm excitation, samples with low Eu doping concentration show mainly the cyan broad emission at 460nm due to 4f(6)5d(1)-4f(7) transition of Eu(2+); and the samples with higher Eu doping concentration show mainly some narrow emissions with maximum at 616nm due to (5)D(0)-(7)F(j) (J=0, 1, 2, 3, 4) transitions of Eu(3+). Cyan-white-red tunable luminescence under 395nm excitation has been obtained by changing the Eu doping concentration.

  13. Enhancement in electrical and magnetic properties with Ti-doping in Bi0.5La0.5Fe0.5Mn0.5O3

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Gupta, Prince Kumar; Kumar, Shiv; Joshi, Amish G.; Ghosh, A. K.; Patil, S.; Chatterjee, Sandip

    2017-04-01

    In this investigation, we have synthesized Bi0.5La0.5Fe0.5Mn0.5-xTixO3 (where x = 0 and 0.05) samples. The Rietveld refinement of X-ray diffraction (XRD) patterns shows that the systems crystallize in the orthorhombic phase with the Pnma space group. The observed Raman modes support the XRD results. The appearance of prominent A1-3 and weak E-2 modes in Bi0.5La0.5Fe0.5Mn0.45Ti0.05O3 indicates the presence of chemically more active Bi-O covalent bonds. Ferromagnetism of Bi0.5La0.5Fe0.5Mn0.5O3 is enhanced by Ti doping at the Mn-site, indicating that these particular samples might be interesting for device applications.

  14. Na-doped La0.7Ca0.3MnO3 compounds exhibiting a large magnetocaloric effect near room temperature

    NASA Astrophysics Data System (ADS)

    Chi Linh, Dinh; Thi Ha, Nguyen; Huu Duc, Nguyen; Giang Nam, Le Huu; Bau, Le Viet; Manh An, Nguyen; Yu, Seong-Cho; Dang Thanh, Tran

    2018-03-01

    In this work, we have investigated the magnetic properties and the magnetocaloric effect of La0.7-xNaxCa0.3MnO3 compounds, which were prepared by a conventional solid-state reaction technique. The Rietveld refinement results suggested that the samples are single phase belonging to an orthorhombic structure (space group Pnma). Analyzing temperature dependence of magnetization M(T) revealed that the Curie temperature (TC) increases with increasing Na content (x). Their TC value is found to be 260-298 K for x=0.0-0.1, respectively. Base on M(T) data measured at different applied magnetic fields (H), temperature dependence of magnetic entropy change ΔSm(T) data for all the samples was calculated by using a phenomenological model. In the vicinity of TC, -ΔSm(T) curve reaches a maximum value (denoted as |ΔSmax|), which gradually increases with increasing H. Under 12 kOe, the value of |ΔSmax| is in a range of 1.47-5.19 J/kg K corresponding to the relative cooling power RCP=57.12-75.88 J/kg. Applied the universal master curve method for the magnetic entropy change, we concluded that Na-doped in La0.7-xNaxCa0.3MnO3 compounds leads to modification the nature of the magnetic phase transition from the first- to the second-order.

  15. Pressure induced superconductivity in very lightly doped LaFeAsO0.975F0.025

    NASA Astrophysics Data System (ADS)

    Miyoshi, K.; Otsuka, K.; Shiota, A.; Shimojo, Y.; Motoyama, G.; Fujiwara, K.; Kitagawa, H.; Nishigori, S.

    2018-05-01

    We have investigated whether or not superconductivity is induced by the application of pressure in very lightly F-doped LaFeAsO1-xFx , which shows spin density wave (SDW) state at ambient pressure, through the measurements of DC magnetization and electrical resistivity under pressure using pulse current sintered (PCS) high density polycrystalline specimens. It has been confirmed that the specimens with x = 0.025 shows superconductivity with Tcdia ∼ 15 K under pressure above ∼ 1.3 GPa. The pressure induced superconductivity can be explained by the lattice compression along c-axis, which enhances the electron doping from LaO layers to FeAs layers.

  16. Magnetization reversal in orthorhombic Sr-doped LaFe0.5Cr0.5O3–δ

    NASA Astrophysics Data System (ADS)

    Coutinho, P. V.; Moreno, N. O.; Ochoa, E. A.; da Costa, M. E. H. Maia; Barrozo, Petrucio

    2018-06-01

    In this paper we studied the reversal magnetization of La1‑x Sr x Fe0.5Cr0.5O3‑δ (x  =  0, 0.1 and 0.2) samples produced by combustion synthesis. The structural analysis was carried out by x-ray diffraction with Rietveld analysis. These analyses revealed that all samples have an orthorhombic structure with space group Pbnm (62) and that the Sr-doping induces a decrease of the lattice parameter. The x-ray photoelectron spectroscopy analysis indicates that the Sr-doping favor the change of the valence states of the Fe3+ to Fe4+. The magnetization as a function of the temperature reveals an unusual magnetic behavior with a reversal of magnetization. The increase of the Sr content induces a decrease of the temperature where occurs an inversion of the magnetization and do the value of the magnetization at 5 K more negative. This effect is attributed to the increase of the concentration of Fe4+ with increasing of the Sr content. The Fe and Cr with a valence of 4+  act as paramagnetic impurities in the antiferromagnetic lattice and are responsible for the changes in the magnetic behavior.

  17. Effects of lattice deformation on magnetic properties of electron-doped La0.8Hf0.2MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wu, Z. P.; Jiang, Y. C.; Gao, J.

    2013-05-01

    The lattice deformation effects on electric and magnetic properties of electron-doped La0.8Hf0.2MnO3 (LHMO) thin films have been systematically investigated. LHMO films with various thicknesses (15 nm, 40 nm, and 80 nm) were grown on (001) SrTiO3 and (001) LaAlO3 substrates, which induces in-plane tensile and compressive biaxial stress, respectively. The metal-insulator phase transition temperature (TP) and magnetoresistance (MR) effect show a strong dependence on film thickness. TP increases with a decrease in thickness and is enhanced as the lattice strain rises, regardless of whether it is tensile or compressive. The maximum MR ratio is suppressed by reduction of the film thickness. These anomalous phenomena may be attributed to the competition between the strain induced modification of the Mn-O bond length and the eg orbital stability.

  18. Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO{sub 3} synthesized through sol–gel auto-combustion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Irshad; Husain, Shahid, E-mail: s.husain@lycos.com; Khan, Wasi

    2013-11-15

    Graphical abstract: - Highlights: • We have synthesized the samples of LaFe{sub 1−x}Zn{sub x}O{sub 3} (0 ≤ x ≤ 0.3) using sol–gel auto-combustion process. • The doping of Zn{sup 2+} hugely enhances the dielectric constant (ε′) and it shows a colossal value. • The parent compound LaFeO{sub 3} does not show any relaxation peak, but the substitution of Zn at Fe{sup 3+} site brings the relaxation in the system. • The system shows a peak behavior thereby giving the Debye like dipolar relaxation response. - Abstract: We have studied the structural and dielectric properties of nano-crystalline LaFe{sub 1−x}Zn{sub x}O{sub 3}more » (0 ≤ x ≤ 0.3) pervoskite samples synthesized through sol–gel auto-combustion technique. X-ray diffraction and FTIR spectroscopy are used to confirm the single phase characteristics. Microstructural features are investigated using scanning electron microscope and compositional analysis is performed through energy dispersive spectroscopy. The average grain sizes, calculated from the Scherrer formula, lie in the range below 30 nm. The hysteresis (M-H) curves display a weak magnetic order and a shift in the hysteresis loops. Dielectric response has been discussed, in the framework of “universal dielectric response” model. The value of dielectric constant (ε′) increases drastically on Zn doping. The dielectric loss factor (ε″) shows Debye like dipolar relaxation behavior. The observed peaks in loss factor (ε″) are attributed to the fact that a strong correlation between the conduction mechanism and the dielectric behavior exists in ferrites.« less

  19. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  20. Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior.

    PubMed

    Shrivastava, Navadeep; Khan, L U; Vargas, J M; Ospina, Carlos; Coaquira, J A Q; Zoppellaro, Giorgio; Brito, H F; Javed, Yasir; Shukla, D K; Felinto, M C F C; Sharma, Surender K

    2017-07-19

    Luminescence-tunable multicolored LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce 3+ , Gd 3+ , and Eu 3+ dopants in the LaF 3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu 2+ , corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f( 2 F 5/2 ) → 5d state (Ce 3+ ) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f 6 5d 1 (Eu 2+ ) and 5 D 0 (Eu 3+ ) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd 3+ ion sub-lattice as the bridge and finally trapping by Eu 2+/3+ , upon excitation of the Ce 3+ ion. The calculation of experimental intensity parameters (Ω 2,4 ) has been discussed and the highest emission quantum efficiency (η = 85%) of the Eu 3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu 2+ /Eu 3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.

  1. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    NASA Astrophysics Data System (ADS)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  2. Effect of Sr-doping on electronic and magnetic properties of La2-xSrxCoMnO6

    NASA Astrophysics Data System (ADS)

    Khan, Anasua; Chatterjee, Swastika; Mandal, P. R.; Nath, T. K.

    2018-04-01

    In this report, La2-xSrxCoMnO6 (x=0, 1) have been synthesised using sol-gel technique. La2CoMnO6 (LCMO) takes a monoclinic phase, whereas LaSrCoMnO6 (LSCMO) appears in a mixed phase of having both monoclinic and rhombohedral symmetries. DC magnetization measurement shows that LCMO is Ferromagnetic in nature whereas LSCMO shows magnetic glassy nature. This experimental result is verified by ab-initio calculation using GGA+SO+U as implemented in WIEN2k code. Total energy calculations suggest that antisite disorder is enhanced with Sr doping at La site and LSCMO is predominantly ferromagnetic in nature. Co ions which appeared in high spin +2 charge state, converts to intermediate spin +3 charge state with Sr doping.

  3. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles.

    PubMed

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  4. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  5. Thermal, optical and vibrational studies of tyrosine doped LaF3:Ce nanoparticles for bioimaging and biotagging

    NASA Astrophysics Data System (ADS)

    Singh, Amit T.

    2018-05-01

    Upconversion quantum dots of tyrosine doped LaF3:Ce nanoparticles have been synthesized by wet chemical route. The thermal studies (TGA/DTA) confirm the crystallinity and stability of different phases of synthesized nanoparticles. The UV-Visible spectra show multiple absorption edges at 215.60 nm and 243.10 nm indicating quantum dot nature of the synthesized nanoparticles. The PL spectra showed upconversion with sharp emission peak at 615 nm (red colour). The FT-RAMAN spectra of the synthesized nanoparticles show the modification of the surface of the nanoparticles in the form of functional groups and skeletal groups. Upconversion nature of the synthesized nanoparticles indicates their potential application in bioimaging and biotagging.

  6. Electrical resistivity and thermopower measurements of the hole- and electron-doped cobaltites LnCoO3

    NASA Astrophysics Data System (ADS)

    Jirák, Z.; Hejtmánek, J.; Knížek, K.; Veverka, M.

    2008-07-01

    Two perovskite cobaltites, LaCoO3 and DyCoO3 , which are border compounds with respect to the Ln size, were investigated by the electric resistivity and thermopower measurements up to 800-1000 K. Special attention was given to effects of extra holes or electrons, introduced by light doping of Co sites by Mg2+ or Ti4+ ions. The experiments on the La-based compounds were complemented by magnetic measurements. The study shows that both kinds of charge carriers induce magnetic states on surrounding Co3+ sites and form thus thermally stable polarons of large total spin. Their itinerancy is characterized by low-temperature resistivity, which is of Arrhenius type ρ˜exp(EA/kT) for the hole (Co4+) -doped samples, while an unusual dependence ρ˜1/Tν (n=8-10) is observed for the electron (Co2+) -doped samples. At higher temperatures, additional hole carriers are massively populated in the Co3+ background, leading to a resistivity drop. This transition become evident at ˜300K and 450 K and culminates at TI-M=540 and 780 K for the La- and Dy-based samples, respectively. The electronic behaviors of the cobaltites in dependence on temperature are explained considering local excitations from the diamagnetic low-spin (LS) Co3+ to close-lying paramagnetic high-spin (HS) Co3+ states and subsequent formation of a metallic phase of the IS Co3+ character through a charge transfer mechanism between LS/HS pairs. The magnetic polarons associated with doped carriers are interpreted as droplets of such intermediate (IS) phase.

  7. Fabrication, phase, microstructure and electrical properties of BNT-doped (Sr,La)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Eaksuwanchai, Preeyakarn; Promsawat, Methee; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha

    2014-08-01

    This research studied the effects of Bi0.5Na0.5TiO3 (BNT) doping on the phase, density, microstructure and electrical properties of (Sr,La)TiO3 (SLTO) ceramics. Separately calcined SLTO and BNT powders were mixed together to form (1-x)SLTO-xBNT (where x = 0, 0.01, 0.03, 0.05 and 0.07 mol fraction) compounds that were pressed into pellets and then sintered at 1500 °C for 3 h under ambient atmosphere. The relative bulk densities of all the ceramics were greater than 95% their theoretical values which were confirmed by their nearly zero-porosity microstructure. X-ray diffraction patterns indicated complete solid solutions with a cubic structure and a slight lattice contraction when BNT was added. The electrical conductivity was found to decrease with BNT addition, suggesting a reduced number of mobile charges. The dielectric constant also showed limited polarization due to defect dipoles formed by aliovalent ionic substitution of BNT. Further optimization in terms of composition and defect chemistry could lead to a compound suitable for thermoelectric applications.

  8. Spin and orbital states in single-layered La2-xCaxCoO4 studied by doping- and temperature-dependent near-edge x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Merz, M.; Fuchs, D.; Assmann, A.; Uebe, S.; v. Löhneysen, H.; Nagel, P.; Schuppler, S.

    2011-07-01

    The doping-dependent valence, orbital, and spin-state configurations of single-layered La2-xCaxCoO4 (x=0, 0.5, 1, and 1.5) were investigated with temperature-dependent near-edge x-ray absorption fine structure at the Co L2,3 and O K edges. The spectra show that in La2CoO4, the superexchange between neighboring Co2+ HS states is responsible for the strong antiferromagnetism. With increasing hole doping, the superexchange interactions between Co2+ HS ions are rapidly reduced by interlaced nonmagnetic Co3+ LS. For La1.5Ca0.5CoO4, the low Néel temperature of the samples together with the 50% Co2+ HS and 50% Co3+ LS configuration suggests a checkerboard arrangement of these ions. The spin blockade resulting from this arrangement naturally explains the high resistivity of La1.5Ca0.5CoO4. Upon further doping, Co2+ HS ions are replaced by Co3+ HS, and for LaCaCoO4 a mixture of Co3+ LS and Co3+ HS occurs. Superexchange via configuration fluctuation processes between these two species seems to induce long-range ferromagnetism, while the superexchange between adjacent Co3+ HS neighbors may lead to a competing antiferromagnetic exchange. For a doping content beyond x=1, Co4+ HS is introduced to the system at the expense of Co3+ LS, and a t2g double exchange between Co3+ HS and Co4+ HS is established, which further enhances ferromagnetic interactions and reduces resistivity. No indications for a Co3+ IS state are found throughout the La2-xCaxCoO4 doping series.

  9. Enhanced infrared emissivity of CeO2 coatings by La doping

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Fan, Chenglei; Song, Guangping; Li, Yibin; He, Xiaodong; Zhang, Xinjiang; Sun, Yue; Du, Shanyi; Zhao, Yijie

    2013-09-01

    Pure CeO2 and La doped CeO2 (LDC) coatings were prepared on nickel-based substrates by electron beam physical vapor deposition at 1173 K. The infrared emissivity in 2.5-25 μm of LDC coatings was enhanced with the increase of La concentration at high temperature 873-1273 K. Compared to the undoped CeO2 coating, the infrared emissivity of 16.7% LDC coating increases by 55%, and reaches up to 0.9 at 873 K. The enhancement of doped coatings’ emissivity is attributed to the increasing lattice absorption and free-carrier absorption. The high emissivity LDC coatings show a promising potential in high temperature application.

  10. Superconductivity by rare earth doping in the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) with RE=Y, La-Nd, Sm-Lu

    NASA Astrophysics Data System (ADS)

    Stürzer, Tobias; Derondeau, Gerald; Bertschler, Eva-Maria; Johrendt, Dirk

    2015-01-01

    We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) up to Tc=35 K with RE=Y, La-Nd, Sm, Gd-Lu. The critical temperatures are nearly independent of the trivalent rare earth element used, yielding a common Tc(xRE) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu2+ doped samples, as well as the close resemblance of (Ca1-xREx) 10(FeAs)10(Pt3As8) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with simpler crystal structures.

  11. Near-infrared photoluminescence in La0.98AlO3: 0.02Ln3+(Ln = Nd/Yb) for sensitization of c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The host matrix LaAlO3 was synthesized by conventional solid state reaction method in which the Nd3+ ions and Yb3+ ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd3+ ion doped LaAlO3 converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb3+ ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La0.98AlO3: 0.02Ln3+(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.

  12. Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers.

    PubMed

    Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain

    2017-01-01

    High-quality thermoelectric La 0.2 Sr 0.8 TiO 3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO 3 (001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10 -4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO 3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

  13. Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers

    NASA Astrophysics Data System (ADS)

    Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain

    2017-12-01

    High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

  14. Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7

    NASA Astrophysics Data System (ADS)

    Gao, Shufang; Xu, Shan

    2018-05-01

    Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.

  15. Enhanced Thermoelectric Properties of Polycrystalline SnSe via LaCl₃ Doping.

    PubMed

    Li, Fu; Wang, Wenting; Ge, Zhen-Hua; Zheng, Zhuanghao; Luo, Jingting; Fan, Ping; Li, Bo

    2018-01-28

    LaCl₃ doped polycrystalline SnSe was synthesized by combining mechanical alloying (MA) process with spark plasma sintering (SPS). It is found that the electrical conductivity is enhanced after doping due to the increased carrier concentration and carrier mobility, resulting in optimization of the power factor at 750 K combing with a large Seebeck coefficient over 300 Μvk -1 . Meanwhile, all the samples exhibit lower thermal conductivity below 1.0 W/mK in the whole measured temperature. The lattice thermal conductivity for the doped samples was reduced, which effectively suppressed the increscent of the total thermal conductivity because of the improved electrical conductivity. As a result, a ZT value of 0.55 has been achieved for the composition of SnSe-1.0 wt % LaCl₃ at 750 K, which is nearly four times higher than the undoped one and reveals that rare earth element is an effective dopant for optimization of the thermoelectric properties of SnSe.

  16. The synthesis and the luminescence properties of Sr2Ga3La1-xDyxGe3O14

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Mu, Zhongfei; Yang, Lurong; Zhang, Shaoan; Zhu, Daoyun; Yang, Yibin; Luo, Dongxiang; Wu, Fugen

    2018-02-01

    A series of Sr2Ga3La1-xDyxGe3O14 (x = 0, 0.015, 0.03, 0.045, 0.06, 0.075, 0.09) phosphors were synthesized by high temperature solid state reactions. X-ray diffraction analysis proves that single-phase Sr2Ga3La1-xDyxGe3O14 (0 ≤ x ≤ 0.09) has been obtained. The particle size of these powders is in the range from 1 to 3 μm. The host Sr2Ga3LaGe3O14 emits blue white light under the excitation of 260 nm ultraviolet light. Dy3+ doped samples can be effectively excited with near ultraviolet light and exhibit two emission bands in the blue (4F9/2 → 6H15/2) and yellow regions (4F9/2 → 6H13/2), which can form white light. Present research indicates that Dy3+ doped Sr2Ga3LaGe3O14 have the potential to be a single-phase full-color emitting phosphor.

  17. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance.

    PubMed

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-12-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl 3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  18. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  19. Thermal expansion and specific heat of La1-xTexCoO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rasna; Thakur, Rajesh K.; Gaur, N. K.

    2018-05-01

    We present the specific heat and thermal expansion of La1-xTexCoO3 family using Modified Rigid Ion Model (MRIM). The effect of Te doping on the thermal and cohesive properties have been studied by an atomistic approach. The Debye temperature of these perovskite materials is also predicted. The effect of Tellurium doping on lattice specific heat (C), thermal expansion (α) of La1-xTexCoO3 (x= 0.05-0.25) as a function of temperature (1K≤T≤1000K) is reported probably for the first time.

  20. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na-more » and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.« less

  1. Optical spectroscopy of disordered Ca3Ga2Ge4O14 crystal doped with manganese

    NASA Astrophysics Data System (ADS)

    Burkov, Vladimir; Alyabyeva, Liudmila; Mill, Boris; Kotov, Viacheslav

    2018-05-01

    Circular dichroism, absorption and luminescence spectra of single crystalline manganese doped calcium gallogermanate Ca3Ga2Ge4O14:Mn were investigated in 300-850 nm wavelength region in wide temperature range 8-300 K. Careful analysis of experimental results revealed presence of electron transitions typical for sixfold coordinated trivalent manganese ions with d4 electron configuration. Thus, manganese ions doping the crystal matrix of CCG incorporate into lattice in 1a octahedral site-positions substituting Ga3+ ions. The results obtained were compared with investigation of isostructural to CGG manganese doped langasite crystals, La3Ga5SiO14:Mn where dopant is in octahedral Mn4+ state.

  2. Solid-state NMR calculations for metal oxides and gallates: Shielding and quadrupolar parameters for perovskites and related phases

    NASA Astrophysics Data System (ADS)

    Middlemiss, Derek S.; Blanc, Frédéric; Pickard, Chris J.; Grey, Clare P.

    2010-05-01

    The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for 17O- and 69/71Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO 3, BaZrO 3, BaSnO 3, BaTiO 3, LaAlO 3, LaGaO 3, SrZrO 3, MgSiO 3 and Ba 2In 2O 5), and gallate (α- and β-Ga 2O 3, LiGaO 2, NaGaO 2, GaPO 4 and LaGaO 3) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO 5 site occurring in LaGaGe 2O 7 is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar ηQ-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases.

  3. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  4. Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Jung, G.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Kohn, A.; Wu, X. D.; Suzuki, K.; Gorodetsky, G.

    2012-09-01

    Magnetic properties of electron-doped La0.23Ca0.77MnO3 manganite nanoparticles, with average size of 12 and 60 nm, prepared by the glycine-nitrate method, have been investigated in the temperature range 5-300 K and magnetic fields up to 90 kOe. It is suggested that weak ferromagnetic moment results from ferromagnetic shells of the basically antiferromagnetic nanoparticles and from domains of frustrated disordered phase in the core. Assumption of two distinct sources of ferromagnetism is supported by the appearance of two independent ferromagnetic contributions in the fit of the T 3/2 Bloch law to spontaneous magnetization. The ferromagnetic components, which are more pronounced in smaller particles, occupy only a small fraction of the nanoparticle volume and the antiferromagnetic ground state remains stable. It is found that the magnetic hysteresis loops following field cooled processes, display size-dependent horizontal and vertical shifts, namely, exhibiting exchange bias effect. Time-dependent magnetization dynamics demonstrating two relaxation rates were observed at constant magnetic fields upon cooling to T < 100 K.

  5. Investigation of Upconversion, downshifting and quantum –cutting behavior of Eu3+, Yb3+, Bi3+ co-doped LaNbO4 phosphor as a spectral conversion material

    NASA Astrophysics Data System (ADS)

    Dwivedi, A.; Mishra, K.; Rai, S. B.

    2018-06-01

    This work presents the spectral conversion characteristics [upconversion (UC), downshifting (DS) and quantum–cutting (QC) optical processes] of Eu3+, Yb3+ and Bi3+ co-doped LaNbO4 (LBO) phosphor samples synthesized by solid state reaction technique. The crystal structure and the pure phase formation have been confirmed by x-ray diffraction (XRD) measurements. The surface morphology and particle size are studied by scanning electron microscopy (SEM). The rarely observed intense red UC emission from Eu3+ ion has been successfully obtained in Eu3+/Yb3+ co-doped LaNbO4 phosphor (on excitation with 980 nm) by optimizing the concentrations of Eu3+ and Yb3+ ions. The downshifting (DS) behavior has been studied by photoluminescence (PL) measurements on excitation with 265 nm wavelength from a Xe lamp source. A broad blue emission in the region 300–550 nm with its maximum ∼415 nm due to charge transfer band (CTB) of the host and large number of sharp peaks due to f-f transitions of Eu3+ ion have been observed. The energy transfer has been observed from (NbO4)3‑ to Eu3+ ion and the fluorescence emission has been optimized by varying the concentration of Eu3+ ion. An intense red emission has also been observed corresponding to 5D0 → 7F2 transition of Eu3+ ion at 611 nm in LBO: 0.09Eu3+ phosphor on excitation with 394 nm. The luminescence properties of Eu3+ ion are enhanced further through the sensitization effect of Bi3+ ion. The near infra-red (NIR) quantum cutting (QC) behavior due to Yb3+ ion has been monitored on excitation with 265 as well as 394 nm. The NIR QC is observed due to 2F5/2 → 2F7/2 transition of Yb3+ ion via co-operative energy transfer (CET) process from (NbO4)3‑ as well as Eu3+ ions to Yb3+ ion. This multimodal behavior (UC, DS and QC) makes this a promising phosphor material for multi-purpose spectral converter.

  6. Synthesis of Green-Emitting (La,Gd)OBr:Tb3+ Phosphors

    PubMed Central

    Kim, Sun Woog; Jyoko, Kazuya; Masui, Toshiyuki; Imanaka, Nobuhito

    2010-01-01

    Green-emitting phosphors based on lanthanum-gadolinium oxybromide were synthesized in a single phase form by the conventional solid state reaction method, and photoluminescence properties of them were characterized. The excitation peak wavelength of (La1-xGdx)OBr:Tb3+ shifted to the shorter wavelength side with the increase in the crystal field around the Tb3+ ions by doping Gd3+ ions into the La3+ site, and, as a result, the green emission intensity was successfully enhanced. The maximum emission intensity was obtained for (La0.95Gd0.05)OBr:5%Tb3+, where the relative emission intensity was 45% of that of a commercial green-emitting LaPO4:Ce3+,Tb3+ phosphor.

  7. Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers

    PubMed Central

    Apreutesei, Mihai; Debord, Régis; Bouras, Mohamed; Regreny, Philippe; Botella, Claude; Benamrouche, Aziz; Carretero-Genevrier, Adrian; Gazquez, Jaume; Grenet, Geneviève; Pailhès, Stéphane; Saint-Girons, Guillaume; Bachelet, Romain

    2017-01-01

    Abstract High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 μm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10−4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately –60 μV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements. PMID:28740558

  8. Role of defects and oxygen vacancies on dielectric and magnetic properties of Pb2+ ion doped LaFeO3 polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Devi Chandrasekhar, K.; Mallesh, S.; Krishna Murthy, J.; Das, A. K.; Venimadhav, A.

    2014-09-01

    We have presented the dielectric/impedance spectroscopy of La1-xPbxFeO3 (x=0.15 and 0.25) polycrystalline samples in a wide temperature and frequency range. They exhibited colossal dielectric permittivity and multiple relaxations. Temperature and field dependent magnetization study showed enhancement of magnetization upon Pb doping which has been ascribed to the defect driven magnetization phenomenon. Overall we have emphasized the formation of various kinds of defects and their influence on dielectric and magnetic properties in the system.

  9. Spectral downshifting in MBO3:Nd3+ (M=Y, La) phosphor

    NASA Astrophysics Data System (ADS)

    Omanwar, S. K.; Sawala, N. S.

    2017-11-01

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd3+ doped YBO3 and LaBO3 phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd3+ doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology.

  10. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  11. Anomalous red luminescence of Sm3+ ions in Sm3+:LaKNaTaO5 single crystals

    NASA Astrophysics Data System (ADS)

    Korzeniowski, Kamil; Sobczyk, Marcin

    2018-05-01

    For the first time much more intense 4G5/2 → 6H9/2 transition than others 4G5/2→6HJ/2 transitions of the Sm3+-doped oxides have been observed. The Sm3+-doped LaKNaTaO5 single crystals have been grown by the flux growth method. The emission and excitation spectra as well as decay profiles of the 4G5/2 luminescent level of the Sm3+ ion have been measured. The decay curve has been fitted by the Inokuti-Hirayama energy transfer model which revealed that electric dipole-dipole interaction is responsible for the energy transfer processes in the Sm3+:LaKNaTaO5 single crystals. The title phosphors may be potentially used as red phosphor for white light-emitting diodes.

  12. Review on dielectric properties of rare earth doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Fatin Adila, E-mail: fatinadilaismail@gmail.com; Osman, Rozana Aina Maulat, E-mail: rozana@unimap.edu.my; Frontier Materials Research, Seriab, 01000 Kangar, Perlis

    2016-07-19

    Rare earth doped Barium Titanate (BaTiO{sub 3}) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO{sub 3} (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO{sub 3} downshifted the Curie temperature (T{sub C}). Transition temperature also known as Curie temperature, T{sub C} where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-dopedmore » BaTiO{sub 3}, Er-doped BaTiO{sub 3}, Sm-doped BaTiO{sub 3}, Nd-doped BaTiO{sub 3} and Ce-doped BaTiO{sub 3} had been proved to increase and the transition temperature or also known as T{sub C} also lowered down to room temperature as for all the RE doped BaTiO{sub 3} except for Er-doped BaTiO{sub 3}.« less

  13. Understanding the Origin of Ferromagnetism in Strained LaCoO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Ma, J. X.; Shi, J.; Freeland, J. W.

    2009-03-01

    Using strain to control the behavior of strongly correlated materials offers new opportunities to control fundamental properties. For the case of magnetism, LaCoO3 offers the ability to use strain through thin film growth to manipulate directly the spin-state of Co in this system. Here we present the results of a detailed polarized x-ray spectroscopy study of LaCoO3 thin films grown on SrTiO3(001) and LaAlO3 (001) substrates. X-ray diffraction from 25 nm thin films confirm the films are fully strained in both cases and, for films under tensile strain, total moment magnetometry shows a clear transition to ferromagnetic state at ˜80K. X-ray absorption shows that the films grown from a LaCoO3 target are slightly hole doped due to non-stoichiometry generated during growth (effective doping ˜ 0.1 holes per unit cell), which in the bulk is sufficient to destroy the low-spin state. However, even though the films are slightly hole doped, the films under tensile strain show long range ferromagnetic order unlike the bulk system. Since the films are insulating, these results are consistent with a ferromagnetic insulating state arising due to superexchange. Work at UCR is supported by ONR/DMEA under award H94003-08-2-0803.

  14. Anomalous nanoclusters, anisotropy, and electronic nematicity in the doped manganite L a 1 / 3 C a 2 / 3 Mn O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, J.; Sun, K.; Tranquada, J. M.

    In doped manganites, a superlattice (SL) modulation associated with charge/orbital ordering is accepted as a key component in understanding many intriguing properties. It has been reported that the SL modulation always appears on the a axis of the crystals. Here in this study, by using multiple transmission electron microscopic techniques, we observe a type of anomalous nanocluster in which the SL modulation appears on the c axis of La 1/3Ca 2/3MnO 3. By correlating the thermal evolution of the anomalous nanoclusters to other property measurements, we suggest that strain is responsible for the formation of the anomalous nanoclusters. The phasemore » separation and phase transition scenario in La 1/3Ca 2/3MnO 3 are also described using electronic-liquid-crystal (ELC) phases. Lastly, an ELC phase diagram in La 1/3Ca 2/3MnO 3 is constructed as a function of temperature based on our observations.« less

  15. Anomalous nanoclusters, anisotropy, and electronic nematicity in the doped manganite L a 1 / 3 C a 2 / 3 Mn O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, J.; Sun, K.; Tranquada, J. M.

    2017-06-07

    In doped manganites, a superlattice (SL) modulation associated with charge/orbital ordering is accepted as a key component in understanding many intriguing properties. It has been reported that the SL modulation always appears on the a axis of the crystals. Here in this study, by using multiple transmission electron microscopic techniques, we observe a type of anomalous nanocluster in which the SL modulation appears on the c axis of La 1/3Ca 2/3MnO 3. By correlating the thermal evolution of the anomalous nanoclusters to other property measurements, we suggest that strain is responsible for the formation of the anomalous nanoclusters. The phasemore » separation and phase transition scenario in La 1/3Ca 2/3MnO 3 are also described using electronic-liquid-crystal (ELC) phases. Lastly, an ELC phase diagram in La 1/3Ca 2/3MnO 3 is constructed as a function of temperature based on our observations.« less

  16. Scintillation properties of Nd 3+, Tm 3+, and Er 3+ doped LuF 3 scintillators in the vacuum ultra violet region

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fukuda, Kentaro; Kurosawa, Shunsuke; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Taniue, Kojiro; Sekiya, Hiroyuki; Kubo, Hidetoshi; Yoshikawa, Akira; Tanimori, Toru

    2011-12-01

    In order to develop novel vacuum ultra violet (VUV) emitting scintillators, we grew Nd 0.5%, Tm 0.5%, and Er 0.5% doped LuF3 scintillators by the μ-pulling down method, because LuF3 has a very wide band gap and Nd3+, Tm3+, and Er3+ luminescence centers show fast and intense 5d-4f emission in VUV region. Transmittance and X-ray induced radioluminescence were studied in these three samples using our original spectrometer made by Bunkou-Keiki company. In the VUV region, transmittance of 20-60% was achieved for all the samples. The emission peaks appeared at approximately 180, 165, and 164 nm for Nd3+, Tm3+, and Er3+ doped LuF3, respectively. Using PMT R8778 (Hamamatsu), we measured their light yields under 241Am α-ray excitation. Compared with Nd:LaF3 scintillator, which has 33 photoelectrons/5.5 MeV α, Nd:LuF3 and Tm:LuF3 showed 900±90 and 170±20 ph/5.5 MeV-α, respectively. Only for the Nd doped one, we can detect 137Cs 662 keV γ-ray photoabsorption peak and the light yield of 1200±120 ph/MeV was measured. We also investigated their decay time profiles by picosecond pulse X-ray equipped streak camera, and the main decay component of Nd:LuF3 turned out to be 7.63 ns.

  17. Thermoelectric properties of p-type perovskite compounds LaCoO3 systems containing the A-site vacancy

    NASA Astrophysics Data System (ADS)

    Anzai, Mayuka; Kawakami, Hiroshi; Saito, Miwa; Yamamura, Hiroshi

    2011-05-01

    Thermoelectric properties of Sr-doped LaCoO3 system which includes both La1-xSrxCoO3 and La0.95-xSrxsquare0.05CoO3 containing the A-site vacancy were prepared by solid state reaction. The crystal phases of the samples were investigated by X-ray diffraction method. The electrical conductivity, Seebeck coefficient, and thermal conductivity were investigated, focusing the effect of A-site vacancy. Doping of Sr to LaCoO3 improved the electrical conductivity but decreased the seebeck coefficient and increased the thermal conductivity. A-site vacancy of La0.95-xSrxsquare0.05CoO3 system, in comparison with La1-xSrxCoO3 system, increased electrical conductivity, and decreased lattice thermal conductivity. As a result, it was found that the thermoelectric properties of La0.95-xSrxsquare0.05CoO3 containing the A-site vacancy showed the higher values than those of La1-xSrxCoO3. The introduction of A-site vacancy was effective on the improvement of thermoelectric property.

  18. Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4

    DOE PAGES

    Chen, Xiang; Hogan, Tom; Walkup, D.; ...

    2015-08-17

    The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less

  19. Influence of samarium doping on electronic and magneto-transport properties of La{sub 0.9−x}Sm{sub x}Sr{sub 0.1}MnO{sub 3} (0.1≤x≤0.5) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Proloy T., E-mail: dasproloy@phy.iitkgp.ernet.in; Nath, Tapan Kumar; Gupta, Kajal

    2014-04-24

    We report detailed field dependent electronic- (ρ-T) and magneto- transport (MR-H) studies of La{sub 1−x}Sm{sub x}Sr{sub 0.1}MnO{sub 3} (0.1≤x≤0.5) nanoparticles. Doping induced disorder at La site is observed in field dependent ρ-T measurements of the sample. At low doping side, nice metal to insulator transition (MIT) peak appears in ρ-T data whereas with increasing of Sm{sup +3} contents, metallic behavior is suppressed under the insulating background although a weak signature of MIT is found. Anomalous resistive nature of the samples with increasing of x can be explained in such a way that doping at nonmagnetic La site with magnetic Sm+3more » ion induces an extra magnetic coupling in the system which changes the long range ferromagnetic ordering to spin glass/cluster glass state in antiferromagnetic background. The field dependent magneto resistance (MR) mechanism at different temperatures is investigated using spin polarized tunneling model of conduction electrons between two adjacent grains at the grain boundaries. For the sample of x=0.5, maximum 83 % change in MR is found at 8 T near MIT which leads the colossal magneto resistance effect.« less

  20. Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Liu, Xiaoran; Kareev, M.; Choudhury, D.; Middey, S.; Meyers, D.; Kim, J.-W.; Ryan, P. J.; Freeland, J. W.; Chakhalian, J.

    2016-01-01

    In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO3 and a doped Mott insulator LaTiO3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and eg orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.

  1. Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure

    PubMed Central

    Cao, Yanwei; Liu, Xiaoran; Kareev, M.; Choudhury, D.; Middey, S.; Meyers, D.; Kim, J.-W.; Ryan, P. J.; Freeland, J.W.; Chakhalian, J.

    2016-01-01

    In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO3 and a doped Mott insulator LaTiO3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and eg orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states. PMID:26791402

  2. Engineered Mott ground state in a LaTiO 3+δ/LaNiO 3 heterostructure

    DOE PAGES

    Cao, Yanwei; Liu, Xiaoran; Kareev, M.; ...

    2016-01-21

    In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO 3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO 3 and a doped Mott insulator LaTiO 3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations.more » The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and e g orbital band splitting. Here, our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.« less

  3. Generation of (F+2)_AH Centres in Sodium Ion Doped KCl:CO^{2-3}

    NASA Astrophysics Data System (ADS)

    Diaf, M.; Chihi, I.; Hamaïdia, A.; Akrmi, El.

    1996-01-01

    We demonstrate that (F+2)AH centres of KCl may be obtained from crystals doped with K{2}CO{3} and NaCl, grown by the Czochralski method in open atmosphere. The optical properties of (F+2)AH centres thus produced are exactly the same as those of (F+2)AH centres prepared by the usual technique, which involves superoxide doping and a controlled atmosphere. Nous montrons que les centres (F+2)AH de KCl peuvent être obtenus à partir de cristaux dopés par K{2}CO{3} et NaCl, fabriqués par la méthode de Czochralski à l'air libre. Les propriétés optiques des centres (F+2)AH ainsi produits sont exactement les mêmes que celles des centres (F+2)AH préparés par la technique habituelle, qui comporte le dopage par un superoxyde et l'emploi d'une atmosphère contrôlée.

  4. Scintillation properties of Pr 3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce 3+-doped ones

    NASA Astrophysics Data System (ADS)

    Mares, Jiri A.; Nikl, Martin; Beitlerova, Alena; Blazek, Karel; Horodysky, Petr; Nejezchleb, Karel; D'Ambrosio, Carmelo

    2011-12-01

    Scintillation properties of Pr 3+-doped LuAG and YAG crystals were investigated and compared with those of Ce 3+-doped ones. The highest L.Y.'s were observed with the longest shaping time 10 μs. They can reach up to ˜16,000 ph/MeV or ˜23,500 ph/MeV for LuAG:Pr and LuAG:Ce, respectively. Energy resolutions (FWHM) are a bit better with LuAG:Pr than those of LuAG:Ce, e.g. at 662 keV FWHM are around 6% and between 8-12%, respectively. There were observed no large changes in proportionality of Pr 3+- or Ce 3+-doped LuAG or YAG crystals but the best proportionality has YAP:Ce crystal. Pr 3+- or Ce 3+-doped LuAG crystals exhibit slow decay components in the time range 1.5-3.5 μs while those of YAG ones have shorter decay components between 0.3-1.7 μs.

  5. Emission efficiency optimization of RE 2O 3 doped molybdenum thermionic cathode by application of pattern recognition method

    NASA Astrophysics Data System (ADS)

    Wang, Jinshu; Liu, Wei; Liu, Yanqin; Zhou, Meiling

    2005-09-01

    As an alternative for thoriated tungsten thermionic cathodes, molybdenum doped with either a single rare earth oxide such as La 2O 3, Y 2O 3 and Sc 2O 3 or a mixture thereof has been produced by powder metallurgy. It is shown that carbonization can greatly improve the emission properties (i.e. emission capability and stability) of RE 2O 3 doped molybdenum due to the formation of a (metallic) rare earth atomic layer on the surface of the cathode by the reduction reaction of molybdenum carbide and rare earth oxide. Among all the carbonized samples, La 2O 3 and Y 2O 3 co-doped molybdenum cathode showed the best performance in emission. In addition, computer pattern recognition technique has been used to optimize the composition of the material and of the cathode preparation technique. We derive the equation of the emission efficiency as a function of cathode composition and carbonization degree. Based on the projecting coordinates obtained from the equation, the optimum projection region was identified, which can serve as guide for the composition and carbonization degree design.

  6. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach.

    PubMed

    Liu, Yanyan; Fan, Liangdong; Cai, Yixiao; Zhang, Wei; Wang, Baoyuan; Zhu, Bin

    2017-07-19

    Sufficiently high oxygen ion conductivity of electrolyte is critical for good performance of low-temperature solid oxide fuel cells (LT-SOFCs). Notably, material conductivity, reliability, and manufacturing cost are the major barriers hindering LT-SOFC commercialization. Generally, surface properties control the physical and chemical functionalities of materials. Hereby, we report a Sm 3+ , Pr 3+ , and Nd 3+ triple-doped ceria, exhibiting the highest ionic conductivity among reported doped-ceria oxides, 0.125 S cm -1 at 600 °C. It was designed using a two-step wet-chemical coprecipitation method to realize a desired doping for Sm 3+ at the bulk and Pr 3+ /Nd 3+ at surface domains (abbreviated as PNSDC). The redox couple Pr 3+ /Pr 4+ contributes to the extraordinary ionic conductivity. Moreover, the mechanism for ionic conductivity enhancement is demonstrated. The above findings reveal that a joint bulk and surface doping methodology for ceria is a feasible approach to develop new oxide-ion conductors with high impacts on advanced LT-SOFCs.

  7. Near-infrared photoluminescence in La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{sup 3+}(Ln = Nd/Yb) for sensitization of c-Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawala, N. S., E-mail: nssawala@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    The host matrix LaAlO{sub 3} was synthesized by conventional solid state reaction method in which the Nd{sup 3+} ions and Yb{sup 3+} ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd{sup 3+} ion doped LaAlO{sub 3} converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb{sup 3+} ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{supmore » 3+}(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.« less

  8. Structure and Dynamics Investigations of Sr/Ca-Doped LaPO 4 Proton Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Wahish, Amal; al-Binni, U.; Tetard, L.

    Proton conductors loom out of the pool of candidate materials with great potential to boost hydrogen alternatives to fossil-based resources for energy. Acceptor doped lanthanum orthophosphates are considered for solid oxide fuel cells (SOFCs) for their potential stability and conductivity at high temperature. By exploring the crystal and defect structure of x% Sr/Ca-doped LaPO 4 with different nominal Sr/Ca concentrations (x = 0 – 10) with Neutron powder diffraction (NPD) and X-ray powder diffraction (XRD), we confirm that Sr/Ca-doped LaPO 4 can exist as self-supported structures at high temperatures during solid oxide fuel cell operation. Thermal stability, surface topography, sizemore » distribution are also studied to better understand the proton conductivity for dry and wet compounds obtained at sintering temperatures ranging from 1200 to 1400 °C using a combination of scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). In conclusion, the results suggest that Sr doped samples exhibit the highest proton conductivity of our samples and illustrate the impact of material design and versatile characterization schemes on the development of proton conductors with superior functionality.« less

  9. Fabrication and electrical properties of a (Pb,La)(Zr,Ti)O3 capacitor with pulsed laser deposited Sn-doped In2O3 bottom electrode on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Takada, Yoko; Tamano, Rika; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira

    2017-07-01

    A Sn-doped In2O3 (ITO) electrode was deposited on Al2O3(0001) using pulsed laser deposition at different oxygen pressures to create the bottom electrode of a (Pb,La)(Zr,Ti)O3 (PLZT) capacitor. The crystallographic orientation of the ITO films was controlled via the oxygen pressure. At 600 °C the (111) peak became dominant when the O2 pressure was increased, and when the pressure reached 2.0 Pa the ITO films became preferentially (111) oriented. The remnant polarization was 58.8-90.7 and 46.0-47.5 µC/cm2 for the Pt/PLZT/ITO and ITO/PLZT/ITO capacitors, respectively; the ferroelectric properties of these capacitors were also determined.

  10. Structural and photoluminescence properties of stannate based displaced pyrochlore-type red phosphors: Ca(3-x)Sn₃Nb₂O₁₄:xEu³⁺.

    PubMed

    Sreena, T S; Prabhakar Rao, P; Francis, T Linda; Raj, Athira K V; Babu, Parvathi S

    2015-05-14

    New stannate based displaced pyrochlore-type red phosphors, Ca(3-x)Sn3Nb2O14:xEu(3+), were prepared via a conventional solid state method. The influence of partial occupancy of Sn in both A and B sites of the pyrochlore-type oxides on the photoluminescence properties was studied using powder X-ray diffraction, FT-Raman, transmission electron microscopy, scanning electron microscopy with energy dispersive spectrometry, UV-visible absorption spectroscopy, and photoluminescence excitation and emission spectra with lifetime measurements. The structural analysis establishes that these oxides belong to a cubic displaced pyrochlore type structure with a space group Fd3̄m. These phosphors exhibit strong absorptions at near UV and blue wavelength regions and emit intense multiband emissions due to Eu(3+ 5)D0-(7)F(0, 1, 2) transitions. The absence of characteristic MD transition splitting points out that local cation disorder exists in this type of displaced pyrochlores, reducing the D(3d) inversion symmetry, which is not evidenced by such disorder in the X-ray diffraction analysis. The unusual forbidden intense sharp (5)D0-(7)F0 transition indicates single site occupancy of Eu(3+) with a narrower range of bonding environment, preventing the cluster formation. This is supported by the stable (5)D0 lifetime with Eu(3+) concentration. The Judd-Ofelt intensity parameter assessment corroborates these results. The CIE color coordinates of these phosphors were found to be (0.60, 0.40), which are close to the NTSC standard values (0.67, 0.33) for a potential red phosphor.

  11. Colossal Negative Thermal Expansion in Electron-Doped PbVO3 Perovskites.

    PubMed

    Yamamoto, Hajime; Imai, Takashi; Sakai, Yuki; Azuma, Masaki

    2018-07-02

    Colossal negative thermal expansion (NTE) with a volume contraction of about 8 %, the largest value reported so far for NTE materials, was observed in an electron-doped giant tetragonal perovskite compound Pb 1-x Bi x VO 3 (x=0.2 and 0.3). A polar tetragonal (P4mm) to non-polar cubic structural transition took place upon heating. The coefficient of thermal expansion (CTE) and the working temperature could be tuned by changing the Bi content, and La substitution decreased the transition temperature to room temperature. Pb 0.76 La 0.04 Bi 0.20 VO 3 exhibited a unit cell volume contraction of 6.7 % from 200 K to 420 K. Interestingly, further gigantic NTE of about 8.5 % was observed in a dilametric measurement of a Pb 0.76 La 0.04 Bi 0.20 VO 3 polycrystalline sample. The pronounced NTE in the sintered body should be attributed to an anisotropic lattice parameter change. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Non-invasive Photodynamic Therapy in Brain Cancer by Use of Tb3+-Doped LaF3 Nanoparticles in Combination with Photosensitizer Through X-ray Irradiation: A Proof-of-Concept Study

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Jenh, Yi-Jhen; Wu, Sheng-Kai; Chen, Yo-Shen; Hanagata, Nobutaka; Lin, Feng-Huei

    2017-01-01

    The use of photodynamic therapy (PDT) in the treatment of brain cancer has produced exciting results in clinical trials over the past decade. PDT is based on the concept that a photosensitizer exposed to a specific light wavelength produces the predominant cytotoxic agent, to destroy tumor cells. However, delivering an efficient light source to the brain tumor site is still a challenge. The light source should be delivered by placing external optical fibers into the brain at the time of surgical debulking of the tumor. Consequently, there exists the need for a minimally invasive treatment for brain cancer PDT. In this study, we investigated an attractive non-invasive option on glioma cell line by using Tb3+-doped LaF3 scintillating nanoparticles (LaF3:Tb) in combination with photosensitizer, meso-tetra(4-carboxyphenyl)porphyrin (MTCP), followed by activation with soft X-ray (80 kVp). Scintillating LaF3:Tb nanoparticles, with sizes of approximately 25 nm, were fabricated. The particles have a good dispersibility in aqueous solution and possess high biocompatibility. However, significant cytotoxicity was observed in the glioma cells while the LaF3:Tb nanoparticles with MTCP were exposed under X-ray irradiation. The study has demonstrated a proof of concept as a non-invasive way to treat brain cancer in the future.

  13. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.

    2018-03-01

    Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.

  14. Ferromagnetic spin-correlations in strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Freeland, J. W.; Ma, J. X.; Shi, J.

    2008-11-01

    We present an element-resolved study of the valence and magnetic properties of LaCoO3 thin films grown via pulsed laser deposition. The Co L edge x-ray absorption shows that ferromagnetic (FM) order arises from a slight hole doping of the system presumably due to nonstoichiometry, which in the bulk system disrupts the low-spin state. However, even though the films are hole doped, the magnetic moments under tensile strain are much larger than the bulk system indicating that the strain can greatly increase the FM fraction observed in the spin-glass regime at low doping.

  15. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  16. Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles

    PubMed Central

    2017-01-01

    Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalent europium is a suitable ion to investigate the subtle influence of the surface, because of its characteristic luminescence and high sensitivity to the local environment. Here, we investigate the influence of disorder in NCs on the optical properties of lanthanide dopants by studying the inhomogeneous linewidth, emission intensity ratios, and luminescence decay curves for LaPO4:Eu3+ samples of different sizes (4 nm to bulk) and core–shell configurations (core, core–isocrystalline shell, and core–silica shell). We show that the emission linewidths increase strongly for NCs. The ratio of the intensities of the forced electric dipole (ED) and magnetic dipole (MD) transitions, a measure for the local symmetry distortion around Eu3+ ions, is higher for samples with a large fraction of Eu3+ ions close to the surface. Finally, we present luminescence decay curves revealing an increased nonradiative decay rate for Eu3+ in NCs. The effects are strongest in core and core–silica shell NCs and can be reduced by growth of an isocrystalline LaPO4 shell. The present systematic study provides quantitative insight into the role of surface disorder on the optical properties of lanthanide-doped NCs. These insights are important in emerging applications of lanthanide-doped nanocrystals. PMID:28919934

  17. High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers.

    PubMed

    Jackson, Stuart D; Bugge, Frank; Erbert, Götz

    2007-11-15

    We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150 nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.

  18. Solid-state NMR calculations for metal oxides and gallates: shielding and quadrupolar parameters for perovskites and related phases.

    PubMed

    Middlemiss, Derek S; Blanc, Frédéric; Pickard, Chris J; Grey, Clare P

    2010-05-01

    The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for (17)O- and (69/71)Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO(3), BaZrO(3), BaSnO(3), BaTiO(3), LaAlO(3), LaGaO(3), SrZrO(3), MgSiO(3) and Ba(2)In(2)O(5)), and gallate (alpha- and beta-Ga(2)O(3), LiGaO(2), NaGaO(2), GaPO(4) and LaGaO(3)) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO(5) site occurring in LaGaGe(2)O(7) is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar eta(Q)-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.

    PubMed

    Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A

    2017-12-01

    Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Effect of Eu Doping on Microstructure, Morphology and Methanal-Sensing Performance of Highly Ordered SnO2 Nanorods Array

    PubMed Central

    Zhao, Yanping; Li, Yuehua; Ren, Xingping; Gao, Fan; Zhao, Heyun

    2017-01-01

    Layered Eu-doped SnO2 ordered nanoarrays constructed by nanorods with 10 nm diameters and several hundred nanometers length were synthesized by a substrate-free hydrothermal route using alcohol and water mixed solvent of sodium stannate and sodium hydroxide at 200 °C. The Eu dopant acted as a crystal growth inhibitor to prevent the SnO2 nanorods growth up, resulting in tenuous SnO2 nanorods ordered arrays. The X-ray diffraction (XRD) revealed the tetragonal rutile-type structure with a systematic average size reduction and unit cell volume tumescence, while enhancing the residual strain as the Eu-doped content increases. The surface defects that were caused by the incorporation of Eu ions within the surface oxide matrix were observed by high-resolution transmission electron microscope (HRTEM). The results of the response properties of sensors based on the different levels of Eu-doped SnO2 layered nanoarrays demonstrated that the 0.5 at % Eu-doped SnO2 layered nanorods arrays exhibited an excellent sensing response to methanal at 278 °C. The reasons of the enhanced sensing performance were discussed from the complicated defect surface structure, the large specific surface area, and the excellent catalytic properties of Eu dopant. PMID:29168796

  1. Ion-beam-induced ferromagnetism in Ca-doped LaMnO3 thin films grown on Si (100)

    NASA Astrophysics Data System (ADS)

    Sultan, Khalid; Aarif ul Islam, Shah; Habib, Zubida; Ikram, M.; Asokan, K.

    2018-04-01

    The ion-bean-induced room temperature ferromagnetic ordering in pulsed laser deposited Ca-doped LaMnO3 thin films grown on Si (100) are presented in the present study. In addition to this, changes bought by the ion beam in structural, morphological and electrical properties are presented. Dense electronic excitation produced by high energy 120 MeV Ag9+ ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ion irradiation. The appearance of ferromagnetism at 300 K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. It is observed that the irradiated films show higher resistance than unirradiated films for all the compositions.

  2. Bulk magnetic properties of La1-xCaxMnO3 (0⩽x⩽0.14) : Signatures of local ferromagnetic order

    NASA Astrophysics Data System (ADS)

    Terashita, Hirotoshi; Neumeier, J. J.

    2005-04-01

    We report the bulk magnetic properties of hole-doped La1-xCaxMnO3 (0⩽x⩽0.14) in the paramagnetic and antiferromagnetic regions; the Mn4+ concentration was determined with chemical analysis. Significant enhancement of the effective paramagnetic moment illustrates the existence of ferromagnetic clusters (polarons). The data reveal a distinct crossover in the paramagnetic region, signifying competition between ferromagnetic clusters and antiferromagnetic correlations associated with the low-temperature magnetically ordered state. The results suggest similarity in the magnetic properties at low temperatures between hole-doped LaMnO3 and electron-doped CaMnO3 .

  3. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-06-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.

  4. Transition from the diamagnetic insulator to ferromagnetic metal in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Novák, Pavel

    2010-05-01

    We have analyzed, using the theoretical GGA+U calculations, different configurations of spin states (low-spin, LS; intermediate-spin, IS and high-spin, HS Co) and proposed a model that accounts for magnetic and electric transport properties of perovskite cobaltites upon doping by charge carriers. In particular, it appears that the compositional transition from the diamagnetic LS phase of LaCoO3 to the ferromagnetic metallic IS phase in La1-xSrxCoO3 ( x>0.2) involves the same mechanisms as the high-temperature transition in pure LaCoO3. The process occurs gradually via a phase-separated state, where metallic IS domains stabilized through a charge transfer between Co and Co neighbors coexist with the Co poor regions in the LS ground state (or at higher temperatures, in mixed LS/HS state). This phase separation vanishes when doping in La1-xSrxCoO3 reaches x˜0.2, and a uniform IS phase, analogous to that in pure LaCoO3 in the high-temperature limit, is established.

  5. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    PubMed

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Comparative study of heterogeneous magnetic state above TC in La0.82Sr0.18CoO3 cobaltite and La0.83Sr0.17MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. A.; Lazuta, A. V.; Molkanov, P. L.; Khavronin, V. P.; Kurbakov, A. I.; Runov, V. V.; Mukovskii, Ya. M.; Pestun, A. E.; Privezentsev, R. V.

    2012-10-01

    The magnetic, transport and structural properties are studied for La0.83Sr0.17MnO3 and La0.82Sr0.18CoO3 single crystals with nearly the same doping and the metallic ground state. Their comparisons have shown that ferromagnetic clusters originate in the paramagnetic matrix below Т*>TC in both samples and exhibit similar properties. This suggests the possible universality of such phenomena in doped mixed-valence oxides of transition metals with the perovskite-type structure. The cluster density increases on cooling and plays an important role on the physical properties of these systems. The differences in cluster evolutions and scenarios of their insulator-metal transitions are related to different magnetic behaviors of the matrixes in these crystals that is mainly due to distinct spin states of the Mn3+ and Co3+ ions.

  7. Thermoelectric properties of hole-doped SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Ferreiro-Vila, Elias; Sarantopoulos, Alexandros; Leboran, Victor; Bui, Cong-Tinh; Rivadulla, Francisco; Condense matter Chemistry Group Team

    2014-03-01

    Two dimensional conductors are expected to show an improved thermoelectric performance due the positive effect of quantum confinement on the thermoelectric power, and the decrease of thermal conductivity by interface boundary scattering. The recent report of a large increase of the thermoelectric power in quantum wells of Nb-doped SrTiO3 (STO) seems to be in agreement with this hypothesis. However, extrinsic effects like the existence of oxygen vacancies that propagate away from the interface cannot be ruled out, and the results are far from clear. Here we will show the thermoelectric properties (electrical conductivity, Seebeck coefficient, and Hall effect), of epitaxial thin-films of (La,Nb)-doped STO. The films have been deposited by PLD on different substrates (STO, LAO...) to study the effect of tensile/compressive stress on the thermoelectric properties of the system. The oxygen pressure during the deposition was carefully controlled to tune the amount of oxygen vacancies and to compare with the cation doping. We have performed a systematic study of the transport properties as a function of thickness and doping, which along with the effect of stress, allows to understand the effect of charge density and dimensionality in an oxide system with promising thermoelectric properties.

  8. Magneto-transport in LaTi1-xMnxO3/SrTiO3 oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2014-04-01

    We report the growth of ultrathin film of Mn doped LaTiO3 on TiO2 terminated SrTiO3 (001) substrate by pulsed laser deposition (PLD) and their electrical transport characteristics including magnetoresistance (MR). Though the replacement of Mn in LaTiO3 at the Ti site in dilute limit does not affect the metallic behaviour of films but variation in resistance is observed. Normalised resistance behaviour is explained on the basis of variation in charge carriers and increased interaction between Mn atoms in the system under investigation.

  9. A study of suppressed formation of low-conductivity phases in doped Li 7La 3Zr 2O 12 garnets by in situ neutron diffraction

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...

    2015-09-28

    Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  10. High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua

    2012-02-01

    Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.

  11. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  12. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  13. Ho-nanoparticle-doping for improved high-energy laser fibers

    NASA Astrophysics Data System (ADS)

    Friebele, E. Joseph; Baker, Colin C.; Burdett, Ashley A.; Rhonehouse, Daniel L.; Bowman, Steven R.; Kim, Woohong; Sanghera, Jasbinder S.; Kucera, Courtney; Vargas, Amber; Ballato, John; Hemming, Alexander; Simakov, Nikita; Haub, John

    2017-02-01

    A significant issue for holmium-doped fiber lasers (HoDFLs) operating near 2 μm is multiphonon quenching due to the high phonon energy 1100 cm-1 of the silica host, which complicates power scaling due to reduced lifetimes and increased heating. Nanoparticle (NP) doping is a new technique where the structure surrounding the Ho ions is developed chemically prior to doping into the silica core. We have incorporated Ho3+ ions into various NPs, such as LaF3, Al2O3 and Lu2O3, to shield them from the silica glass matrix. Results indicate slightly longer lifetimes with Ho:LaF3 NPs and the possibility of further improvement with oxide NPs. We report the first of lasing in a Ho:Lu2O3 NP-doped fiber pumped at 1.95 μm and operating at 2.09 μm with a record slope efficiency of 85.2%.

  14. Effect of La-doping on the structural, morphological and electrochemical properties of LiCoO2 nanoparticles using Sol-Gel technique

    NASA Astrophysics Data System (ADS)

    Farid, Ghulam; Murtaza, Ghulam; Umair, Muhammad; Shahab Arif, Hafiz; Saad Ali, Hafiz; Muhammad, Nawaz; Ahmad, Mukhtar

    2018-05-01

    Sol-Gel auto combustion technique was used to synthesis La3+substituted LiCoO2 lithium-rich cathode materials to improve the cycling performance and rate capability. Samples with different concentration of La containing LiCo1‑xLaxO2 (with 0 ≤ x ≤ 0.20) were chemically prepared and calcined the obtained powders at 850 °C for 6 h. Various techniques for the investigation of lanthanum behaviour in LiCoO2 have been utilised, such as x-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Near Edge x-ray absorption spectroscopy (NEXAS), Galvanostatic charge-discharge tests and cyclic voltammetry (CV). The formation of a hexagonal lattice of the α-NaFeO2 structure of LiCoO2, having space group R-3m is confirmed by x-ray diffraction analysis. FESEM results reveal that by increasing La contents the grain growth becomes distinct, well defined and smaller grains obtained. ATR-FTIR confirms the functional bonding in the prepared samples, as well XANES spectra reveals the electronic configuration valence state, chemical bonding character and local coordination of a specific atom. Maximum discharging capacities were observed in the La-doped material which is 182.38 mAhg‑1 and 56.2 mAhg‑1 at 0.1C and 5 C respectively and on average, this is more than 5% higher as compared to the pure LiCoO2. After 5C, the discharge capacity of the doped material at 0.1C can again reach 163.83 mAhg‑1, about 89% of the discharge capacity obtained in the first cycle. When 2032 type coin cells were cycled at a constant rate, an excellent cycling performance with capacity retention by a factor of ∼2 in comparison to the pristine LiCoO2 was observed for the composite cathode containing 4.0 mol% La. This reveals the structural stability induced by La doping. Remarkable improvement in reversibility and stability of the La-doped electrodes shown by cyclic voltammetry (CV). These

  15. Molecular-scale properties of MoO3 -doped pentacene

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Meyer, Jens; Kahn, Antoine

    2010-10-01

    The mechanisms of molecular doping in organic electronic materials are explored through investigation of pentacene p -doped with molybdenum trioxide (MoO3) . Doping is confirmed with ultraviolet photoelectron spectroscopy. Isolated dopants are imaged at the molecular scale using scanning tunneling microscopy (STM) and effects due to localized holes are observed. The results demonstrate that donated charges are localized by the counterpotential of ionized dopants in MoO3 -doped pentacene, generalizing similar effects previously observed for pentacene doped with tetrafluoro-tetracyanoquinodimethane. Such localized hole effects are only observed for low molecular weight MoO3 species. It is shown that for larger MoO3 polymers and clusters, the ionized dopant potential is sufficiently large as to mask the effect of the localized hole in STM images. Current-voltage measurements recorded using scanning tunneling spectroscopy reveal that electron conductivity decreases in MoO3 -doped films, as expected for electron capture and p -doping.

  16. Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions

    NASA Astrophysics Data System (ADS)

    Qi, Yaping; Ni, Hao; Zheng, Ming; Zeng, Jiali; Jiang, Yucheng; Gao, Ju

    2018-05-01

    Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K). These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to "light OFF" and "light ON" states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons) could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.

  17. LaCl3:Ce Coincidence Signatures to Calibrate Gamma-ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.

    Abstract Calibrating the gamma-ray detection efficiency of radiation detectors in a field environment is difficult under most circumstances. To counter this problem we have developed a technique that uses a Cerium doped Lanthanum-Tri-Chloride (LaCl3:Ce) scintillation detector to provide gated gammas[ , ]. Exploiting the inherent radioactivity of the LaCl3:Ce due to the long-lived radioactive isotope 138La (t1/2 = 1.06 x 1011 yrs) allows the use of the 788 and 1436-keV gammas as a measure of efficiency. In this paper we explore the effectiveness of using the beta-gamma coincidences radiation LaCl3:Ce detector to calibrate the energy and efficiency of a numbermore » of gamma-ray detectors.« less

  18. Spin-Orbital entangled 2DEG in the δ-doped interface LaδSr2IrO4: Density-Functional Studies and Transport Results from Boltzmann Equations

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Popovic, Zoran; Satpathy, Sashi

    The strong spin-orbit coupled iridates are of considerable interest because of the Mottminsulating state,which is produced by the combined effect of a strong spin-orbit coupling (SOC) and Coulomb repulsion. In this work, using density-functional methods, we predict the existence of a spin-orbital entangled two dimensional electron gas (2DEG) in the delta-doped structure, where a single SrO layer is replaced by an LaO layer. In the bulk Sr2IrO4, a strong SOC splits the t2 g states into Jeff = 1 / 2 and 3 / 2 states. The Coulomb repulsion further splits the half-filled Jeff = 1 / 2 bands into a lower and an upper Hubbard band (UHB) producing a Mott insulator. In the δ-doped structure, La dopes electrons into the UHB, and our results show that the doped electrons are strongly localized in one or two Ir layers at the interface, reminiscent of the 2DEG in the well-studied LaAlO3/SrTiO3 interface. The UHB, consisting of spin-orbit entangled states, is partially filled, resulting in a spin-orbital entangled 2DEG. Transport properties of the 2DEG shows many interesting features, which we study by solving the semi-classical Boltzmann transport equation in the presence of the magnetic and electric fields.

  19. Electronic band structure of LaCoO3/Y/Mn compounds

    NASA Astrophysics Data System (ADS)

    Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad

    2013-02-01

    Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.

  20. Resonant inelastic x-ray scattering studies of magnons and bimagnons in the lightly doped cuprate La2 -xSrxCuO4

    NASA Astrophysics Data System (ADS)

    Chaix, L.; Huang, E. W.; Gerber, S.; Lu, X.; Jia, C.; Huang, Y.; McNally, D. E.; Wang, Y.; Vernay, F. H.; Keren, A.; Shi, M.; Moritz, B.; Shen, Z.-X.; Schmitt, T.; Devereaux, T. P.; Lee, W.-S.

    2018-04-01

    We investigated the doping dependence of magnetic excitations in the lightly doped cuprate La2 -xSrxCuO4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations that possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and they are consistent with a bimagnon dispersion that is renormalized by the magnon-magnon interaction at the zone center.

  1. Optical evaluation on Nd3+-doped phosphate glasses for O-band amplification.

    PubMed

    Lei, Weihong; Chen, Baojie; Zhang, Xiangling; Pun, Edwin Yun Bun; Lin, Hai

    2011-02-20

    We have fabricated and characterized optically Nd3+-doped phosphate [Li2O-CaO-BaO-Al2O3-La2O3-P2O5 (LCBALP)] glasses for drawing single-mode glass fiber. The 4F3/2→4I13/2 transition emission from the Nd3+ is at the 1.327 μm wavelength with a full width at half-maximum of 43 nm, and the spontaneous transition probability and quantum efficiency are calculated to be 1836 s-1 and 52%, respectively. The maximum stimulated emission cross sections for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions are derived to be 1.82×10(-20) cm2 and 6.97×10(-21) cm2, respectively, and the theoretical gain coefficient at the 1.327 μm wavelength is evaluated to be 0.182 dB/cm when the fractional factor of the excited neodymium ions equals 0.6, which indicates that Nd3+-doped LCBALP phosphate glasses are potential candidates in developing O-band optical fiber amplifiers.

  2. Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics

    NASA Astrophysics Data System (ADS)

    Verma, Maya; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    Lanthanum doped SrBi2Nb2O9 ceramics with the chemical formula SrBi2-xLaxNb2O9 (SBLN) (x =0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 °C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x =0.4).

  3. The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor

    PubMed Central

    Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing

    2018-01-01

    Novel LiLa1−x−y(MoO4)2:xSm3+,yEu3+ (in short: LL1−x−yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1−x(MoO4)2:xSm3+ (LL1−xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole—electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95−yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1−x−yM:xSm3+,yEu3+ is a promising WLED red phosphor. PMID:29443910

  4. The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor.

    PubMed

    Wang, Jiaxi; Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing

    2018-02-14

    Novel LiLa1-x-y(MoO4)2:xSm3+,yEu3+ (in short: LL1-x-yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1-x(MoO4)2:xSm3+ (LL1-xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole-electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95-yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1-x-yM:xSm3+,yEu3+ is a promising WLED red phosphor.

  5. Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions

    NASA Astrophysics Data System (ADS)

    Zhou, Haifang; Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin

    2017-10-01

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF4:Yb3+/Er3+ nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF4:Yb3+/Er3+ NPs has been achieved by doping Al3+ ions under 980 nm excitation. Compared to the aluminum-free KLaF4:Yb3+/Er3+ NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al3+ ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the 4S3/2 state and 4F9/2 state. The underlying reason for the UC enhancement by doping Al3+ ions was mainly ascribed to distortion of the local symmetry around Er3+ ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al3+ ions on the structure and morphology of the NPs samples was also discussed.

  6. Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R.; Xu, H. C.; Xia, M.

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less

  7. Spectroscopic properties of Tm3+/Al3+ co-doped sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Lou, Fengguang; Wang, Shikai; Yu, Chunlei; Chen, Danping; Hu, Lili

    2015-04-01

    Tm3+/Al3+ co-doped silica glass was prepared by sol-gel method combined with high temperature sintering. Glasses with compositions of xTm2O3-15xAl2O3-(100 - 16x) SiO2 (in mol%, x = 0.1, 0.3, 0.5, 0.8 and 1.0) were prepared. The high thulium doped silica glass was realized. Their spectroscopic parameters were calculated and analyzed by Judd-Ofelt theory. Large absorption cross section (4.65 × 10-21 cm2 at 1668 nm) and stimulated emission cross section (6.00 × 10-21 cm2 at 1812 nm), as well as low hydroxyl content (0.180 cm-1), long fluorescence lifetime (834 μs at 1800 nm), large σem × τrad (30.05 × 10-21 cm2 ms) and large relative intensity ratio of the 1.8 μm (3F4 → 3H6) to 1.46 (3H4 → 3F4) emissions (90.33) are achieved in this Tm3+/Al3+ co-doped silica glasses. According to emission characteristics, the optimum thulium doping concentration is around 0.8 mol%. The cross relaxation (CR) between ground and excited states of Tm3+ ions was used to explain the optimum thulium doping concentration. These results suggest that the sol-gel method is an effective way to prepare Tm3+ doped silica glass with high Tm3+ doping and prospective spectroscopic properties.

  8. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-06-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  9. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-01-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  10. Comment on papers ``Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3'' [J. Magn. Magn. Mater. 248 (2002) 26] and ``Possible magnetic phase separation in Ru-doped La0.67Ca0.33O3'' [J. Magn. Magn. Mater. 257 (2003) 195

    NASA Astrophysics Data System (ADS)

    Rozenberg, E.

    2004-03-01

    In recent papers Ye et al. (J. Magn. Magn. Mater. 248 (2002) 26) and Lakshmi et al. (J. Magn. Magn. Mater. 257 (2003) 195) reported the characteristic features of electrical resistivity ( ρ) versus temperature ( T) dependences of polycrystalline-doped manganites La 1- xAg xMnO 3 and La 0.67Ca 0.33Mn 1- xRu xO 3. Infact, two peaks on ρ( T) curve coexist: broad one at some Tmax below the Curie points ( TC) of these compounds and a sharp peak near TC. Authors interpreted such coexistence as an evidence of electronic/magnetic phase separation in the above-noted systems below its TC. It is shown in this comment that such an interpretation is obviously invalid for La 1- xAg xMnO 3 system and is very questionable for La 0.67Ca 0.33Mn 1- xRu xO 3. The simplest and natural reason for the appearance of considered features on ρ( T) dependences of polycrystalline manganites is the well-known grain-boundary effects.

  11. LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system

    NASA Astrophysics Data System (ADS)

    Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO3, and a band insulator, KTaO3. For LaTiO3/KTaO3 interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO3-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm2/V s) of SrTiO3 at room temperature. By using KTaO3, we achieve mobilities in LaTiO3/KTaO3 interfaces as high as 21 cm2/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO3. By density functional theory, we attribute the higher mobility in KTaO3 2DEGs to the smaller effective mass for electrons in KTaO3.

  12. Confinement- and strain-induced enhancement of thermoelectric properties in LaNiO3/LaAlO3(001 ) superlattices

    NASA Astrophysics Data System (ADS)

    Geisler, Benjamin; Pentcheva, Rossitza

    2018-05-01

    By combining ab initio simulations including an on-site Coulomb repulsion term and Boltzmann theory, we explore the thermoelectric properties of (LaNiO3)n /(LaAlO3)n (001) superlattices (n =1 ,3 ) and identify a strong dependence on confinement, spacer thickness, and epitaxial strain. While the system with n =3 shows modest values of the Seebeck coefficient and power factor, the simultaneous reduction of the LaNiO3 region and the LaAlO3 spacer thickness to single layers results in a strong enhancement, in particular of the in-plane values. This effect can be further tuned by using epitaxial strain as a control parameter: Under tensile strain corresponding to the lateral lattice constant of SrTiO3 we predict in- and cross-plane Seebeck coefficients of ±600 μ V /K and an in-plane power factor of 11 μ W /K2cm for an estimated relaxation time of τ =4 fs around room temperature. These values are comparable to some of the best performing oxide systems such as La-doped SrTiO3 or layered cobaltates and are associated with the opening of a small gap (0.29 eV) induced by the concomitant effect of octahedral tilting and Ni-site disproportionation. This establishes oxide superlattices at the verge of a metal-to-insulator transition driven by confinement and strain as promising candidates for thermoelectric materials.

  13. Sm 3+-doped polymer optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  14. Thermodynamic properties of Ba{sub 1-x}La{sub x}CoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaur, N. K., E-mail: srl-nkgaur@yahoo.co.in; Thakur, Rasna, E-mail: rasnathakur@yahoo.com; Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com

    2016-05-06

    We have predicted the thermodynamic behavior of Ba{sub 1-x}La{sub x}CoO{sub 3} family at temperature 1K≤T≤300K using the Modified Rigid Ion Model (MRIM). The specific heat of BaCoO{sub 3} with La doping in the perovskite structure at A-site has been reported. Also, the cohesive energy (ϕ), molecular force constant (f), Reststrahlen frequency (υ), Debye temperature (θ{sub D}), specific heat (C) and Gruneisen parameter (γ) of Ba{sub 1-x}La{sub x}CoO{sub 3} compounds are discussed.

  15. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  16. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  17. The effect of micro-structure on upconversion luminescence of Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Wen, Haiqin; Pan, Xiuhong; Yu, Jianding; Jiang, Meng; Yu, Huimei; Tang, Meibo; Gai, Lijun; Ai, Fei

    2018-03-01

    Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glasses have been prepared by aerodynamic levitation method. The glasses show high refractive index of 2.28 and Abbe number of 18.3. Glass-ceramics heated at 880 °C for 50 min perform the strongest upconversion luminescence. X-ray diffraction patterns of glass-ceramics with different depths indicate that rare earth ions restrain crystallization. Body crystallization mechanism mixed with surface crystallization is confirmed in the heat treatment. Surface crystals achieve priority to grow, resulting in important effects on upconversion luminescence. The results of atomic force microscope and scanning electron microscope indicate that crystal particles with uniform size distribute densely and homogenously on the surface and large amount of glass matrix exists in the glass ceramics heated at 880 °C for 50 min. Crystals in the glass-ceramics present dense structure and strong boundaries, which can reduce the mutual nonradiative relaxation rate among rare earth ions and then improve upconversion luminescence effectively. Based on micro-structural study, the mechanism that upconversion luminescence can be improved by heat treatment has been revealed. The results of micro-structural analysis agree well with the spectra.

  18. Effect of SrO Doping on LaGaO 3 Synthesis via Magnetron Sputtering

    DOE PAGES

    Highland, Matthew J.; Perret, Edith; Folkman, Chad M.; ...

    2016-10-28

    The high temperature growth behavior of epitaxial LaGaO 3 thin films with and without SrO is determined with real-time X-ray scattering. In this study, we find SrO alters the thin film growth mode of LaGaO 3, both when predeposited on a surface as well as when SrO and LaGaO 3 are codeposited. We also find that depositing a small amount of SrO on a LaGaO 3 surface induces significant structural rearrangement in the film. We describe mechanisms under which these transformations can occur. In conclusion, the strong effect of SrO on the microstructure of La 1–xSr xGaO 3 likely hasmore » wider implications for other ionically conducting oxide materials.« less

  19. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  20. Tb3+ and Eu3+ doped zinc phosphate glasses for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Vishwakarma, Amit K.; Jayasimhadri, M.; Haranath, D.; Jang, Kiwan

    2018-04-01

    Tb3+ and Eu3+ doped zinc phosphate (ZP) glasses were prepared by conventional melt-quenching technique and their photoluminescence properties were investigated in detail. For, Tb3+ doped glasses the intense emission was at 545 nm corresponding to 5D4→7F5 transition under 377 nm n-UV excitation. The optimized concentration for Tb3+ doped zinc phosphate glass was 3 mol% and above this concentration quenching takes place. The Eu3+ doped zinc phosphate glass revealed intense emission at 613 nm attributed to the 5D0→7F2 transition under intense 392 nm n-UV excitation. The concentration quenching phenomenon was not observed in the Eu3+ doped ZP glasses. The CIE chromaticity coordinates for 3 mol% Tb3+ and 5 mol% Eu3+ doped ZP glasses were found to (0.283, 0.615) and (0.652, 0.331) lying in the green and red regions, respectively. The above mentioned results indicate that the prepared glass are suitable for application in the field of lighting and display devices.

  1. Enhanced scintillation of Ba3In(B3O6)3 based on nitrogen doping

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Pei, H.; Tao, X. M.; Cai, G. M.; Mao, R. H.; Jin, Z. P.

    2018-02-01

    Scintillating materials, as a class of luminescent materials, are highly demanded for practical use in the high-energy detection. However, the applications are often hampered by their low light yield (LY) or long decay time for many traditional scintillators. In this work, upon nitrogen anion doping, scintillation performance in layered borate Ba3In(B3O6)3 (BIB) has been excellently enhanced with high XEL intensity of ~3 times as large as that of commercial Bi4Ge3O12 (BGO) and ultra-fast fluorescent decay time of ~1.25 ns. To shed light on origins of the intrinsic violet-blue emission, we measured the in-situ vacuum ultraviolet excited (VUV) emission spectra of N-BIB ceramic. Combined with experiments and first principles calculations, the band-gap reduction and donor-acceptor density increasing by nitrogen (N) doping is responsible for the enhancement of scintillation performance for N-doped Ba3In(B3O6)3. Moreover, nitrogen anion doping rather than conventional cation doping is found to be also applicable to other intrinsic luminescent materials for enhancing performance.

  2. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  3. Ca3La2(BO3)4 crystal: a new candidate host material for the ytterbium ion

    NASA Astrophysics Data System (ADS)

    Wang, Yeqing; You, Zhenyu; Zhu, Zhaojie; Xu, Jinlong; Li, Jianfu; Wang, Yan; Wang, Hongyan; Tu, Chaoyang

    2013-10-01

    A disordered laser crystal Yb3+-doped Ca3La2(BO3)4 crystal was grown by the Czochralski technique. The characterized room temperature polarized spectra, re-absorption possibility and laser performance showed that this crystal should be a promising gain material, not only suitable for diode pumping, but also a good candidate for the generation of tunable and short pulse lasers. End pumped by a diode laser at 976 nm in plano-concave and plano-plano cavity, a 3.65 W output power with a slope efficiency of 65% was achieved by using a c-cut Yb3+:Ca3La2(BO3)4 crystal. The output laser wavelength shifted from 1042 to 1062 nm.

  4. Morphological control of La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ catalytic membrane using PEG-H2O additive

    NASA Astrophysics Data System (ADS)

    Iqbal, R. M.; Nurherdiana, S. D.; Hartanto, D.; Othman, M. H. D.; Fansuri, H.

    2018-04-01

    Methane is the primary combustible component in non condensable part of natural gas. It is a promising source for syngas (CO and H2) production by partial oxidation method. The conversion of methane to syngas by partial oxidation method needs a controlled amount of oxygen. Membrane which has asymmetric structure and selectively permeates oxygen can be used to supply just enough oxygen to the reaction. One pathway to the fabricate asymmetric membrane is phase inversion method with an addition of PEG to increase pore size. La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) and Laa0.7Sr0.3MnO3-δ (LSM 73) powder were synthesized by solid-state method and they were characterized by XRD. The green membrane was prepared by phase inversion method. A dope solution was made by mixing LSCF 7328 or LSM 73 powder with PEG and stirred them in NMP for 24 h. PESf was then added into the dope solution and the stirring was continued to another 24 h. The resulted dope solution was degassed by immersing the solution inside and conical flask in an ultrasonic bath to remove air bubbles. The degassed mixture was then casted by spreading it on a glass surface (with a thickness of 2 mm) followed by immersion in a water bath for 24 h to coagulate the degassed mixture. Membrane morphology was characterized by Scanning Electron Microscopy (SEM) while the decomposition temperature of the polymer binder was analyzed by Thermogravimetric Analyzer (TGA). The XRD results show that phase of LSCF 7328 and LSM 73 are similar to LaCoO3 and LaMnO3, respectively. It indicated that the perovskite synthesis was successful. SEM micrograph of membrane cross sections show that the green membrane have finger like pores and a dense layer. Pores also appear on top and bottom surface of the membrane. Based on TGA results, the highest weight lost of green membrane at 550-600°C which represents the decomposition of PESf binder.

  5. Blue-green tunable color of Ce3+/Tb3+ coactivated NaBa3La3Si6O20 phosphor via energy transfer

    PubMed Central

    Jia, Zhen; Xia, Mingjun

    2016-01-01

    A series of color tunable phosphors NaBa3La3Si6O20:Ce3+, Tb3+ were synthesized via the high-temperature solid-state method. NaBa3La3Si6O20 crystallizes in noncentrosymmetric space group Ama2 with the cell parameters of a = 14.9226(4) Å, b = 24.5215(5) Å and c = 5.6241(2) Å by the Rietveld refinement method. The Ce3+ ions doped NaBa3La3Si6O20 phosphors have a strong absorption band from 260 to 360 nm and show near ultraviolet emission light centered at 378 nm. The Ce3+ and Tb3+ ions coactivated phosphors exhibit color tunable emission light from deep blue to green by adjusting the concentration of the Tb3+ ions. An energy transfer of Ce3+ → Tb3+ investigated by the photoluminescence properties and lifetime decay, is demonstrated to be dipole–quadrupole interaction. These results indicate the NaBa3La3Si6O20:Ce3+, Tb3+ phosphors can be considered as potential candidates for blue-green components for white light emitting diodes. PMID:27628111

  6. A novel design of anode-supported solid oxide fuel cells with Y 2O 3-doped Bi 2O 3, LaGaO 3 and La-doped CeO 2 trilayer electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Weimin; Liu, Jiang

    Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 μm)/LSGM (19 μm)/LDC (13 μm) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 μm)/LDC (17 μm) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 °C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 °C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output.

  7. Resonant inelastic x-ray scattering studies of magnons and bimagnons in the lightly doped cuprate La 2 - x Sr x CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaix, L.; Huang, E. W.; Gerber, S.

    Here, we investigated the doping dependence of magnetic excitations in the lightly doped cuprate La 2-xSr xCuO 4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L 3 edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations that possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and they are consistent with a bimagnonmore » dispersion that is renormalized by the magnon-magnon interaction at the zone center.« less

  8. Resonant inelastic x-ray scattering studies of magnons and bimagnons in the lightly doped cuprate La 2 - x Sr x CuO 4

    DOE PAGES

    Chaix, L.; Huang, E. W.; Gerber, S.; ...

    2018-04-20

    Here, we investigated the doping dependence of magnetic excitations in the lightly doped cuprate La 2-xSr xCuO 4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L 3 edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations that possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and they are consistent with a bimagnonmore » dispersion that is renormalized by the magnon-magnon interaction at the zone center.« less

  9. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  10. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  11. Study on superstructure in ion co-doped BiFeO3 by using transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Pu, Shi-Zhou; Guo, Chao; Li, Mei-Ya; Chen, Zhen-Lian; Zou, Hua-Min

    2015-04-01

    La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two kinds of superstructures are observed in the samples. One is the component modulated superstructure and twin-domain, which is generated by La3+ ordered substitution for Bi3+ and frequently appears. The chemical composition of the superstructure is explored by x-ray energy dispersive spectroscopy (EDS). The model of the ordered structure is proposed. Simulation based on the model is conducted. The second is the fluorite-type δ-Bi2O3 related superstructure. The relation between the ferroelectric property and the microstructure of the sample is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372174, 11074193, and 51132001) and the Fundamental Research Funds for the Central Universities.

  12. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Mg and Ca co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by micro pulling down method with a wide concentration range 0-1000 ppm of the codopants. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg and Ca co-doping. The scintillation decays were accelerated by both Mg and Ca codopants. Comparing to Ca co-doping, the Mg co-doped samples showed much faster decay and comparatively smaller light output decrease with increasing Mg dopant concentration.

  13. Trivalent rare-earth activated hexagonal lanthanum fluoride (LaF3 :RE3+ , where RE = Tb, Sm, Dy and Tm) nanocrystals: Synthesis and optical properties.

    PubMed

    Kasturi, Singh; Marikumar, R; Vaidyanathan, Sivakumar

    2018-05-10

    The LaF 3 nanocrystals through a facile hydrothermal route with hexagonal structures have been synthesized via doping of trivalent rare earth (RE 3+ ) ions - RE = Tb, Sm, Dy and Tm - with rod-like and perforated morphologies using NH 4 F as fluorine precursor. Hexagonal phase formation was confirmed by powder X-ray diffraction. The crystalline sizes were calculated by the Scherrer equation where found to have an average crystalline size of 12 to 35 nm. The morphological studies of the nanocrystals were carried out by means of transmission electron microscopy (TEM). The LaF 3 :Tm 3+ ,Sm 3+ ions show the characteristic emission of Tb 3+ and Tm 3+ respectively. In Sm 3+ -doped LaF 3 , three prominent emission peaks at 561, 597 and 641 nm were found, which belong to 4 G 5/2  →  6 H 5/2 , 4 G 5/2  →  6 H 7/2 (magnetic dipole) and 4 G 5/2  →  6 H 9/2 (electric dipole) transitions, respectively. The Dy 3+ activated LaF 3 shows blue and yellow emission and the corresponding CIE color coordinate show white light emission (CCT value 10650 K). Copyright © 2018 John Wiley & Sons, Ltd.

  14. Spin-State Transition in La1-xSrxCoO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Bhardwaj, S.; Prabhakaran, D.; Awasthi, A. M.

    2011-07-01

    We present a study of the thermal conductivity (κ), specific heat (Cp) and Raman spectra of La1-xSrxCoO3 (x = 0,0.1) single crystals. Both the specimens have low thermal conductivity and board Raman peaks, arising from strong scattering of phonons by lattice disorder, produced by (and doping-enhanced) spin-states admixture of the Co3+ ions. The thermal conductivity anomalously deviates from ˜1/T behaviour at high (room) temperatures, expected of an insulator. High-temperature specific heat reveals large decrease in the metal-insulator (M-I) transition temperature with Sr-doping.

  15. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    PubMed

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  16. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

    PubMed Central

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-01-01

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067

  17. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Lohaus, Christian; Reiser, Patrick; Dimesso, Lucangelo; Wang, Xiucai; Yang, Tongqing

    2017-06-01

    The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 is studied with photoelectron spectroscopy using interfaces with high work function RuO2 and low work function Sn-doped In2O3 (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O3 is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO3. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O3 should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  18. Extremely dense microstructure and enhanced ionic conductivity in hot-isostatic pressing treated cubic garnet-type solid electrolyte of Ga2O3-doped Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming’En; Hu, Zhiwei; Zhu, Jiliang

    A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O12 (Ga-LLZO) with nominal composition of Li6.55Ga0.15La3Zr2O12. The Ga-LLZO pellets were conventionally sintered at 1075∘C for 12h, and then were followed by HIP treatment at 120MPa and 1160∘C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as 1.13×10‑3S/cm at room temperature (25∘C), being two times higher than that of 4.58×10‑4S/cm for the untreated one.

  19. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  20. Superconductivity drives magnetism in δ -doped La2CuO4

    NASA Astrophysics Data System (ADS)

    Suter, A.; Logvenov, G.; Boris, A. V.; Baiutti, F.; Wrobel, F.; Howald, L.; Stilp, E.; Salman, Z.; Prokscha, T.; Keimer, B.

    2018-04-01

    Understanding the interplay between different orders in a solid is a key challenge in highly correlated electronic systems. In real systems this is even more difficult since disorder can have strong influence on the subtle balance between these orders and thus can obscure the interpretation of the observed physical properties. Here we present a study on δ -doped La2CuO4 (δ -LCON ) superlattices. By means of molecular beam epitaxy whole LaO2 layers were periodically replaced by SrO2 layers, providing a charge reservoir yet reducing the level of disorder typically present in doped cuprates to an absolute minimum. The induced superconductivity and its interplay with the antiferromagnetic order is studied by means of low-energy muon spin rotation. We find a quasi-two-dimensional superconducting state which couples to the antiferromagnetic order in a nontrivial way. Below the superconducting transition temperature, the magnetic volume fraction increases strongly. The reason could be a charge redistribution of the free carriers due to the opening of the superconducting gap which is possible due to the close proximity and low disorder between the different ordered regions.

  1. Efficient upconversion emission in Ho3+/Nd3+ co-doped oxyfluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Devarajulu, G.; Raju, B. Deva Prasad

    2018-04-01

    We report on an efficient Ho3+ and Ho3+/Nd3+ co-doped oxyfluorosilicate glasses upon excitation with an 808 nm laser diode. The detailed fluorescence have been studied under this excitation source and energy transfer mechanisms in Ho3+/Nd3+ co-doped oxyfluorosilicate glasses. The upconversion peaks at 486, 547 and 596 nm were observed in Nd3+/Ho3+ co-doped sample. The intensity of upconversion emission transitions in Ho3+ depends on the neodymium codopent concentration. These results indicate that Nd3+ ions can be potentially used as sensitizer for Ho3+ ions to stimulate the intense upconversion emission. The energy transfer mechanism between Nd3+ and Ho3+ was analyzed pursuant to the absorption spectra, upconversion spectra and the energy level structures of Nd3+ and Ho3+ ions have been briefly discussed.

  2. Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries

    NASA Astrophysics Data System (ADS)

    Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei

    2014-11-01

    Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.

  3. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Magnetic properties of La0.95Sr0.05CoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Shukla, Rishabh; Priyanka, Dhaka, R. S.

    2017-05-01

    We report the magnetic and structural properties of La(1-x)SrxCoO3 (x = 0 & 0.05) nanoparticles. The analysis of room temperature powder x-ray diffraction confirms the crystalline nature and single phase of the prepared samples. The magnetic measurements show ferromagnetic transition at TC˜85 K, the spontaneous magnetic moment MS ˜172 emu/mol, and the coercive field HC ˜7 kOe in parent compound, which are in agreement with the literature. Interestingly, with hole doping by Sr2+ substitution at La3+ site the magnetization data show drastic changes, as the TC increases to ˜270 K, the value of MS (˜557 emu/mole) increases about three times, whereas, the HC (˜0.6 kOe) decreases. Below TC, the nanoparticles show a much larger FC moment and a significant difference in FC and ZFC (zero field cooled) behaviors. For x = 0.05, we determined the values of effective magnetic moment (µeff = 3.62 µB/Co), the Curie temperature (θCW = -28 K) and the spin state (Savg = 1.38), which are significantly different than LaCoO3. Our study suggests an important role of charge carriers in controlling of intermediate spin state by hole doping in nanoparticles.

  5. Effect of oxygen vacancy distribution on the thermoelectric properties of La-doped SrTiO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, A. I.; Hedhili, M. N.; Alshareef, H. N.

    2012-12-01

    A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300-1000 K) thermoelectric properties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300-2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

  6. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  7. Effect of Sr substitution on the room temperature electrical properties of La1-xSrxFeO3 nano-crystalline materials

    NASA Astrophysics Data System (ADS)

    Kafa, C. A.; Triyono, D.; Laysandra, H.

    2017-07-01

    LaFeO3 is a material with Perovskite structure which electrical properties got investigated a lot, because as a p-type semiconductor it showed good gas sensing behavior through resistivity comparison. Sr doping on LaFeO3 is able to improve the electrical conductivity through structural modification. Using the Sr atoms doping concentration (x) from 0.1 to 0.4, La1-xSrxFeO3 nanocrystal pellets were synthesized using sol-gel method, followed by gradual heat treatment and uniaxial compaction. Structural analysis from XRD characterization shows that the structure of the materials is Orthorhombic Perovskite. The topography of the sample by SEM reveals grain and grain boundary existence with emerging agglomeration. The electrical properties of the material, as functions of frequency, were measured by Impedance Spectroscopy method using RLC meter. Through the Nyquist plot and Bode plot, the electrical conductivity of La1-xSrxFeO3 is contributed by grain and grain boundaries. It is reported that La0.6Sr0.4FeO3 sample has the most superior electrical conductivity of all samples, and the electrical permittivity of both La0.8Sr0.2FeO3 and La0.7Sr0.3FeO3 are the most stable.

  8. Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics.

    PubMed

    Xu, Caixia; Zhang, Jingwen; Zou, Yingyin K; Zhao, Hua

    2016-03-21

    The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.

  9. High-temperature thermoelectric properties of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) prepared by coprecipitation

    NASA Astrophysics Data System (ADS)

    Li, Cuiqin; Chen, Qianlin; Yan, Yunan; Li, Yanan; Zhao, Ying

    2018-02-01

    A series of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) compounds are synthesized via a coprecipitation technique. The influence of La/RE dual doping on the phase structure, microstructure and thermoelectric properties of the CaMnO3 system is investigated. Increased material density with grain sizes of 1-2 μm and a homogeneous microstructure is realized. Dual doping decreases the electrical resistivity due to an increase in the carrier concentration and also decreases the thermal conductivity due to increased grain scattering, damping of local vibrations by heavier La/RE ions compared to Ca and lattice distortion. The Ca0.92La0.04Yb0.04MnO3 shows the highest power factor of 3.49 × 10-4 W m-1 K-2 and the highest dimensionless figure of merit ZT of 0.25 at 770 K, which is approximately 3 times larger than that obtained for the undoped CaMnO3 and significantly larger than that of single-doped CaMnO3 prepared by solid-state reaction. This work provides a basic foundation for the industrial application of this thermoelectric material.

  10. Thermoelectric properties of doped BaHfO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com; Bhamu, K. C.; Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. Themore » doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.« less

  11. Crystallite size strain analysis of nanocrystalline La0.7Sr0.3MnO3 perovskite by Williamson-Hall plot method

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Verma, Narendra Kumar; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-04-01

    The nanocrystalline Sr-doped LaMnO3 (La0.7Sr0.3MnO3 = LSMO) perovskite manganites having different crystallite size were synthesized using the nitrate-glycine auto-combustion method. The phase purity of the manganites was checked by X-ray diffraction (XRD) measurement. The XRD patterns of the sample reveal that La0.7S0.3MnO3 crystallizes into rhombohedral crystal structure with space group R-3c. The size-dependence of structural lattice parameters have been investigated with the help of Rietveld refinement. The structural parameters increase as a function of crystallite size. The crystallite-size and internal strain as a function of crystallite-size have been calculated using Williamson-Hall plot.

  12. Observation of ferromagnetism in Mn doped KNbO3

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Venkateswaran, C.

    2015-06-01

    Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.

  13. Multifunctional luminescent nanomaterials from NaLa(MoO4)2:Eu3+/Tb3+ with tunable decay lifetimes, emission colors, and enhanced cell viability

    PubMed Central

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Zhao, Bingxin; Jin, Dayong; Lin, Mimi; Yan, Lu; You, Hongpeng; Dai, Liming; Liu, Yong

    2015-01-01

    A facile, but effective, method has been developed for large-scale preparation of NaLa(MoO4)2 nanorods and microflowers co-doped with Eu3+ and Tb3+ ions (abbreviated as: NLM:Ln3+). The as-synthesized nanomaterials possess a pure tetragonal phase with variable morphologies from shuttle-like nanorods to microflowers by controlling the reaction temperature and the amount of ethylene glycol used. Consequently, the resulting nanomaterials exhibit superb luminescent emissions over the visible region from red through yellow to green by simply changing the relative doping ratios of Eu3+ to Tb3+ ions. Biocompatibility study indicates that the addition of NLM:Ln3+ nanomaterials can stimulate the growth of normal human retinal pigment epithelium (ARPE-19) cells. Therefore, the newly-developed NaLa(MoO4)2 nanomaterials hold potentials for a wide range of multifunctional applications, including bioimaging, security protection, optical display, optoelectronics for information storage, and cell stimulation. PMID:26259515

  14. Origin of giant dielectric permittivity and weak ferromagnetic behavior in (1-x)LaFeO3-xBaTiO3 (0.0 ≤ x ≤ 0.25) solid solutions

    NASA Astrophysics Data System (ADS)

    Sreenivasu, T.; Tirupathi, P.; Prabahar, K.; Suryanarayana, B.; Chandra Mouli, K.

    The solid solutions of (1-x) LaFeO3-xBaTiO3 (0.0≤x≤0.25) have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT) X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC) at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe-O-Fe network of LaFeO3.

  15. Abnormal variation of band gap in Zn doped Bi{sub 0.9}La{sub 0.1}FeO{sub 3} nanoparticles: Role of Fe-O-Fe bond angle and Fe-O bond anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xunling; Liu, Weifang, E-mail: wfliu@tju.edu.cn, E-mail: shouyu.wang@yahoo.com; Wu, Ping

    2015-07-27

    Bi{sub 0.9}La{sub 0.1}FeO{sub 3} (BLFO) and Bi{sub 0.9}La{sub 0.1}Fe{sub 0.99}Zn{sub 0.01}O{sub 3} (BLFZO) nanoparticles were prepared via a sol-gel method. The oxygen vacancies and holes increase with Zn doping analyzed through X-ray photoelectron spectroscopy, which could contribute to the increase of leakage current density. However, with the increase of the defects (oxygen vacancies and holes), the band gap of BLFZO also is increased. To explain the abnormal phenomenon, the bandwidth of occupied and unoccupied bands was analyzed based on the structural symmetry driven by the Fe-O-Fe bond angle and Fe-O bond anisotropy.

  16. The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties.

    PubMed

    Lin, Qing; Xu, Jianmei; Yang, Fang; Yang, Xingxing; He, Yun

    2018-01-01

    The nanocrystalline structure of La 1 -x Ca x FeO 3 was prepared by a sol-gel method involving an auto-combustion process. The incorporation of rare-earths in LaFeO 3 induces strain in magnetic properties, especially in terms of the following parameters: replacement amount, oxygen partial pressure, and calcination temperature. To determine the effects of the amount of Ca 2+ ion doping agent and the calcination temperature on the microstructure, particle morphology, and magnetic properties of LaFeO 3 crystal, we performed the following respective analytical methods: X-ray powder diffraction, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy, and vibrating sample magnetometer tests. The orthorhombic structure of LaFeO 3 perovskite did not change even when it was doped with Ca 2+ ions, and its space group continued to be Pnma (No.62). FT-IR spectra confirmed that the main band appearing at 568 cm -1 is due to the antisymmetric stretching vibration of Fe-O-Fe bonds in FeO 6 . The introduction of Ca inhibits the growth of grains but the morphology of particles is improved. With an increasing concentration of Ca 2+ ions, magnetic behavior of the samples also witnessed an increasing trend in a proportionate manner. With an increase in calcination temperature, the enclosed area of the magnetic hysteresis curve of the sample reduced remarkably. The growth of nanoparticles can be restrained with an increase of Ca content that is used as doping agent. The magnetic behavior of La 1 -x Ca x FeO 3 tilts towards G-type antiferromagnetism; the magnetic orientation is achieved from the super exchange interaction of Fe 3+ ions with oxygen ions.

  17. Hybrid density functional study of structural, bonding, and electronic properties of the manganite series La1-xCaxMnO3 (x =0,1/4,1)

    NASA Astrophysics Data System (ADS)

    Korotana, R.; Mallia, G.; Gercsi, Z.; Liborio, L.; Harrison, N. M.

    2014-05-01

    Hybrid-exchange density functional theory calculations are carried out to determine the effects of A-site doping on the electronic and magnetic properties of the manganite series La1-xCaxMnO3. This study focuses on the ground state of an ordered Ca occupancy in a periodic structure. It is shown that the hybrid-exchange functional, Becke three-parameter Lee-Yang-Parr (B3LYP), provides an accurate and consistent description of the electronic structure for LaMnO3, CaMnO3, and La0.75Ca0.25MnO3. We have quantified the relevant structural, magnetic, and electronic energy contributions to the stability of the doped compound. An insight into the exchange coupling mechanism for the low hole density region of the phase diagram, where a polaron (anti-Jahn-Teller) forms, is also provided. This study completes a microscopic description of the lightly doped insulator with an antiferromagnetic-to-ferromagnetic and metal-to-insulator transition.

  18. Spin Dynamics in the electron-doped high-Tc superconductors Pr0.88LaCe0.12CuO4-δ

    NASA Astrophysics Data System (ADS)

    Dai, Pengcheng

    2007-03-01

    We briefly review results of recent neutron scattering experiments designed to probe the evolution of antiferromagnetic (AF) order and spin dynamics in the electron- doped Pr0.88LaCe0.12CuO4-δ (PLCCO) as the system is tuned from its as-grown non-superconducting AF state into an optimally doped superconductor (Tc = 27.5 K) without static AF order [1-3]. For under doped materials, a quasi-two- dimensional spin-density wave was found to coexist with three- dimensional AF order and superconductivity. In addition, the low-energy spin excitations follow Bose statistics. In the case of optimally doped material, we have discovered a magnetic resonance intimately related to superconductivity analogous to the resonance in hole-doped materials. On the other hand, the low energy spin excitations have very weak temperature dependence and do not follow Bose statistics, in sharp contrast to the as-grown nonsuperconducting materials. 1 Stephen D. Wilson, Pengcheng Dai, Shiliang Li, Songxue Chi, H. J. Kang, and J. W. Lynn, Nature (London) 442, 59 (2006). 2 Stephen D. Wilson, Shiliang Li, Hyungje Woo, Pengcheng Dai, H. A. Mook, C. D. Frost, S. Komiya, and Y. Ando, Phys. Rev. Lett. 96, 157001 (2006). 3. Stephen D. Wilson, Shiliang Li, Pengcheng Dai, Wei Bao, J. H. Chung, H. J. Kang, S.-H. Lee, S. Komiya, and Y. Ando, Phys. Rev. B 74, 144514 (2006).

  19. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox.

    PubMed

    Korake, P V; Dhabbe, R S; Kadam, A N; Gaikwad, Y B; Garadkar, K M

    2014-01-05

    La-doped ZnO nanorods with different La contents were synthesized by microwave assisted method and characterized by various sophisticated techniques such as XRD, UV-Vis., EDS, XPS, SEM and TEM. The XRD patterns of the La-doped ZnO indicate hexagonal crystal structure with an average crystallite size of 30nm. It was found that the crystallite size of La-doped ZnO is much smaller as compared to pure ZnO and decreases with increasing La content. The photocatalytic activity of 0.5mol% La-doped ZnO in the degradation of metasystox was studied. It was observed that degradation efficiency of metasystox over La-doped ZnO increases up to 0.5mol% doping then decreases for higher doping levels. Among the catalyst studied, the 0.5mol% La-doped ZnO was the most active, showing high photocatalytic activity for the degradation of metasystox. The maximum reduction of concentration of metasystox was observed under static condition at pH 8. Reduction in the Chemical Oxygen Demand (COD) of metasystox was observed after 150min. The cytotoxicological studies of meristematic root tip cells of Allium cepa were studied. The results obtained indicate that photocatalytically degraded products of metasystox were less toxic as compared to metasystox. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Study of energy transfer and spectral downshifting in Ce, RE (RE = Nd and Yb) co-doped lanthanum phosphate

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Omanwar, S. K.

    2017-03-01

    The phosphors LaPO4 (Lanthanum phosphate) doped with Ce(III)/Ce3+ and co-doped with Ce3+-Nd3+ and Ce3+-Yb3+ were effectively synthesized by conventional solid state reaction method. The prepared samples were characterized by powder X-ray diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infrared (NIR) and ultraviolet visible (UV-VIS) region. Additionally the luminescence time decay curves of samples were investigated to confirm energy transfer (ET) process. The Ce3+-Nd3+ ion co-doped LaPO4 phosphors can convert a photon of UV region (278 nm) into photons of NIR region (1058 nm). While Ce3+-Yb3+ ion doped LaPO4 phosphors convert photons of UV region (278 nm) into photons of NIR region (979 nm). The Ce3+ ion acts like sensitizer and Nd3+/Yb3+ ions act as activators. Both kinds of emissions are suitable for improving spectral response of solar cells.

  1. Charge trapping and current-conduction mechanisms of metal-oxide-semiconductor capacitors with La xTa y dual-doped HfON dielectrics

    NASA Astrophysics Data System (ADS)

    Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang

    2010-10-01

    Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.

  2. Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites

    NASA Astrophysics Data System (ADS)

    Cheng, Jihong; Navrotsky, Alexandra

    2004-01-01

    LaGaO 3 perovskites doped with Sr or Ba at the La site and Mg at the Ga site were prepared by solid-state reaction or sol-gel method and characterized. Enthalpies of formation from constituent oxides at 298 K were determined by high-temperature oxide melt solution calorimetry. Energetic trends are discussed in terms of defect chemistry. As oxygen deficiency increases, formation enthalpies define three trends, LaGa 1- yMg yO 3- δ (LGM), La 1- xSr xGa 1- yMg yO 3- δ (LSGM), and La 1- xBa xGa 1- yMg yO 3- δ (LBGM). They become less exothermic with increasing doping, suggesting a dominant destabilization effect from oxygen vacancies. The endothermic enthalpy of vacancy formation is 275±37, 166±18 and 138±12 kJ/mol of VO·· for LGM, LBGM and LSGM, respectively. Tolerance factor and ion size mismatch also affect enthalpies. In terms of energetics, Sr is the best dopant for the La site and Mg for the Ga site, supporting earlier studies, including oxygen ion conductivity and computer modeling.

  3. Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3.

    PubMed

    Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Pang, Ran; Huang, Shaoming; Liu, Guokui

    2016-11-07

    In most Eu 3+ activated phosphors, only red luminescence from the 5 D 0 is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca 4 LaO(BO 3 ) 3 :Eu 3+ (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the 5 D 1,2 states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu 3+ doping concentration. More importantly, concentration quenching of Eu 3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca 4 EuO(BO 3 ) 3 emits stronger luminescence than the Eu 3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y 2 O 3 :Eu 3+ . Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (∼330 nm). The CT transitions significantly enhance Eu 3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu 3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.

  4. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.; Pal, Uday B.

    1992-01-01

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro.sub.3 particles; (2) dispersing doped LaCrO.sub.3 particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then electrochemical vapor depositing a dense skeletal LaCrO.sub.3 structure, between and around the doped LaCrO.sub.3 particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell.

  5. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, V.L.; Singhal, S.C.; Pal, U.B.

    1992-07-21

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro[sub 3] particles; (2) dispersing doped LaCrO[sub 3] particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then a dense skeletal LaCrO[sub 3] structure is electrochemically vapor deposited between and around the doped LaCrO[sub 3] particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell. 4 figs.

  6. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  7. Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts

    PubMed Central

    Wu, Yuemei; Zhang, Heng; Liu, Yingkai; Chen, Weiwu; Ma, Jiang; Li, Shuanghui; Qin, Zhaojun

    2015-01-01

    Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC) liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed. PMID:26087374

  8. Amphoteric doping of praseodymium Pr 3+ in SrTiO 3 grain boundaries

    DOE PAGES

    Yang, H.; Lee, H. S.; Kotula, P. G.; ...

    2015-03-26

    Charge Compensation in rare-earth Praseodymium (Pr 3+) doped SrTiO 3 plays an important role in determining the overall photoluminescence properties of the system. Here, the Pr 3+ doping behavior in SrTiO 3 grain boundaries (GBs) is analyzed using aberration corrected scanning transmission electron microscopy (STEM). The presence of Pr 3+ induces structure variations and changes the statistical prevalence of GB structures. In contrast to the assumption that Pr 3+ substitutes for A site as expected in the bulk, Pr 3+ is found to substitute both Sr and Ti sites inside GBs with the highest concentration in the Ti sites. Asmore » a result, this amphoteric doping behavior in the boundary plane is further confirmed by first principles theoretical calculations.« less

  9. Amphoteric Doping of Praseodymium Pr3+ in SrTiO3 Grain Boundaries

    DOE PAGES

    Yang, Hao; Lee, H. S.; Kotula, Paul G.; ...

    2015-03-23

    Charge Compensation in rare-earth Praseodymium (Pr 3+) doped SrTiO 3 plays an important role in determining the overall photoluminescence properties of the system. Here, the Pr 3+ doping behavior in SrTiO 3 grain boundaries (GBs) is analyzed using aberration corrected scanning transmission electron microscopy (STEM). The presence of Pr 3+ induces structure variations and changes the statistical prevalence of GB structures. In contrast to the assumption that Pr 3+ substitutes for A site as expected in the bulk, Pr 3+ is found to substitute both Sr and Ti sites inside GBs with the highest concentration in the Ti sites. Asmore » a result, this amphoteric doping behavior in the boundary plane is further confirmed by first principles theoretical calculations.« less

  10. Structural, transport and magnetotransport properties of Ru-doped La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 & 0.05) manganite

    NASA Astrophysics Data System (ADS)

    Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.

    2017-09-01

    We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.

  11. Irreversibility and carriers control in two-dimensional electron gas at LaTiO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Bergeal, N.; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Leboeuf, D.; Proust, C.

    2013-03-01

    It has been shown recently that a two-dimensional electron gas 2DEG could form at the interface of two insulators such as LaAlO3 and SrTiO3, or LaTiO3 (a Mott insulator) and SrTiO3. We present low temperature transport measurements on LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures, whose properties can be modulated by field effect using a metallic gate on the back of the substrate. Here we show that when the carrier density is electrostatically increased beyond a critical value, the added electrons escape into the SrTiO3 leading to an irreversible doping regime where all the electronic properties of the 2DEG saturate (carrier density, resistivity, superconducting transition...). The dynamic of leakage was studied using time resolved measurement. Based on a complete self-consistent description of the confinement well, a thermal model for the carriers escape has been developed, which quantitatively accounts for the data.

  12. Controlling n-type doping in MoO 3

    DOE PAGES

    Peelaers, H.; Chabinyc, M. L.; Van de Walle, C. G.

    2017-02-27

    Here, we study the electronic properties of native defects and intentional dopant impurities in MoO 3, a widely used transparent conductor. Using first-principles hybrid functional calculations, we show that electron polarons can be self-trapped, but they can also bind to defects; thus, they play an important role in understanding the properties of doped MoO 3. Our calculations show that oxygen vacancies can cause unintentional n-type doping in MoO 3. Mo vacancies are unlikely to form. Tc and Re impurities on the Mo site and halogens (F, Cl, and Br) on the O site all act as shallow donors but trapmore » electron polarons. Fe, Ru, and Os impurities are amphoteric and will compensate n-type MoO 3. Mn dopants are also amphoteric, and they show interesting magnetic properties. These results support the design of doping approaches that optimally exploit functionality.« less

  13. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.

    2017-12-01

    Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.

  14. Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2017-01-01

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO3 at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO3. The doping level in SrTiO3 was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO3 provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  15. Influence of Fe substitution on structure and Raman spectra of La0.67Sr0.33MnO3: Experimental and density functional studies

    NASA Astrophysics Data System (ADS)

    Astik, Nidhi M.; Soni, Himadri; Jha, Prafulla K.; Sathe, Vasant

    2018-07-01

    We present experimental and theoretical studies on the effect of Fe doping at Mn site, on the structural, morphological, electronic and vibrational properties of La0.67Sr0.3MnO3 nanoparticle. The samples of La0.67Sr0.3MnO3 and La0.67Sr0.33Mn1-xFexO3 (x = 0.15, 0.25 and 0.35) have been prepared by ball milling route. The phase purity of these samples has been confirmed using X-ray diffraction, while compositional analysis is done using EDAX. The morphological analysis done using scanning microscope indicates the agglomeration. The vibrational analysis which is done using Raman scattering and density functional theory (DFT) calculations show a substantial shift in A1g and Eg modes with Fe doping. The Eg modes become broader with Fe doping. The UV-visible spectra were measured in the energy range of 1-5 eV and compared with DFT results. The spin polarized density functional calculations show an increase in density of states at Fermi level due to MnO6octahedra modification and significant magnetism on Fe doping. The total magnetic moment is found from 16 to 17 μB for considered concentration. The effective mass of carriers is also calculated and found increasing with increasing concentration.

  16. The stable and water-soluble neodymium-doped lanthanide fluoride nanoparticles for near infrared probing of copper ion.

    PubMed

    Xue, Fang-Min; Wang, He-Fang

    2012-09-15

    Neodymium (Nd(3+)) doped nanomaterials exhibited the unique near infrared (NIR) luminescence properties. However, the application of Nd-doped nanomaterials to chemosensors was rarely explored. Herein, the water-soluble 2-aminoethyl dihydrogen phosphate stabilized Nd-doped LaF(3) (ADP-Nd-LaF(3)) nanoparticles were explored as the NIR probe for chemosensors. The NIR emission intensity at 1061 nm of ADP-Nd-LaF(3) nanoparticles kept stable in the aqueous solution of various pH and coexisting of most common metal ions except copper ion, consequently, the ADP-Nd-LaF(3) nanoparticles were developed as a high selective NIR probe for Cu(II). The NIR emission of ADP-Nd-LaF(3) exhibits a linear quenching response to Cu(II) in the range 5-100 μM, with a detection limit of 0.8 μM. The precision of eleven replicate detections of 5 μM Cu(II) was 0.5% (RSD). The recovery of spiked Cu(II) in human urine and waste water samples ranged from 102 to 109%. The possible mechanism of Cu(II)-induced fluorescence quenching of ADP-Nd-LaF(3) nanoparticles was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension.

    PubMed

    Dai, Ke; Peng, Tianyou; Chen, Hao; Liu, Juan; Zan, Lin

    2009-03-01

    Photocatalytic degradation of commercial phoxim emulsion in aqueous suspension was investigated by using La-doped mesoporous TiO2 nanoparticles (m-TiO2) as the photocatalyst under UV irradiation. Effects of La-doping level, calcination temperature, and additional amount of the photocatalyst on the photocatalytic degradation efficiency were investigated in detail. Experimental results indicate that 20 mg L(-1) phoxim in 0.5 g L(-1) La/m-TiO2 suspension (the initial pH 4.43) can be decomposed as prolonging the irradiation time. Almost 100% phoxim was decomposed after 4 h irradiation according to the spectrophotometric analyses, whereas the mineralization rate of phoxim just reached ca. 80% as checked by ion chromatography (IC) analyses. The elimination of the organic solvent in the phoxim emulsion as well as the formation and decomposition of some degradation intermediates were observed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). On the basis of the analysis results on the photocatalytic degradation intermediates, two possible photocatalytic degradation pathways are proposed under the present experimental conditions, which reveal that both the hydrolysis and adsorption of phoxim under UV light irradiation play important roles during the photocatalytic degradation of phoxim.

  18. Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce

    NASA Astrophysics Data System (ADS)

    Li, Peiyun; Gridin, Sergii; Ucer, K. Burak; Williams, Richard T.; Menge, Peter R.

    2018-04-01

    Picosecond time-resolved optical absorption spectra induced by two-photon interband excitation of LaBr3 are reported. The spectra are similar in general characteristics to self-trapped exciton (STE) absorption previously measured in alkali halides and alkaline-earth halides. A broad ultraviolet absorption band results from excitation of the self-trapped hole within the STE. A series of infrared and red-visible bands results from excitation of the bound outer electron within the STE similar to bands found in alkali halides corresponding to different degrees of "off-center" relaxation. Induced absorption in cerium-doped LaBr3 after band-gap excitation of the host exhibits similar STE spectra, except it decays faster on the tens-of-picoseconds scale in proportion to the Ce concentration. This is attributed to dipole-dipole energy transfer from STE to Ce3 + dopant ions. The absorption spectra were also measured after direct excitation of the Ce3 + ions with sufficient intensity to drive two- and three-photon resonantly enhanced excitation. In this case, the spectrum attributed to STEs created adjacent to Ce3 + ions decays in 1 ps suggesting dipole-dipole transfer from the nearest-neighbor separation. A transient absorption band at 2.1 eV growing with Ce concentration is found and attributed to a charge-transfer excitation of the Ce3 +* excited state responsible for scintillation in LaBr3:Ce crystals. This study concludes that the energy transport from host to activator responsible for the scintillation of LaBr3:Ce proceeds by STE creation and dipole-dipole transfer more than by sequential trapping of holes and electrons on Ce3 + ions.

  19. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.

  20. Photoemission study of the electronic structure (Pr 0.2La 0.8)(Ba 1.875La 0.125)Cu 3O 7- gd

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-11-01

    Photoemission results from the Pr and La doped 1 2 3 system (Pr 0.2La 0.8) (Ba 1.875La 0.125)Cu 3O 7-gd are reported. The core level spectra show strong resemblance to those of other compounds of the 1 2 3 and 2 1 4 systems. The Cu 2 p satellite intensity is found to be ˜ 35% of the main Cu 2 p line, and the O 1 s core level spectra, exhibiting a clear doublet, show evidence of extrinsic oxygen. The clear correlation between the intensities of certain features in the valence band and the amount of extrinsic oxygen, as monitored by the O 1 s core level spectra, is explicitly addressed.

  1. Exploring the Room-Temperature Ferromagnetism and Temperature-Dependent Dielectric Properties of Sr/Ni-Doped LaFeO3 Nanoparticles Synthesized by Reverse Micelle Method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Shakeel; Husain, Shahid; Khan, Wasi

    2018-03-01

    This paper reports the thermal, microstructural, dielectric and magnetic properties of La0.75Sr0.25Fe0.65Ni0.35O3 nanoparticles (NPs) synthesized via reverse micelle technique. The thermogravimetric analysis of as-prepared NPs confirmed a good thermal stability of the sample. Powder x-ray diffraction data analyzed with a Rietveld refinement technique revealed single-phase and orthorhombic distorted perovskite crystal structure of the NPs having Pbnm space group. The transmission electron microscopy images show the crystalline nature and formation of nanostructures with a fairly uniform distribution of particles throughout the sample. Temperature-dependent dielectric properties of the NPs in accordance with the Kramers-Kronig transformation (KKT) model, universal dielectric response model and jump relaxation model have been discussed. Electrode or interface polarization is likely the cause of the observed dielectric behavior. Due to grain boundaries and Schottky barriers of the metallic electrodes of semiconductors, the depletion region is observed, which gives rise to Maxwell-Wagner relaxation and hence high dielectric constants. Magnetic studies revealed the ferromagnetic nature of the prepared NPs upon Sr and Ni doping in LaFeO3 perovskite at room temperature. Therefore, these NPs could be a potential candidate as electrode material in solid oxide fuel cells.

  2. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm.

    PubMed

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-17

    Ho 3+ /Tm 3+ co-doped 50TeO 2 -25GeO 2 -3WO 3 -5La 2 O 3 -3Nb 2 O 5 -5Li 2 O-9BaF 2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm 3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho 3+ is greatly influenced by the doping concentration ratio of Ho 3+ to Tm 3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10 -21  cm 2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm -1 , which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  3. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    NASA Astrophysics Data System (ADS)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  4. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    PubMed Central

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-01-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10−21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm−1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser. PMID:28303946

  5. Synthesis and characterization of white light-emitting Dy3+-doped Gd2O3 nanophosphors

    NASA Astrophysics Data System (ADS)

    Nambram, S.; Singh, S. D.; Meetei, S. D.

    2016-03-01

    A series of Gd2O3 nanophosphors doped with different concentration of Dy3+ has been synthesized by chemical precipitation method. X-ray diffraction study of the undoped and doped samples suggests that Dy3+ atoms remain in the crystallite cubic lattice of the host. The particle sizes are in the range of 14-19 nm. Energy-dispersive analysis of X-ray spectroscopy study and Fourier transform infrared spectroscopy studies are also performed to analyze the elements present in the samples. Photoluminescence emission peak of Dy3+ in doped samples are observed at 487, 575 and 672 nm corresponding to the 4F9/2-6H15/2, 4F9/2-6H13/2 and 4F9/2-6H11/2 transition, respectively. Effective energy transfer from Gd3+ to Dy3+ is observed, yielding efficient emission under UV excitation. The maximum emission intensity is found at 1.5 at.% Dy3+-doped Gd2O3 sample. The enhancement in the emission intensity with the increase in Dy3+ is due to the increase in energy transfer from Gd3+ of host to Dy3+ ions. The CIE ( Commission Internationale de l'é clairage) coordinates of the doped samples are found to be very close to that of standard white color (0.33, 0.33).

  6. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles.

    PubMed

    Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii

    2017-12-01

    Two sets of Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.

  7. Evaluation of the magnetocaloric response of nano-sized La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method

    NASA Astrophysics Data System (ADS)

    Gómez, Adrián; Chavarriaga, Edgar; Supelano, Iván; Parra, Carlos Arturo; Morán, Oswaldo

    2018-05-01

    A systematic study of the dependence of the magnetization on the magnetic field around the ferromagnetic-paramagnetic phase transition temperature is carried out on La0.7Ca0.3Mn1-xNixO3 (x=0, 0.02, 0.07, and 1) samples synthesized by auto-combustion method. The successful substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice is corroborated by X-ray diffraction technique. Banerjees criteria, Arrott plots, and the scaling hypothesis are used to analyze the experimental data. It is verified that the Ni-doping increases the operating temperature range for magnetocaloric effect through tuning of the magnetic transition temperature. Probably, the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and magnetic moment in the samples. The Arrott plots suggest that the phase transition from ferromagnetic to paramagnetic in the nano-sized manganite is of second order. The analysis of the magnetization results show that the maximum magnetic entropy changes observed for x=0, 0.02, 0.07, and 0.1 compositions are 0.85, 0.77, 0.63, and 0.59 J/kg K, under a magnetic field of 1.5 T. These values indicate that the magnetic entropy change achieved for La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method is higher than those reported for other manganites with comparable Ni-doping levels but synthesized by standard solid state reaction. It is also observed that the addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (˜60 J/kg) is found for a Ni-doping level of 2 % around 230 K in a field of 1.5 T.

  8. Positron annihilation study of Sr Doping in La(2-x)Sr(x)CuO4

    NASA Astrophysics Data System (ADS)

    Sterne, P. A.; Howell, R. H.; Fluss, M. J.; Kaiser, J. H.

    1993-04-01

    A combined experimental and threshold study of effects of Sr doping on electronic structure of La(2-x)Sr(x)CuO(4) was presented. Electron-positron momentum distributions were measured to high statistical precision (greater than 4 x 10(exp 8) counts) at room temperature for samples with Sr concentrations of x = 0.0, 0.1, 0.13, and 0.2. Analysis of all four spectra reveal strong features due to electron-positron wavefunction overlap, in quantitative agreement with theoretical calculations. The Sr doped samples show discontinuities consistent with presence of a Fermi surface. The form and position of these features are in general agreement with the predictions of band theory. Correspondence between theory and experiment, as well as some differences, are revealed by a detailed study of the changes in electron-position momentum density with increasing Sr doping.

  9. Mn-Site Doped CaMnO 3: Creation of the CMR Effect

    NASA Astrophysics Data System (ADS)

    Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.

    2000-01-01

    The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.

  10. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  11. Effect of rare-earth substitution at La-site on structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds (x = 0, 0.2, 0.3; RE = Eu, Gd, Y)

    NASA Astrophysics Data System (ADS)

    Choudhary, Y. R. S.; Mangavati, Suraj; Patil, Siddanagouda; Rao, Ashok; Nagaraja, B. S.; Thomas, Riya; Okram, G. S.; Kini, Savitha G.

    2018-04-01

    In the present communication, we present results on the effect of rare-earth (RE) substitution at La-site on the structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds. The lattice parameters are observed to decrease with RE-doping which is attributed to the fact that the substituted RE ions (RE = Eu, Gd and Y) are smaller than that of La ion. In high temperature semiconducting regime, small polaron hopping (SPH) model is valid, whereas, variable hopping model is valid in low temperature metallic region. The resistivity in the entire temperature range follows percolation model. All the samples exhibit sign reversal in thermopower, S. From temperature dependent S data, it is seen that SPH model is applicable in high temperature regime.

  12. Synthesis, structure and magnetic properties of nanostructured La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) perovskites

    NASA Astrophysics Data System (ADS)

    Hossain, Aslam; Ghosh, Debamalya; Dutta, Uma; Walke, Pravin S.; Mordvinova, Natalia E.; Lebedev, Oleg I.; Sinha, Bhavesh; Pal, Kamalesh; Gayen, Arup; Kundu, Asish K.; Seikh, Md. Motin

    2017-12-01

    The effect of hole doping on magnetic properties of LaFe0.5Mn0.5O3 have been investigated. All the ceramics samples La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) were synthesized at 500 °C by sol-gel method and the particles size were found to be in nanodimension. The samples were characterized by X-ray and electron diffraction, HRTEM and both dc and ac-magnetization measurements. The X-ray and electron diffraction patterns were indexed by cubic Pm-3m space group. The particle size of the LaFe0.5Mn0.5O3 is ∼100 nm, whereas the Pb-doped sample is ∼50 nm and for Ca or Sr doped samples the size is ∼10-30 nm. Both dc and ac-susceptibility measurements suggest that the effect of hole doping and A-site cationic radius in LaFe0.5Mn0.5O3 have no significant role on magnetic properties. However, the particle size plays an important role on magnetic property due to the development of surface ferromagnetic cluster at nanoscale. The competing interactions lead to magnetic phase separation where local ferromagnetic clusters coexist within the antiferromagentic matrix in all the samples.

  13. High potential thermoelectric figure of merit in ternary La 3Cu 3X 4 (X = P, As, Sb and Bi) compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tribhuwan; Parker, David S.

    Here, we investigate the thermoelectric properties of the relatively unexplored rare-earth ternary compounds La 3Cu 3X 4 (X= Bi, Sb, As, and P) using first principles electronic structure and Boltzmann transport calculations. These compounds, of which the La 3Cu 3Sb 4 and La 3Cu 3Bi 4 compounds have previously been synthesized, are all predicted to semiconductors and present a wide range of band gaps varying from 0.23 eV (for the Bi compound) to 0.87 eV (for the P compound). We further find a mixture of light and heavy bands, which results in a high thermoelectric power factor. In addition wemore » find that at high temperatures of 1000 K these compounds exhibit lattice thermal conductivity less than 1 W/m-K. The combination of low thermal conductivity and good transport properties results in a predicted ZT as high as ~1.5 for both La 3Cu 3P 4 and La 3Cu 3As 4, under high p-type doping. This predicted high performance makes these compounds promising candidates for high performance thermoelectric performance and thus merits further experimental investigation.« less

  14. High potential thermoelectric figure of merit in ternary La 3Cu 3X 4 (X = P, As, Sb and Bi) compounds

    DOE PAGES

    Pandey, Tribhuwan; Parker, David S.

    2017-10-27

    Here, we investigate the thermoelectric properties of the relatively unexplored rare-earth ternary compounds La 3Cu 3X 4 (X= Bi, Sb, As, and P) using first principles electronic structure and Boltzmann transport calculations. These compounds, of which the La 3Cu 3Sb 4 and La 3Cu 3Bi 4 compounds have previously been synthesized, are all predicted to semiconductors and present a wide range of band gaps varying from 0.23 eV (for the Bi compound) to 0.87 eV (for the P compound). We further find a mixture of light and heavy bands, which results in a high thermoelectric power factor. In addition wemore » find that at high temperatures of 1000 K these compounds exhibit lattice thermal conductivity less than 1 W/m-K. The combination of low thermal conductivity and good transport properties results in a predicted ZT as high as ~1.5 for both La 3Cu 3P 4 and La 3Cu 3As 4, under high p-type doping. This predicted high performance makes these compounds promising candidates for high performance thermoelectric performance and thus merits further experimental investigation.« less

  15. Rectifying and photovoltaic properties of the heterojunction composed of CaMnO3 and Nb-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Sun, J. R.; Zhang, S. Y.; Shen, B. G.; Wong, H. K.

    2005-01-01

    A heterojunction composed of CaMnO3 (CMO) and Nb-doped SrTiO3 (STON) was fabricated and its properties were studied and compared with La0.67Ca0.33MnO3/STON and LaMnO3+δ/STON p-n, junctions. This CMO/STON junction exhibits an asymmetric current-voltage relation similar to a p-n junction. The most remarkable discovery is that the magnetic state of the manganites has a strong impact on the rectifying behaviors. The diffusion voltage, which is the critical voltage for the current rush, shows a tendency to decrease/increase with the establishment of the antiferromagnetic/ferromagnetic order in the manganites of the junction. Similar to other manganite p-n junctions, CMO/STON also exhibits a significant photovoltaic effect, and the maximum photovoltage is ˜2.2mV under the illumination of ˜7mW light (λ=460nm). A qualitative explanation is given based on an analysis on the band diagram of the junctions.

  16. Band-gap engineering of La1-x Nd x AlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study

    NASA Astrophysics Data System (ADS)

    Sandeep; D, P. Rai; A, Shankar; M, P. Ghimire; Anup Pradhan, Sakhya; T, P. Sinha; R, Khenata; S, Bin Omran; R, K. Thapa

    2016-06-01

    The structural, electronic, and magnetic properties of the Nd-doped Rare earth aluminate, La1-x Nd x AlO3 (x = 0% to 100%) alloys are studied using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The effects of the Nd substitution in LaAlO3 are studied using the supercell calculations. The computed electronic structure with the modified Becke-Johnson (mBJ) potential based approximation indicates that the La1-x Nd x AlO3 alloys may possess half-metallic (HM) behaviors when doped with Nd of a finite density of states at the Fermi level (E F). The direct and indirect band gaps are studied each as a function of x which is the concentration of Nd-doped LaAlO3. The calculated magnetic moments in the La1-x Nd x AlO3 alloys are found to arise mainly from the Nd-4f state. A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at E F. The observed decrease of the band gap with the increase in the concentration of Nd doping in LaAlO3 is a suitable technique for harnessing useful spintronic and magnetic devices. Project supported by the DST-SERB, Dy (Grant No. SERB/3586/2013-14), the UGCBSR, FRPS (Grant No. F.30-52/2014), the UGC (New Delhi, India) Inspire Fellowship DST (India), and the Deanship of Scientific Research at King Saud University (Grant No. RPG-VPP-088). M P Ghimire thanks the Alexander von Humboldt Foundation, Germany for the financial support.

  17. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3

  18. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth

    2017-07-01

    Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.

  19. Doping of germanium nanowires grown in presence of PH3

    NASA Astrophysics Data System (ADS)

    Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.

    2006-12-01

    The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.

  20. Ion beam irradiation of lanthanum and thorium-doped yttrium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.

    2007-05-01

    Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.

  1. Controlling the dual mechanisms of oxide interface doping

    NASA Astrophysics Data System (ADS)

    Dai, Weitao; Cen, Cheng

    The formation of two dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces involves multiple electronic and structural causes. The interplay between them makes the investigation of individual mechanism very challenging. Here we demonstrate the nanoscale selective control of two interface doping pathways: charge transfers from surface adsorbed protons and oxygen vacancies created in LaAlO3 layers. The selective control is achieved by combining intensive electric field generated by conducting AFM probe which controls both the creation/migration of oxygen vacancies and the surface proton density, with plasma assisted surface hydroxylation and solvent based proton solvation that act mainly on surface adsorbates. Robust nanoscale reversible metal-insulator transition was achieved at the interfaces with the LaAlO3 layer thicker than the critic thickness. Different combinations of the experimental methods and doping mechanisms enable highly flexible tuning of the 2DEG's carrier density, mobility and sensitivity to ambient environments. The reversible and independent controls of surface states and vacancies add to the fundamental material research capabilities and can benefit future exploration of designed 2DEG nanoelectronics.

  2. Effect of Sr doping on the magnetic exchange interactions in manganites of type L a 1 - x S r x M n y A 1 - y O 3 ( A = Ga , Ti ; 0.1 ≤ y ≤ 1 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furrer, Albert; Podlesnyak, Andrey A.; Pomjakushina, Ekaterina

    Strontium doping transforms manganites of type La 1 - x Sr x Mn O 3 from an insulating antiferromagnet ( x = 0 ) to a metallic ferromagnet ( x > 0.16 ) due to the induced charge carriers (holes). We employed neutron scattering experiments in order to investigate the effect of Sr doping on a tailor-made compound of composition La 0.7 S r 0.3 M n 0.1 Ti 0.3 G a 0.6 O 3 . By the simultaneous doping with S r 2 + and Ti 4 + ions, the compound remains in the insulating state so thatmore » the magnetic interactions for large Sr doping can be studied in the absence of charge carriers. At T C = 215 K , there is a first-order reconstructive phase transition from the trigonal R - 3 c structure to the orthorhombic Pnma structure via an intermediate virtual configuration described by the common monoclinic subgroup P2 1 / c . The magnetic excitations associated with Mn 3 + dimers give evidence for two different nearest-neighbor ferromagnetic exchange interactions, in contrast to the undoped compound LaM n y A 1 - y O 3 where both ferromagnetic and antiferromagnetic interactions are present. Furthemore, the doping-induced changes of the exchange coupling originates from different Mn-O-Mn bond angles determined by neutron diffraction. The large fourth-nearest-neighbor interaction found for metallic manganites is absent in the insulating state. Here, we argue that the Ruderman-Kittel-Kasuya-Yosida interaction reasonably accounts for all the exchange couplings derived from the spin-wave dispersion in metallic manganites.« less

  3. Effect of Sr doping on the magnetic exchange interactions in manganites of type L a 1 - x S r x M n y A 1 - y O 3 ( A = Ga , Ti ; 0.1 ≤ y ≤ 1 )

    DOE PAGES

    Furrer, Albert; Podlesnyak, Andrey A.; Pomjakushina, Ekaterina; ...

    2017-03-14

    Strontium doping transforms manganites of type La 1 - x Sr x Mn O 3 from an insulating antiferromagnet ( x = 0 ) to a metallic ferromagnet ( x > 0.16 ) due to the induced charge carriers (holes). We employed neutron scattering experiments in order to investigate the effect of Sr doping on a tailor-made compound of composition La 0.7 S r 0.3 M n 0.1 Ti 0.3 G a 0.6 O 3 . By the simultaneous doping with S r 2 + and Ti 4 + ions, the compound remains in the insulating state so thatmore » the magnetic interactions for large Sr doping can be studied in the absence of charge carriers. At T C = 215 K , there is a first-order reconstructive phase transition from the trigonal R - 3 c structure to the orthorhombic Pnma structure via an intermediate virtual configuration described by the common monoclinic subgroup P2 1 / c . The magnetic excitations associated with Mn 3 + dimers give evidence for two different nearest-neighbor ferromagnetic exchange interactions, in contrast to the undoped compound LaM n y A 1 - y O 3 where both ferromagnetic and antiferromagnetic interactions are present. Furthemore, the doping-induced changes of the exchange coupling originates from different Mn-O-Mn bond angles determined by neutron diffraction. The large fourth-nearest-neighbor interaction found for metallic manganites is absent in the insulating state. Here, we argue that the Ruderman-Kittel-Kasuya-Yosida interaction reasonably accounts for all the exchange couplings derived from the spin-wave dispersion in metallic manganites.« less

  4. Doping dependence of the magnetic excitations in La 2 - x Sr x CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, D.; Miao, H.; Walters, A. C.

    The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high-temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La 2–xSr xCuO 4, spanning the doping phase diagram from the antiferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the antinodal direction. This phenomenology is discussed in terms of the nature of the magnetism inmore » the doped cuprates. As a result, survival of the high-energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low-energy excitations remains ambiguous.« less

  5. Doping dependence of the magnetic excitations in La 2 - x Sr x CuO 4

    DOE PAGES

    Meyers, D.; Miao, H.; Walters, A. C.; ...

    2017-02-15

    The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high-temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La 2–xSr xCuO 4, spanning the doping phase diagram from the antiferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the antinodal direction. This phenomenology is discussed in terms of the nature of the magnetism inmore » the doped cuprates. As a result, survival of the high-energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low-energy excitations remains ambiguous.« less

  6. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres

    NASA Astrophysics Data System (ADS)

    Feng, Yan-Nan; Wang, Huan-Chun; Luo, Yi-Dong; Shen, Yang; Lin, Yuan-Hua

    2013-04-01

    Ca-doped BiFeO3 nanofibres have been fabricated by electrospinning method. Our results indicate that phase transition from space group R3c to C222 can be observed by the Ca doping. These BiFeO3 nanofibres show obvious room temperature ferromagnetic behaviors, and saturation magnetization can be enhanced with the Ca-doping concentration increasing, which could be correlated with the variation of the ratio of Fe2+/Fe3+ valence state. The BiFeO3 nanofibres show obvious photocatalytic performance and can be improved by the Ca-doping.

  7. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    PubMed Central

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-01-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs. PMID:28401894

  8. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-04-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.

  9. Luminescent manganese-doped CsPbCl3 perovskite quantum dots.

    PubMed

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-04-12

    Nanocrystalline cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn 2+ or Co 2+ . Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl 4 ) to the QDs in toluene results in the formation of Mn‒doped CsPbCl 3 QDs showing bright orange Mn 2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn 2+ emission, with all features of the CsPbCl 3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn 2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.

  10. Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.

    2010-09-01

    Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.

  11. Formation mechanism and characteristics of lanthanum-doped BaTiO{sub 3} powders and ceramics prepared by the sol–gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ianculescu, Adelina Carmen; Vasilescu, Catalina Andreea, E-mail: katyvasilescu85@yahoo.com; National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG54, 077125 Magurele

    2015-08-15

    Pure and lanthanum-doped barium titanate nanopowders described by two different formulae, as Ba{sub 1−x}La{sub x}TiO{sub 3}, for lower La concentrations (0 ≤ x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} for higher La concentration (x = 0.025) were prepared by an alkoxide sol–gel method. Single phase compositions were obtained after annealing at 900 °C for 2 h, in air. The increase of the lanthanum content causes structural and morphological changes in the oxide powders, including the evolution of the unit cell from tetragonal toward a cubic symmetry, the particle size decrease and a higher aggregation tendency. SEM investigations ofmore » the ceramics sintered at 1300 °C for 4 h indicate significant changes of the microstructural features (strong decrease of the average grain size and increase of the intergranular porosity) with the raise of La amount. Lanthanum addition to barium titanate prepared by sol–gel induces a more significant shift of the Curie temperature toward lower values, than that one reported in literature for ceramics of similar compositions, but processed by the conventional solid state method. The compositions with smaller La amount (x ≤ 0.005) show semiconducting properties at room temperature and high relative dielectric permittivity values, while the undoped ceramics and those doped with higher La content (x = 0.025) are good dielectrics. The ceramic with x = 0.025 exhibits acceptable low losses, a very diffuse ferroelectric–paraelectric transition and Curie temperature closed to the room temperature, being thus susceptible for high tunability applications. - Highlights: • Ba{sub 1−x}La{sub x}TiO{sub 3} (x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} (x = 0.025) were prepared by sol–gel. • Ceramics with x < 0.5 exhibit semiconductor and high dielectric properties. • Ceramic with x = 0.025 exhibits acceptable low losses and diffuse phase transition.« less

  12. Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki

    2017-08-01

    We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.

  13. Field-Theoretical Studies of a doped Mott Insulator

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir

    2006-06-01

    In this thesis, the magnetic and the transport properties of La(2-x)Sr(x)CuO(4) in the undoped and lightly doped regime are investigated. In Chapter 2, we consider the role of the Dzyaloshinskii-Moriya (DM) and the pseudodipolar (XY) interactions in determining the magnetic properties of the undoped material, La(2)CuO(4), motivated by recent experiments, which show a complete anisotropy in the magnetic susceptibility response. We start with the microscopic spin model, which, besides the Heisenberg superexchange interaction, contains the anisotropic DM and the XY interactions. We map this microscopic model into a corresponding field theory, which turns out to be a generalized nonlinear sigma model. The effect of the anisotropies is to introduce gaps for the spin excitations, which are responsible for the ground-state properties of the material. When a magnetic field is applied, the DM anisotropy leads to an unexpected linear coupling of the staggered magnetization to the magnetic field, which is responsible for a completely anisotropic magnetic susceptibility, in agreement with experiments. In Chapter 3, we investigate the effect of the DM and the XY anisotropies on the magnetism when Sr doping is introduced in La(2)CuO(4). Our starting point is the nonlinear sigma model, which includes these anisotropies, and also the dopant holes, represented via an effective dipole field which couples to the background magnetization current. In the antiferromagnetic phase, x<2%, the dipole-magnetization current coupling leads to a decrease of the spin gaps, in good agreement with recent experiments. The DM gap gives rise to the stability of the antiferromagnetic state up to the doping level x=2%, at which the dipole field acquires a nonzero expectation value, causing a change in the magnetic ground state of the system. Beyond this doping concentration, the spins rearrange to form an incommensurate helicoidal state, which gives rise to two incommensurate peaks in the spin

  14. FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS

    NASA Astrophysics Data System (ADS)

    Gao, Qiongzhi; Liu, Xin; Liu, Wei; Liu, Fang; Fang, Yueping; Zhang, Shiying; Zhou, Wuyi

    2016-12-01

    In this work, the titanium dioxide (TiO2) nanofilms co-doped with Fe3+ and Bi3+ ions were successfully fabricated by the sol-gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of Fe3+ and Bi3+ ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure TiO2 nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with Fe3+ and Bi3+ ions were fabricated at the molar ratio of 3:1 (Fe3+:Bi3+), they exhibited the best photocatalytic activity after the heat treatment at 500∘C for 2h. The wettability property test indicated that the TiO2 nanofilms co-doped with Fe3+ and Bi3+ ions in the molar ratio 3:1 owned an excellent hydrophilic property.

  15. A novel blue-greenish emitting phosphor Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} with high thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Chao; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Hu, Yingmo, E-mail: huyingmo@cugb.edu.cn

    Highlights: • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} phosphors exhibit a broad excitation band. • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} emission color adjust from blue to green. • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} show superior thermal stability. - Abstract: Ba{sub 3}La{sub 1−m}K(PO{sub 4}){sub 3}F:mTb{sup 3+}(m = 0.01–0.50) phosphors have been prepared by a traditional high temperature solid-state reaction. XRD analysis verified the apatite-type phase structure of the as-prepared samples, and the morphology has been checked by the Scanning electron microscope (SEM). The emission spectrum of Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} phosphor consists of two regions, blue emission bandmore » from 380 to 470 nm and green emission band from 470 to 650 nm. With increasing Tb{sup 3+} ions doped concentration (m), the color hue of Ba{sub 3}La{sub 1−m}K(PO{sub 4}){sub 3}F:mTb{sup 3+}adjusts from blue to green. On the basis of concentration quenching method, the critical distance between Tb{sup 3+} ions is calculated to be 7.98 Å, suggesting that multipolar interaction predominate in quenching process. In addition, the temperature-dependence PL spectra of Ba{sub 3}LaK(PO{sub 4}){sub 3}F:0.01Tb{sup 3+} and Ba{sub 3}LaK(PO{sub 4}){sub 3}F:0.40Tb{sup 3+} phosphor are given,which exhibit superior thermal stability.« less

  16. Structural and optical characterization of Eu3+ doped beta-Ga2O3 nanoparticles using a liquid-phase precursor method.

    PubMed

    Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho

    2013-08-01

    Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.

  17. Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    2017-01-01

    The Yb3+-doped silica glass was prepared by the SiCl4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb3+-doped silica glass are studied at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×104 pm3, 1.39 pm2 and 0.56 ms, respectively. The Yb3+-doped microstructure fiber (MSF) was also fabricated by using the Yb3+-doped silica glass as fiber core. What's more, the laser properties of the Yb3+-doped MSF are studied.

  18. Effect of Gd2O3 doping on structure and boron volatility of borosilicate glass sealants in solid oxide fuel cells-A study on the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.

  19. Electronic Conductivity of Doped-Lanthanum Gallate Electrolytes

    NASA Astrophysics Data System (ADS)

    Yamaji, Katsuhiko; Xiong, Yue Ping; Kishimoto, Haruo; Horita, Teruhisa; Sakai, Natsuko; Brito, Manuel E.; Yokokawa, Harumi

    Electronic conductivity of doped lanthanum gallate electrolytes were determined by using a Hebb-Wagner type polarization cell. Electronic conductivity of cobalt-doped, La0.8Sr0.2Ga0.8Mg0.15Co0.5O3-δ (LSGMC), and non cobalt-doped, La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM8282), were measured as a function of oxygen partial pressures. The electronic conductivity of LSGM8282 showed a linear dependence on p(O2)1/4 in the higher p(O2) region, which is attributed to the electronic hole conductivity. The electronic conductivity of LSGMC showed a linear dependence on p(O2)1/6 in the higher p(O2) region. LSGMC has higher electronic conductivity than LSGM, and the conductivity was not clearly changed with temperatures between 600 and 800 °C. In lower p(O2) region, the electronic conductivity data have poor reproducibility and did not show any dependence on p(O2) because of the degradation of the electrolytes in severe reducing atmospheres.

  20. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than

  1. Investigation of compatible anode systems for LaNbO 4-based electrolyte in novel proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Magrasó, Anna; Fontaine, Marie-Laure

    In the current manufacturing process of novel LaNbO 4-based proton conducting fuel cells a thin layer of the electrolyte is deposited by wet ceramic coating on NiO-LaNbO 4 based anode and co-sintered at 1200-1300 °C. The chemical compatibility of NiO with acceptor doped LaNbO 4 material is crucial to ensure viability of the cell, so potential effects of other phases resulting from off-stoichiometry in acceptor doped LaNbO 4 should also be explored. Compatibility of NiO with Ca-doped LaNbO 4 and its typical off-set compositions (La 3NbO 7 and LaNb 3O 9) are investigated in this work. It is shown that while NiO does not react with Ca-doped LaNbO 4, fast reaction occurs with La 3NbO 7 or LaNb 3O 9. La 3NbO 7 and NiO form a mixed conducting perovskite phase LaNi 2/3Nb 1/3O 3, while LaNb 3O 9 and NiO form either NiNb 2O 6 or Ni 4Nb 2O 9 depending on the annealing temperature. This implies that manufacturing LaNbO 4-based proton conducting fuel cells requires a strict control of the stoichiometry of the electrolyte.

  2. Effects of rare earth ionic doping on microstructures and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Chen, Zhenping, E-mail: xrzbotao@163.com

    2015-06-15

    Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; xmore » = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.« less

  3. Imaging performance of a LaBr3-based PET scanner

    PubMed Central

    Daube-Witherspoon, M E; Surti, S; Perkins, A; Kyba, C C M; Wiener, R; Werner, M E; Kulp, R; Karp, J S

    2010-01-01

    A prototype time-of-flight (TOF) PET scanner based on cerium-doped lanthanum bromide [LaBr3 (5% Ce)] has been developed. LaBr3 has high light output, excellent energy resolution, and fast timing properties that have been predicted to lead to good image quality. Intrinsic performance measurements of spatial resolution, sensitivity, and scatter fraction demonstrate good conventional PET performance; the results agree with previous simulation studies. Phantom measurements show the excellent image quality achievable with the prototype system. Phantom measurements and corresponding simulations show a faster and more uniform convergence rate, as well as more uniform quantification, for TOF reconstruction of the data, which have 375-ps intrinsic timing resolution, compared to non-TOF images. Measurements and simulations of a hot and cold sphere phantom show that the 7% energy resolution helps to mitigate residual errors in the scatter estimate because a high energy threshold (>480 keV) can be used to restrict the amount of scatter accepted without a loss of true events. Preliminary results with incorporation of a model of detector blurring in the iterative reconstruction algorithm show improved contrast recovery but also point out the importance of an accurate resolution model of the tails of LaBr3’s point spread function. The LaBr3 TOF-PET scanner has demonstrated the impact of superior timing and energy resolutions on image quality. PMID:19949259

  4. Magneto-electronic phase separation in doped cobaltites

    NASA Astrophysics Data System (ADS)

    He, Chunyong

    This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase

  5. Mechanical behavior and electrical conductivity of La1-xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Siddhartha; Steinmetz, David; Kuebler, Jakob

    2010-01-01

    This paper compares the important mechanical properties and the electrical conductivities from room temperature to 800oC of four LaCoO3 based cobaltite compositions with 0, 20, 40 and 55% Ca2+ ions substituted on the A site of the perovskite structure respectively. Ca2+ doped lanthanum cobaltite materials are strong candidates for use as cathodes in lower temperature solid oxide fuel cells operating at or below 800oC. Among these four cobaltite compositions, two (LaCoO3 and La0.8Ca0.2CoO3) were found to be phase pure materials, whereas the remaining two compositions (La0.6Ca0.4CoO3 and La0.45Ca0.55CoO3) contained precipitation of secondary phases such as CaO and Co3O4. The mechanicalmore » properties of the four compositions, in terms of Young s modulus, four-point bending strength and fracture toughness measurements, were measured at both room temperature and 800oC. At room temperature, doping with Ca2+ was found to substantially increase the mechanical properties of the cobaltites, whereas at 800oC the pure LaCoO3 composition exhibited higher modulus and strength values than La0.8Ca0.2CoO3. All of the four compositions exhibited ferroelastic behavior, as shown by the hysteresis loops generated during uniaxial load-unload compression tests. Electrical conductivity measurements showed the La0.8Ca0.2CoO3 composition to have the highest conductivity among the four compositions.« less

  6. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue

  7. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials. PMID:24852112

  8. Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-23

    Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+:4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+-doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  9. HIGH-k GATE DIELECTRIC: AMORPHOUS Ta/La2O3 FILMS GROWN ON Si AT LOW PRESSURE

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Khorshidi, Zahra

    2014-09-01

    In the present study, Ta/La2O3 films (La2O3 doped with Ta2O5) as a gate dielectric were prepared using a sol-gel method at low pressure. Ta/La2O3 film has some hopeful properties as a gate dielectric of logic device. The structure and morphology of Ta/La2O3 films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical properties of films were performed using capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The optical bandgap of samples was studied by UV-visible optical absorbance measurement. The optical bandgap, Eopt, is determined from the absorbance spectra. The obtained results show that Ta/La2O3 film as a good gate dielectric has amorphous structure, good thermal stability, high dielectric constant (≈ 25), low leakage current and wide bandgap (≈ 4.7 eV).

  10. Magnetic interactions in La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr) manganites

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinsky, M. V.; Karpinsky, D. V.; Tereshko, N. V.; Dobryansky, V. M.; Többens, D. M.; Sikolenko, V.; Efimov, V.

    2015-11-01

    Magnetic properties and crystal structure of La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr; x≤0.3) have been studied by neutron powder diffraction and magnetization measurements. It is shown that substitution of manganese ions by chromium or gallium ions (x=0.3) leads to phase separation into antiferromagnetic and ferromagnetic phases whereas replacement by Fe ions stabilizes spin glass state (x=0.3). Ferromagnetic interactions in Cr-substituted compounds are much more pronounced than in Fe- and Ga-doped ones. Magnetic properties are discussed in the model assuming a dominance of superexchange interactions. It is considered that ferromagnetism in the Cr-substituted compositions is associated with nearly equal contributions from positive and negative components of the superexchange interaction between Mn3+ and Cr3+ ions as well as to mixed valence of chromium ions. The spin glass state observed for the Fe-doped sample (x=0.3) is associated with strong antiferromagnetic superexchange between Fe3+-O-Fe3+ and Fe3+-O-(Mn3+, Mn4+).

  11. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  12. Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation

    NASA Astrophysics Data System (ADS)

    Zmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Czajkowski, Karol; Ragin, Tomasz

    2013-10-01

    In the article analysis of UV absorption and visible fluorescence of Sm3+ and Tb3+ ions doped phosphate glass with molar composition: 65P2O5 + 8Al2O3 + 10BaO + 17(Na2O + MgO + ZnO) have been investigated. As a result of optical pumping fabricated glass with radiation from a deuterium lamp four luminescence bands were observed near to the wavelength of 600 nm for Sm3+ ions and 550 nm for Tb3+ ions. It was found that larger energy gap between laser and ground levels leads to the strongest emission in the visible range in terbium doped glasses than in glasses doped with samarium ions. Both fabricated glasses are characterized by the ability to selectively detect the radiation in the UV range.

  13. Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics

    NASA Astrophysics Data System (ADS)

    Serivalsatit, K.; Wasanapiarnpong, T.; Kucera, C.; Ballato, J.

    2013-05-01

    Transparent rare earth-doped Lu2O3 ceramics have received much attention for use in solid-state scintillator and laser applications. The fabrication of these ceramics, however, requires ultrafine and uniform powders as precursors. Presented here is the synthesis of Er-doped Lu2O3 nanopowders by a solution precipitation method using Er-doped lutetium sulfate solution and hexamethylenetetramine as a precipitant and the fabrication of Er-doped Lu2O3 transparent ceramics from these nanopowders. The precipitated precursors were calcined at 1100 °C for 4 h in order to convert the precursors into Lu2O3 nanoparticles with an average particle size of 60 nm. Thermal decomposition and phase evolution of the precursors were studied by simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Er-doped Lu2O3 transparent ceramics were fabricated from these nanopowders using vacuum sintering followed by hot isostatic pressing at 1700 °C for 8 h. The transparent ceramics exhibit an optical transmittance of 78% at a wavelength of 1.55 μm.

  14. Origin of doping-induced suppression and reemergence of magnetism in LaFeAsO 1 - x H x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chang-Youn; Park, Hyowon; Haule, Kristjan

    We investigate the evolution of magnetic properties as a function of hydrogen doping in the iron-based superconductor LaFeAsO 1-xH x using dynamical mean-field theory combined with density-functional theory. We find that two independent consequences of doping, namely the increase of the electron occupation and the structural modification, have the opposite effects on the strength of electron correlation and magnetism, resulting in the minimum of the calculated magnetic moment around the intermediate doping level as a function of x. Our result provides a natural explanation for the recent, puzzling experimental discovery of two separated antiferromagnetic phases at low and high dopingmore » limits. Furthermore, the increase of the orbital occupation and correlation strength with doping results in reduced orbital polarization of d(xz/yz) orbitals and an enhanced role of the d(xy) orbital in the magnetism at high doping levels, and their possible implications on the superconductivity are discussed in line with the essential role of the magnetism.« less

  15. Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.

    PubMed

    Esconjauregui, Santiago; D'Arsié, Lorenzo; Guo, Yuzheng; Yang, Junwei; Sugime, Hisashi; Caneva, Sabina; Cepek, Cinzia; Robertson, John

    2015-10-27

    We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers.

  16. Electronic structure and vacancy formation in La(1 - x) B(x) CoO3 (B=Mg,Ca,Ba and x=0.125)

    NASA Astrophysics Data System (ADS)

    Salawu, Omotayo; Gan, Liyong; Schwingenschlogl, Udo

    2015-03-01

    The LaCoO3 class of materials is of interest for cathodes of solid oxide fuel cells. Spin-polarized density functional theory is applied to cubic La0.75(Mg/Ca/Ba)0.125CoO3. The effect of this cation doping on the electronic and magnetic properties as well as oxygen vacancy formation energy is studied. Oxygen vacancies with proximity to the dopant are energetically favourable in most cases. We discuss the effect of distortions of the CoO6 octahedron on the electronic structure and the formation energy of oxygen vacancies. The order of formation oxygen is found to be Mg > Ca > Ba. Cation doping incorporates holes to the Co-O network which enhances the oxygen vacancy formation.

  17. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers

    PubMed Central

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-01-01

    A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846

  18. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.

    PubMed

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-05-03

    A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.

  19. Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods

    NASA Astrophysics Data System (ADS)

    Prasad, Neena; Karthikeyan, Balasubramanian

    2018-06-01

    Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.

  20. Structural, optical and photo thermal properties of Er3+:Y2O3 doped PMMA nanocomposite

    NASA Astrophysics Data System (ADS)

    Tabanli, Sevcan; Eryurek, Gonul

    2018-02-01

    Thermal decomposition technique was employed to synthesize of phosphors of yttria (Y2O3) doped with erbium (Er3+) ions. After the synthesized procedure, the nano-sized crystalline powders were annealed at 800oC for 24 h. Annealed powders were embedded in poly(methyl methacrylate) (PMMA) by free radical polymerization to fabricate nanocomposite polymer materials. The crystalline structure of the powder and doped PMMA nanocomposite samples were determined using X-ray diffraction technique. Scherrer's equation and the FW1/5/4/5M method were used to determine average crystalline size and grain size distributions, respectively. The spectroscopic properties of the powders and doped PMMA nanocomposites were studied by measuring the upconversion emission spectra under near-infrared laser excitation at room temperature. The laser-induced photo thermal behaviors of Er3+:Y2O3 nano-powders and doped PMMA nanocomposite were investigated using the fluorescence intensity ratio (FIR) technique.

  1. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies

    NASA Astrophysics Data System (ADS)

    Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria

    2014-02-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  2. Ferromagnetic interactions in chromium (III) doped YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Kaurav, N.; Okram, G. S.; Gaur, N. K.

    2016-05-01

    Both of the reported compounds with compositions YMn1-xCrxO3 (x = 0.1 and 0.2) are synthesized by using the conventional solid state reaction method and their magnetic properties are analyzed vigilantly. The XRD pattern reveals the hexagonal structure of the reported compounds with space group P63cm (25-1079). The in-depth analysis of the magnetic measurements reveals the enhancement in the ferromagnetic character with Cr doping in YMnO3 compounds. The observed enhancement in the ferromagnetism is found to be due to the increased double exchange interactions among the Cr3+ and Mn3+ ions with Cr doping.

  3. Unified electronic phase diagram for hole-doped high- Tc cuprates

    NASA Astrophysics Data System (ADS)

    Honma, T.; Hor, P. H.

    2008-05-01

    We have analyzed various characteristic temperatures and energies of hole-doped high- Tc cuprates as a function of a dimensionless hole-doping concentration (pu) . Entirely based on the experimental grounds, we construct a unified electronic phase diagram (UEPD), where three characteristic temperatures ( T∗ ’s) and their corresponding energies ( E∗ ’s) converge as pu increases in the underdoped regime. T∗ ’s and E∗ ’s merge together with the Tc curve and 3.5kBTc curve at pu˜1.1 in the overdoped regime, respectively. They finally go to zero at pu˜1.3 . The UEPD follows an asymmetric half-dome-shaped Tc curve, in which Tc appears at pu˜0.4 , reaches a maximum at pu˜1 , and rapidly goes to zero at pu˜1.3 . The asymmetric half-dome-shaped Tc curve is at odds with the well-known symmetric superconducting dome for La2-xSrxCuO4 (SrD-La214), in which two characteristic temperatures and energies converge as pu increases and merge together at pu˜1.6 , where Tc goes to zero. The UEPD clearly shows that pseudogap phase precedes and coexists with high temperature superconductivity in the underdoped and overdoped regimes, respectively. It is also clearly seen that the upper limit of high- Tc cuprate physics ends at a hole concentration that equals to 1.3 times the optimal doping concentration for almost all high- Tc cuprate materials and 1.6 times the optimal doping concentration for the SrD-La214. Our analysis strongly suggests that pseudogap is a precursor of high- Tc superconductivity, the observed quantum critical point inside the superconducting dome may be related to the end point of UEPD, and the normal state of the underdoped and overdoped high temperature superconductors cannot be regarded as a conventional Fermi liquid phase.

  4. Microscopic evidence of a strain-enhanced ferromagnetic state in LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Park, S.; Ryan, P.; Karapetrova, E.; Kim, J. W.; Ma, J. X.; Shi, J.; Freeland, J. W.; Wu, Weida

    2009-08-01

    Strain-induced modification of magnetic properties of lightly hole doped epitaxial LaCoO3 thin films on different substrates were studied with variable temperature magnetic force microscopy (MFM). Real space observation at 10 K reveals the formation of the local magnetic clusters on a relaxed film grown on LaAlO3 (001). In contrast, a ferromagnetic ground state has been confirmed for tensile-strained film on SrTiO3 (001), indicating that strain is an important factor in creating the ferromagnetic state. Simultaneous atomic force microscopy and MFM measurements reveal nanoscale defect lines for the tensile-strained films, where the structural defects have a large impact on the local magnetic properties.

  5. Energy transfer mechanism of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors

    NASA Astrophysics Data System (ADS)

    Prasad, V. Reddy; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Sm3+/Eu3+ co-doped calcium borophosphate phosphors were synthesized by solid state reaction method. 2CaO-B2O3-P2O5: Sm3+/Eu3+ co-doped phosphors were characterized by XRD, SEM, 31P solid state NMR, excitation, photoluminescence (PL) and decay profiles.. XRD profiles showed that the prepared phosphors exhibit a hexagonal phase in crystal structure and SEM results showed that the particles are more irregular morphologies. From 31P NMR spectra of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors, the chemical shifts located in the positive frequency region indicating the presence of mono-phosphate complexes Q0-(PO43 - ) . Photoluminescence spectra of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors show enhancement in emission intensity of Eu3+ ion due to co-doping with Sm3+ ions through energy transfer process. The energy level mechanism between Sm3+ and Eu3+ ions has been clearly explained. The energy transfer process has also been evidenced by lifetime decay profiles. These results suggest that the prepared phosphors are potential red luminescent optical materials.

  6. Poly(vinylidene fluoride)/ CaCu{sub 3}Ti{sub 4}O{sub 12} and La doped CaCu{sub 3}Ti{sub 4}O{sub 12} composites with improved dielectric and mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Anshuman; Jana, Karun Kumar; Maiti, Pralay

    2015-10-15

    Highlights: • High ϵ′ PVDF/CCTO and La doped CCTO composites prepared by Extrusion. • With addition of ceramic, there is substantial increase in the ϵ′ of matrix PVDF. • Composites exhibit double relaxation behavior. - Abstract: Melt extrusion process has been used to prepare high relative permittivity, ϵ' PVDF–CCTO and PVDF–LaCCTO composites. Phase composition has been studied using powder X-ray diffraction (XRD). Microstructural, dielectric and mechanical properties have also been studied. Young's modulus of PVDF increases with the ceramic reinforcement. Dielectric measurements are made in the frequency range 10{sup −2}–10{sup 6} Hz using two probe Novocontrol impedance analyser (ZG4) frommore » room temp to 120 °C to study the dielectric relaxation. There is a substantial increase in ϵ' of the matrix PVDF on addition of LaCCTO.« less

  7. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.

    PubMed

    Li, Mi; Zhuge, Fei; Zhu, Xiaojian; Yin, Kuibo; Wang, Jinzhi; Liu, Yiwei; He, Congli; Chen, Bin; Li, Run-Wei

    2010-10-22

    The resistive switching (RS) characteristics of a Bi(0.95)La(0.05)FeO(3) (La-BFO) film sandwiched between a Pt bottom electrode and top electrodes (TEs) made of Al, Ag, Cu, and Au have been studied. Devices with TEs made of Ag and Cu showed stable bipolar RS behaviors, whereas those with TEs made of Al and Au exhibited unstable bipolar RS. The Ag/La-BFO/Pt structure showed an on/off ratio of 10(2), a retention time > 10(5) s, and programming voltages < 1 V. The RS effect can be attributed to the formation/rupture of nanoscale metal filaments due to the diffusion of the TEs under a bias voltage. The maximum current before the reset process (on-to-off switching) was found to increase linearly with the current compliance applied during the set process (off-to-on switching).

  8. Optical and Physical Investigations of Lanthanum Bismuth Borate glasses doped with Ho2O3

    NASA Astrophysics Data System (ADS)

    Ramesh, P.; Jagannath, G.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Holmium doped 10La2O3-15Bi2O3-(75-x) B2O3 (Ho3+: LBB) glasses have been prepared by melt quench technique and the impact of holmium ions concentration on optical and physical properties of present glasses have been examined. Ho3+ dependent density, molar volume, refractive index, rare earth ion concentration, polaron radius, inter ionic distance, field strength and energy band gap are calculated and tabulated. Amorphous nature of the all glasses has been confirmed by XRD patterns. The room temperature (RT) Uv-Vis absorption spectrum doped with 1 mol% of Ho2O3 exhibit eight prominent bands centred at 895, 641, 537, 486, 472, 467, 451 and 416 due to transition between ground state to various excited states. The results show that, the density is increases and molar volume of the glasses is decreases with an increase in Ho2O3 concentration and consequently generate more non-bridging oxygen (NBOs) in the glass matrix. The Urbach energy is increases with holmium concentration which exemplifies the degree of disorder present in the LBB glasses. The considerable increase in field strength observed in present glasses is attributed to occurrence of strong bridge between Ho3+ and B- ions and this strong bridge is possibly due to the displacement between Ho3+ and oxygen atoms which are generated from the conversion BO3-BO4 units.

  9. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Yao, Chuanfei; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-04-01

    In this paper, we demonstrate ∼2 μm lasing in Tm3+-doped fluorotellurite microstructured fibers. The Tm3+-doped fibers are based on TeO2-BaF2-Y2O3 glasses and fabricated by using a rod-in-tube method. Under the pump of a 1570 nm Er3+-doped fiber laser, lasing at 1887 nm is obtained in a ∼42.5 cm long Tm3+-doped fiber with a threshold pump power of 94 mW. As the pump power increases to 780 mW, the obtained maximum unsaturated power reaches up to ∼408 mW with a slop efficiency of ∼58.1%. This result indicates that the Tm3+-doped fluorotellurite fibers are promising gain media for ∼2 μm fiber lasers.

  10. Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquids.

    PubMed

    Zhang, Lu-Lu; Zhou, Ying-Xian; Li, Tao; Ma, Di; Yang, Xue-Lin

    2018-03-28

    Multi-heteroatom (N, S and F) doped carbon coated Na 3 V 2 (PO 4 ) 3 (labeled as NVP/C-ILs) derived from an ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM]TF2N) has been successfully fabricated. The as-prepared Na 3 V 2 (PO 4 ) 3 particles are well dispersed and closely coated with a multi-heteroatom (N, S and F) doped carbon layer. As a cathode for sodium-ion batteries, the NVP/C-ILs electrode exhibits high reversible specific capacity (117.5 mA h g -1 at 1C), superior rate performance (93.4 mA h g -1 at 10C) and excellent cycling stability (∼95% capacity retention ratio at 10C over 1000 cycles). The impressive electrochemical performance of NVP/C-ILs can be attributed to effectively conductive networks for electrons and Na + ions induced by a joint effect of N, S and F doping on carbon. The use of multi-heteroatom doped carbon coated Na 3 V 2 (PO 4 ) 3 provides a facile and effective strategy for the fabrication of high performance electrode materials with low intrinsic electrical conductivity.

  11. Compensating vacancy defects in Sn- and Mg-doped In2O3

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; Galazka, Z.

    2014-12-01

    MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3 , however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.

  12. Design of LaPO4:Nd3+ materials by using ionic liquids

    NASA Astrophysics Data System (ADS)

    Cybinska, J.; Guzik, M.; Lorbeer, C.; Zych, E.; Guyot, Y.; Boulon, G.; Mudring, A.-V.

    2017-01-01

    Monoclinic monazite-type Nd3+-doped lanthanum orthophosphate (LaPO4:Nd3+) nanoparticles were prepared by microwave treatment of simple lanthanide precursors such as Nd(OAc)3•xH2O, OAc = acetate) with task-specific dihydrogen phosphate ionic liquids (ILs) 1-butyl-1-methylpyrrolidinium dihydrogenphosphate- BmPyrH2PO4 (IL1) and 2-hydroxyethyl-N,N,N-trimethylammonium, [choline][H2PO4] (IL2) as the reaction medium, reactant and in-situ nanoparticle stabilizer. This synthesis route possesses many advantages as it is a fast and facile preparation method of the desired phosphate nanomaterials without the necessity for post-reaction heat treatment to obtain the anhydrous high temperature monazite phosphate phase. The nano-sized phosphors Nd3+:LaPO4 were carefully analyzed by the powder X-ray diffraction, electron microscopy and spectroscopic techniques taking advantage of the Nd3+ spectroscopic probe to analyze in detail the structural properties. Applied high resolution low temperature absorption and emission techniques allowed to complete the structural information unavailable from the XRD powder patterns. A clear influence of the used task-specific dihydrogen phosphate ILs on the structure, morphology, luminescence intensity and lifetimes of the obtained Nd3+:LaPO4 was found. It is worth noting that the Nd3+ luminescence in LaPO4 has never been reported up to now.

  13. Investigation of the stability of Co-doped apatite ionic conductors in NH 3

    NASA Astrophysics Data System (ADS)

    Headspith, D. A.; Orera, A.; Slater, P. R.; Young, N. A.; Francesconi, M. G.

    2010-12-01

    Hydrogen powered solid oxide fuel cells (SOFCs) are of enormous interest as devices for the efficient and clean production of electrical energy. However, a number of problems linked to hydrogen production, storage and transportation are slowing down the larger scale use of SOFCs. Identifying alternative fuel sources to act as intermediate during the transition to the full use of hydrogen is, therefore, of importance. One excellent alternative is ammonia, which is produced on a large scale, is relatively cheap and has the infrastructure for storage and transportation already in place. However, considering that SOFCs operate at temperatures higher than 500 °C, a potential problem is the interaction of gaseous ammonia with the materials in the cathode, anode and solid electrolyte. In this paper, we extend earlier work on high temperature reactions of apatite electrolytes with NH 3 to the transition metal (Co) doped systems, La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5. A combination of PXRD, TGA and XAFS spectroscopy data showed a better structural stability for the silicate systems. Apatite silicates and germanates not containing transition metals tend to substitute nitride anions for their interstitial oxide anions, when reacted with NH 3 at high temperature and, consequentially, lower the interstitial oxide content. In La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5 reduction of Co occurs as a competing process, favouring lower levels of nitride-oxide substitution.

  14. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing

    NASA Astrophysics Data System (ADS)

    Jia, S. J.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Jiang, H. W.; Zhang, L.; Feng, Y.; Qin, G. S.; Ohishi, Y.; Qin, W. P.

    2018-01-01

    Ho3+ doped fluoroaluminate glass fibers based on chemically durable AlF3-BaF2-YF3-PbF2-MgF2-CaF2 glasses are fabricated by using a rod-in-tube method. By using an 84 cm long Ho3+-doped fluoroaluminate glass fiber as the gain medium and a 1120 nm fiber laser as the pump source, lasing at 2868 nm is obtained, the maximum unsaturated power is about 57 mW for a pump power of 1224 mW, and the corresponding slope efficiency is ~5.1%. The effect of the fiber length on lasing at 2868 nm is also investigated. Our results show that Ho3+-doped fluoroaluminate glass fibers are promising gain media for 2.9 µm laser applications.

  15. Computational study of the energetics and defect clustering tendencies for Y- and La-doped UO 2

    DOE PAGES

    Solomon, J. M.; Alexandrov, V.; Sadigh, B.; ...

    2014-07-24

    The energetics and defect-ordering tendencies in solid solutions of uoritestructured UO 2 with trivalent rare earth cations (M 3+=Y, La) are investigated computationally using a combination of ionic-pair-potential and densityfunctional- theory (DFT) based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions relative to Y, consistent with the di erences in experimentally measured solubility limits for the two systems. Additionally, calculations performed for di erent atomic con gurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent withmore » related calculations and calorimetry measurements in other trivalent-doped uorite-structured oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. The implications of these results are discussed in the context of the e ect of trivalent impurities on oxygen-ion mobilities in UO 2, which are relevant to the understanding of experimental observations concerning the e ect of trivalent ssion products on oxidative corrosion rates of spent nuclear fuel.« less

  16. The impact of nitrogen doping and reduced-niobium self-doping on the photocatalytic activity of ultra-thin Nb 3 O 8 - nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yannan; Wen, Ting; Kong, Weiqian

    Ultra-thin [Nb 3O 8] -nanosheets with N doping, reduced-Nb doping and N/reduced-Nb codoping were fabricated by combining chemically controlled syntheses and liquid exfoliation, which enable comparative studies on the doping effect for photocatalytic H 2evolution.

  17. Top gating control of superconductivity at the LaAlO3 /SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Jouan, Alexis; Hurand, Simon; Feuillet-Palma, Cheryl; Singh, Gyanendra; Lesueur, Jerome; Bergeal, Nicolas; Lesne, Edouard; Reyren, Nicolas

    2015-03-01

    Transition metal oxides display a great variety of quantum electronic behaviors. Epitaxial interfaces involving such materials give a unique opportunity to engineer artificial materials where new electronic orders take place. It has been shown that a superconducting two-dimensional electron gas could form at the interface of two insulators such as LaAlO3 and SrTiO3 [1], or LaTiO3 and SrTiO3 [2]. An important feature of these interfaces lies in the possibility to control their electronic properties, including superconductivity and spin-orbit coupling (SOC) with field effect [3-5]. However, experiments have been performed almost exclusively with a metallic gate on the back of the sample. In this presentation, we will report on the realization of a top-gated LaAlO3/SrTiO3 device whose physical properties, including superconductivity and SOC, can be tuned over a wide range of electrostatic doping. In particular, we will present a phase diagram of the interface and compare the effect of the top-gate and back-gate. Finally, we will discuss the field-effect modulation of the Rashba spin-splitting energy extracted from the analysis of magneto-transport measurements. Our result paves the way for the realization of mesoscopic devices where both superconductivity and SOC can be tuned locally.

  18. 2 inch size Czochralski growth and scintillation properties of Li+ co-doped Ce:Gd3Ga3Al2O12

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Shoji, Yasuhiro; Kochurikhin, Vladimir V.; Yoshino, Masao; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Nikl, Martin; Yoshino, Masao; Yoshikawa, Akira

    2017-03-01

    The 2 inch size Li 0.15 and 1.35 mol% co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by the Czochralski (Cz) method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Li co-doping. Ce4+ CT absorption below 350 nm is clearly enhanced by Li co-doping as same as divalent ions co-doping. By 1.35 at.% Li co-doping, light yield was decrease to 88% of the Ce: GAGG standard and decay time was accelerated to 34.3ns 21.0%, 84.6ns 68.7%, 480ns 10.3%. The timing resolution measurement for a pair of 3 × 3 × 3mm3 size Li,Ce:GAGG scintillator crystals was performed using Si-PMs and the timing resolution of the 1.35 at.% Li co-doped Ce:GAGG was 218ps.

  19. Microcolumnar and polycrystalline growth of LaBr3:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Miller, S.; Sia, R.; Gaysinskiy, V.

    2011-05-01

    While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.

  20. Towards Mott design by δ-doping of strongly correlated titanates

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Obermeyer, Michael

    2015-04-01

    Doping the distorted-perovskite Mott insulators LaTiO3 and GdTiO3 with a single SrO layer along the [001] direction gives rise to a rich correlated electronic structure. A realistic superlattice study by means of the charge self-consistent combination of density functional theory with dynamical mean-field theory reveals layer- and temperature-dependent multi-orbital metal-insulator transitions. An orbital-selective metallic layer at the interface dissolves via an orbital-polarized doped-Mott state into an orbital-ordered insulating regime beyond the two conducting TiO2 layers. We find large differences in the scattering behavior within the latter. Breaking the spin symmetry in δ-doped GdTiO3 results in blocks of ferromagnetic itinerant and ferromagnetic Mott-insulating layers that are coupled antiferromagnetically.

  1. Effects of magnetic impurities on upper critical fields in the high-T c superconductor La-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Jung, Soon-Gil; Shin, Soohyeon; Jang, Harim; Mikheenko, Pavlo; Johansen, Tom H.; Park, Tuson

    2017-08-01

    We investigate the effects of magnetic impurities on the upper critical field (μ 0 H c2) in La-doped CaFe2As2 (LaCa122) single crystals. The magnetic field dependency of the superconducting transition temperature (T c) for LaCa122 is rapidly suppressed at low fields up to ˜1 kOe despite its large μ 0 H c2(0) value on the order of tens of Tesla, resulting in a large positive curvature of μ 0 H c2(T) near T c. The magnetization hysteresis (M-H) loop at temperatures above T c shows a ferromagnetic-like signal and the M(H) value rapidly increases with increasing magnetic field up to ˜1 kOe. Taken together with the linear suppression of T c with the magnetization in the normal state, these results suggest that the large upward curvature of μ 0 H c2(T) near T c in La-doped CaFe2As2 mainly originates from the suppression of superconductivity due to the presence of magnetic impurities.

  2. Structural, optical and AFM characterization of PVA:La3+ polymer films

    NASA Astrophysics Data System (ADS)

    Ali, F. M.; Maiz, F.

    2018-02-01

    In this paper the structural and optical properties of pure Polyvinyl alcohol (PVA) and La3+-doped PVA films in the concentration range of 4%, 12% and 20% weight percent of Lanthanum were prepared by the conventional casting technique. X-ray diffraction pattern and atomic force microscopy studies of the investigated samples reveal their semi-crystalline nature. It is found that, absorption coefficient and cluster size of lanthanum:PVA composite increase with increasing salt concentration. However, the optical energy gap shows a slight decreasing trend.

  3. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    NASA Astrophysics Data System (ADS)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  4. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures.

    PubMed

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-06

    Silver-doped LaFeO 3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  5. Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Chul; Kim, Minwoo; Song, Young Jae; Hussain, Sajjad; Song, Woo-Seok; An, Ki-Seok; Jung, Jongwan

    2018-01-01

    Low contact resistance between metal-graphene contacts remains a well-known challenge for building high-performance two dimensional materials devices. In this study, CVD-grown graphene film was doped via AuCl3 solution selectively only to metal (Ti/Au) contact area to reduce the contact resistances without compromising the channel properties of graphene. With 10 mM-AuCl3 doping, doped graphene exhibited low contact resistivity of ∼897 Ω μm, which is lower than that (∼1774 Ω μm) of the raw graphene devices. The stability of the contact resistivity in atmospheric environment was evaluated. The contact resistivity increased by 13% after 60 days in an air environment, while the sheet resistance of doped graphene increased by 50% after 30 days. The improved stability of the contact resistivity of AuCl3-doped graphene could be attributed to the fact that the surface of doped-graphene is covered by Ti/Au electrode and the metal prevents the diffusion of AuCl3.

  6. In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg 2SnO 4)

    NASA Astrophysics Data System (ADS)

    Xu, P.; Tang, M.; Nino, J. C.

    2009-06-01

    Magnesium stannate spinel (Mg 2SnO 4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr 2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg 2SnO 4 was achieved at an ion dose of 5 × 10 19 Kr ions/m 2 at 50 K and 10 20 Kr ions/m 2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr 2+ ions in Mg 2SnO 4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg 2SnO 4 was finally compared with normal spinel MgAl 2O 4.

  7. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study

    NASA Astrophysics Data System (ADS)

    Materlik, Robin; Künneth, Christopher; Falkowski, Max; Mikolajick, Thomas; Kersch, Alfred

    2018-04-01

    III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.

  8. Fluorescence properties of Nd3+-doped tellurite glasses.

    PubMed

    Kumar, K Upendra; Prathyusha, V A; Babu, P; Jayasankar, C K; Joshi, A S; Speghini, A; Bettinelli, M

    2007-07-01

    The compositional and concentration dependence of luminescence of the (4)F(3/2)-->(4)I(J) (J=13/2, 11/2 and 9/2) transitions in four Nd(3+)-doped tellurite based glasses has been studied. The free-ion energy levels obtained for 60TeO(2)+39ZnO(2)+1.0Nd(2)O(3) (TZN10) glass have been analysed using the free-ion Hamiltonian model and compared with similar results obtained for Nd(3+):glass systems. The absorption spectrum of TZN10 glass has been analysed using the Judd-Ofelt theory. Relatively longer decay rates have been obtained for Nd(3+)-doped phosphotellurite glasses. The emission characteristics of the (4)F(3/2)-->(4)I(11/2) transition, of the Nd(3+):TZN10 glass, are found to be comparable to those obtained for Nd(3+):phosphate laser glasses. The non-exponential shape of the emission decay curves for the (4)F(3/2)-->(4)I(11/2) transition is attributed to the presence of energy transfer processes between the Nd(3+) ions.

  9. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.

    PubMed

    Melnikov, O V; Gorbenko, O Yu; Markelova, M N; Kaul, A R; Atsarkin, V A; Demidov, V V; Soto, C; Roy, E J; Odintsov, B M

    2009-12-15

    The purpose of this study was to introduce newly synthesized nanomaterials as an alternative to superparamagnetic ironoxide based particles (SPIO) and thus to launch a new platform for highly controllable hyperthermia cancer therapy and imaging. The new material that forms the basis for this article is lanthanum manganite particles with silver ions inserted into the perovskite lattice: La(1-x)Ag(x)MnO(3+delta). Adjusting the silver doping level, it is possible to control the Curie temperature (T(c)) in the hyperthermia range of interest (41-44 degrees C). A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) is suggested. New nanoparticles are stable, and their properties were not affected by the typical ambient conditions in the living tissue. It is possible to monitor the particle uptake and retention by MRI. When these particles are placed into an alternating magnetic field, their temperature increases to the definite value near T(c) and then remains constant if the magnetic field is maintained. During the hyperthermia procedure, the temperature can be restricted, thereby preventing the necrosis of normal tissue. A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) was suggested. Ag-doped perovskite manganites particles clearly demonstrated the effect of adjustable Curie temperature necessary for highly controllable cellular hyperthermia. The magnetic relaxation properties of the particles are comparable with that of SPIO, and so we were able to monitor the particle movement and retention by MRI. Thus, the new material combines the MRI contrast enhancement capability with targeted hyperthermia treatment.

  10. Synthesis and luminescent properties of Gd3Ga2Al3O12 phosphors doped with Eu3+ or Ce3+

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Kim, H. J.

    2016-09-01

    Eu3+-or Ce3+-doped gadolinium gallium aluminum garnet (GGAG), Gd3Ga2Al3O12, phosphors are fabricated using solid-state reactions with Gd2O3, Ga2O3, Al2O3, CeO2 and Eu2O3 powders. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning electron microscopy studies are carried out in order to analyze the physical properties of these materials, and their luminescence properties are also measured by using UV and X-ray sources. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors show higher light yields in comparison to commercial phosphors such as Gd2O2S:Tb (gadox). This indicates that Gd3Ga2Al3O12:Eu3+ phosphors are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

  11. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.

    PubMed

    Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang

    2015-04-14

    In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.

  12. Thermoelectric transport properties of BaBiTe{sub 3}-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn

    BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is alsomore » reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.« less

  13. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  14. Ce(3+) /Tb(3+) non-/single-/co-doped K-Lu-F materials: synthesis, optical properties, and energy transfer.

    PubMed

    Cao, Chunyan; Xie, An; Noh, Hyeon Mi; Jeong, Jung Hyun

    2016-08-01

    Using a hydrothermal method, Ce(3+) /Tb(3+) non-/single-/co-doped K-Lu-F materials have been synthesized. The X-ray diffraction (XRD) results suggest that the Ce(3+) and/or Tb(3+) doping had great effects on the crystalline phases of the final samples. The field emission scanning electron microscopy (FE-SEM) images indicated that the samples were in hexagonal disk or polyhedron morphologies in addition to some nanoparticles, which also indicated that the doping also had great effects on the sizes and the morphologies of the samples. The energy-dispersive spectroscopy (EDS) patterns illustrated the constituents of different samples. The enhanced emissions of Tb(3+) were observed in the Ce(3+) /Tb(3+) co-doped K-Lu-F materials. The energy transfer (ET) efficiency ηT were calculated based on the fluorescence yield. The ET mechanism from Ce(3+) to Tb(3+) was confirmed to be the dipole-quadrupole interaction inferred from the theoretical analysis and the experimental data. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Luminescence and scintillation properties of XPO4:Nd3+ (X = Y, Lu, Sc, La) crystals

    NASA Astrophysics Data System (ADS)

    Makowski, Michał; Witkowski, Marcin E.; Drozdowski, Winicjusz; Wojtowicz, Andrzej J.; Wisniewski, Krzysztof; Boatner, Lynn A.

    2018-05-01

    Due to their very fast short-wavelength emission, neodymium-doped materials are a subject of current interest as potential scintillators. Although the initial reports regarding neodymium-doped orthophosphates (in crystalline form) and their scintillation properties appeared almost twenty years ago, they remain an interesting class of materials since there is no in-depth understanding of their fundamental scintillation mechanism. In the present research, we focus on the crystalline systems: XPO4:Nd3+, where X = Y, Lu, La, Sc. The pulse height, optical absorption, radioluminescence and photoluminescence spectra were investigated and are reported here for various temperatures from 10 to 350 K. Additionally, results of both low and high temperature thermoluminescence measurements are reported in this communication.

  16. Nanomagnetic Droplets and Implications to Orbital Ordering in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Louca, Despina; Rosenkranz, S.; Lee, S.-H.; Qiu, Y.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.; Copley, J. R. D.; Sarrao, J. L.; Moritomo, Y.

    2006-01-01

    Inelastic cold-neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic correlations that are dynamic follow the activation to the excited state, identified as the intermediate S=1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La1-xSrxCoO3, the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.

  17. Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Young, T.; Sharma, P.; Kim, D. H.; Ha, Thai Duy; Juang, Jenh-Yih; Chu, Y.-H.; Seidel, J.; Nagarajan, V.; Yasui, S.; Itoh, M.; Sando, D.

    2018-02-01

    We present a comprehensive study of the physical properties of epitaxial cobalt-doped BiFeO3 films ˜50 nm thick grown on (001) LaAlO3 substrates. X-ray diffraction and magnetic characterization demonstrate high quality purely tetragonal-like (T') phase films with no parasitic impurities. Remarkably, the step-and-terrace film surface morphology can be fully recovered following a local electric-field-induced rhombohedral-like to T' phase transformation. Local switching spectroscopy experiments confirm the ferroelectric switching to follow previously reported transition pathways. Critically, we show unequivocal evidence for conduction at domain walls between polarization variants in T'-like BFO, making this material system an attractive candidate for domain wall-based nanoelectronics.

  18. [Structure and luminescence properties of Ga2O3 : Cr3+ by Al doping].

    PubMed

    Wang, Xian-Sheng; Wan, Min-Hua; Wang, Yin-Hai; Zhao, Hui; Hu, Zheng-Fa; Li, Hai-Ling

    2013-11-01

    The Al doping gallate phosphor (Ga(1-x)Al(x))2O3 : Cr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by a high temperature solid-state reaction method. The X-ray diffractions show that the phase of the phosphors remains to be Ga2 O3 structure with increase in the contents of Al3+ ion. Beside, the fact that the X-ray diffraction peak shifts towards big angles with increasing Al3+ ions content shows that Al3+ ions entered the Ga2 O3 lattice. The peaks of the excitation spectra located at 258, 300, 410 and 550 nm are attributed to the band to band transition of the matrix, charge transfer band transition, and 4A2 --> 4T1 and 4A2 --> 4T2 transition of Cr3+ ions, respectively. Those excitation spectrum peak positions show different degrees of blue shift with the increase in the Al3+ ions content. The blue shift of the first two peaks are due to the band gap energy of substrate and the electronegativity between Cr3+ ions and ligands increasing, respectively. The blue shift of the energy level transition of Cr3+ ion is attributed to crystal field strength increasing. The Cr3+ ion luminescence changes from a broadband emission to a narrow-band emission with Al3+ doping, because the emission of Cr3+ ion changed from 4 T2 --> 4A2 to 2E --> 4A2 transition with the crystal field change after Al3+ ions doping. The Al3+ ions doping improved the long afterglow luminescence properties of samples, and the sample showed a longer visible near infrared when Al3+ ions content reaches 0.5. The thermoluminescence curve shows the sample with suitable trap energy level, and this is also the cause of the long afterglow luminescence materials.

  19. Transparent Al+3 doped MgO thin films for functional applications

    NASA Astrophysics Data System (ADS)

    Maiti, Payel; Sekhar Das, Pradip; Bhattacharya, Manjima; Mukherjee, Smita; Saha, Biswajit; Mullick, Awadesh Kumar; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work reports the utilization of a relatively simple, cost effective sol-gel technique based route to synthesize highly transparent, spin coated 4.1 at% Al+3 doped MgO thin films on quartz substrates. The films were characterized by XRD, XPS, Raman spectroscopy, and SIMS techniques. The microstructures were characterized by FESEM and TEM while the nanomechanical properties were assessed by the nanoindentation technique. Finally the optical transmittance was measured by UV-vis technique. The x-ray diffraction (XRD) study suggests the crystal facet (2 0 0) of MgO lattice to be distorted after incorporation of Al+3 into MgO lattice. From FESEM the doped films were found to have a dense microstructure with a crystallite size of about 20 nm as revealed by the TEM studies. Nanoindentation measurements indicated drastic increase of elastic modulus for the Al+3 doped MgO thin films by ~73% compared to that of the pristine MgO thin films along with retaining the nanohardness at ~8 GPa. The transmittance of Al+3 doped MgO thin films in the visible range was significantly higher (~99%) than that of pristine MgO (~90%) thin films. The films also had a relatively higher refractive index of about 1.45 as evaluated from the optical properties. The enhanced transmittance as well as the improved elastic modulus of Al+3 doped MgO thin films suggest its promising candidature in magnetic memory devices and as buffer layers of solar cells.

  20. Tunable color emission via energy transfer in co-doped Ce3+/Dy3+: Li2O-LiF-B2O3-ZnO glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Srinivasa Rao, K.; Hwang, Pyung

    2017-10-01

    A set of co-doped (Ce3+/Dy3+): LBZ glasses were prepared by standard melt quenching technique. The pertinent absorption bands were observed in the optical absorption spectrum of co-doped Ce3+/Dy3+: LBZ glasses. We have been observed a prominent blue and yellow emission pertaining to Dy3+ ions at 0.5 mol % under the excitation of 385 nm doped glasses. However, the photoluminescence intensities were remarkably enhanced by co-doping with Ce3+ ions to Dy3+: LBZ glasses due to energy transfer from Ce3+ to Dy3+. The emission spectra of co-doped (Ce3+/Dy3+): LBZ glass exhibits three strong emissions at 440 nm, 480 nm and 574 nm which are assigned with corresponding electronic transitions of 4I15/2 → 6H15/2, 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 respectively. The Commission International de E'clairage coordinates were calculated from their emission spectra of single doped Dy3+ and co-doped (Ce3+/Dy3+): LBZ glasses. The obtained CIE chromaticity coordinates for optimized co-doped glass are found to be very close to the standard white region. Based on the concentration of Ce3+, the emitting color of the co-doped glass can be changed from blue to white color. The transformation of the color from blue to white region due to energy transfer from Ce3+ to Dy3+. The energy transfer mechanism was substantiated by various fluorescence dynamics such as overlapped spectral profiles, photoluminescence, lifetime decay and CIE color coordinate analysis. These results could be suggested that the obtained co-doped (Ce3+/Dy3+): LBZ glasses are promising candidates for commercial white light applications.

  1. LD-cladding-pumped 50 pm linewidth Tm 3+ -doped silica fiber laser.

    PubMed

    Yunjun, Zhang; Baoquan, Yao; Youlun, Ju; Hui, Zhou; Yuezhu, Wang

    2008-05-26

    We report on a Tm(3+)-doped fiber laser source operating at 1936.4 nm with a very narrow linewidth (50 pm) laser output. Up to 2.4 W cw laser power was obtained from an 82 cm long Tm(3+)-doped multimode-core fiber cladding pumped by a 792 nm laser diode (LD). The fiber laser cavity included a high-reflective dichroic and a low-reflective FBG output coupler. The multimode fiber Bragg grating (FBG) transmission spectrum and output laser spectrum were measured. By adjusting the distance between the dichroic and the Tm(3+)-doped fiber end, the multipeak laser spectrum changed to a single-peak laser spectrum.

  2. Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics.

    PubMed

    Xu, Long; Zhao, Hua; Xu, Caixia; Zhang, Siqi; Zou, Yingyin K; Zhang, Jingwen

    2014-02-01

    A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.

  3. Infrared photorefractive effect in doped KNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Medrano, C.; Zgonik, M.; Liakatas, I.; Günter, P.

    1996-11-01

    The photorefractive sensitivity of potassium niobate crystals doped with Ce, Co, Cu, Fe, Mn, Ni, and Rh and double-doped with Mn and Rh is investigated over an extended spectral range. We present experimental evidence on extrinsic properties important for the photorefractive effect, such as absorption and effective trap density. Photorefractive gratings are investigated with two-wave mixing experiments. Results on exponential gain, response time, and photorefractive sensitivity at near-infrared wavelengths are reported. The best photorefractive sensitivities at 860 and 1064 nm were obtained in crystals doped with Rh, Fe, Mn, and Mn-Rh. This makes them suitable for applications at laser-diode wavelengths; at 1064 nm, however, Rh:KNbO3 shows a better photorefractive sensitivity than the others. .

  4. Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.

  5. Observation of the quantum Hall effect in δ-doped SrTiO3

    PubMed Central

    Matsubara, Y.; Takahashi, K. S.; Bahramy, M. S.; Kozuka, Y.; Maryenko, D.; Falson, J.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M.

    2016-01-01

    The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems. PMID:27228903

  6. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  8. Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C3N4 Nanocomposites.

    PubMed

    Kong, Ji-Zhou; Zhai, Hai-Fa; Zhang, Wei; Wang, Shan-Shan; Zhao, Xi-Rui; Li, Min; Li, Hui; Li, Ai-Dong; Wu, Di

    2017-09-06

    N-doped ZnO/g-C 3 N 4 composites have been successfully prepared via a facile and cost-effective sol-gel method. The nanocomposites were systematically characterized by XRD, FE-SEM, HRTEM, FT-IR, XPS, and UV-vis DRS. The results indicated that compared with the pure N-doped ZnO, the absorption edge of binary N-doped ZnO/g-C 3 N 4 shifted to a lower energy with increasing the visible-light absorption and improving the charge separation efficiency, which would enhance its photocatalytic activity. Compared with the pure g-C 3 N 4 , ZnO, N-doped ZnO and the composite ZnO/g-C 3 N 4 , the as-prepared N-doped ZnO/g-C 3 N 4 exhibits a greatly enhanced photocatalytic degradation of methylene blue and phenol under visible-light irradiation. Meanwhile, N-doped ZnO/g-C 3 N 4 possesses a high stability. Finally, a proposed mechanism for N-doped ZnO/g-C 3 N 4 is also discussed. The improved photocatalysis can be attributed to the synergistic effect between N-doped ZnO and g-C 3 N 4 , including the energy band structure and enhanced charge separation efficiency.

  9. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi

    2014-09-01

    Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.

  10. Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors

    PubMed Central

    Mi, Cong-Cong; Tian, Zhen-huang; Han, Bao-fu; Mao, Chuan-bin; Xu, Shu-kun

    2012-01-01

    Polyethyleneimine (PEI) functionalized multicolor luminescent LaF3 nanoparticles were synthesized via a novel microwave-assisted method, which can achieve fast and uniform heating under eco-friendly and energy efficient conditions. The as-prepared nanoparticles possess a pure hexagonal structure with an average size of about 12 nm. When doped with different ions (Tb3+ and Eu3+), the morphology and structure of the nanoparticles were not changed, whereas the optical properties varied with doped ions and their molar ratio, and as a result emission of four different colors (green, yellow, orange and red) were achieved by simply switching the types of doping ions (Eu3+ versus Tb3 +) and the molar ratio of the two doping ions. PMID:22879690

  11. Ferromagnetism of vanadium doped Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Liguo; Zhao, Dapeng; Zang, Yunyi; Yuan, Yonghao; Jiang, Gaoyuan; He, Ke; Ma, Xucun; Xue, Qikun

    Bi2Se3 is a representative three-dimensional topological insulator with a bulk band gap of about 300 meV. The quantum anomalous Hall effect (QAHE) has never been realized in Bi2Se3-based magnetic topological insulators due to the difficulties in introducing ferromagnetism in them. With molecular beam epitaxy (MBE), we have grown vanadium-doped Bi2Se3 films with decent crystalline quality and homogeneous distribution of V impurities. The films are all electron-doped and show square-shaped hysteresis loops of Hall resistance with coercivity up to 0.2T at 2K, indicating ferromagnetism with perpendicular magnetic anisotropy in them. Both the ferromagnetism and anomalous Hall resistance are enhanced by decreasing electron density. We have systematically studied the magneto-transport properties of the films with varying V concentration, film thickness, and carrier density and discussed the mechanism of ferromagnetic coupling. The study demonstrates that V-doped Bi2Se3 films are candidate QAHE materials if their electron density can be further reduced. This work was supported by National Natural Science Foundation of China.

  12. Tunable emission in Ln3+ (Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor synthesized by combustion method

    NASA Astrophysics Data System (ADS)

    Kolte, M. M.; Pawade, V. B.; Bhattacharya, A. B.; Dhoble, S. J.

    2018-05-01

    Ln3+ (Ln = Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor has been synthesized by Combustion method (CS) at 550° C successfully. Ln3+ (Ln = Ce3+, Dy3+, Tb3+) ions when doped in KNa3Al4Si4O16 host lattice, it shows blue and green emission band under the near Ultraviolet (NUV) excitation wavelength. The Photoluminescence excitation (PLE) and emission spectra are observed due to f-f and d-f transition of rare earth ions. Also, an effective energy transfer (ET) study from Ce3+ → Dy3+ and Ce3+ → Tb3+ ions has been studied and confirmed on the basis of Dexter-Foster theory. Further synthesized phosphor is well characterized by XRD, SEM, TEM and decay time measurement. However, the analysis of crystallite size, lattice strain has been studied by using theoretical as well as experimental techniques. Hence, the observed tunable emission in Ln3+ doped KNa3Al4Si4O16 phosphor may be applicable for solid state lighting technology.

  13. Metal-insulator transition, giant negative magnetoresistance, and ferromagnetism in LaCo1-yNiyO3

    NASA Astrophysics Data System (ADS)

    Hammer, D.; Wu, J.; Leighton, C.

    2004-04-01

    We have investigated the transport and magnetic properties of the perovskite LaCo1-yNiyO3, an alloy of LaCoO3 (a semiconductor that exhibits spin-state transitions) and LaNiO3 (a paramagnetic metal). The metal-insulator transition (MIT) was found to occur at y=0.40. On the insulating side of the transition the conductivity obeys Mott variable range hopping with a characteristic temperature (T0) that varies with y in a manner consistent with the predictions of the scaling theory of electron localization. On the metallic side the low temperature conductivity (down to 0.35 K) varies as T1/2 due to the effects of electron-electron interaction in the presence of disorder. The composition dependence of the low-temperature conductivity in the critical region fits the scaling theory of electron localization with a conductivity critical exponent close to unity, consistent with the scaling of T0 in the insulating phase. A large negative magnetoresistance is observed (up to 70% in 17 T) which increases monotonically with decreasing temperature and is smoothly decreased through the MIT. The magnetic properties show that doping LaCoO3 with Ni leads to a rapid destruction of the low spin-state for Co3+ ions, followed by the onset of distinct ferromagnetic interactions at higher Ni content. Similar to La1-xSrxCoO3, the system shows a smooth evolution from spin-glass to ferromagnetic ground states, which is interpreted in terms of the formation of ferromagnetic clusters. In contrast to La1-xSrxCoO3 further doping does not lead to a bulk ferromagnetlike state with a large TC, despite the clear existence of ferromagnetic interactions. We suggest that this is due to a limitation of the strength of the ferromagnetic interactions, which could be related to the fact that Ni rich clusters are not thermodynamically stable. The ferromagnetic clusters in LaCo1-yNiyO3 do not percolate with increasing y explaining the lack of a high-TC ferromagnetic state and the fact that the MIT is a simple

  14. Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jun Sung; Seo, Sung Seok A; Chisholm, Matthew F

    2010-01-01

    We report magnetotransport properties of heterointerfaces between the Mott insulator LaTiO{sub 3} and the band insulator SrTiO{sub 3} in a delta-doping geometry. At low temperatures, we have found a strong nonlinearity in the magnetic field dependence of the Hall resistivity, which can be effectively controlled by varying the temperature and the electric field. We attribute this effect to multichannel conduction of interfacial charges generated by an electronic reconstruction. In particular, the formation of a highly mobile conduction channel revealed by our data is explained by the greatly increased dielectric permeability of SrTiO{sub 3} at low temperatures and its electric fieldmore » dependence reflects the spatial distribution of the quasi-two-dimensional electron gas.« less

  15. Studies on up/down-conversion emission of Yb3+ sensitized Er3+ doped MLa2(MoO4)4 (M = Ba, Sr and Ca) phosphors for thermometry and optical heating

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-01-01

    The photoluminescence properties of Yb3+ sensitized Er3+ doped BaLa2(MoO4)4, SrLa2(MoO4)4 and CaLa2(MoO4)4 phosphors synthesized via hydrothermal method are investigated upon 980 nm and 380 nm light excitations. The phase, purity, and morphology of the samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Field emission scanning electron microscope. Among these three phosphors, the strongest emission intensity is seen in BaLa2(MoO4)4: Er3+/Yb3+ through both the 980 nm and 380 nm light excitations and is explained by the lifetime measurement of 4S3/2 level of Er3+ ion. Temperature sensing measurements were performed by using the fluorescence intensity ratio (FIR) of green emission bands originated from the two thermally coupled 2H11/2 → 4I15/2 and 4S3//2 → 4I15/2 transitions of Er3+ and maximum temperature sensitivity of 1.05% K-1 at 305 K is found for BLa2(MoO4)4: Er3+/Yb3+ sample. Moreover, the laser induced heating is measured in the samples and the maximum temperature of the sample particles is calculated as 422 K at 76 W/cm2 in BaLa2(MoO4)4: Er3+/Yb3+, pointing out large amount of heat generation in such phosphors. The BaLa2(MoO4)4: Er3+/Yb3+ also exhibits higher photothermal conversion efficiency of 46.7%.

  16. AuCl3 doping-induced conductive unstability for CVD-grown graphene on glass substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqing; Liu, Xianming; Cao, Xueying; Zhang, Peng; Lei, Xiaohua; Chen, Weimin

    2017-09-01

    Graphene is a candidate material for next-generation high performance transparent conducting film (TCF) to replace indium tin oxide (ITO) materials. However, the sheet resistance of large area graphene obtained by the chemical vapor deposition (CVD) method is higher than other kinds of TCFs. The main strategies for improving the electrical conductivity of graphene films have been based on various doping treatments. AuCl3 is one of the most effective dopants. In this paper, we investigate the influence of AuCl3 doping on the conductive stability of CVD-grown graphene. Large area graphene film synthesized by CVD and transferred to glass substrates is taken as experimental sample. AuCl3 in nitromethane is used to dope the graphene films to improve the electrical conductivity. Another sample without doping is prepared for comparison. The resistances of graphene under periodic visible light irradiation with and without AuCl3 doping are measured. Results show that the resistances for all samples increase exponentially under lighting, while decrease slowly in an exponential form as well after the light is switched off. The relative resistance changes for undoped and doped samples are compared under 445nm light irradiation with 40mW/cm2, 60mW/cm2, 80mW/cm2, 100mW/cm2 in atmosphere and vacuum. The change rate and degree for doped graphene are greater than that of undoped graphene. It is evident from the experimental data that AuCl3 doping may induce conductive unstability for CVD-grown graphene on glass substrate.

  17. Positron annihilation measurements in La 2-xSr xCuO 4 as a function of Sr doping

    NASA Astrophysics Data System (ADS)

    Bharathi, A.; Janaki, J.; Vasumathi, D.; Hariharan, Y.

    1989-12-01

    Results of positron annihilation, room temperature resistivityP(300K) and superconducting transition temperature (T c) measurements are presented in the La sbnd Sr sbnd Cu sbnd O system, as a function of Sr doping. The correlation in these parameters are understood as arising from changes in the carrier concentration.

  18. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    PubMed Central

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-01-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 → 2I15/2 and 4S3/2 → 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K−1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers. PMID:24572638

  19. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    NASA Astrophysics Data System (ADS)

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-02-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 --> 2I15/2 and 4S3/2 --> 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K-1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  20. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method.

    PubMed

    Gavrilović, Tamara V; Jovanović, Dragana J; Lojpur, Vesna; Dramićanin, Miroslav D

    2014-02-27

    Synthesis of Eu(3+)- and Er(3+)/Yb(3+)-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu(3+)-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er(3+)/Yb(3+)-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from (2)H11/2 → (2)I15/2 and (4)S3/2 → (4)I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K(-1), which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.