Sample records for la-icp-ms u-pb dating

  1. Reply to Comment on "Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on the 0.1 Ma Toya Tephra, Japan"

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi

    2015-04-01

    Guillong et al. (2015) mentioned that corrections for abundance sensitivity for 232Th and molecular zirconium sesquioxide ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon for LA-ICP-MS analyses. There is no denying that more rigorous treatments are necessary to obtain more reliable ages than those in Ito (2014). However, as shown in Fig. 2 in Guillong et al. (2015), the uncorrected (230Th)/(238U) for reference zircons except for Mud Tank are only 5-20% higher than unity. Since U abundance of Toya Tephra zircons that have U-Pb ages < 1 Ma is in-between that of FCT and Plesovice, the overestimation of 230Th by both abundance sensitivity and molecular interferences is expected to be 5-20% for the Toya Tephra. Moreover Ito (2014) obtained U-Th ages of the Toya Tephra by comparison with Fish Canyon Tuff (FCT) data. Because both the FCT and the Toya Tephra have similar trends of overestimation of 230Th, the effect of overestimation of 230Th to cause overestimation of U-Th age should be cancelled out or negligible. Therefore the pivotal conclusion in Ito (2014) that simultaneous U-Pb and U-Th dating using LA-ICP-MS is possible and useful for Quaternary zircons holds true.

  2. Breaking through the uncertainty ceiling in LA-ICP-MS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, M.

    2016-12-01

    Sources of systematic uncertainty associated with session-to-session bias are the dominant contributor to the 2% (2s) uncertainty ceiling that currently limits the accuracy of LA-ICP-MS U-Pb geochronology. Sources include differential downhole fractionation (LIEF), `matrix effects' and ablation volume differences, which result in irreproducibility of the same reference material across sessions. Current mitigation methods include correcting for LIEF mathematically, using matrix-matched reference materials, annealing material to reduce or eliminate radiation damage effects and tuning for robust plasma conditions. Reducing the depth and volume of ablation can also mitigate these problems and should contribute to the reduction of the uncertainty ceiling. Reducing analysed volume leads to increased detection efficiency, reduced matrix-effects, eliminates LIEF, obviates ablation rate differences and reduces the likelihood of intercepting complex growth zones with depth, thereby apparently improving material homogeneity. High detection efficiencies (% level) and low sampling volumes (20um box, 1-2um deep) can now be achieved using MC-ICP-MS such that low volume ablations should be considered part of the toolbox of methods targeted at improving the reproducibility of LA-ICP-MS U-Pb geochronology. In combination with other strategies these improvements should be feasible on any ICP platform. However, reducing the volume of analysis reduces detected counts and requires a change of analytical approach in order to mitigate this. Appropriate strategies may include the use of high efficiency cell and torch technologies and the optimisation of acquisition protocols and data handling techniques such as condensing signal peaks, using log ratios and total signal integration. The tools required to break the 2% (2s) uncertainty ceiling in LA-ICP-MS U-Pb geochronology are likely now known but require a coherent strategy and change of approach to combine their implementation and realise

  3. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc (Greece)

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Von Quadt, A.; Peytcheva, I.; Bachmann, O.

    2014-12-01

    Zircon Pb-U dating has become a key technique for answering many important questions in geosciences. This paper describes a new LA-ICP-MS approach. We show, using previously dated samples of a large quaternary rhyolitic eruption in the Kos-Nisyros volcanic centre (the 161 ka Kos Plateau Tuff), that the precision of our LA-ICP-MS method is as good as via SHRIMP, while ID-TIMS measurements confirm the accuracy. Gradational age distribution over >140 ka of the Kos zircons and the near-absence of inherited cores indicate near-continuous crystallisation in a growing magma reservoir with little input from wall rocks. Previously undated silicic eruptions from Nisyros volcano (Lower Pumice, Nikia Flow, Upper Pumice), which are stratigraphically constrained to have happened after the Kos Plateau Tuff, are dated to be younger than respectively 124 ± 35 ka, 111 ± 42 ka and 70 ± 24 ka. Samples younger than 1 Ma were corrected for initial thorium disequilibrium using a new formula that also accounts for disequilibrium in 230Th decay. Guillong, M. et al., 2014, JAAS, 29, p. 963-967; doi: 10.1039/c4ja00009a.

  4. Allanite age-dating: Non-matrix-matched standardization in quadrupole LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Burn, M.; Lanari, P.; Pettke, T.; Engi, M.

    2014-12-01

    Allanite Th-U-Pb age-dating has recently been found to be powerful in unraveling the timing of geological processes such as the metamorphic dynamics in subduction zones and crystallization velocity of magmas. However, inconsistencies among analytical techniques have raised doubts about the accuracy of allanite age data. Spot analysis techniques such as LA-ICP-MS are claimed to be crucially dependent on matrix-matched standards, the quality of which is variable. We present a new approach in LA-ICP-MS data reduction that allows non-matrix-matched standardization via well constrained zircon reference materials as primary standards. Our data were obtained using a GeoLas Pro 193 nm ArF excimer laser ablation system coupled to an ELAN DRC-e quadrupole ICP-MS. We use 32 μm and 24 μm spot sizes; laser operating conditions of 9 Hz repetition rate and 2.5 J/cm2 fluence have proven advantageous. Matrix dependent downhole fractionation evolution is empirically determined by analyzing 208Pb/232Th and 206Pb/238U and applied prior to standardization. The new data reduction technique was tested on three magmatic allanite reference materials (SISSb, CAPb, TARA); within error these show the same downhole fractionation evolution for all allanite types and in different analytical sessions, provided measurement conditions remain the same. Although the downhole evolution of allanite and zircon differs significantly, a link between zircon and allanite matrix is established by assuming CAPb and TARA to be fixed at the corresponding reference ages. Our weighted mean 208Pb/232Th ages are 30.06 ± 0.22 (2σ) for SISSb, 275.4 ± 1.3 (2σ) for CAPb, and 409.9 ± 1.8 (2σ) for TARA. Precision of single spot age data varies between 1.5 and 8 % (2σ), dependent on spot size and common lead concentrations. Quadrupole LA-ICP-MS allanite age-dating has thus similar uncertainties as do other spot analysis techniques. The new data reduction technique is much less dependent on quality and homogeneity

  5. Effective LA-ICP-MS dating of common-Pb bearing accessory minerals with new data reduction schemes in Iolite

    NASA Astrophysics Data System (ADS)

    Kamber, Balz S.; Chew, David M.; Petrus, Joseph A.

    2014-05-01

    Compared to non-destructive geochemical analyses, LA-ICP-MS consumes ca. 0.1 μm of material per ablation pulse. It is therefore to be expected that the combined analyses of ca. 200 pulses will encounter geochemical and isotopic complexities in all but the most perfect minerals. Experienced LA-ICP-MS analysts spot down-hole complexities and choose signal integration areas accordingly. In U-Pb geochronology, the task of signal integration choice is complex as the analyst wants to avoid areas of common Pb and Pb-loss and separate true (concordant) age complexity. Petrus and Kamber (2012) developed VizualAge as a tool for reducing and visualising, in real time, U-Pb geochronology data obtained by LA-ICP-MS as an add-on for the freely available U-Pb geochronology data reduction scheme of Paton et al. (2010) in Iolite. The most important feature of VizualAge is its ability to display a live concordia diagram, allowing users to inspect the data of a signal on a concordia diagram as the integration area it is being adjusted, thus providing immediate visual feedback regarding discordance, uncertainty, and common lead for different regions of the signal. It can also be used to construct histograms and probability distributions, standard and Tera-Wasserburg style concordia diagrams, as well as 3D U-Th-Pb and total U-Pb concordia diagrams. More recently, Chew et al. (2014) presented a new data reduction scheme (VizualAge_UcomPbine) with much improved common Pb correction functionality. Common Pb is a problem for many U-bearing accessory minerals and an under-appreciated difficulty is the potential presence of (possibly unevenly distributed) common Pb in calibration standards, introducing systematic inaccuracy into entire datasets. One key feature of the new method is that it can correct for variable amounts of common Pb in any U-Pb accessory mineral standard as long as the standard is concordant in the U/Pb (and Th/Pb) systems after common Pb correction. Common Pb correction

  6. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ

  7. New Robust Reference Materials for In Situ Single Grain Rutile U-Pb Geochronology and Method Refinements for Detrital Rutile Analysis by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Parrish, R. R.; Bracciali, L.; Condon, D. J.; Horstwood, M. S.; Najman, Y.

    2012-12-01

    While rutile (TiO2) occurs in the heavy mineral suite of detrital sediments and originates mainly in medium- to high-grade metamorphic and some igneous rocks, there are very few applications of U-Pb dating of rutile to provenance studies; this is due to an overreliance on zircon, low U content of rutile limiting measurement quality by in situ methods, a higher proportion of common Pb relative to zircon, and a lack of widely available good quality reference materials. We have addressed these issues and characterized two ~ 1.8 Ga rutile reference materials by SEM, trace elements, U-Pb ID-TIMS, and intra-grain and inter-grain U-Pb LA-MC-ICP-MS analysis using mixed faraday and multiple ion counting detectors with high sensitivity. We have assessed U-Pb discordance and in situ variations in relative common Pb and age and their bearing on the quality of the reference materials for in situ U-Pb dating. The rutiles (Sugluk-4 and PCA-S207) come from granulite facies belts of the Canadian Shield, namely the northern Cape Smith Belt of Quebec and the Snowbird Tectonic Zone (Sasatchewan). The ID-TIMS data are slightly discordant due to variable common Pb and limited Pb loss; the variation in 6 single grains of Sugluk-4, that we use as the primary reference material, is <1% in 206Pb/238U, and <2% for 207Pb/206Pb (95 % conf.); after common Pb correction these variations are <1%. The measured variations are smaller than in existing reference materials (i.e. R10) in current use. LA-ICP-MC-MS data (n ~ 500 for each) have a reproducibility of 206Pb/238U and 207Pb/206Pb of ~2-4% (at the 2S level), which is only modestly worse than long-term data for multiple zircon standards, this being due to the real variation in measured values arising from limited Pb loss, age variation, and common Pb variability [1]. We have applied our refined method to the provenance of rutile from drainages from British Columbia, Bhutan, and the Brahmaputra River of NE India (predominant rutile ages ~ 50, 15

  8. Comment on "Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on 0.1 Ma Toya Tephra, Japan" by Hisatoshi Ito

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Schmitt, A. K.; Bachmann, O.

    2015-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of eight zircon reference materials and synthetic zircon-hafnon end-members indicate that corrections for abundance sensitivity and molecular zirconium sesquioxide ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. Other polyatomic interferences in the mass range 223-233 amu are insignificant. When corrected for abundance sensitivity and interferences, activity ratios of (230Th)/(238U) for the zircon reference materials we used average 1.001 ± 0.010 (1σ error; mean square of weighted deviates MSWD = 1.45; n = 8). This includes the 91500 and Plešovice zircons, which were deemed unsuitable for calibration of (230Th)/(238U) by Ito (2014). Uranium series zircon ages generated by LA-ICP-MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th such as those presented by Ito (2014) are potentially unreliable.

  9. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France)

    NASA Astrophysics Data System (ADS)

    Paquette, J.-L.; Ballèvre, M.; Peucat, J.-J.; Cornen, G.

    2017-12-01

    In the Variscan belt of Western Europe, the lifetime and evolution of the oceanic domain is poorly constrained by sparse, outdated and unreliable multigrain ID-TIMS U-Pb zircon dating. In this article, we present a complete in situ LA-ICP-MS dataset of about 300 U-Pb zircon analyses obtained on most of the ophiolitic and eclogitic outcrops of Southern Brittany, comprising new dating of previously published zircon populations and newly discovered rock samples. In situ dating and cathodo-luminescence imaging of each zircon grain yields new absolute time-constraints on the evolution of the Galicia-Moldanubian Ocean. The new results confirm that the opening of this oceanic domain is well defined at about 490 Ma. In contrast, the generally-quoted 400-410 Ma-age for the high-pressure event related to the subduction of the oceanic crust is definitely not recorded in the zircons of the eclogites. In light of these new data, we propose that the obduction of oceanic rocks occurred at about 370-380 Ma while the high-pressure event is recorded at 355 Ma in only a few zircon grains of some eclogite samples. Additionally, this large scale dating project demonstrates that the zircons from eclogites do not systematically recrystallise during the high pressure event and consequently their U-Pb systems do not record that metamorphism systematically. These zircons rather preserve the isotopic memory of the magmatic crystallization of their igneous protolith. Another example of an eclogite sample from the French Massif Central illustrates the frequent mistake in the interpretation of the ages of the early hydrothermal alteration of zircons in the oceanic crust versus partial or complete recrystallization during eclogite facies metamorphism.

  10. Simultaneous in situ determination of both U-Th-Pb and Sm-Nd isotopes in monazite by laser ablation using a magnetic sector ICP-MS and a multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Goudie, D. J.; Fisher, C. M.; Hanchar, J. M.; Davis, W. J.; Crowley, J. L.; Ayers, J. C.

    2012-12-01

    We present a method for the simultaneous in situ determination of U-Th-Pb and Sm-Nd isotopes in monazite, using a laser ablation (LA) system coupled to both a magnetic sector inductively coupled plasma mass spectrometer (HR) ICP-MS and a multicollector (MC) ICP-MS. The ablated material is split using a glass Y-connector and transported simultaneously to both mass spectrometers via helium carrier gas. The MC-ICP-MS is configured to provide relative Ce, Gd, and Eu contents, in addition to Sm and Nd. This approach obtains both age (U-Pb), tracer isotope (Sm-Nd), and REE element data (Ce, Gd, and Eu), in the same ablation volume, thus reducing sampling problems associated with fine-scale zoning and other internal structures. The accuracy and precision of the U-Pb data are demonstrated using six well characterized monazite reference materials from the Geological Survey of Canada (three of which are currently used as SHRIMP standards) and agree well with previously determined ID-TIMS ages. The accuracy of the Sm-Nd isotopic data was assessed by comparison to TIMS measurements on a well-characterized in-house monazite standard. The dual LA-ICP-MS method was applied to the Birch Creek Pluton (BCP) in the White Mountains, California in a case study to test the utility of U-Th-Pb dating coupled with Sm-Nd (and Ce, Gd, Eu) isotopic data for solving geologic problems. Previous work on the Cretaceous BCP [1] used Th-Pb ages coupled with O isotopic data to constrain hydrothermal fluid events, as recorded in monazite. The original study suggested that the high delta 18O monazite in Paleozoic country rocks adjacent to the BCP grew in response to fluid alternation associated with the intrusion of the BCP, based on overlapping age with the BCP. New monazite split-stream U-Pb and Sm-Nd data show that monazite from the BCP pluton and monazite from altered country rock have homogenous and overlapping initial Nd isotopic composition, further strengthening the proposal that monazite in

  11. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  12. Prospects for dating monazite via single-collector HR-ICP-MS

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Vervoort, J. D.

    2006-12-01

    ICP-MS analysis permits rapid and precise dating of minerals with high U and Th contents. Here we describe a new method for in situ determination of 206Pb/238U, 207Pb/^{235}U, ^{208}Pb/232Th, and 207Pb/206Pb ages in monazite via laser ablation (New Wave Research UP-213 laser system), single-collector, magnetic sector ICP-MS (ThermoFinnigan Element2), using spot sizes of 8-30 μm, a repetition rate of 5 Hz, and a fluence of 10 J/cm2. Based on analysis of 9 monazite samples of known ages ranging from 280 to 1800 Ma, analytical precision (single sample) is ±2-3% (2σ), and reproducibility (single sample) is ±2-4% (2σ), yielding age precisions of ±3- 5% (2σ) for single points, or ±1-2% (2 s.e.) for pooled multiple analyses (n > 4). Issues of accuracy are paramount. 207Pb/206Pb ages are consistently the most accurate and agree to ±2% with accepted TIMS ages. In contrast, 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages can differ by as much as ±5% (2σ), a problem that has also been observed for SIMS Th-Pb dating. The sources of the interelement standardization disparities among monazites remain enigmatic, but do not result from molecular interferences on Pb, U, or Th peaks. Unresolvable mass interference between 204Pb and trace contaminant 204Hg in commercial Ar gas precludes precise common Pb corrections. Instead common Pb corrections are made assuming concordancy between 207Pb/^{235}U and either 206Pb/238U or ^{208}Pb/232Th ages. The new method offers rapid analysis (~1 minute), minimal sample preparation (polished thin section), and high sensitivity. Comparatively large errors on the 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages will likely restrict analysis of younger monazite grains (<250 Ma) to applications where 5% accuracy is sufficient. Older grains (c. 500 Ma and older) can be dated more precisely and accurately using 207Pb/206Pb. One application to young materials involves dating a large vein monazite from the Llallagua tin district of Bolivia

  13. In situ Pb-Pb dating of rutile from slowly cooled granulites by LA-MC-ICP-MS: confirmation of the high closure temperature (>=600°C) for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, J.; Baker, J.; Waight, T.

    2003-04-01

    We have analysed Pb isotopes in natural rutile crystals by laser ablation MC-ICP-MS to assess the potential of rapid Pb-Pb dating of rutile with this method. The rutile samples are from granulite-facies Mg- and Al-rich rocks from the Reynolds Range, Northern Territory, Australia. This metamorphic terrane has a well-constrained high-T cooling history (ca. 3^oC/Myr) defined by previous U-Pb dating of monazite and zircon (peak metamorphism at 1584 Ma), which we have supplemented with additional Rb-Sr dates of phlogopite, biotite and muscovite. The dated rutiles vary in size from 3 to 0.05 mm, have Pb concentrations of ca. 20 ppm, and were analysed with a 266 nm laser coupled to an AXIOM MC-ICP-MS (spot size of 200-50 μm). Individual larger crystals (>= 200 μm) exhibit sufficient Pb isotopic heterogeneity (206Pb/204Pb = 10000-80000) to perform isochron calculations on several short analyses of a single grain (30-60 s). The largest rutiles yielded Pb-Pb isochron ages of 1540-1555 Ma with typical uncertainties of ± 1 to 10 Ma. 207Pb/206Pb ages are typically within 1% of the Pb-Pb isochron ages testifying to the radiogenic nature of Pb in the rutile. A mean age for all the analysed rutiles was 1548.4 ± 9.1 Ma (n = 33). Comparable 207Pb/206Pb ages were also obtained from individual smaller crystals (50 μm) where the 204Pb ion beam could not be measured precisely. The results demonstrate that even small rutile crystals are extremely resistant to isotopic resetting, and that this mineral is a high-T chronometer. Phlogopite and muscovite Rb-Sr ages are <1454 and 1400-1480 Ma, respectively, with some of the phlogopite and biotite micas having been partially reset by later thermal events younger than 400 Ma. All the mica ages are considerably younger (100-70 My) than the rutile ages, which approach U-Pb ages for monazite and zircon overgrowths, even though the mica closure temperatures (350-500^oC) are comparable or slightly higher than earlier geological estimates [1] of

  14. U-Pb Dating of Calcite by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kylander-Clark, A. R.; Holder, R. M.; Nuriel, P.

    2016-12-01

    An emerging frontier area in geochronology is U-Pb dating of carbonate minerals by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The spate of papers over the last few years applying LA-ICPMS to carbonate dating stems from the capability of LA-ICPMS to deal with the variable, and often low, U/Pb ratios of carbonate. LA-ICPMS is an excellent tool for efficiently screening out samples with low U/Pb ratios and provides the ability to measure many spots with different U/Pb ratios and obtain dates free of assumptions about the composition of common Pb. Because this technique is in its infancy, important questions remain. What percentage of carbonate samples have high enough U/Pbc ratios that they can be dated? What percentage of samples yield isochronous datasets? What are the limits on precision and accuracy of carbonate U/Pb dates? What is the best analytical method in the absence of isotopically homogeneous reference materials? Through the generosity of our colleagues we have acquired 8 reference materials ranging in age from 3 to 250 Ma. We have analyzed 125 unknowns from a variety of locations using a 193 nm ns laser with an 80-100 μm spot and a Nu Plasma HR-ES. We measure 207Pb/206Pb using NIST 614 glass and then calculate a 206Pb/238U correction factor based on the measured vs. known ages of the reference materials. Sixty of these samples ( 50%) have high enough U/Pb ratios that they can be dated. There is great heterogeneity among the sample suites: some have no datable samples, whereas one suite of 68 samples yielded 53 datable rocks. Of the samples with high U/Pbc ratios, a majority yielded isochronous U-Pb data, indicating that the U-Pb system closed at a given time and was not subsequently disturbed.

  15. Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS.

    PubMed

    Trejos, Tatiana; Montero, Shirly; Almirall, José R

    2003-08-01

    The discrimination potential of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is compared with previously reported solution ICP-MS methods using external calibration (EC) with internal standardization and a newly reported solution isotope dilution (ID) method for the analysis of two different glass populations. A total of 91 different glass samples were used for the comparison study; refractive index and elemental composition were measured by the techniques mentioned above. One set consisted of 45 headlamps taken from a variety of automobiles that represents a range of 20 years of manufacturing dates. A second set consisted of 46 automotive glasses (side windows, rear windows, and windshields) representing casework glass from different vehicle manufacturers over several years. The element menu for the LA-ICP-MS and EC-ICP-MS methods include Mg, Al, Ca, Mn, Ce, Ti, Zr, Sb, Ga, Ba, Rb, Sm, Sr, Hf, La, and Pb. The ID method was limited to the analysis of two isotopes each of Mg, Sr, Zr, Sb, Ba, Sm, Hf, and Pb. Laser ablation analyses were performed with a Q switched Nd:YAG, 266 nm, 6 mJ output energy laser. The laser was used in depth profile mode while sampling using a 50 microm spot size for 50 sec at 10 Hz (500 shots). The typical bias for the analysis of NIST 612 by LA-ICP-MS was less than 5% in all cases and typically better than 5% for most isotopes. The precision for the vast majority of the element menu was determined generally less than 10% for all the methods when NIST 612 was measured (40 microg x g(-1)). Method detection limits (MDL) for the EC and LA-ICP-MS methods were similar and generally reported as less than 1 microg x g(-1) for the analysis of NIST 612. While the solution sample introduction methods using EC and ID presented excellent sensitivity and precision, these methods have the disadvantages of destroying the sample, and also involve complex sample preparation. The laser ablation method was simpler, faster, and

  16. Intra-grain Common Pb Correction and Detrital Apatite U-Pb Dating via LA-ICPMS Depth Profiling

    NASA Astrophysics Data System (ADS)

    Boyd, P. D.; Galster, F.; Stockli, D. F.

    2017-12-01

    Apatite is a common accessory phase in igneous and sedimentary rocks. While apatite is widely employed as a low-temperature thermochronometric tool, it has been increasingly utilized to constrain moderate temperature cooling histories by U-Pb dating. Apatite U-Pb is characterized by a thermal sensitivity window of 375-550°C. This unique temperature window recorded by the apatite U-Pb system, and the near-ubiquitous presence of apatite in igneous and clastic sedimentary rocks makes it a powerful tool able to illuminate mid-crustal tectono-thermal processes. However, as apatite incorporates only modest amounts of U and Th (1-10s of ppm) the significant amounts of non-radiogenic "common" Pb incorporated during its formation presents a major hurdle for apatite U-Pb dating. In bedrock samples common Pb in apatite can be corrected for by the measurement of Pb in a cogenetic mineral phase, such as feldspar, that does not incorporate U or from determination of a common Pb composition from multiple analyses in Tera-Wasserburg space. While these methods for common Pb correction in apatite can work for igneous samples, they cannot be applied to detrital apatite in sedimentary rocks with variable common Pb compositions. The obstacle of common Pb in apatite has hindered the application of detrital apatite U-Pb dating in provenance studies, despite the fact that it would be a powerful tool. This study presents a new method for the in situ correction of common Pb in apatite through the utilization of novel LA-ICP-MS depth profiling, which can recover U-Pb ratios at micron-scale spatial resolution during ablation of a grain. Due to the intra-grain U variability in apatite, a mixing line for a single grain can be generated in Tera-Wasserburg Concordia space. As a case study, apatite from a Variscan alpine granite were analyzed using both the single and multi-grain method, with both methods giving identical results. As a second case study the intra-grain method was then performed

  17. LA-ICP-MS-derived U-concentrations and microstructural domains within biogenic aragonite of Arctica islandica shell.

    PubMed

    Helama, Samuli; Heikkilä, Pasi; Rinne, Katja; Nielsen, Jan Kresten; Nielsen, Jesper Kresten

    2015-05-01

    Understanding of the uranium uptake processes (both in vivo and post-mortem) into the skeletal structures of marine calcifiers is a subject of multi-disciplinary interest. U-concentration changes within the molluscan shell may serve as a paleoceanographic proxy of the pH history. A proxy of this type is needed to track the effects of fossil fuel emissions to ocean acidification. Moreover, attaining reliable U-series dates using shell materials would be a geochronological breakthrough. Picturing the high-resolution changes of U-concentrations in shell profiles is now possible by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Here, we analyzed in situ U-concentration variations in sub-fossilized shells of ocean quahog (Arctica islandica), a commonly studied bivalve species in Quaternary geoscience, using LA-ICP-MS. Microstructural details of the shell profiles were achieved by the scanning electron microscopy (SEM). Comparison of the shell aragonite microstructure with the changes in U-concentration revealed that uranium of possibly secondary origin is concentrated into the porous granular layers of the shell. Our results reinforce the hypothesis that U-concentration variations can be linked with microstructural differences within the shell. A combination of LA-ICP-MS and SEM analyses is recommended as an interesting approach for understanding the U-concentration variations in similar materials.

  18. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    fractionation are challenges in apatite U-Pb dating by LA-ICPMS. Isochron-based approaches to common Pb correction require a significant spread in common Pb / radiogenic Pb ratios. This is not usually possible on individual detrital apatite grains and hence the 204Pb-, 207Pb- and 208Pb-correction methods are preferred. Uranium concentration measurements by ICPMS employ large peak jumps (the internal standard is a Ca isotope) which require a quadrupole or a rapid-scanning magnetic-sector LA-ICPMS system. These single-collector instruments require a prohibitively long dwell time on the low intensity 204Pb peak to measure it accurately and hence the 207Pb- and 208Pb-correction methods are preferred. Uranium-concentration measurements in fission-track dating require well-constrained ablation depths during analysis and hence spot analyses are preferred to rastering. Laser-induced U-Pb fractionation is corrected for by sample-standard bracketing using a variety of apatite standards (Durango, Emerald Lake, Fish Canyon Tuff, Kovdor, Otter Lake and McClure Mountain syenite). Of these, Emerald Lake (Chew et al., 2011) and McClure Mountain syenite apatite are recommended as primary standards with Durango apatite making a suitable secondary standard. Offline data-reduction uses custom-written software for ICPMS data processing (the UPbICP package of Ray Donelick) or the freeware IOLITE data-reduction package of Paton et al. (2010).

  19. Small Volume Isotopic Analysis of Zircon Using LA-MC-ICP-MS U-Pb and Lu-Hf and Sub-ng Amounts of Hf in Solution

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Horstwood, M. S.

    2016-12-01

    Crust-mantle evolution studies are greatly informed by zircon U-Pb and Lu-Hf isotopic datasets and the ease with which these data can now be acquired has seen their application become commonplace. In order to deconvolute geochemical change and interpret geologic variation in complexly zoned zircons, this information is most ideally obtained on the smallest volume of zircon by successive SIMS U-Pb and LA-MC-ICP-MS Lu-Hf isotopic analyses. However, due to variations in zircon growth zone geometry at depth, the Lu-Hf analysis may not relate to the lower volume U-Pb analysis, potentially causing inaccuracy of the resultant age-corrected Hf isotope signature. Laser ablation split-stream methods are applied to be certain that U-Pb and Lu-Hf data represent the same volume of zircon, however, the sampling volume remains relatively large at 40x30µm1. Coupled ID-TIMS U-Pb and solution MC-ICP-MS Lu-Hf work traditionally utilize whole-zircon dissolution ( 10-50ng Hf), which has the potential to homogenize different zones of geologic significance within an analysis. Conversely, modern ID-TIMS U-Pb methods utilize microsampling of zircon grains, often providing < 5ng Hf, thereby challenging conventional Lu-Hf acquisition protocols to achieve the required precision. In order to obtain usable precision on minimal zircon volumes, we developed laser ablation methods using successive 25um spot U-Pb and Lu-Hf ablation pits with a combined depth of 18um, and low-volume solution introduction methods without Hf-REE separation utilizing Hf amounts as low as 0.4ng, while retaining an uncertainty level of ca. 1 ɛHf for both methods. We investigated methods of Yb interference correction and the potential for matrix effects, with a particular focus on the accurate quantification of 176Lu/177Hf. These improvements reduce the minimum amount of material required for U-Pb and Hf isotopic analysis of zircon by about an order of magnitude. 1Ibanez-Mejia et al (2015). PreRes, 267, 285-310.

  20. QEMSCAN+LA-ICP-MS: a 'big data' generator for sedimentary provenance analysis

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter; Rittner, Martin; Garzanti, Eduardo

    2017-04-01

    Sedimentary provenance may be traced by 'fingerprinting' sediments with chemical, mineralogical or isotopic means. Normally, each of these provenance proxies is characterised on a separate aliquot of the same sample. For example, the chemical composition of the bulk sample may be analysed by X-ray fluorescence (XRF) on one aliquot, framework petrography on another, heavy mineral analysis on a density separate of a third split, and zircon U-Pb dating on a further density separate of the heavy mineral fraction. The labour intensity of this procedure holds back the widespread application of multi-method provenance studies. We here present a new method to solve this problem and avoid mineral separation by coupling a QEMSCAN electron microscope to an LA-ICP-MS instrument and thereby generate all four aforementioned provenance datasets as part of the same workflow. Given a polished hand specimen, a petrographic thin section, or a grain mount, the QEMSCAN+LA-ICP-MS method produces chemical and mineralogical maps from which the X-Y coordinates of the datable mineral are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic and, hence, geochronological analysis. In the process of finding all the zircons in a sediment grain mount, the QEMSCAN yields the compositional and mineralogical compositions as byproducts. We have applied the new QEMSCAN+LA-ICP-MS instrument suite to over 100 samples from three large sediment routing systems: (1) the Tigris-Euphrates river catchments and Rub' Al Khali desert in Arabia; (2) the Nile catchment in northeast Africa and (3) desert and beach sands between the Orange and Congo rivers in southwest Africa. These studies reveal (1) that Rub' Al Khali sand is predominantly derived from the Arabian Shield and not from Mesopotamia; (2) that the Blue Nile is the principal source of Nile sand; and (3) that Orange River sand is carried northward by longshore drift nearly 1,800km from South Africa to southern

  1. Coupling of Uranium and Thorium Series Isotope Systematics for Age Determination of Late Pleistocene Zircons using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Hirakawa, S.; Iwano, H.; Danhara, T.; Hirata, T.

    2014-12-01

    Zircon U-Th-Pb dating method is one of the most important tools for estimating the duration of magmatism by means of coupling of uranium, actinium and thorium decay series. Using U-Pb dating method, its reliability is principally guaranteed by the concordance between 238U-206Pb and 235U-207Pb ages. In case of dating Quaternary zircons, however, the initial disequilibrium effect on 230Th and 231Pa should be considered. On the other hands, 232Th-208Pb dating method can be a simple but powerful approach for investigating the age of crystallization because of negligible influence from initial disequilibrium effect. We have developed a new correction model for accurate U-Pb dating of the young zircon samples by taking into consideration of initial disequilibrium and a U-Pb vs Th-Pb concordia diagram for reliable age calibration was successfully established. Hence, the U-Th-Pb dating method can be applied to various zircons ranging from Hadean (4,600 Ma) to Quaternary (~50 ka) ages, and this suggests that further detailed information concerning the thermal history of the geological sequences can be made by the coupling of U-Th-Pb, fission track and Ar-Ar ages. In this presentation, we will show an example of U-Th-Pb dating for zircon samples from Sambe Volcano (3 to 100 ka), southwest Japan and the present dating technique using LA-ICP-MS.

  2. Determination of 238u/235u, 236u/238u and uranium concentration in urine using sf-icp-ms and mc-icp-ms: an interlaboratory comparison.

    PubMed

    Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David

    2006-02-01

    Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein.

  3. Temporal and Spatial Fluctuations in Ancestral Northern Cascade Arc Magmatism from New LA-ICP-MS U-Pb Zircon Dating

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; Mullen, E.; Jean-Louis, P.; Tepper, J. H.

    2015-12-01

    Mt. Baker and the adjacent Chilliwack batholith (MBC focus) in NW Washington preserve the longest magmatic record in the Cascade Arc, providing an excellent natural laboratory for examining the spatial, temporal and geochemical evolution of Cascade magmatism and links to tectonic processes. We present new U-Pb zircon LA-ICP-MS ages for 14 samples from MBC and neighboring regions of the north Cascades. The new results are up to 8 Myr different from previous K-Ar ages, illustrating the need for new age determinations in the Cascades. A maximum age of 34.74±0.24 Ma (2σ) (Post Creek stock) is consistent with 35-40 Ma ages for arc inception in the southern Cascades. The most voluminous MBC plutons cluster at 32-29 Ma, consistent with an early flare-up that also coincides with intrusion of the Index batholith farther south (2 samples at 33.26±0.19, 33.53±0.15 Ma). This flare-up is absent in the northernmost Cascades where the oldest pluton (Fall Creek stock) is 6.646±0.046 Ma, 4 Myr younger than previously cited. Earliest Cascade magmatism is progressively younger to the north of MBC, possibly tracing the northerly passage of the slab edge. MBC activity was continuous to 22.75±0.17 Ma (Whatcom Arm), marking the initiation of an 11 Myr hiatus. Magmatism resumed at 11.33±0.08 Ma (Indian Creek) and continued to the modern Mt. Baker cone, defining a pattern of southwesterly migration over ~55 km that may be attributable to slab rollback and arc rotation (e.g. Wells & McCaffrey 2013). Uniformity of the rate and direction of migration implies that rollback and rotation began at least 11 Myr ago. Post-hiatus magmas show distinct geochemical and petrologic characteristics including a major Pb isotopic shift. The 2.430±0.016 Ma Lake Ann stock contains 4.2 Ma zircon antecrysts, recording prolonged activity in that area. The 1.165±0.013 Ma Kulshan caldera ignimbrite contains ~200 Ma inherited zircons that may provide the first direct record of Wrangellian basement beneath

  4. Parent zonation in thermochronometers - resolving complexity revealed by ID-TIMS U-Pb dates and implications for the application of decay-based thermochronometers

    NASA Astrophysics Data System (ADS)

    Navin Paul, Andre; Spikings, Richard; Chew, David; Daly, J. Stephen; Ulyanov, Alexey

    2017-04-01

    High temperature (>350℃) U-Pb thermochronometers primarily use accessory minerals such as apatite, titanite and rutile, and assume that daughter isotopes are lost by thermally activated volume diffusion while the parent remains immobile. Studies exploiting such behaviour have been successfully used to reconstruct thermal histories spanning several hundred million years (e.g. Cochrane et al., 2014). However, outliers in date (ID-TIMS) vs diffusion length space are frequently observed, and grains are frequently found to be either too young or too old for expected thermal history solutions using the diffusion data of Cherniak et al. (2010). These deviations of single grain apatite U-Pb dates from expected behaviour could be caused by a combination of i) metamorphic (over-)growth, ii) fluid-aided Pb mobilisation during alteration/recrystallization, iii) parent isotope zonation, iv) metamictisation, and v) changes in diffusion length with time (e.g. fracturing). We present a large data set from the northern Andes of South America, where we compare apatite U-Pb ID-TIMS-(TEA) data with LA-ICP-MS element maps and in-situ apatite U-Pb LA-(MC)-ICP-MS dates. These are combined with U-Pb zircon and 40Ar/39Ar (muscovite) data to attempt to distinguish between thermally activated volume diffusion and secondary overgrowth/recrystallization. We demonstrate that in young (e.g. Phanerozoic) apatites that have not recrystallized or experienced metasomatic overgrowths, U-Pb dates are dominantly controlled by volume diffusion and intra-crystal uranium zonation. This implies that ID-TIMS analyses of apatites with zoned parent isotope distributions will not usually recover accurate thermal history solutions, and an in-situ dating method is required. Recovering the uranium distribution during in-situ analysis provides a means to account for parent zonation, substantially increasing the accuracy of the modelled t-T-paths. We present in-situ data from apatites where scatter in date v

  5. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  6. GHR1 - A new Eocene natural reference material for U-Pb and Hf isotopic measurements in zircon

    NASA Astrophysics Data System (ADS)

    Ibanez-Mejia, M.; Eddy, M. P.

    2017-12-01

    We present chemical abrasion-isotope dilution-thermal ionization (CA-ID-TIMS) U-Pb zircon geochronology and solution multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) Hf isotopic data from a proposed natural zircon reference material for use during in situ analyses of U-Pb and Hf isotopic ratios. The sample, GHR1, was collected from the rapakivi intrusive phase of the Eocene Golden Horn batholith in Washington, USA. Zircons separated from this sample range up to 250-300 μm in length and have moderate aspect ratios. A weighted mean of 15 Th-corrected 206Pb/238U zircon dates from GHR1 produced at the Massachusetts Institute of Technology is 48.132 ± 0.023 Ma (2σ analytical and tracer uncertainties only, MSWD=1.70) confirming that there is little or no inter-crystal age heterogeneity at the scale of a few 10 kyr. Solution MC-ICP-MS measurements of chemically purified aliquots give a 176Hf/177Hf weighted mean of 0.283050 ± 17 (2σ, n=10), corresponding to a ɛHf0 of ca. +9.3. The 2σ variability of these measurements is comparable to our reproducibility of the JMC-475 Hf isotopic standard 0.282160 ± 14 (n= 13), suggesting that GHR1 zircons are homogenous with respect to 176Hf/177Hf. In situ 206Pb/238U dates from collaborating secondary ion mass spectrometry (SIMS), sensitive high-resolution ion microprobe (SHRIMP), and laser ablation ICP-MS (LA-ICP-MS) laboratories are in excellent agreement with the CA-ID-TIMS date and illustrate the reproducibility and potential value of this reference zircon. The mean values of 176Hf/177Hf measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value, but show slightly greater dispersion and higher (Lu+Yb)/Hf values. We attribute this discrepancy to apatite inclusions that are high in REE and may lead to greater isobaric interferences on 176Hf. These inclusions and potential isobaric interferences from REE were removed during the chemical abrasion step prior to bulk

  7. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.

    PubMed

    Burda, Jolanta; Klötzli, Urs

    In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.

  8. North Qinling Terrain as a provenance of Kuanping Group: LA-ICP-MS U-Pb Geochronology of detrital zircons

    NASA Astrophysics Data System (ADS)

    Hu, B.; Li, S.; Zhai, M.; Wu, J.; Jia, X.

    2017-12-01

    Though some Neoproterozoic S-type granites in the North Qinling Terrain (NQT), China indicate the collision between the NQT and an unknown block, there are still controversial. The LA-ICP-MS U-Pb ages of detrital zircons of meta-sandstones from the Kuanping Group in Luonan area, NQT, provide sedimentology evidence to prove that the NQT and an unknown block from Rodinia supercontinent have been collided during Meso-Neoproterozoic. The U-Pb ages of detrital zircons from the Kuanping Group show that the main age peaks are at 2.58 Ga, 2.46 Ga, 2.0 Ga, 1.78 Ga, 1.6 Ga, 1.45 Ga and 1.27 Ga. The youngest age of 880 Ma indicates that the sedimentary age of the Kuanping Group is less than 880 Ma. The provenances, which provide 1.45 - 0.88 Ga sediments may come from NQT, which magmatic and metamorphic rocks during this period outcropped. Whereas provenances providing 2.6- 1.6 Ga sediments may come from an unknown block. This indicates that the Kuangping Group received both NQT and the unknown block materials. Therefore, the NQT and the unknown block may have collided before 880 Ma. 889 - 848 Ma A-type granites distributing the NQT was considered forming under a post-collisional tectonics. According the youngest detrital zircon ages of 880 Ma, it is inferred that the Kuanping Basin may also form in the same tectonic environments. Neoproterozoic Kuanping basin and 889 - 848 Ma A-type granites may be a result which NQT broken off a block of Rodinia supercontinent. Acknowledgments: This research is supported by National Key Research and Development Plan of China (2016YFC0601002), Special Fund for Basic Scientific Research of Central Colleges, Chang'an University (310827172201, 0009-2014G1271067) and National Nature Science Foundation of China (41402042).

  9. A New Multielement Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores.

    PubMed

    Spaulding, Nicole E; Sneed, Sharon B; Handley, Michael J; Bohleber, Pascal; Kurbatov, Andrei V; Pearce, Nicholas J; Erhardt, Tobias; Mayewski, Paul A

    2017-11-21

    To answer pressing new research questions about the rate and timing of abrupt climate transitions, a robust system for ultrahigh-resolution sampling of glacier ice is needed. Here, we present a multielement method of LA-ICP-MS analysis wherein an array of chemical elements is simultaneously measured from the same ablation area. Although multielement techniques are commonplace for high-concentration materials, prior to the development of this method, all LA-ICP-MS analyses of glacier ice involved a single element per ablation pass or spot. This new method, developed using the LA-ICP-MS system at the W. M. Keck Laser Ice Facility at the University of Maine Climate Change Institute, has already been used to shed light on our flawed understanding of natural levels of Pb in Earth's atmosphere.

  10. LA-ICP-MS of magnetite: Methods and reference materials

    USGS Publications Warehouse

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  11. Neodymium Isotopic Compositions of the Titanite Reference Materials Used in U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Yang, Y.; Zhao, Z.

    2017-12-01

    Titanite (CaTiSiO5) is a widespread mineral and preferentially incorporates considerable uranium and significant light rare earth elements (LREEs) in its structure. Geochronology based upon U-Pb and Pb-Pb analyses of titanite has proven to be useful for understanding the P-T-t evolution of many igneous, metamorphic and hydrothermally altered rock samples (Scott and St-Onge, 1995). In the meantime, Sm-Nd isotopic composition in single titanite can be used to obtain initial Nd isotope composition at the time of titanite crystallization when combined with its U-Pb age, making titanite the most versatile mineral for dating metamorphism and tracing hydrothermal source (Amelin et al., 2009). The widely utilized in situ analyses by SIMS and LA-(MC)-ICP-MS have emphasized the significance for uniform and homogeneous reference materials for external correction (Liu et al., 2012, Sun et al., 2012, Yang et al., 2014). Here, we present U-Pb ages and Sm-Nd isotope analyses of twelve natural titanite crystals (12YQ82, T004, Ontario, BLR-1, OLT1, Khan, Qinghu, TLS-36, NW-IOA, C253, Pakistan and MKED1) acquired by Agilent 7500a Q-ICP-MS and Neptune MC-ICP-MS, respectively, combined a 193 nm ArF excimer laser ablation system. For U-Pb dating, elemental fractionation and instrumental drift were externally corrected using MKED1 titanite standard, showing results of U-Pb analyses all within error of those recommended values. With respect to Sm-Nd isotopes, we employed the interference-free 147Sm/149Sm to deduct 144Sm isobaric interference on 144Nd, and the fractionation between 147Sm and 144Nd was calibrated using BLR-1 titanite, which is proved homogenous in Sm-Nd isotopic system. The obtained Sm-Nd isotopic compositions for natural titanite samples are all consistent with those values determined by isotope dilution (ID) MC-ICP-MS, demonstrating the precision and accuracy currently available for in situ Sm-Nd analyses. Our results demonstrate that BLR-1, OLT1 and Ontario titanites

  12. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  13. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton

    NASA Astrophysics Data System (ADS)

    Pamoukaghlián, Karina; Gaucher, Claudio; Frei, Robert; Poiré, Daniel G.; Chemale, Farid; Frei, Dirk; Will, Thomas M.

    2017-11-01

    The Río de la Plata Craton is a continental block that crops out in Uruguay, eastern Argentina, southernmost Brazil and Paraguay. It comprises in Uruguay the Piedra Alta, Tandilia and Nico Pérez terranes, separated by the Colonia and the Sarandí del Yí megashears. The La Tuna Granite, which intrudes the Araminda metasandstones in the Tandilia Terrane, was considered Cambrian in age and the intruded sandstones were assigned to the Neoproterozoic Piedras de Afilar Formation. We show that the granite is Paleoproterozoic in age and that the host metasandstones do not belong to the Piedras de Afilar Formation, but to the Paleoproterozoic Montevideo Formation. U-Pb LA ICP-MS of zircon ages for the La Tuna Granite yielded a concordant crystallization age of 2156 ± 26 Ma. Furthermore a metamorphic event at 2010 ± 9 Ma is revealed by Pb stepwise leaching dating of monazites. U-Pb detrital zircon ages of the host Araminda metasandstone yield an upper intercept discordia age of 2152 ± 29 Ma, which marks the intrusion of the La Tuna pluton, and which is in accordance with the zircon U-Pb LA ICP MS constraints. A concordant U-Pb detrital zircon age of 2465 ± 40 Ma provides a maximum depositional age constraint for the metapsammites. Comparing quartz arenites of the Ediacaran Piedras de Afilar Formation with the Araminda metaquartzites, we conclude that they are very similar regarding petrology but they differ in age and metamorphic overprint. Detrital zircons in quartz arenites of the Piedras de Afilar Formation show youngest ages of 1.0 Ga. On the other hand, detrital zircons recovered from the Araminda metasandstones and the age of the intruding granite allow interpreting a depositional age between 2465 and 2150 Ma. Nd model ages show crustal residence times in average more than 200 myr older for the Tandilia Terrane both in Uruguay and Argentina, with a significant Neoarchean component, which is lacking in the Piedra Alta Terrane. Whereas the Piedra Alta Terrane was

  14. Age and source of terrigenous rocks of the turan group of the bureya terrane of the eastern part of the central Asian foldbelt: Results of geochemical (Sm-Nd) and geochronological (U-Pb LA-ICP-MS) studies

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Kotov, A. B.; Kovach, V. P.

    2014-06-01

    According to Sm-Nd isotopic-geochemical studies, the t Nd(DM) of the terrigenous rocks of the Turan Group of the Bureya terrane is 1.4-1.5 Ga and their sources are Precambrian rocks and (or) younger effusive rocks, the formation of which is related to the reworking of the Late Precambrian continental crust. The U-Pb LA-ICP-MS geochronological studies indicate dominant Vendian-Cambrian (588-483 Ma) and Late Riphean (865-737 Ma) detrital zircons. Our data point to their accumulation at the beginning of the Paleozoic rather than in the Precambrian as is accepted in modern stratigraphic schemes.

  15. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  16. Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.

    PubMed

    Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien

    2004-08-01

    Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have

  17. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  18. Thermal and exhumation history of the central Tianshan (NW China): Constraints by U-Pb geochronology and Ar-Ar and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Yin, J.; Chen, W.; Hodges, K. V.; Xiao, W.; Van Soest, M. C.; Cai, K.; Zhang, B.; Mercer, C. M.; Yuan, C.

    2015-12-01

    Geochronology and thermochronology using multiple mineral-isotopic chronometers reveals the thermo-tectonic history of the central Tianshan (NW China) from emplacement to exhumation. Granites from the central Tianshan, which are associated with the southward subduction of the northern Tianshan Ocean, have been dated at 362-354 Ma using the LA-ICP-MS Zircon U-Pb method. A younger diorite sample (282 ± 1 Ma, Zircon U-Pb method by LA-ICP-MS) from northern Tianshan formed during the final closure of the Northern Tianshan Ocean when the Junggar Block collided with the Yili-Central Tianshan Block. 40Ar/39Ar step-wise heating plateau dates (biotite Ar/Ar: 312-293 Ma; Plagioclase Ar/Ar: 270-229 Ma) from the Central Tianshan show rapid post-magmatic cooling during the Late Carboniferous-Early Permian followed by a more modest rate of cooling from the middle Permian to the middle Jurassic. The northern Tianshan diorite (biotite Ar/Ar: 240 ± 1 Ma) also reveals a middle Jurassic cooling. Apatite (U-Th )/He dates from the central Tianshan samples range from ca. 130 Ma to ca. 116 Ma. The Apatite (U-Th )/He date for the northern Tianshan sample is ca. 27 Ma. Previous studies also reported Apatite (U-Th)/He ages of ca. 44 Ma-11 Ma in the Baluntai area of the southern Central Tianshan[1]. Two episodes of cooling are distinguished by thermal history modelling: (1) Mesozoic cooling occurred as the result of the exhumation and tectonic reactivation of the central Tianshan; and (2) The Tianshan orogenic belt has been rapidly exhumed since the Middle Cenozoic. References [1] Lü, H.H., Chang, Y., Wang, W., Zhou, Z.Y., 2013. Rapid exhumation of the Tianshan Mountains since the early Miocene: Evidence from combined apatite fission track and (U-Th)/He thermochronology. Science China: Earth Sciences, 43(12): 1964-1974 (in Chinese).

  19. Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.

    2009-06-01

    The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatiallymore » resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and

  20. LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Johnstone, Samuel; Hourigan, Jeremy; Gallagher, Christopher

    2013-05-01

    Heterogeneous concentrations of α-producing nuclides in apatite have been recognized through a variety of methods. The presence of zonation in apatite complicates both traditional α-ejection corrections and diffusive models, both of which operate under the assumption of homogeneous concentrations. In this work we develop a method for measuring radial concentration profiles of 238U and 232Th in apatite by laser ablation ICP-MS depth profiling. We then focus on one application of this method, removing bias introduced by applying inappropriate α-ejection corrections. Formal treatment of laser ablation ICP-MS depth profile calibration for apatite includes construction and calibration of matrix-matched standards and quantification of rates of elemental fractionation. From this we conclude that matrix-matched standards provide more robust monitors of fractionation rate and concentrations than doped silicate glass standards. We apply laser ablation ICP-MS depth profiling to apatites from three unknown populations and small, intact crystals of Durango fluorapatite. Accurate and reproducible Durango apatite dates suggest that prolonged exposure to laser drilling does not impact cooling ages. Intracrystalline concentrations vary by at least a factor of 2 in the majority of the samples analyzed, but concentration variation only exceeds 5x in 5 grains and 10x in 1 out of the 63 grains analyzed. Modeling of synthetic concentration profiles suggests that for concentration variations of 2x and 10x individual homogeneous versus zonation dependent α-ejection corrections could lead to age bias of >5% and >20%, respectively. However, models based on measured concentration profiles only generated biases exceeding 5% in 13 of the 63 cases modeled. Application of zonation dependent α-ejection corrections did not significantly reduce the age dispersion present in any of the populations studied. This suggests that factors beyond homogeneous α-ejection corrections are the dominant

  1. Algorithms and software for U-Pb geochronology by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    McLean, Noah M.; Bowring, James F.; Gehrels, George

    2016-07-01

    The past 15 years have produced numerous innovations in geochronology, including experimental methods, instrumentation, and software that are revolutionizing the acquisition and application of geochronological data. For example, exciting advances are being driven by Laser-Ablation ICP Mass Spectrometry (LA-ICPMS), which allows for rapid determination of U-Th-Pb ages with 10s of micrometer-scale spatial resolution. This method has become the most commonly applied tool for dating zircons, constraining a host of geological problems. The LA-ICPMS community is now faced with archiving these data with associated analytical results and, more importantly, ensuring that data meet the highest standards for precision and accuracy and that interlaboratory biases are minimized. However, there is little consensus with regard to analytical strategies and data reduction protocols for LA-ICPMS geochronology. The result is systematic interlaboratory bias and both underestimation and overestimation of uncertainties on calculated dates that, in turn, decrease the value of data in repositories such as EarthChem, which archives data and analytical results from participating laboratories. We present free open-source software that implements new algorithms for evaluating and resolving many of these discrepancies. This solution is the result of a collaborative effort to extend the U-Pb_Redux software for the ID-TIMS community to the LA-ICPMS community. Now named ET_Redux, our new software automates the analytical and scientific workflows of data acquisition, statistical filtering, data analysis and interpretation, publication, community-based archiving, and the compilation and comparison of data from different laboratories to support collaborative science.

  2. Imaging of metal bioaccumulation in hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS.

    PubMed

    Koelmel, Jeremy; Amarasiriwardena, Dulasiri

    2012-09-01

    Understanding Pb removal from the translocation stream is vital to engineering Pb hyperaccumulation in above ground organs, which would enhance the economic feasibility of Pb phytoextraction technologies. We investigated Cu, Pb, Sb and Zn distributions in Hay-scented fern (Dennstaedtia punctilobula) rhizomes on shooting range soils by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), analyzing digested rhizomes, stems, and fronds using ICP-MS. Nutrients Cu and Zn concentrated in fronds while toxic elements Pb and Sb did not, showing potential Pb and Sb sequestration in the rhizome. Frond and rhizome concentration of Pb was 0.17 ± 0.10% and 0.32 ± 0.21% of dry biomass, respectively. The 208Pb/13C and 121Sb/13C determined by LA-ICP-MS increased from inner sclerotic cortex to the epidermis, while Pb concentrated in the starchy cortex only in contaminated sites. These results suggest that concentration dependent bioaccumulation in the rhizome outer cortex removes Pb from the vascular transport stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cretaceous joints in southeastern Canada: dating calcite-filled fractures

    NASA Astrophysics Data System (ADS)

    Schneider, David; Spalding, Jennifer; Gautheron, Cécile; Sarda, Philippe; Davis, Donald; Petts, Duane

    2017-04-01

    To resolve the timing of brittle tectonism is a challenge since the classical chronometers required for analyses are not often in equilibrium with the surrounding material or simply absent. In this study, we propose to couple LA-ICP-MS U-Pb and (U-Th)/He dating with geochemical proxies in vein calcite to tackle this dilemma. We examined intracratonic Middle Ordovician limestone bedrock that overlies Mesoproterozoic crystalline basement, which are cut by NE-trending fault zones that have historic M4-5 earthquakes along their trace. E-W to NE-SW vertical joint sets, the relatively youngest stress recorded in the bedrock, possess 1-7 mm thick calcite veins that seal fractures or coat fracture surfaces. The veins possess intragranular calcite that are lined with fine-grained calcite along the vein margin and can exhibit µm- to mm-scale offset (e.g. displaced fossil fragments in host rock). Calcite d18O and d13C values are analogous to the bulk composition of Middle to Late Ordovician limestones, and suggest vein formation from a source dominated by connate fluids. The calcite contain trails of fluid inclusions commonly along fractures, and 3He/4He analyses indicate a primitive, deep fluid signature (R/Ra: 0.5-2.7). Trace element geochemistry of the calcite is highly variable, generally following the elevated HREE and lower LREE of continental crust trends but individual crystals from a single vein may vary by three orders of magnitude. LA-ICP-MS geochemical traverse across veins show elevated concentrations along (sub)grain boundaries and the vein-host rock contact. Despite abundant helium concentrations, (U-Th)/He dating was unsuccessful yielding highly dispersed dates likely from excess helium derived from the fluid inclusions. However, LA-ICP-MS U-Pb dating on calcite separated from the veins yielded model ages of 110.7 ± 6.8 Ma (MSWD: 0.53; n: 16) to 81.4 ± 8.3 Ma (MSWD: 2.6; n: 17). Since all veins are from the same ENE-trend, we regressed all the calcite dates

  4. Evolving Pb isotope signatures of London airborne particulate matter (PM 10)-constraints from on-filter and solution-mode MC-ICP-MS.

    PubMed

    Noble, Stephen R; Horstwood, Matthew S A; Davy, Pamela; Pashley, Vanessa; Spiro, Baruch; Smith, Steve

    2008-07-01

    Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century.

  5. Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g(-1) levels.

    PubMed

    Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G

    2004-01-01

    The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.

  6. Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.

    2012-12-01

    Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for

  7. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  8. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.

    2000-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.

  9. Analysis of I-Br-Cl in single fluid inclusions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Giehl, C.; Fusswinkel, T.; Beermann, O.; Garbe-Schönberg, D.; Scholten, L.; Wagner, T.

    2017-12-01

    Halogens are excellent tracers of hydrothermal fluid sources and in-situ LA-ICP-MS analysis of Cl and Br in single fluid inclusions has provided fundamentally new insight into hydrothermal fluid flow and ore formation. There is mounting evidence that enrichment and depletion of Br relative to Cl may be caused by a number of processes beyond seawater evaporation and halite dissolution which cannot be discriminated on the basis of Br/Cl ratios alone. Expanding the analytical capabilities of fluid inclusion LA-ICP-MS analysis to include iodine would allow to discern between selective and coupled enrichment processes of Cl, Br and I, even in geologically complex samples that are inaccessible to bulk extraction techniques. We present iodine concentration data determined by LA-ICP-MS analysis of synthetic fluid inclusions, using the Sca17 scapolite reference material for external standardization (Seo et al., 2011). Iodine concentrations in Sca17 were determined using the Durango apatite standard. Four starting solutions containing I (0.3, 1.5, 27, 78 µg/g), Br (941, 1403, 2868, 4275 µg/g), Na (30.7, 94.7 mg/g), and Cl (50, 137 mg/g) (analyzed by ICP-OES and ICP-MS at CAU Kiel) were prepared by dissolving reagent grade chemical powders in ultra-pure water. Spherical inclusions (up to 40 µm) were synthesized from the starting solutions in pre-cracked, HF-treated synthetic quartz crystals which were placed in gold capsules and equilibrated at 600°C, 100/200 MPa in cold seal pressure vessels. Fluid inclusion LA-ICP-MS analysis (University of Helsinki) yielded average I concentrations in excellent agreement with the starting solutions (27.3 µg/g ± 14 %RSD for the 27 µg/g solution and 77.6 µg/g ± 8.3 %RSD for the 78 µg/g solution). Average Br and I concentrations deviate less than 10 % from solution concentration values. For the low I concentration solutions, the synthetic inclusions were too small to detect I. Thus, given suitable standard materials and sufficient

  10. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  11. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  12. U-Pb SHRIMP dating of uraniferous opals

    USGS Publications Warehouse

    Nemchin, A.A.; Neymark, L.A.; Simons, S.L.

    2006-01-01

    U-Pb and U-series analyses of four U-rich opal samples using sensitive high-resolution ion microprobe (SHRIMP) demonstrate the potential of this technique for the dating of opals with ages ranging from several tens of thousand years to millions of years. The major advantages of the technique, compared to the conventional thermal ionisation mass spectrometry (TIMS), are the high spatial resolution (???20 ??m), the ability to analyse in situ all isotopes required to determine both U-Pb and U-series ages, and a relatively short analysis time which allows obtaining a growth rate of opal as a result of a single SHRIMP session. There are two major limitations to this method, determined by both current level of development of ion probes and understanding of ion sputtering processes. First, sufficient secondary ion beam intensities can only be obtained for opal samples with U concentrations in excess of ???20 ??g/g. However, this restriction still permits dating of a large variety of opals. Second, U-Pb ratios in all analyses drifted with time and were only weakly correlated with changes in other ratios (such as U/UO). This drift, which is difficult to correct for, remains the main factor currently limiting the precision and accuracy of the U-Pb SHRIMP opal ages. Nevertheless, an assumption of similar behaviour of standard and unknown opals under similar analytical conditions allowed successful determination of ages with precisions of ???10% for the samples investigated in this study. SHRIMP-based U-series and U-Pb ages are consistent with TIMS dating results of the same materials and known geological timeframes. ?? 2005 Elsevier B.V. All rights reserved.

  13. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan

    2016-12-15

    In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of 204 Hg on 204 Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for 20x Pb/ 204 Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for 20x Pb/ 206 Pb and <0.06% (RSD, k = 2) for 20x Pb/ 204 Pb with the exception of 20x Pb/ 204 Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g -1 ) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g -1 ). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol. Copyright

  14. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conductedmore » by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.« less

  15. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    PubMed

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  16. Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS

    NASA Astrophysics Data System (ADS)

    Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.

    2007-12-01

    A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic

  17. LA-iMageS: a software for elemental distribution bioimaging using LA-ICP-MS data.

    PubMed

    López-Fernández, Hugo; de S Pessôa, Gustavo; Arruda, Marco A Z; Capelo-Martínez, José L; Fdez-Riverola, Florentino; Glez-Peña, Daniel; Reboiro-Jato, Miguel

    2016-01-01

    The spatial distribution of chemical elements in different types of samples is an important field in several research areas such as biology, paleontology or biomedicine, among others. Elemental distribution imaging by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an effective technique for qualitative and quantitative imaging due to its high spatial resolution and sensitivity. By applying this technique, vast amounts of raw data are generated to obtain high-quality images, essentially making the use of specific LA-ICP-MS imaging software that can process such data absolutely mandatory. Since existing solutions are usually commercial or hard-to-use for average users, this work introduces LA-iMageS, an open-source, free-to-use multiplatform application for fast and automatic generation of high-quality elemental distribution bioimages from LA-ICP-MS data in the PerkinElmer Elan XL format, whose results can be directly exported to external applications for further analysis. A key strength of LA-iMageS is its substantial added value for users, with particular regard to the customization of the elemental distribution bioimages, which allows, among other features, the ability to change color maps, increase image resolution or toggle between 2D and 3D visualizations.

  18. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Capability of U-Pb dating of zircons from Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA

    NASA Astrophysics Data System (ADS)

    Krautz, Jana; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Kleber, Arno

    2018-01-01

    Two Quaternary tephras derived from the Jemez Mountains, New Mexico - the Guaje and Tsankawi tephras - are difficult to distinguish due to their similar glass-shard chemical composition. Differences in bulk chemical composition are small as well. Here we examine the feasibility to assign an age to a distal tephra layer in the La Sal Mountains, Utah, by U-Pb dating of zircons and to correlate it with one of the two Jemez eruptions. We also dated original Jemez tephras for comparison. Even though the tephras are very young, we obtained reasonable age determinations using the youngest cluster of zircon grains overlapping in age at 2σ. Thereafter, the Guaje tephra is 1.513 ± 0.021 Myr old. The La Sal Mountains tephra is correlated with the Tsankawi tephra. Three samples yielded a common age range of 1.31-1.40 Myr. All ages are in slight disagreement with published age determinations obtained by 40Ar / 39Ar dating. These findings indicate that distal Jemez tephras can be distinguished by U-Pb dating. Furthermore, we encourage giving this method a try for age assignments even of Quaternary volcanic material.

  20. Apatite U-Pb thermochronolgy applied to complex geological settings - insights from geo/thermochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Paul, Andre; Spikings, Richard; Ulyanov, Alexey; Chew, David

    2016-04-01

    Application of high temperature (>350oC) thermochronology is limited to the U-Pb system of accessory minerals, such as apatite, under the assumption that radiogenic lead is lost to thermally activated volume diffusion into an infinite reservoir. Cochrane et al. (2015) have demonstrated a working example from the northern Andes of South America. Predictions from volume diffusion theory were compared with measured single grain U-Pb date correlated to shortest diffusion radius and in-situ profiles measured by LA-ICP-MS. Results from both techniques were found to be in agreement with predictions from thermally activated, volume diffusion. However, outliers from the ID-TIMS data suggested some complexity, as grains were found to be too young relative to their diffusion radius. Interaction of multiple processes can be responsible for the alteration of apatite U-Pb dates such as: (1) metamorphic (over)growth, (2) fluid aided alteration/recrystallization and (3) metamictization and fracturing of the grain. Further, predictions from volume diffusion rely on the input parameters: (a) diffusivity, (b) activation energy and (c) shortest diffusion radius. Diffusivity and activation energy are potentially influenced by the chemical composition and subsequent changes in crystal structure. Currently there is one value for diffusion parameter and activation energy established for (Durango) apatite (Cherniak et al., 1991). Correlation between diffusivity/activation energy and composition has not been established. We investigate if correlations exist between diffusivity/activation energy and composition by obtaining single grain apatite U-Pb date and chemical compostion and correlating these to their diffusion radius. We test the consistency of apatite closure temperature, by comparing the apatite U-Pb dates with lower temperature thermochronometers such as white mica and K-feldspar Ar/Ar and by petrographic observations. We test if chemical information can be a proxy to identify

  1. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  2. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    NASA Astrophysics Data System (ADS)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  3. Comparison of TIMS and MC-ICP-MS Analyses of Pb Isotopic Compositions on Prehistoric Mauna Loa Basalts: Implications for Plume Source Components

    NASA Astrophysics Data System (ADS)

    De Jong, J.; Weis, D.; Maerschalk, C.; Rhodes, J. M.

    2001-12-01

    Recent isotopic studies on Hawaiian lavas have shown the necessity of constraining fractionation for Pb isotopes. This isotopic system presents systematic variations reflecting the presence of different plume components in the source of Hawaiian basalts. We have analyzed a series of 23 tholeiitic Mauna Loa basalts ranging in age from 36,780 to 140 y for their Pb isotopic compositions by TIMS (Micromass Sector 54) and MC-ICP-MS (Nu Plasma) to directly compare results from the same, carefully leached, samples. These analyses indicate an internal precision better than 120 ppm for the MC-ICP-MS Pb ratios, while for the TIMS ratios, it is in the per mil range. This results in a more coherent dataset for the MC-ICP-MS analyses, with the range of 207Pb/204Pb variations decreasing by a factor of 3 and of 208Pb/204Pb ratios by a factor of 1.5. The co-variations between the Pb isotopic data and other geochemical parameters for the Hawaiian lavas are now much stronger and better defined. There are clearly two groups amongst the prehistoric Mauna Loa basalts: one group with higher 87Sr/86Sr (>0.7038) and low 206Pb/204Pb (<18.15) that covers the entire range of Nb/Y (0.31 to 0.51) observed in this volcano, and the other group with low 87Sr/86Sr (<0.7038) and higher 206Pb/204Pb with Nb/Y<0.4. The second group is only present in basalts younger than 3,000 y or older than 24,000 y. The high 87Sr/86Sr group was not sampled in the HSDP I drill core, which covers an age range of 100,000 y. This either reflects a sampling bias, as the upper flow units (<10,000 y) were not sampled for geochemistry, or variations in magma supply. Altogether, Mauna Loa lava flows that are younger than 20,000 y show much more isotopic variation than older flows and there is a nearly continuous transition away from the Kilauea component. This may indicate that the transition between the Mauna Loa and Mauna Kea trends is not as sharp as previously documented. This study shows the importance of reducing the

  4. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields.

    PubMed

    Gulson, Brian; Kamenov, George D; Manton, William; Rabinowitz, Michael

    2018-04-11

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields.

  5. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields

    PubMed Central

    Gulson, Brian; Manton, William; Rabinowitz, Michael

    2018-01-01

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields. PMID:29641487

  6. Detrital zircon U-Pb and (U-Th)/He double-dating of Upper Cretaceous-Cenozoic Zagros foreland basin strata in the Kurdistan Region of northern Iraq

    NASA Astrophysics Data System (ADS)

    Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin

  7. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can

  8. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.

  9. New Ca-Tims and La-Icp Analyses of GJ-1, Plesovice, and FC1 Reference Materials

    NASA Astrophysics Data System (ADS)

    Feldman, J. D.; Möller, A.; Walker, J. D.

    2014-12-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology relies on external reference standards to monitor and correct for different mass fractionation effects and instrument drift. Common zircon reference materials used within the community, including the KU Isotope Geochemistry Laboratory, are GJ-1 (207Pb/206Pb age: 608.53 +/- 0.37Ma; Jackson et al., 2004), Plesovice (337.13 +/- 0.37 Ma; Slama et al., 2008), and FC-1 (1099.0 +/-0.6 Ma; Paces and Miller, 1993). The age distribution of zircon reference material varies slightly from sample fraction to sample fraction, and the published results for GJ-1 are slightly discordant. As a result, using the published data for the distributed standard splits can lead to small systematic variations when comparing datasets from different labs, and more high precision data are needed to evaluate potential inhomogeneity of sample splits used in different laboratories. Here we characterize these reference materials with cathodoluminescence, LA-ICP-MS traverses across grains, and high precision CA-TIMS to better constrain the ages and assess zoning of these standards, and present the data for comparison with other laboratories. Reducing systematic error by dating our own reference material lends confidence to our analyses and allows for inter-laboratory age reproducibility of unknowns. Additionally, the reduction in propagated uncertainties (especially in GJ-1, for which both the red and yellow variety will be analyzed) will be used to improve long-term reproducibility, comparisons between samples of similar age, detrital populations and composite pluton zircons. Jackson, S.E., et al., 2004, Chemical Geology, v. 211, p. 47-69. Paces, J.B. & Miller, J.D., 1993, Journal of Geophysical Research, v. 80, p. 13997-14013. Slama, J., et al., 2008, Chemical Geology, v. 249. p. 1-35.

  10. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: implications for tectonic evolution of northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan

    2018-03-01

    The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.

  11. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    The Mbuji-Mayi Supergroup, DRC is located between the Archean-Paleoproterozoic Kasai Craton and the Mesoproterozoic Kibaran Belt. This sedimentary sequence, unaffected by regional metamorphism, preserves a large diversity of well-preserved acritarchs (organic-walled microfossils), evidencing the diversification of complex life (early eukaryotes) for the first time in mid-Proterozoic redox stratified oceans of Central Africa (Baludikay et al., in review). This Supergroup is composed of two distinct lithostratigraphic successions (i) BI Group: a lower siliciclastic sequence (ca. 1175 Myr to ca. 882 Myr or ca. 1050 Myr (Cahen, 1954; Holmes & Cahen, 1955; Delpomdor et al., 2013) unconformably overlying the ca. 2.82-2.56 Gyr granitoid Dibaya Complex to the North (Cahen & Snelling; recent notice on DRC geological map); and (ii) BII Group: a poorly age-constrained upper carbonate sequence with sparse shales . Basaltic lavas (including pillow lavas) overlying the Mbuji-Mayi Supergroup were dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984). To better constraint the age of this Supergroup in the Meso-Neoproterozoic limit, we combine different geochronological methods, in particular on diagenetic minerals such as monazite (Montel et al., 1996; Rasmussen & Muhling, 2007) and xenotime (McNaughton et al., 1999) but also on detrital zircons. For the BI Group, results of in situ U-Pb dating with LA-ICP-MS on monazite, xenotime and zircon (Laboratoire Magmas et Volcans, Clermont-Ferrand) provide ages between 2.9 and 1.2 Gyr for zircons and between 1.4 and 1.03 Gyr for monazites and xenotimes. New results of in situ U-Th-Pb dating of well-crystallized monazites and xenotimes with Electron MicroProbe (Camparis, UPMC, Paris), highlight that some crystals display zonations with an inherited core older than 1125 Myr and diagenetic rims around 1050-1075 Myr. This suggests that the diagenesis of BI Group is younger than 1175 Myr (Delpomdor et al., 2013) and probably around

  12. Quantitative 3-D elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 Area, Washington, USA.

    PubMed

    Peng, Sheng; Hu, Qinhong; Ewing, Robert P; Liu, Chongxuan; Zachara, John M

    2012-02-21

    Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100-μm scale in a 3-dimensional manner within a basaltic clast sample collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-Dimensional maps (stacked 2-D contour layers, each representing 2100 μm × 2100 μm) show relatively uniform concentration with depth for intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the sample surface, consistent with the site's release history of these contaminants. U and Cu show substantial heterogeneity in their concentration distributions within horizontal slices, while the intrinsic elements are essentially uniformly distributed. From these measured U concentrations and published grain size distributions, gravel and cobbles were estimated to contain about 1% of the contaminant U, implicating the coarse fraction as a long-term release source.

  13. U-Pb Geochronology of Grandite Skarn Garnet: Case Studies From Jurassic Skarns of California

    NASA Astrophysics Data System (ADS)

    Gevedon, M. L.; Seman, S.; Barnes, J.; Stockli, D. F.; Lackey, J. S.

    2016-12-01

    We present 3 case studies using a new method for U-Pb dating grossular-andradite (grandite) skarn garnet via LA-ICP-MS (Seman et al., in prep). Grandite is commonly rich in U, with high Fe3+ contents generally correlating with higher U concentrations. Micron-scale non-radiogenic Pb heterogeneities allow for regression of age data using Tera-Wasserberg concordia. Although others have dated accessory skarn minerals, garnet U-Pb ages are powerful because garnet grows early and is nearly ubiquitous in skarns, resists alteration, and provides a formation age independent of that of the causative pluton. The Darwin stock (Argus range, eastern CA) was likely a short-lived, single pulse of magmatism, genetically related to the Darwin skarn. A robust skarn garnet U-Pb age of 176.8 ± 1.3 Ma agrees well with the pluton U-Pb zircon age of 175 Ma (Chen and Moore, 1982). Furthermore, zircon separated from, and in textural equilibrium with, exoskarn garnetite yields a U-Pb age of 176.8 ± 1 Ma. Such agreement between plutonic and skarn zircon ages with a skarn garnet age in a geologically simple field area is the ideal scenario for establishing grandite U-Pb as a viable tool for directly dating skarns. The Black Rock skarn (BRS; eastern CA) is more complex: multiple plutons and ambiguous field relations complicate determination of a causative pluton. A skarn garnet U-Pb age of 172.0 ± 3 Ma confirms a middle Jurassic BRS formation age. Investigation of 4 local plutons yield zircon U-Pb ages of 222 ± 3 Ma, 213 ± 4 Ma, 207 ± 4 Ma and 176.2 ± 2 Ma. Comparison of the skarn garnet U-Pb and pluton ages suggest the BRS is genetically related to the youngest pluton, providing basis for further field and geochemical investigation. The Whitehorse skarn (WS; Mojave Desert, CA) lies in an important region for studying the changing tectono-magmatic regime of the Jurassic North American Cordillera; basin fill suggests a tectonically-controlled oscillating regional shoreline (Busby, 2012

  14. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions

  15. New zircon U-Pb LA-ICP-MS ages and Hf isotope data from the Central Pontides (Turkey): Geological and geodynamic constraints

    NASA Astrophysics Data System (ADS)

    Çimen, Okay; Göncüoğlu, M. Cemal; Simonetti, Antonio; Sayit, Kaan

    2018-05-01

    The Central Pontides in northern Anatolia is located on the accretionary complex formed by the closure of Neotethyan Intra-Pontide Ocean between the southern Eurasian margin (Istanbul-Zonguldak Terrane) and the Cimmerian Sakarya Composite Terrane. Among other components of the oceanic lithosphere, it comprises not yet well-dated felsic igneous rocks formed in arc-basin as well as continent margin settings. In-situ U-Pb age results for zircons from the arc-basin system (öangaldağ Metamorphic Complex) and the continental arc (Devrekani Metadiorite and Granitoid) yield ages of 176 ± 6 Ma, 163 ± 9 Ma and 165 ± 3 Ma, respectively. Corresponding in-situ average (initial) 176Hf/177Hf initial ratios are 0.28261 ± 0.00003, 0.28267 ± 0.00002 and 0.28290 ± 0.00004 for these units and indicative of a subduction-modified mantle source. The new U-Pb ages and Hf isotope data from these oceanic and continental arc units together with regional geological constraints support the presence of a multiple subduction system within the Intra-Pontide Ocean during the Middle Jurassic.

  16. Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS.

    PubMed

    Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González-Iglesias, Héctor; Coca-Prados, Miguel; Sanz-Medel, Alfredo

    2014-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.

  17. LA-ICP-MS U-Pb detrital zircon study and structural observations of the Cycladic Blueschist Unit on Heraklia Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Laskari, Sofia; Soukis, Konstantinos; Lozios, Stylianos; Stockli, Daniel

    2017-04-01

    At the central and southern part of the Attic-Cycladic complex (Aegean Sea, Greece) significant exposures of the Cycladic Basement Unit orthogneisses and meta-sediments are observed. These are mainly cropping out in Paros, Naxos and Ios islands and to a much lesser extend in Sikinos Island and they comprise Variscan (granitic) orthogneisses and late Paleozoic metasediments. In this paper we present evidence of a hitherto not identified possible outcrop of the Cycladic Basement in Heraklia Island (central Cyclades). The small Heraklia Island, situated at the center of the Attic-Cycladic core complex in the Aegean, between the islands of Naxos and Ios, consists of rocks that are attributed to the Cycladic Blueschist Unit. The tectonostratigraphy of Heraklia Island includes: a) a lowermost schist sequence with interbedded lenses of felsic orthogneisses whose primary relationship is obliterated by later subduction and exhumation related shearing b) A 200m thick variegated marble sequence with sparse calk-schist intercalations, which is isoclinally folded together with 100m thick overlying quartz-mica and calc-schists schists. All rocks comprise a penetrative foliation formed by greenschist facies mineral assemblages but in the uppermost schists relics of the Eocene HP event are found in the form of glaucophane inclusions within albite porphyroblasts. A mylonitic planar fabric with a cataclastic overprint is observed at the base of the marble sequence and the roof of the underlying schists and orthogneisses. It is accompanied by a N-S stretching lineation, subparallel to isoclinal folding in all scales. Numerous kinematic indicators reveal a top-to-N sense of shear thus linking the Heraklia rocks kinematically with the crustal extensional detachment systems of both Naxos and Ios islands. LA-ICP-MS U-Pb detrital zircon study of schists and gneisses is used in order to identify provenance and to elucidate the tectonostratigrachic relationship between the lower and upper

  18. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.

    2004-01-01

    Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.

  19. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    PubMed

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  20. Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.

    PubMed

    Becker, J S; Tenzler, D

    2001-07-01

    The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.

  1. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening.

    PubMed

    Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J

    2007-01-16

    An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.

  2. Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area, Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Peng; Hu, Qinhong; Ewing, Robert P.

    2012-03-01

    Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100 {micro}m scale in a 3-dimensional manner in a basalt sample collected from the Hanford 300 Area in south-central Washington State. A modified calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-dimensional maps (stacked 2-D contour layers, each measuring 2100 {micro}m x 2100 {micro}m) show relatively uniform concentration with depth formore » intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the rock surface, consistent with the site's release history of these pollutants. U and Cu show substantial heterogeneity in their concentration distributions in horizontal slices, while the intrinsic elements are essentially uniformly distributed. From measured U concentrations of this work and reported mass fractions, cobbles and gravels were estimated to contain from 0.6% to 7.5% of the contaminant U, implicating the coarse fraction as a long-term release source.« less

  3. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  4. In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Moscati, Richard J.

    2018-01-01

    Cassiterite (SnO2), a main ore mineral in tin deposits, is suitable for U–Pb isotopic dating because of its relatively high U/Pb ratios and typically low common Pb. We report a LA-ICPMS analytical procedure for U–Pb dating of this mineral with no need for an independently dated matrix-matched cassiterite standard. LA-ICPMS U-Th-Pb data were acquired while using NIST 612 glass as a primary non-matrix-matched standard. Raw data are reduced using a combination of Iolite™ and other off-line data reduction methods. Cassiterite is extremely difficult to digest, so traditional approaches in LA-ICPMS U-Pb geochronology that utilize well-characterized matrix-matched reference materials (e.g., age values determined by ID-TIMS) cannot be easily implemented. We propose a new approach for in situ LA-ICPMS dating of cassiterite, which benefits from the unique chemistry of cassiterite with extremely low Th concentrations (Th/U ratio of 10−4 or lower) in some cassiterite samples. Accordingly, it is assumed that 208Pb measured in cassiterite is mostly of non-radiogenic origin—it was initially incorporated in cassiterite during mineral formation, and can be used as a proxy for common Pb. Using 208Pb as a common Pb proxy instead of 204Pb is preferred as 204Pb is much less abundant and is also compromised by 204Hg interference during the LA-ICPMS analyses.Our procedure relies on 208Pb/206Pb vs 207Pb/206Pb (Pb-Pb) and Tera-Wasserburg 207Pb/206Pb vs 238U/206Pb (U-Pb) isochron dates that are calculated for a ~1.54 Ga low-Th cassiterite reference material with varying amounts of common Pb that we assume remained a closed U-Pb system. The difference between the NIST 612 glass normalized biased U-Pb date and the Pb-Pb age of the reference material is used to calculate a correction factor (F) for instrumental U-Pb fractionation. The correction factor (F) is then applied to measured U/Pb ratios and Tera-Wasserburg isochron dates are obtained for the unknown

  5. High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine

    2007-03-01

    The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.

  6. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  7. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods

    NASA Astrophysics Data System (ADS)

    Böhme, Steffi; Stärk, Hans-Joachim; Meißner, Tobias; Springer, Armin; Reemtsma, Thorsten; Kühnel, Dana; Busch, Wibke

    2014-09-01

    In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size ( x BET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 ( x BET = 111 nm) and Alu3 ( x BET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

  8. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C.

    2003-01-01

    The role of the standard is critical to the derivation of reliable U-Pb zircon ages by micro-beam analysis. For maximum reliability, it is critically important that the utilised standard be homogeneous at all scales of analysis. It is equally important that the standard has been precisely and accurately dated by an independent technique. This study reports the emergence of a new zircon standard that meets those criteria, as demonstrated by Sensitive High Resolution Ion MicroProbe (SHRIMP), isotope dilution thermal ionisation mass-spectrometry (IDTIMS) and excimer laser ablation- inductively coupled plasma-mass-spectrometry (ELA-ICP-MS) documentation. The TEMORA 1 zircon standard derives from the Middledale Gabbroic Diorite, a high-level mafic stock within the Palaeozoic Lachlan Orogen of eastern Australia. Its 206Pb/238U IDTIMS age has been determined to be 416.75??0.24 Ma (95% confidence limits), based on measurement errors alone. Spike-calibration uncertainty limits the accuracy to 416.8??1.1 Ma for U-Pb intercomparisons between different laboratories that do not use a common spike. ?? 2003 Published by Elsevier Science B.V. All rights reserved.

  9. Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine

    2005-04-01

    Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.

  10. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Mao, Jingwen; Pirajno, Franco; Jia, Lihui; Zhang, Feng; Li, Yang

    2017-12-01

    The Lianhuashan deposit has long been regarded as a typical tungsten porphyry deposit, located in the eastern Guangdong Province, in the Southeastern Coastal Metallogenic Belt (SCMB). LA-MC-ICP-MS zircon U-Pb dating of the quartz porphyry yielded a weighted mean 206Pb/238U age of 137.3 ± 2.0 Ma, which is interpreted as the emplacement age of the quartz porphyry. Hydrothermal muscovite yielded a plateau 40Ar/39Ar age of 133.2 ± 0.9 Ma, which is consistent with the zircon U-Pb age, suggesting that the tungsten mineralization is genetically related to the quartz porphyry. Combined with previous studies, we suggest that there is a 145-135 Ma episode linking the granitic magmas with W-Sn ore systems in the SCMB. Zircon ɛHf (t) values of the quartz porphyry are in range of - 3.8 to 0.9, and the two-stage Hf model ages (TDM2) are 1.1-1.4 Ga, which is younger than the basement rocks in the Cathaysia Block (1.8-2.2 Ga), signifying that the quartz porphyry was predominantly derived from melting of Mesoproterozoic crust containing variable amounts of mantle components. In combination with the newly recognized coeval alkaline/bimodal magmatism and A-type granites in eastern Guangdong, we suggest that the 145-135 Ma W-Sn metallogenic event of the SCMB is related to a geodynamic setting of large-scale lithospheric extension and thinning, which can be ascribed to melting of the crust caused by mantle upwelling, triggered by the oblique subduction of the Izanagi plate.

  11. Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Hinz, E. A.; Kohn, M. J.

    2009-12-01

    Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates

  12. Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS.

    PubMed

    Rodríguez-Seijo, Andrés; Arenas-Lago, Daniel; Andrade, María Luisa; Vega, Flora A

    2015-05-01

    Lead pollution was evaluated in 17 urban soils from parks and gardens in the city of Vigo (NW Spain). The Pb isotope ratios ((207)Pb/(206)Pb, (208)Pb/(204)Pb, (206)Pb/(204)Pb and (208)Pb/(206)Pb) were determined after being measured by MC-ICP-MS. The association of the isotopes ((204)Pb, (206)Pb, (207)Pb and (208)Pb) with the different components of the soil was studied using TOF-SIMS. The isotopic ranges obtained for the samples were between 1.116 and 1.203 ((206)Pb/(207)Pb), 2.044-2.143 ((208)Pb/(206)Pb), 37.206-38.608 ((208)Pb/(204)Pb), 15.5482-15.6569 ((207)Pb/(204)Pb) and 17.357-18.826 ((206)Pb/(204)Pb). The application of the three-end-member model indicates that the Pb derived from petrol is the main source of Pb in the soils (43.51% on average), followed by natural or geogenic Pb (39.12%) and industrial emissions (17.37%). The emissions derived from coal combustion do not appear to influence the content of Pb in the soil. TOF-SIMS images show that the Pb mainly interacts with organic matter. This technique contributes to the understanding of the association of anthropogenic Pb with the components of the soil, as well as the particle size of these associations, thus allowing the possible sources of Pb to be identified.

  13. Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-flight analyzers.

    PubMed

    Barbaste, M; Halicz, L; Galy, A; Medina, B; Emteborg, H; C Adams, F; Lobinski, R

    2001-04-12

    Different mass analysers [(quadrupole (Q), time-of-flight (TOF) and multicollector (MC) sector-field (SF)] of ions produced in an inductively coupled plasma were evaluated for the determination of lead isotope ratios in wine samples. A population of 20 wines of different origin including two reference wines from the EC Standards, Measurement and Testing Programme with concentrations varying between 7-140 mug Pb l(-1) was investigated. Wines were analyzed directly by Q ICP MS and MC ICP MS. The poor sensitivity of the TOF instrument, further aggravated by matrix signal suppression, did not allow the acquisition of data for wine samples that contained less than 50 mug l(-1) in the direct sample introduction mode. The separation and preconcentration of lead were therefore required. The precision obtained for the (206)Pb/(207)Pb and (208)Pb/(206)Pb were similar and equal to 0.14-2.7% for Q ICP MS, 0.04-0.17% for TOF ICP MS and 0.01-0.12% for MC ICP MS. The precision for (206)Pb/(204)Pb was 0.44-5.29, 0.15-1.7, 0.08-1.6%, respectively. On the level of accuracy, the data from TOF ICP MS and MC ICP MS were in good agreement. The accuracy of Q ICP MS data was judged satisfactory in comparison with the other techniques but their poor precision was a significant obstacle on the way of using these data for the determination of the geographic origin of wine.

  14. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  15. Evaluation of the combined measurement uncertainty in isotope dilution by MC-ICP-MS.

    PubMed

    Fortunato, G; Wunderli, S

    2003-09-01

    The combination of metrological weighing, the measurement of isotope amount ratios by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) and the use of high-purity reference materials are the cornerstones to achieve improved results for the amount content of lead in wine by the reversed isotope dilution technique. Isotope dilution mass spectrometry (IDMS) and reversed IDMS have the potential to be a so-called primary method, with which close comparability and well-stated combined measurement uncertainties can be obtained. This work describes the detailed uncertainty budget determination using the ISO-GUM approach. The traces of lead in wine were separated from the matrix by ion exchange chromatography after HNO(3)/H(2)O(2) microwave digestion. The thallium isotope amount ratio ( n((205)Tl)/ n((203)Tl)) was used to correct for mass discrimination using an exponential model approach. The corrected lead isotope amount ratio n((206)Pb)/ n((208)Pb) for the isotopic standard SRM 981 measured in our laboratory was compared with ratio values considered to be the least uncertain. The result has been compared in a so-called pilot study "lead in wine" organised by the CCQM (Comité Consultatif pour la Quantité de Matière, BIPM, Paris; the highest measurement authority for analytical chemical measurements). The result for the lead amount content k(Pb) and the corresponding expanded uncertainty U given by our laboratory was:k(Pb)=1.329 x 10-10mol g-1 (amount content of lead in wine)U[k(Pb)]=1.0 x 10-12mol g-1 (expanded uncertainty U=kxuc, k=2)The uncertainty of the main influence parameter of the combined measurement uncertainty was determined to be the isotope amount ratio R(206,B) of the blend between the enriched spike and the sample.

  16. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  17. Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS.

    PubMed

    Huelga-Suarez, Gonzalo; Fernández, Beatriz; Moldovan, Mariella; García Alonso, J Ignacio

    2013-03-01

    The present study evaluates the use of an individual-specific transgenerational barium dual-isotope procedure and its application to salmon specimens from the Sella River (Asturias, Spain). For such a purpose, the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with multiple linear regression for the determination of the isotopic mark in the otoliths of the specimens is presented. In this sense, a solution in which two barium-enriched isotopes ((137)Ba and (135)Ba) were mixed at a molar ratio of ca. 1:3 (N Ba137/N Ba135) was administered to eight returning females caught during the spawning period. After injection, these females, as well as their offspring, were reared in a governmental hatchery located in the council of Cangas de Onís (Asturias, Spain). For comparison purposes, as well as for a time-monitoring control, egg and larva data obtained by solution analysis ICP-MS are also given. Otoliths (9-month-old juveniles) of marked offspring were analysed by LA-ICP-MS demonstrating a 100 % marking efficacy of this methodology. The capabilities of the molar fraction approach for 2D imaging of fish otoliths are also addressed.

  18. U-Th Burial Dates on Ostrich Eggshell

    NASA Astrophysics Data System (ADS)

    Sharp, W. D.; Fylstra, N. D.; Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2015-12-01

    Obtaining precise and accurate dates at archaeological sites beyond the range of radiocarbon dating is challenging but essential for understanding human origins. Eggshells of ratites (large flightless birds including ostrich, emu and others) are common in many archaeological sequences in Africa, Australia and elsewhere. Ancient eggshells are geochemically suitable for the U-Th technique (1), which has about ten times the range of radiocarbon dating (>500 rather than 50 ka), making eggshells attractive dating targets. Moreover, C and N isotopic studies of eggshell provide insights into paleovegetation and paleoprecipitation central to assessing past human-environment interactions (2,3). But until now, U-Th dates on ratite eggshell have not accounted for the secondary origin of essentially all of their U. We report a novel approach to U-Th dating of eggshell that explicitly accounts for secondary U uptake that begins with burial. Using ostrich eggshell (OES) from Pleistocene-Holocene east African sites, we have measured U and 232Th concentration profiles across OES by laser ablation ICP-MS. U commonly peaks at 10s to 100s of ppb and varies 10-fold or more across the ~2 mm thickness of OES, with gradients modulated by the layered structure of the eggshell. Common Th is high near the shell surfaces, but low in the middle "pallisade" layer of OES, making it optimal for U-Th dating. We determine U-Th ages along the U concentration gradient by solution ICP-MS analyses of two or more fractions of the pallisade layer. We then estimate OES burial dates using a simple model for diffusive uptake of uranium. Comparing such "U-Th burial dates" with radiocarbon dates for OES calcite from the same shells, we find good agreement in 7 out of 9 cases, consistent with rapid burial and confirming the accuracy of the approach. The remaining 2 eggshells have anomalous patterns of apparent ages that reveal they are unsuitable for U-Th dating, thereby providing reliability criteria innate

  19. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources

    USGS Publications Warehouse

    Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.

    2013-01-01

    Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.

  20. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication

    NASA Astrophysics Data System (ADS)

    Zeng, Renyu; Lai, Jianqing; Mao, Xiancheng; Li, Bin; Ju, Peijiao; Tao, Shilong

    2016-05-01

    Granitoids are widely distributed in Jinchuan at the southwestern margin of the North China plate, which is also an important area of mineral deposits. The research subject of this article are two Paleozoic granitoids, a cataclastic syenogranite and a granodiorite porphyry. This study presents whole rock geochemistry and zircon U-Pb-Hf isotope data for the two granitoids to determine their petrogenesis, source characteristics and tectonic significance. The cataclastic syenogranite is characterized by metaluminous composition with high potassium, and LaN/YbN from 39 to 48. The composition with strong negative Eu anomalies and Zircon saturation temperatures (TZr) from 947 to 1072 °C classify this intrusion as an A-type granite. The granodiorite porphyry is metaluminous with high sodium, sub-alkaline, LaN/YbN ratios from 27 to 32. These I-type intrusions have no Eu anomalies and TZr ranges from 818 to 845 °C. Both the cataclastic syenogranite and granodiorite porphyry show enrichment of LREE and LILE and depletion of HREE and HFSE, except Hf and Zr. Using single zircon LA-ICP-MS U-Pb dating, the emplacement age of the cataclastic syenogranite and granodiorite porphyry are determined at 433.4 ± 3.7 Ma and 361.7 ± 4.6 Ma, respectively. Zircons from the cataclastic syenogranits have uniform negative εHf(t) values (-11 ± 0.5 to -9 ± 0.5), implying the involvement of an old Palaeoproterozoic crustal source in magma genesis. The zircons from the granodiorite porphyry have εHf(t) values that range from -8 ± 1.0 to +10 ± 0.6, suggesting heterogeneous source materials involving both juvenile and ancient crust reworked crustal components. Based on the geological significance of granites at the southwestern margin of the North China plate, the closure of the North Qilian Ocean occurred at ∼444 Ma. Geochemical features suggest that the cataclastic syenogranite and granodiorite porphyry formed in an intraplate extensional and compressional setting, respectively. Hence

  2. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China

    NASA Astrophysics Data System (ADS)

    Ying, Yuancan; Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Yang, Yueheng

    2017-10-01

    The Miaoya carbonatite complex in the South Qinling orogenic belt hosts one of the largest rare earth element (REE)-Nb deposits in China that is composed of carbonatite and syenite. The emplacement age of the complex and the geochronological relationship between the carbonatite and syenite have long been debated. In this study, in situ U-Th-Pb ages have been obtained for the constituent minerals zircon, monazite and columbite from carbonatite and syenite of the Miaoya complex, together with their chemical and isotopic compositions. In situ trace element compositions for zircon from carbonatite and syenite are highly variable. The zircon displays slightly heavy REE (HREE)-enriched chondrite-normalized patterns with no Eu anomaly and various light REE (LREE) contents. In situ Th-Pb dating for zircon from the Miaoya complex by laser ablation ICP-MS yields ages of 442.6 ± 4.0 Ma (n = 53) for syenite and 426.5 ± 8.0 Ma (n = 23) for carbonatite. Monazite from carbonatite and syenite shows similar chondrite-normalized REE patterns and yields a consistent Th-Pb age of 240 Ma. Based on petrographic and chemical composition, columbite from the carbonatite can be identified into two groups. The columbite dispersed within carbonatite is characterized by slightly LREE-enriched chondrite-normalized REE patterns, whereas columbite associated with apatite is characterized by LREE-depleted trends. Columbite has been further determined to have a weighted mean 206Pb/238U age of 232.8 ± 4.5 Ma (n = 9) using LA-ICP-MS. Detailed geochronological and chemical investigations suggest that there were two major episodes of magmatic/metasomatic activities in the formational history of the Miaoya carbonatite complex. The early alkaline magmatism emplaced in the Silurian was related to the opening of the Mianlue Ocean, whereas the late metasomatism or hydrothermal overprint occurred during the Triassic South Qinling orogeny. The latter serves as the major ore formation period for both REE (e

  3. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jaya, Asri; Nishikawa, Osamu; Hayasaka, Yasutaka

    2017-11-01

    The zircon U-Pb and muscovite K-Ar age from the Bantimala, Barru and Biru basement complexes in the South Arm of Sulawesi, Indonesia provide new information regarding the timing of magmatism, metamorphism and sedimentation in this region and have implications for the origin and evolution of the study area. The study area is at the juncture between the southeast margin of Sundaland and Bird's Head-Australia. The age of both the zircon U-Pb of detrital materials in the Bantimala Complex and the muscovite K-Ar of amphibolite in the Biru Complex fall in the Late Early Cretaceous (between 109 and 115 Ma), which is a similar age range to previous data for both the sedimentary and metamorphic rocks. The youngest detrital zircon in the schist samples from the Barru Complex fall into the Triassic in age (between 243 and 247 Ma). These age data indicate that the protolith of all three basement complexes were involved in the subduction system and metamorphosed in the late Early Cretaceous, but there are several differences in their deposition environment under and out of the influence of the late Early Cretaceous magmatism in the Bantimala and Barru Complexes, respectively. Felsic igneous activities are confirmed in the Late Cretaceous and the Eocene by the zircon U-Pb age of igneous rocks intruding or included as detrital fragments in three basement complexes. These dates are similar to those reported from the Meratus Complex of South Kalimantan. The detrital zircon age distributions of the basement rocks in the South Arm of Sulawesi display predominant Mesozoic (Cretaceous and Triassic) and Paleozoic populations with a small population of Proterozoic ages supporting the hypothesis that the West Sulawesi block originated from the region of the circum Bird's Head-Australian, namely the Inner Banda block. The absence of Jurassic zircon age population in the South Arm of Sulawesi suggests the division of the South Arm of Sulawesi from the Inner Banda block in early stage of

  4. LA-ICP-MS Dating and Tectonic Setting of Yeba Formation Lavas in Qulong Area east Part of the Gangdise Belt, Xizang China

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2009-12-01

    In China, Xizang Gangdise tectonic belt is a large nonferrous metal and noble metal mineralized zone and in which, it is found that the mineralization correlates with Tethyan Ocean subduction, continent-continent collision and magmatism due to inter-continent extension orogeny. Qulong porphyry copper (molybdenum) deposit is the largest recently found in the Gangdise metallogenic belt and is one of the most large porphyry copper deposit in Asia. In the area of Qulong porphyry copper deposit, the adjacent strata is Yeba Formation and which can be parted into three members. The first member is built up of dacite, rhyolite, andesite, lapilli tuff, volcanic breccia and volcanic agglomerate. The second member widely occur in the area with major rocks of medium-acidic lava, debris-crystallinoclastic volcanic tuff intercalated with tuffaceous sand, tuffaceous slate and limestone. The third member is built up of andesite, liparite, crystallinoclastic tuff intercalated with sillicalite, sericite slate, tuffaceous sandstone and dirty limestone. The volcanic tuff in the second member gives a LA-ICP-MS U-Pb zircon age of 156.2±2.3 Ma, which may represent the age of the Yeba Formation. That is to say, in the study area, the Yeba Formation comes to being in age of Middle and Later Jurassic. The characteristic which comes from the research on geochronology and rockassociations suggests that the Yeba Formation volcanic rocks are built up by a long time ejection and the ejection of the Yeba Formation volcanic rocks comes from west to east in the Gangdise zone. The volcanic rocks in the Yeba Formation can be considered as the products originated from northward subduction and consumption of the Tethyan Ocean. At the same time, it is proposed that the Yeba Formation volcanic rocks have potential significances in evaluating the early Jurassic biotic crisis, climate change, regression or intrusion event and the later mineralizaion.

  5. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  6. A lead isotope distribution study in swine tissue using ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brown, L.D.; Casteel, S.W.

    1999-01-01

    In the United States lead is an ubiquitous environmental pollutant that is a serious human health hazard, especially for women of childbearing age, developing fetuses, and young children. Information concerning the uptake and distribution of lead to maternal and fetal tissues during pregnancy is poorly documented. A study was designed using domestic swine and lead isotope enrichment methodology to focus on maternal absorption and distribution of lead into bone and soft tissues, including the fetal compartment, under varying conditions of oral lead exposure and during altered physiological states (pregnant vs unbred). Total lead levels and Pb207/Pb206 ratios in bone (femur and vertebra), blood, and soft tissues (liver, kidney, brain) were determined by ICP-MS. Lead in fetal tissues derived from maternal bone could be differentiated from that derived from exogenous dosing. Unbred swine absorbed much less lead than pregnant females receiving the same dose. The accuracy and precision of ICP-MS at the instrumental level and for the entire method (sample collection, digestion, and analysis) were evaluated for both Pb207/Pb206 ratios and total lead. Several changes were suggested in method design to improve both instrumental and total method precision.

  7. Matrix effects for elemental fractionation within ICPMS: applications for U-Th-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Chen, W.

    2016-12-01

    Recent development in instruments provides significant technical supports for daily, quick, money saving geochemical analyses. Laser ablation ICPMS stands out due to these reasons, especially for the U-Th-Pb isotopic dating. Matrix-matched external standardization is by far the most common approach used in U-Th-Pb dating via LA-ICPMS. However, matrix-effects between standard and sample for in-situ dating have shown to be both significant and insignificant. It remains mysterious whether a well matrix-matched standard is needed for U-Th-Pb dating by LA-ICPMS. This study provides an experimental framework for the understanding of matrix effects induced elemental fractionation for U-Th-Pb associated with ICPMS. A preliminary study on the influence of varied U, Th and Pb amounts on their fractionations has been carried out. Experimental data show that different U, Th and Pb contents result in varied 238U/206Pb and 232Th/208Pb ratios. The fractionations of U/Pb and Th/Pb increase with the increasing contents (1 ppb to 100 ppb) with a strong positive anomaly at 10 ppb. Matrixes representing minerals frequently used in dating have been investigated for the influences on U/Pb and Th/Pb fractionations, which suggest a complicated effect. Little fractionations observed between mineral pairs (e.g., monazite and apatite; zircon and perovskite; rutile and perovskite; xenotime and baddeleyite), whereas large fractionations identified for other minerals (e.g., zircon and baddeleyite; monazite and sphene; rutile and baddeleyite). Single element matrix (i.e., Si, P, Ca, Zr, Ti) has been studied to identify their effects on the fractionations. U/Pb ratio increases with the increasing Si and P contents, whereas it decreases for Zr, Ca and Ti. Th/Pb ratio increases with increasing Si contents, decreases for P and Zr, and increases first then decreases for Ca and Ti. Above all, different matrix and U, Th and Pb amounts show distinct U/Pb and Th/Pb fractionations within ICPMS. The

  8. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan

    2017-06-01

    Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.

  9. Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anupam; Chatterjee, Amitava; Das, Kaushik; Sarkar, Arindam

    2017-10-01

    The Gavilgarh-Tan Shear Zone (GTSZ) is a crustal-scale shear/fault zone that dissects the unclassified basement gneisses separating two major supracrustal belts, viz. the Paleo- to Mesoproterozoic (≥1.5 Ga) Betul Belt and the Neoproterozoic (∼1.0 Ga) Sausar Belt, of the Central Indian Tectonic Zone (CITZ). The GTSZ extends for more than 300 km strike length, partly covered by the Deccan Trap flows. Granitoid rocks ranging from syenogranite to granodiorite in composition, sheared at temperatures corresponding to the amphibolite facies metamorphic condition, define the GTSZ in the Kanhan River Valley. Earlier geological studies have suggested that the GTSZ underwent a sinistral-sense partitioned transpression in response to an oblique collision between two continental fragments, possibly related to crustal thickening and high-pressure granulite metamorphism (the Ramakona-Katangi granulite: RKG) in the northern part of the Sausar Belt. LA-ICP-MS U-Pb dating of zircon and EPMA U-Th-total Pb dating of monazite grains from four different types of syn-tectonic granitoids of the GTSZ carried out in the present study show that granitoids intruded the basement gneisses between 1.2 Ga and 0.95 Ga, given the error limit of the calculated ages. The age of transpression and mylonitization is more definitely bracketed between 1.0 Ga and 0.95 Ga, which correlates well with the published ages of deformation and metamorphism in the Sausar Belt. This age data strongly supports the suggested collisional tectonic model involving the GTSZ and the RKG granulites of the Sausar Belt and underlines a Grenvillian-age tectonic history for the southern part of the Central Indian Tectonic Zone (CITZ), which possibly culminated in the crustal assembly of the Neoproterozoic supercontinent Rodinia.

  10. Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls.

    PubMed Central

    Schütz, A; Bergdahl, I A; Ekholm, A; Skerfving, S

    1996-01-01

    OBJECTIVES: To test a simple procedure for preparing samples for measurement of lead in blood plasma (P-Pb) and whole blood (B-Pb) by inductively coupled plasma mass spectrometry (ICP-MS), to measure P-Pb and B-Pb in lead workers and controls, and to evaluate any differences in the relation between B-Pb and P-Pb between people. METHODS: P-Pb and B-Pb were measured by ICP-MS in 43 male lead smelter workers and seven controls without occupational exposure to lead. For analysis, plasma and whole blood were diluted 1 in 4 and 1 in 9, respectively, with a diluted ammonia solution containing Triton-X 100 and EDTA. The samples were handled under routine laboratory conditions, without clean room facilities. RESULTS: P-Pb was measured with good precision (CV = 5%) even at concentrations present in the controls. Freeze storage of the samples had no effect on the results. The detection limit was 0.015 microgram/l. The P-Pb was 0.15 (range 0.1-0.3) microgram/l in controls and 1.2 (0.3-3.6) micrograms/l in lead workers, although the corresponding B-Pbs were 40 (24-59) micrograms/l and 281 (60-530) micrograms/l (1 microgram Pb/I = 4.8 nmol/l). B-Pb was closely associated with P-Pb (r = 0.90). The association was evidently non-linear; the ratio B-Pb/P-Pb decreased with increasing P-Pb. CONCLUSIONS: By means of ICP-MS and a simple dilution procedure, P-Pb may be measured accurately and with good precision down to concentrations present in controls. Contamination of blood at sampling and analysis is no major problem. With increasing P-Pb, the percentage of lead in plasma increases. In studies of lead toxicity, P-Pb should be considered as a complement to current indicators of lead exposure and risk. PMID:9038796

  11. Evaluating intra- and inter- sample variability in Electron Spin Resonance dating of fossil teeth: an example from Cuesta de la Bajada site (Spain).

    NASA Astrophysics Data System (ADS)

    Duval, Mathieu; Grün, Rainer; Shao, Qingfeng; Martin, Loïc; Arnold, Lee J.

    2017-04-01

    Over the last decades, technological improvements have progressively enabled to significantly decrease the amount of material required for dating analyses. In particular, the combined use of laser ablation (LA) with ICP-MS opened new possibilities for high resolution in situ U-series analyses of fossil teeth. With this technique it is now possible to directly visualise the spatial distribution of U and Th isotopes in dental tissues. Moreover, the combination of LA-ICP-MS with Electron Spin Resonance (ESR) enables an increased sampling resolution, and offers the possibility to produce several ages for different areas within a given fossil tooth. To test the potential of this new approach, several fossil teeth were collected from the Middle Palaeolithic site of Cuesta de la Bajada (Teruel, Spain). Each tooth was divided into several subsamples, providing thus several combined US-ESR age results per tooth. For each subsample, ESR, high-resolution laser ablation and solution ICP-MS U-series analyses were systematically performed. Relative beta dose rate contributions from the different tissues and the sediment were also adjusted using DosiVox software and compared with those derived from the standard approach. The results of this work give some interesting insight into the intra- and inter- sample variability that may exist at a given site. The consistency of the final US-ESR age estimates obtained on teeth are also evaluated by comparison with the (semi)-independent results derived from ESR and Luminescence dating of optically bleached quartz grains collected from the same excavation area.

  12. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  13. Finding the "true" age: ways to read high-precision U-Pb zircon dates

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Schoene, B.; Ovtcharova, M.; Sell, B. K.; Broderick, C. A.; Wotzlaw, J.

    2011-12-01

    Refined U-Pb dating techniques, applying an empirical chemical abrasion treatment prior to analysis [1], and using a precisely calibrated double isotope Pb, U EARTHTIME tracer solution, have led to an unprecedented <0.1% precision and accuracy of obtained 206Pb/238U dates of single zircon crystals or fragments. Results very often range over 10e4 to 10e6 years and cannot be treated as statistically singular age populations. The interpretation of precise zircon U-Pb ages is biased by two problems: (A) Post-crystallization Pb loss from decay damaged areas is considered to be mitigated by applying chemical abrasion techniques. The success of such treatment can, however, not be assumed a priori. The following examples demonstrate that youngest zircons are not biased by lead loss but represent close-to-youngest zircon growth: (i) coincidence of youngest zircon dates with co-magmatic titanite in tonalite; (ii) coincidence with statistically equivalent clusters of 206Pb/238U dates from zircon in residual melts of cogenetic mafic magmas; (iii) youngest zircons in ash beds of sedimentary sequences do not violate the stratigraphic superposition, whereas conventional statistical interpretation (mean or median values) does; (iv) results of published inter-laboratory cross-calibration tests using chemical abrasion on natural zircon crystals of the same sample arrive at the same 206Pb/238U result within <0.1% (e.g., [2]); (v) Youngest crystals coincide in age with the astronomical age of hosting cyclic sediments. Residual lead loss may, however, still be identified in the case of single, significantly younger dates (>3 sigma), and are common in many pre-Triassic and hydrothermally altered rocks. (B) Pre-eruptive/pre-intrusive growth is found to be the main reason for scattered zircon ages in igneous rocks. Zircons crystallizing from the final magma batch are called autocrystic [3]. Autocrystic growth will happen in a moving or stagnant magma shortly before or after the

  14. Laser ablation ICP-MS applications using the timescales of geologic and biologic processes

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.

    2003-04-01

    Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is

  15. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  16. Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas

    2014-05-01

    Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected

  17. Dating High Temperature Mineral Fabrics in Lower Crustal Granulite Facies Rocks

    NASA Astrophysics Data System (ADS)

    Stowell, H. H.; Schwartz, J. J.; Tulloch, A. J.; Klepeis, K. A.; Odom Parker, K.; Palin, M.; Ramezani, J.

    2015-12-01

    Granulite facies rocks may record strain that provides a record of compressional and/or extensional crustal events in hot orogenic cores and the roots of magmatic arcs. Although the precise timing of these events is important for constructing tectonic histories, it is often difficult to determine due to uncertain relationships between isotopic signatures, mineral growth, and textural features that record strain. In addition, there may be large uncertainties in isotope data due to intracrystalline diffusion and multiple crystallization events. L-S tectonites in lower crustal rocks from Fiordland, NZ record the early stages of extensional collapse of thickened magmatic arc crust. The precise age of these fabrics is important for constraining the timing of extension that led to opening of the Tasman Sea. High temperature granulite facies L-S fabrics in garnet reaction zones (GRZ) border syn- to post-deformational leucosomes. U-Pb zircon, Lu-Hf garnet, and Sm-Nd garnet ages, and trace elements in these phases indicate the complexity of assigning precise and useful ages. Zircon have soccer ball morphology with patchy and sector zoned CL. Zircon dates for igneous host and adjacent GRZ range over ca. 17 Ma. 236U-208Pb LA-ICP-MS are 108-125 Ma, N=124 (host & GRZ); however, chemical abrasion (CA) shifts GRZ dates ca. 2 Ma older. 236U-208Pb SHRIMP-RG dates cluster in 2 groups: 118.5±0.8 Ma, N=23 and 111.0±0.8 Ma, N=6. CA single crystal TIMS dates also fall into 2 groups: 117.6±0.1 Ma, N=4 and 116.6±0.2 Ma N=4. Garnet isochron ages determined from coarse garnet selvages adjacent to leucosomes range from 112.8±2.2 (147Sm-143Nd, 10 pts.) to 114.8±3.5 (177Lu-176Hf, 6 pts.) Ma. Zircon dates from all methods show ranges (>10 Ma) and 2 distinct populations. Host and GRZ zircon cannot be readily distinguished by age, lack younger rims, but have distinct Th/U trends and Eu/Eu* vs. Hf ratios. Difference in zircon trace element composition indicates either early leucosome

  18. Measurements of rare isotopes of U and Th by MC-ICP-MS using a 1013 ohm resistor

    NASA Astrophysics Data System (ADS)

    Pythoud, M.; Edwards, R. L.; Cheng, H.; Lu, Y.; Zhang, P.; Nissen, J.; Berry, A. E.

    2016-12-01

    We have tested a 1013 ohm resistor on a Thermo-Scientific Neptune Plus, a multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS), for the measurement of rare isotopes of uranium (U) and thorium (Th). In nature, the isotopic disequilibrium among U-series nuclides provides the potential to date materials and time processes over the last 700,000 years. Using gravimetric standards and a Minnesota stalagmite, we demonstrate the reproducibility of δ234U and 230Th dates with uncertainties at the 1-‰ to sub-‰ level (2σ), with relatively small samples. Compared to traditional secondary electron multiplier (SEM) techniques, measurement times decrease from > 1 hour to < 5 min for U and from tens of min to < 2 min for Th, with comparable or better precision. The characteristics of the new amplifier design and typical instrumental conditions allow for 234U and 230Th sample loads as small as 1-2 pg, a reduction in sample size close to an order of magnitude over cup measurements with 1011 ohm resistors. The main sources of error include the amplifier noise, uncertainty in the characterization of the tailing effect, and in some cases, counting statistics. Importantly, our overall characterization suggests that this new method forms the basis for future and further improvements on instrumental precision.

  19. Validation of uranium determination in urine by ICP-MS.

    PubMed

    Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C

    2003-08-01

    A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.

  20. Assay Methods for 238U, 232Th, and 210Pb in Lead and Calibration of 210Bi Bremsstrahlung Emission from Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.

    2016-02-13

    Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are assayed via inductively coupled plasma mass spectrometry (ICP-MS) after anion exchange column separation on dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po α-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sourcesmore » of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6 – 15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1 – 75 Bq/kg, as inferred by the 210Po α-spectroscopy assay method.« less

  1. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    NASA Astrophysics Data System (ADS)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  2. Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): Implication for the Neoproterozoic geodynamic evolution of Central Africa

    NASA Astrophysics Data System (ADS)

    Midende, Gilbert; Boulvais, Philippe; Tack, Luc; Melcher, Frank; Gerdes, Axel; Dewaele, Stijn; Demaiffe, Daniel; Decrée, Sophie

    2014-12-01

    the carbonatite can directly be related to the carbonatite evolution. They have been dated at 705.5 ± 4.5 Ma (U-Pb concordant age, LA-ICP-MS). Similar zircon megacrysts of the Lueshe carbonatite (DRCongo) have been dated and give a concordant age at 798.5 ± 4.9 Ma (U-Pb, LA-ICP-MS). Considering that an extensional tectonic regime occured at that time in Central Africa - what remains debated - both ages could relate to different stages of Rodinia breakup, with uprise of mantle-derived magmas along Palaeoproterozoic lithospheric zones of weakness.

  3. Timing of metamorphism and exhumation in the Nordøyane ultra-high-pressure domain, Western Gneiss Region, Norway: New constraints from complementary CA-ID-TIMS and LA-MC-ICP-MS geochronology

    NASA Astrophysics Data System (ADS)

    Butler, J. P.; Jamieson, R. A.; Dunning, G. R.; Pecha, M. E.; Robinson, P.; Steenkamp, H. M.

    2018-06-01

    We present the results of a combined CA-ID-TIMS and LA-MC-ICP-MS U-Pb geochronology study of zircon and associated rutile and titanite from the Nordøyane ultra-high-pressure (UHP) domain in the Western Gneiss Region (WGR) of Norway. The dated samples include 4 eclogite bodies, 2 host-rock migmatites, and 2 cross-cutting pegmatites and leucosomes, all from the island of Harøya. Zircon from a coesite eclogite yielded an age of ca. 413 Ma, interpreted as the time of UHP metamorphism in this sample. Zircon data from the other eclogite bodies yielded metamorphic ages of ca. 413 Ma, 407 Ma, and 406 Ma; zircon trace-element data associated with 413 Ma and 407 Ma ages are consistent with eclogite-facies crystallization. In all of the eclogites, U-Pb dates from zircon cores, interpreted as the times of protolith crystallization, range from ca. 1680-1586 Ma, consistent with Gothian ages from orthogneisses in Nordøyane and elsewhere in the WGR. A zircon core age of ca. 943 Ma from one sample agrees with Sveconorwegian ages of felsic gneisses and pegmatites in the western part of the area. Migmatites hosting the eclogite bodies yielded zircon core ages of ca. 1657-1591 Ma and rim ages of ca. 395-392 Ma, interpreted as the times of Gothian protolith formation and Scandian partial melt crystallization, respectively. Pegmatite in an eclogite boudin neck yielded a crystallization age of ca. 388 Ma, interpreted as the time of melt crystallization. Rutile and titanite from 3 samples (an eclogite and two migmatites) yielded concordant ID-TIMS ages of 378-376 Ma. The results are similar to existing U-Pb data from other Nordøyane eclogites (415-405 Ma). In combination with previous pressure-temperature data from the coesite eclogite, these ages indicate that peak metamorphic conditions of 3 GPa/760 °C were reached ca. 413 Ma, followed by decompression to 1 GPa/810 °C by ca. 397 Ma and cooling below ca. 600 °C by ca. 375 Ma. The results are compatible with protracted UHP

  4. Lead isotope ratios in lichen samples evaluated by ICP-ToF-MS to assess possible atmospheric pollution sources in Havana, Cuba.

    PubMed

    Alvarez, Alfredo Montero; Estévez Alvarez, Juan R; do Nascimento, Clístenes Williams Araújo; González, Iván Pupo; Rizo, Oscar Díaz; Carzola, Lázaro Lima; Torres, Roberto Ayllón; Pascual, Jorge Gómez

    2017-01-01

    Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The 206 Pb/ 207 Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 μg L -1 ) confirms the official statement that leaded gasoline is no longer used in Cuba.

  5. Use of TEVA resin for the determination of U isotopes in water samples by Q-ICP-MS.

    PubMed

    Tagami, K; Uchida, S

    2004-01-01

    In order to measure uranium isotopic mass ratio in natural water samples by Q-ICP-MS, an application of TEVA resin (Eichrom) was studied to separate and concentrate U. After being evaporated to dryness, the sample residue was dissolved in 6 M HCl, then, TEVA extraction was carried out. U extracted on the resin could be removed with 20 ml of 1 M HCl (U fraction) when Fe content was lower than 2 mg. U recovery in U fraction showed a negative correlation with Fe content in the samples.

  6. [Determination of trace Cs, Th and U in ten kinds of human autopsy tissues by ICP-MS].

    PubMed

    Wang, Jing-yu; Zhu, Hong-da; Ouyang, Li; Liu, Ya-qiong; Wang, Xiao-yan; Huang, Zhuo; Wang, Nai-fen; Liu, Hu-sheng

    2004-09-01

    This paper studied the trace elements Cs, Th and U in ten kinds of human autopsy tissues by ICP-MS. The instrumental operating conditions were optimized for the measurement of Cs, Th and U. Rhodium (Rh) was used as an internal standard element to compensate matrix effect. Detection limits for Th, U and Cs were 5.7-17.8 pg x mL(-1). The recoveries for spiking liver samples were 96%-107%, and their RSDs were 4.8%-8.9%. Reference materials of NIST SRM 8414 Bovine and NIST SRM 1486 Bone Meal were analyzed by the described method, and the analytical results agreed well with the reference values. Human autopsy tissues samples were digested by mixed acid (HNO3 + HClO4). The determination of Cs, Th and U in lung, liver, bone, heart, stomach, spleen, muscle, kidney, thyroid gland and intestinum tenue was performed by ICP-MS without separation and enrichment procedures. The obtained results indicated that this method is rapid, sensitive and accurate; the distribution of the three elements is different from one to another human organ sample; the main organ targets for Th and U are lungs and kidneys; and a coordinated variation of Cs, Th and U concentration in lungs was found in the samples collected from Hebei and Sichuan provinces.

  7. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    PubMed

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  8. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides.

    PubMed

    Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J

    2017-01-15

    The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La 3+ adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La 2 O 3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics.

    PubMed

    Taylor, Vivien F; Longerich, Henry P; Greenough, John D

    2003-02-12

    Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.

  10. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  11. Resolution, the key to unlocking granite petrogenesis using zircon U-Pb - Lu-Hf studies

    NASA Astrophysics Data System (ADS)

    Tapster, Simon; Horstwood, Matthew; Roberts, Nick M. W.; Deady, Eimear; Shail, Robin

    2017-04-01

    Coarse-scale understanding of crustal evolution and source contributions to igneous systems has been drastically enhanced by coupled zircon U-Pb and Lu-Hf data sets. These are now common place and potentially offer advantages over whole-rock analyses by resolving heterogeneous source components in the complex crystal cargos of single hand-samples. However, the application of coupled zircon U-Pb and Lu-Hf studies to address detailed petrogenetic questions faces a crisis of resolution - On the one hand, micro-beam analytical techniques have high spatial resolution, capable of interrogating crystals with complex growth histories. Yet, the >1-2% temporal resolution of these techniques places a fundamental limitation on their utility for developing petrogenetic models. This limitation in data interpretation arises from timescales of crystal recycling or changes in source evolution that are often shorter than the U-Pb analytical precision. Conversely, high-precision CA-ID-TIMS U-Pb analysis of single whole zircons and solution MC-ICP-MS Lu-Hf isotopes of column washes (Hf masses equating to ca. 10-50 ng) have much greater temporal resolution (<0.1%), yet lack the spatial resolution to deal with complex crystal growth. Analyses homogenize any heterogeneity within the zircon and convolute the petrogenetic model. A balance must be struck between spatial and temporal resolution to address petrogenetic issues. Here, we demonstrate that micro-sampling of complex xenocryst-rich zircon crystals (e.g. <40 µm zircon tips) from the granitic post-Variscan Cornubian Batholith (SW England), in tandem with low-common Pb blank CA-ID-TIMS U-Pb chemistry, permits the analysis of zircon volumes that approach those of LA-ICPMS analyses, whilst simultaneously retaining the majority of the temporal resolution associated with the CA-ID-TIMS U-Pb technique. The low volume of zircon within these analyses may only provide <5 ng Hf, and therefore gaining useful precision from Lu-Hf isotopes is

  12. Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada

    USGS Publications Warehouse

    Watts, Kathryn E.; Coble, Matthew A.; Vazquez, Jorge A.; Henry, Christopher D.; Colgan, Joseph P.; John, David A.

    2016-01-01

    Zircon geochronology is a critical tool for establishing geologic ages and time scales of processes in the Earth's crust. However, for zircons compromised by open system behavior, achieving robust dates can be difficult. Chemical abrasion (CA) is a routine step prior to thermal ionization mass spectrometry (TIMS) dating of zircon to remove radiation-damaged parts of grains that may have experienced open system behavior and loss of radiogenic Pb. While this technique has been shown to improve the accuracy and precision of TIMS dating, its application to high-spatial resolution dating methods, such as secondary ion mass spectrometry (SIMS), is relatively uncommon. In our efforts to U-Pb date zircons from the late Eocene Caetano caldera by SIMS (SHRIMP-RG: sensitive high resolution ion microprobe, reverse geometry), some grains yielded anomalously young U-Pb ages that implicated Pb-loss and motivated us to investigate with a comparative CA and non-CA dating study. We present CA and non-CA 206Pb/238U ages and trace elements determined by SHRIMP-RG for zircons from three Caetano samples (Caetano Tuff, Redrock Canyon porphyry, and a silicic ring-fracture intrusion) and for R33 and TEMORA-2 reference zircons. We find that non-CA Caetano zircons have weighted mean or bimodal U-Pb ages that are 2–4% younger than CA zircons for the same samples. CA Caetano zircons have mean U-Pb ages that are 0.4–0.6 Myr older than the 40Ar/39Ar sanidine eruption age (34.00 ± 0.03 Ma; error-weighted mean, 2σ), whereas non-CA zircons have ages that are 0.7–1.3 Myr younger. U-Pb ages do not correlate with U (~ 100–800 ppm), Th (~ 50–300 ppm) or any other measured zircon trace elements (Y, Hf, REE), and CA and non-CA Caetano zircons define identical trace element ranges. No statistically significant difference in U-Pb age is observed for CA versus non-CA R33 or TEMORA-2 zircons. Optical profiler measurements of ion microprobe pits demonstrate consistent depths of ~ 1.6

  13. Integrated Laser Ablation U/Pb and (U-Th)/He Dating of Detrital Accessory Minerals from the Naryani River, Central Nepal

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2015-12-01

    The newly developed 'laser ablation double dating' (LADD) technique, an integrated laser microprobe U/Pb and (U-Th)/He dating method, could be an exceptionally valuable tool in detrital thermochronology for identifying sedimentary provenance and evaluating the exhumation history of a source region. A recent proof-of-concept study has used LADD to successfully date both zircon and titanite crystals from the well-characterized Fish Canyon tuff, but we also believe that another accessory mineral, rutile, could be amenable to dating via the LADD technique. To continue the development of the method, we present an application of LADD to detrital zircon, titanite, and rutile from a sample collected on the lower Naryani River of central Nepal. Preliminary analyses of the sample have yielded zircon U/Pb dates ranging from 31.4 to 2405 Ma; zircon (U-Th)/He from 1.8 to 15.4 Ma; titanite U/Pb between 18 and 110 Ma; titanite (U-Th)/He between 1 and 16 Ma; rutile U/Pb from 6 to 45 Ma; and rutile (U-Th)/He from 2 to 25 Ma. In addition to the initial data, we can use Ti-in-zircon, Zr-in-titanite, and Zr-in-rutile thermometers to determine the range of possible long-term cooling rates from grains with U/Pb ages younger than collision. Thus far our results from zircon analyses imply a cooling rate of approximately 15°C/Myr; titanite analyses imply between 10 and 67°C/Myr; and rutile between 9 and 267°C/Myr. This spread in potential cooling rates, especially in the order of magnitude differences of cooling rates calculated from the rutile grains, suggests that the hinterland source regions of the Naryani river experienced dramatically different exhumation histories during Himalayan orogenisis. Ongoing analyses will expand the dataset such that we can more adequately characterize the range of possibilities represented in the sample.

  14. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-01-01

    The trace elements Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Ga, Hf, Hg, In, La, Mn, Mo, Ni, Pb, Pd, Rb, Rh, Ru, Sb, Se, Sn, Sr, Te, Th, Tl, U, V, W, Y and Zr were determined in 130 human blood samples from occupationally non-exposed volunteers living in the greater area of Bremen in northern Germany. The blood samples were collected in lithium heparin monovettes developed for trace metal determination and were analysed by inductively coupled plasma mass spectrometry (ICP-MS) with an octopole-based collision/reaction cell. For sample introduction into the ICP, the blood samples were diluted 1/10 (V/V) with a 0.1% Triton-X-100 and 0.5% (V/V) ammonia solution. The method validation of our developed routine method is described for all 37 elements and results about internal and external quality assurance are discussed. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews, including smoking habits, seafood consumption and the type of dental alloys in the teeth. Mean values, geometric mean values, ranges and selected percentiles of all elemental concentrations in human blood are presented, which helps toxicologists and clinical chemists planning research about exposition to metals and health effects caused by exposition to metals.

  15. Application of LA-MC-ICP-MS for analysis of Sr isotope ratios in speleothems

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Scholz, Denis; Wassenburg, Jasper A.; Jochum, Klaus Peter; Breitenbach, Sebastian

    2017-04-01

    Speleothems are well established climate archives. In order to reconstruct past climate variability, several geochemical proxies, such as δ13C and δ18O as well as trace elements are available. Since several factors influence each individual proxy, robust interpretation is often hampered. This calls for multi-proxy approaches involving additional isotope systems that can help to delineate the role of different sources of water within the epikarst and changes in soil composition. Sr isotope ratios (87Sr/86Sr) have been shown to provide useful information about water residence time and water mixing in the host rock. Furthermore, Sr isotopes are not fractionated during calcite precipitation, implying that the 87Sr/86Sr ratio of the speleothem provides a direct record of the drip water. While most speleothem studies applying Sr isotopes used the TIMS methodology, LA-MC-ICP-MS has been utilized for several other archives, such as otoliths and teeth. This method provides the advantage of faster data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. Here we present the first LA-MC-ICP-MS Sr isotope data for speleothems. The analytical uncertainty of our LA-MC-ICP-MS Sr data is in a similar range as for other carbonate materials. The results of different ablation techniques (i.e. line scan and spots) are reproducible within error, implying that the application of this technique on speleothems is possible. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), such as tests with standard bracketing and comparison of the 87Sr/86Sr ratios with nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, show the robustness of the method. We applied the method to samples from Morocco (Grotte de Piste) and India (Mawmluh Cave). Our results show only very small changes in the 87Sr/86Sr ratios of both speleothems

  16. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  17. Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine

    NASA Technical Reports Server (NTRS)

    Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.

    2008-01-01

    Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.

  18. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  19. Developments in ICP-MS: electrochemically modulated liquid chromatography for the clean-up of ICP-MS blanks and reduction of matrix effects by flow injection ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Cory Thomas

    2008-01-01

    The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.

  20. [Determination of 27 elements in Maca nationality's medicine by microwave digestion ICP-MS].

    PubMed

    Yu, Gui-fang; Zhong, Hai-jie; Hu, Jun-hua; Wang, Jing; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei

    2015-12-01

    An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.9994-1.0000 (Hg was 0.9982) ; the limits of detection were 0.003-2.662 microg x L(-1); the relative standard deviations for all elements of reproducibility were lower than 5% (except the individual elements); the recovery rate were 78.5%-123.7% with RSD lower than 5% ( except the individual elements). The analytical results of standard material showed acceptable agreement with the certified values. This method was applicable to determinate the contents of multi-elements in Maca which had a high sensitivity, good specificity and good repeatability, and provide basis for the quality control of Maca.

  1. The Mesozoic metamorphic-magmatic events in the Medog area, the Eastern Himalayan Syntaxis: constraints from zircon U-Pb geochronology, trace elements and Hf isotope compositions in granitoids

    NASA Astrophysics Data System (ADS)

    Dong, Hanwen; Xu, Zhiqin; Li, Yuan; Liu, Zhao; Li, Huaqi

    2015-01-01

    Based on the regional geological mapping, several granitoid intrusions had been discovered in the Eastern Himalayan Syntaxis (EHS). In order to constrain their petrogenesis and discuss their relations with the regional tectonics, we carried out U-Pb dating, trace elements and Hf isotope geochemistry studies on zircons separated from the granitoid rocks, in the area of the EHS. In this contribution, the granitoid rocks are mainly composed of diorites (X20-1-6) and granitic gneissic rocks (X2-15-1). The U-Pb zircon dating of diorites yields a crystallization age of 193.8 ± 2.0 Ma. These zircon have ɛ Hf( t) values ranging from -6.48 to -0.05, indicating an involvement of ancient crustal materials in the generation of these igneous rocks. The zircons from the Medog granitic gneissic rock commonly show zoning structures. The REE patterns and abundances of the inherited cores are different from those of the oscillatory rims. The LA-ICP-MS U-Pb zircon in situ analyses indicate that: (1) the zircon cores give multi-stage magmatic event ages ranging from 516 to 1,826 Ma, of which six ages are converged on 1,330-911 Ma, it is considered that the migmatitic gneiss has been formed in this time, and (2) while the zircon rims yield 206Pb/238U weighted mean ages of 217.4 ± 3.0 Ma (MSWD = 3.2), which was interpreted to represent the ages of the Triassic anatexis. Their ɛ Hf( t) values range from -18.98 to -8.36 and -14.22 to 8.72, respectively. The timing of the anatexis in the Medog area is coeval with the widespread metamorphism in Lhasa terrane.

  2. Potential Health Benefits and Metabolomics of Camel Milk by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Ahmad, Ajaz; Shakeel, Faiyaz

    2017-02-01

    None of the research reports reveals the metabolomics and elemental studies on camel milk. Recent studies showed that camel milk possesses anticancer and anti-inflammatory activity. Metabolomics and elemental studies were carried out in camel milk which showed us the pathways and composition that are responsible for the key biological role of camel milk. Camel milk was dissolved in methanol and chloroform fraction and then vortexed and centrifuged. Both the fractions were derivatized by N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS after nitrogen purging and analyzed by GC-MS. Camel milk was also analyzed by ICP-MS after microwave digestion. We found that higher alkanes and fatty acids are present in the chloroform fraction and amino acids, sugars and fatty acid derivatives are present in aqueous fractions. All the heavy metals like As, Pb, Cd, Co, Cu, and Ni were in the safe limits in terms of maximum daily intake of these elements. Na, K, Mg, and Ca were also present in the safe limits in terms of maximum daily intake of these elements. These results suggested that the camel milk drinking is safe and there is no health hazard. The present data of GC-MS and ICP-MS correlate the activities related to camel milk.

  3. Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2006-01-01

    The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and

  4. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    PubMed

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  5. Trace elemental analysis of glass and paint samples of forensic interest by ICP-MS using laser ablation solid sample introduction

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Trejos, Tatiana; Hobbs, Andria; Furton, Kenneth G.

    2003-09-01

    The importance of small amounts of glass and paint evidence as a means to associate a crime event to a suspect or a suspect to another individual has been demonstrated in many cases. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. Previous work has demonstrated the utility of elemental analysis by solution ICP-MS of small amounts of glass for the comparison between a fragment found at a crime scene to a possible source of the glass. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The direct solid sample introduction technique of laser ablation (LA) is reported as an alternative to the solution method. Direct solid sampling provides several advantages over solution methods and shows great potential for a number of solid sample analyses in forensic science. The advantages of laser ablation include the simplification of sample preparation, thereby reducing the time and complexity of the analysis, the elimination of handling acid dissolution reagents such as HF and the reduction of sources of interferences in the ionization plasma. Direct sampling also provides for essentially "non-destructive" sampling due to the removal of very small amounts of sample needed for analysis. The discrimination potential of LA-ICP-MS is compared with previously reported solution ICP-MS methods using external calibration with internal standardization and a newly reported solution isotope dilution (ID) method. A total of ninety-one different glass samples were used for the comparison study using the techniques mentioned. One set consisted of forty-five headlamps taken from a variety of automobiles representing a range of twenty years of manufacturing dates. A second set consisted of forty

  6. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  7. Environmental applications of single collector high resolution ICP-MS.

    PubMed

    Krachler, Michael

    2007-08-01

    The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.

  8. Preparation of hair for measurement of elements by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Puchyr, R F; Bass, D A; Gajewski, R; Calvin, M; Marquardt, W; Urek, K; Druyan, M E; Quig, D

    1998-06-01

    The preparation of hair for the determination of elements is a critical component of the analysis procedure. Open-beaker, closed-vessel microwave, and flowthrough microwave digestion are methods that have been used for sample preparation and are discussed. A new digestion method for use with inductively coupled plasma-mass spectrometry (ICP-MS) has been developed. The method uses 0.2 g of hair and 3 mL of concentrated nitric acid in an atmospheric pressure-low-temperature microwave digestion (APLTMD) system. This preparation method is useful in handling a large numbers of samples per day and may be adapted to hair sample weights ranging from 0.08 to 0.3 g. After digestion, samples are analyzed by ICP-MS to determine the concentration of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Rb, Sr, Zr, Mo, Pd, Ag, Cd, Sn, Sb, I, Cs, Ba, Pt, Au, Hg, Tl, Pb, Bi, Th, and U. Benefits of the APLTMD include reduced contamination and sample handling, and increased precision, reliability, and sample throughput.

  9. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt

    NASA Astrophysics Data System (ADS)

    Tang, Yanwen; Xie, Yuling; Liu, Liang; Lan, Tingguan; Yang, Jianling; Sebastien, Meffre; Yin, Rongchao; Liang, Songsong; Zhou, Limin

    2017-04-01

    The Qingzhou-Hangzhou metallogenic belt (QHMB) in Southeastern China has gained increasingly attention in recent years. However, due to the lack of reliable ages on intrusions and associated deposits in this belt, the tectonic setting and metallogenesis of the QHMB have not been well understood. The Linghou polymetallic deposit in northwestern Zhejiang Province is one of the typical deposits of the QHMB. According to the field relationships, this deposit consists of the early Cu-Au-Ag and the late Pb-Zn-Cu mineralization stages. Molybdenite samples with a mineral assemblage of molybdenite-chalcopyrite-pyrite ± quartz are collected from the copper mining tunnel near the Cu-Au-Ag ore bodies. Six molybdenite samples give the Re-Os model ages varying from 160.3 to 164.1 Ma and yield a mean age of 162.2 ± 1.4 Ma for the Cu-Au-Ag mineralization. Hydrothermal muscovite gives a well-defined Ar-Ar isochron age of 160.2 ± 1.1 Ma for the Pb-Zn-Cu mineralization. Three phases of granodioritic porphyry have been distinguished in this deposit, and LA-ICP-MS zircon U-Pb dating shows that they have formed at 158.8 ± 2.4 Ma, 158.3 ± 1.9 Ma and 160.6 ± 2.1 Ma, comparable to the obtained ages of the Cu-Au-Ag and Pb-Zn-Cu mineralization. Therefore, these intrusive rocks have a close temporal and spatial relationship with the Cu-Au-Ag and Pb-Zn-Cu ore bodies. The presences of skarn minerals (e.g., garnet) and vein-type ores, together with the previous fluid inclusion and H-O-C-S-Pb isotopic data, clearly indicate that the Cu-Au-Ag and Pb-Zn-Cu mineralization are genetically related to these granodiorite porphyries. This conclusion excludes the possibility that this deposit is of ;SEDEX; type and formed in a sag basin of continental rifts setting as previously proposed. Instead, it is proposed that the Linghou polymetallic and other similar deposits in the QHMB, such as the 150-160 Ma Yongping porphyry-skarn Cu-Mo, Dongxiang porphyry? Cu, Shuikoushan/Kangjiawang skarn Pb

  10. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences

    NASA Astrophysics Data System (ADS)

    Xu, Gu-feng; Wang, Hong-mei

    2001-08-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  11. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice.

    PubMed

    Egger, Alexander E; Theiner, Sarah; Kornauth, Christoph; Heffeter, Petra; Berger, Walter; Keppler, Bernhard K; Hartinger, Christian G

    2014-09-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatially-resolved distribution of ruthenium and platinum in viscera (liver, kidney, spleen, and muscle) originating from mice treated with the investigational ruthenium-based antitumor compound KP1339 or cisplatin, a potent, but nephrotoxic clinically-approved platinum-based anticancer drug. Method development was based on homogenized Ru- and Pt-containing samples (22.0 and 0.257 μg g(-1), respectively). Averaging yielded satisfactory precision and accuracy for both concentrations (3-15% and 93-120%, respectively), however when considering only single data points, the highly concentrated Ru sample maintained satisfactory precision and accuracy, while the low concentrated Pt sample yielded low recoveries and precision, which could not be improved by use of internal standards ((115)In, (185)Re or (13)C). Matrix-matched standards were used for quantification in LA-ICP-MS which yielded comparable metal distributions, i.e., enrichment in the cortex of the kidney in comparison with the medulla, a homogenous distribution in the liver and the muscle and areas of enrichment in the spleen. Elemental distributions were assigned to histological structures exceeding 100 μm in size. The accuracy of a quantitative LA-ICP-MS imaging experiment was validated by an independent method using microwave-assisted digestion (MW) followed by direct infusion ICP-MS analysis.

  12. [Application of ICP-MS and ICP-AES for Studying on Source Apportionment of PM2.5 during Haze Weather in Urban Beijing].

    PubMed

    Chen, Xi; Du, Peng; Guan, Qing; Feng, Xu; Xu, Dong-qun; Lin, Shao-bin

    2015-06-01

    To investigate the characteristics of chemical constitute and pollution sources of aerosol fine particulate matter during haze-fog day in Beijing in winter 2013. The samples of PM2.5 were collected in Beijing from January to February, 2013. The technique of ICP-MS and ICP-AES coupled with procedure of bathing-ultrasonic extraction was applied to determine the concentration of 40 elements in the aerosol samples to analyze the characteristics of elements distribution statistically. The absolute principal factor method was used to apportion the pollution sources of PM2.5 during the haze weather in Beijing city in winter 2013. The results showed that during the period of sampling, the volume concentration of Li, Mn, Pb, S etc. obeyed normal distribution approximately, and according to National Ambient Air Quality Standard issued by Ministry of Environmental Protection of the People's Republic of China, the geometric mean concentration of As was twice the annual limit of standard reference, while Pb of some aerosol samples beyond the annual limit of standard reference respectively. The mass fraction of Fe, Zn, Pb, Ti accounted for over 0.1%, while that of Mn, Cu, As, Se etc. 0.01%. These elements were primary inorganic pollutants, and especially the hazards and sources of As and Pb should be concerned. There were 6 main pollution sources were chosen by the factor analysis method, including industrial dust and human beings activities, biomass combustion and building dust, soil and sand dusts, fossil fuel, electronic waste and metal smelting, with the variance contribution rate of 40.3%, 27.0%, 9.1%, 4.9%, 4.8% and 4.6% respectively. ICP-MS and ICP-AES can be applied to analyzing multi-elements in PM2.5 accurately and quickly to facilitate source apportionment, and it indicated that the relevant pollution sources should be considered and the effect of regional transferring of haze pollution sources should be taken into account, and specific measures should be taken for

  13. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  15. Magmatic Longevity Constrained by ID-TIMS U-Pb Dating of Zircon and Titanite

    NASA Astrophysics Data System (ADS)

    Szymanowski, D.; Wotzlaw, J. F.; Ellis, B. S.; Bachmann, O.; Von Quadt, A.

    2016-12-01

    Clues about the timescales and thermal conditions associated with the growth and evacuation of large silicic magma reservoirs are frequently drawn from radiometric dating, diffusion modelling, or thermomechanical modelling. A growing amount of petrological and geochronological evidence, supported by thermal modelling, suggests that many silicic magma reservoirs may exist for some 104-106 years in the form of high-crystallinity mushes at relatively low temperatures ( 700-750°C; [1-3]). Geochronological studies addressing this issue typically utilise the U-Pb system in zircon capable of recording extended periods of crystallisation, particularly in evolved calc-alkaline systems that spend most of their lifetime zircon-saturated. In this study, we integrate U-Pb dating of zircon and titanite to investigate the longevity of the magma reservoir that produced the Kneeling Nun Tuff, a 35 Ma, >900 km3 crystal-rich rhyolitic super-eruption from the Mogollon-Datil volcanic field in New Mexico (USA). High-precision ID-TIMS U-Pb dates of single crystals of both zircon and titanite independently record a continuous crystallisation history over >400,000 years. We combine the dating of both accessory phases with textural, major, trace element and isotopic studies of single crystals, placing tight constraints on the thermal conditions of magma accumulation and storage while recording differentiation and rejuvenation processes within the magma reservoir. The results suggest a protracted `cool' upper-crustal storage of magma prior to the Kneeling Nun Tuff eruption followed by a melting event which reduced the magma crystallinity and conditioned it for eruption. [1] Bachmann & Bergantz (2004), J. Petrol. 45, 1565-1582. [2] Gelman et al. (2013), Geology 41, 759-762. [3] Cooper & Kent (2014), Nature 506, 480-483.

  16. Implementation of ICP-MS protocols for uranium urinary measurements in worker monitoring.

    PubMed

    Baglan, N; Cossonnet, C; Trompier, F; Ritt, J; Bérard, P

    1999-10-01

    The uranium concentration in human urine spiked with natural uranium and rat urine containing metabolized depleted uranium was determined by ICP-MS. The use of ICP-MS was investigated without any chemical treatment or after the different stages of a purification protocol currently carried out for routine monitoring. In the case of spiked urine, the measured uranium concentrations were consistent with those certified by an intercomparison network in radiotoxicological analysis (PROCORAD) and with those obtained by alpha spectrometry in the case of the urine containing metabolized uranium. The quantitative information which could be obtained in the different protocols investigated shows the extent to which ICP-MS provides greater flexibility for setting up appropriate monitoring approaches in radiation protection routines and accidental situations. This is due to the combination of high sensitivity and the accuracy with which traces of uranium in urine can be determined in a shorter time period. Moreover, it has been shown that ICP-MS measurement can be used to quantify the 235U isotope, which is useful for characterizing the nature of the uranium compound, but difficult to perform using alpha spectrometry.

  17. 238U-Series in Fe Oxy/Hydroxides by LA-MC-ICP-MS, New Insights Into Weathering Geochronology

    NASA Astrophysics Data System (ADS)

    Bernal, J.; McCulloch, M.; Eggins, S.; Grun, R.; Eggleton, R.

    2003-12-01

    The establishment of a geochronological framework for weathering processes is essential for an understanding of the evolution of the regolith and its dynamics. However, there are few robust answers regarding the absolute age of weathering and its rates. Nowadays, 40Ar/39Ar analysis of Mn-Oxides (cryptomelane) and K-bearing secondary sulphates have provided one of the few generally reliable chronometers (e.g. 1), but is restricted to high-K secondary phases. This work presents a different approach to obtain geochronological information from weathering minerals, namely measurement of 238U-series disequilibria in authigenic Fe oxy/hydroxides. These may be potentially useful recorders of weathering processes as they commonly occur as weathering products and have high affinity towards dissolved uranyl complexes. Furthermore, U-Th fractionation during weathering has been extensively reported [2], effectively resetting the U/230Th geochronometer. LA-MC-ICP-MS facilitates in situ measurement of 238U-series disequilibria in authigenic microcrystalline iron oxy/hydroxides (precipitated between cracks and veins in partially and heavily weathered chlorite-muscovite schist) and pisoliths (ferruginous concretions). Contrary to previous studies [e.g. 3], in situ measurement of 238U-nuclides enables selective analysis or iron oxy/hydroxides phases, minimizes contributions from allogenic phases and, reduces the need of mathematical corrections to obtain the activity ratios for the authigenic phase [4, 5]. The results suggest that supergene iron oxy/hydroxides are good recorders of weathering processes; they precipitate during the early stages of weathering, reflect the U-isotopic composition of the groundwater, appear to act as closed-systems in weathering conservative environments, and behave in a predictable fashion when subjected to intense weathering and leaching conditions. The 230Th-ages of the iron oxy/hydroxides indicate that the timing and intensity of weathering appears

  18. Direct U-Pb dating of Cretaceous and Paleocene dinosaur bones, San Juan Basin, New Mexico: COMMENT

    USGS Publications Warehouse

    Koenig, Alan E.; Lucas, Spencer G.; Neymark, Leonid A.; Heckert, Andrew B.; Sullivan, Robert M.; Jasinski, Steven E.; Fowler, Denver W.

    2012-01-01

    Based on U-Pb dating of two dinosaur bones from the San Juan Basin of New Mexico (United States), Fassett et al. (2011) claim to provide the first successful direct dating of fossil bones and to establish the presence of Paleocene dinosaurs. Fassett et al. ignore previously published work that directly questions their stratigraphic interpretations (Lucas et al., 2009), and fail to provide sufficient descriptions of instrumental, geochronological, and statistical treatments of the data to allow evaluation of the potentially complex diagenetic and recrystallization history of bone. These shortcomings lead us to question the validity of the U-Pb dates published by Fassett et al. and their conclusions regarding the existence of Paleocene dinosaurs.

  19. LA-ICP-MS as Tool for Provenance Analyses in Arctic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Wildau, Antje; Garbe-Schönberg, Dieter

    2015-04-01

    The hydraulic transport of sediments is a major geological process in terrestrial and marine systems and is responsible for the loss, redistribution and accumulation of minerals. Provenance analyses are a powerful tool for assessing the origin and dispersion of material in ancient and modern fluvial and marine sediments. Provenance-specific heavy minerals (e.g., zircon, rutile, tourmaline) can therefore be used to provide valuable information on the formation of ore deposits (placer deposits), and the reconstruction of paleogeography, hydrology, climate conditions and developments. The application of provenances analyses for the latter reason is of specific interest, since there is need for research on the progressing climate change, and heavy minerals represent good proxies for the evaluation of recent and past changes in the climate. The study of these fine particles provides information about potential regional or long distance transport paths, glacial / ice drift and current flows, freezing and melting events as well as depositional centers for the released sediments. Classic methods applied for provenance analyses are mapping of the presence / absence of diagnostic minerals, their grain size distribution, modal mineralogy and the analysis of variations in ratio of two or more heavy minerals. Electron microprobe has been established to discover changes in mineral chemistry of individual mineral phases, which can indicate fluctuations or differences in the provenance. All these methods bear the potential of high errors that lower the validity of the provenance analyses. These are for example the misclassification of mineral species due to undistinguishable optical properties or the limitations in the detection / variations of trace elements using the election microprobe. For this case study, marine sediments from the Arctic Ocean have been selected to test if LA-ICP-MS can be established as a key technique for precise and reliable provenance analyses. The Laptev

  20. Analysis of twenty five impurities in uranium matrix by ICP-MS with iron measurement optimized by using reaction collision cell, cold plasma or medium resolution.

    PubMed

    Quemet, Alexandre; Brennetot, Rene; Chevalier, Emilie; Prian, Edwina; Laridon, Anne-Laure; Mariet, Clarisse; Fichet, Pascal; Laszak, Ivan; Goutelard, Florence

    2012-09-15

    An analytical procedure was developed to determine the concentration of 25 impurities (Li, Be, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ag, Cd, In, Sm, Eu, Gd, Dy, W, Pb, Bi and Th) in a uranium matrix using the quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). The dissolution of U(3)O(8) powder was made with a mixture of hydrochloric acid and nitric acid. Then, a selective separation of uranium using the UTEVA column was used before measurement by Q-ICP-MS. The procedure developed was verified using the Certified Reference Material "Morille". The analytical results agree well except for 5 elements where values are underestimated (Li, Be, In, Pb and Bi). Among the list of impurities, iron was particularly investigated because it is well known that this element possesses a polyatomic interference that increases the detection limit. A comparison between iron detection limits obtained with different methods was performed. Iron polyatomic interference was at least reduced, or at best entirely resolved in some cases, by using the cold plasma or the collision/reaction cell with several gases (He, NH(3) and CH(4)). High-resolution ICP-MS was used to compare the results obtained. A detection limit as low as 8 ng L(-1) was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. In-situ Cl/Br measurements in scapolite and fluid inclusions by LA-ICP-MS: A powerful tool to constrain fluid sources

    NASA Astrophysics Data System (ADS)

    Hammerli, J.; Rusk, B.; Spandler, C.; Oliver, N. H. S.; Emsbo, P.

    2012-04-01

    Chlorine and bromine are highly conservative elements, and are therefore widely used to trace the origin of fluids in sedimentary and hydrothermal/magmatic systems (e.g. Hanor & McIntosh, 2007; Nahnybida et al., 2009). Halogens are important ligands for metal transport in hydrothermal solutions and thus their behavior in hydrothermal environments is crucial for comprehending ore-forming processes. Besides fluid inclusions, scapolite-group minerals hold great potential as a tracer of igneous, metamorphic, and hydrothermal processes, as no Cl/Br fractionation in scapolite has been observed and therefore halogen ratios in scapolite are thought to mirror the halogen ratios in coexisting melts and fluids (Pan & Dong, 2003). Hence, Cl/Br ratios in fluid inclusions and minerals can be utilized to trace the origin of fluids and fluid-rock interaction pathways. Due to their high ionization energies, bromine and chlorine are not routinely measured by LA-ICP-MS and suitable standards are rare. Little is known about the potential interferences and analytical limitations of in-situ chlorine and bromine analysis by LA-ICP-MS. Nevertheless, Seo et al. (2011) showed that quantification of Br and Cl in single synthetic and natural fluid inclusions is possible. In this study, we have analyzed several scapolite grains of known bromine and chlorine concentrations by LA-ICP-MS and assess the capabilities and limitations of this method. The results show that Cl/Br ratios measured by LA-ICP-MS closely reproduce known values determined by microprobe (Cl), the Noble Gas Method (Br) and INAA (Br) (Kendrick, 2011; Lieftink et al., 1993) using laser ablation spot sizes from 24-120 μm. The well-characterized scapolite grains cover bromine concentrations from 50-883 ppm and chlorine concentrations from 3 to 4 wt.%. In order to further assess the method, we analyzed Cl/Br ratios in natural fluid inclusions hosted in sphalerite that were previously characterized by crush and leach ion

  2. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and

  3. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  4. CHIME monazite dating using FE-EPMA equipped with R=100 mm spectrometers

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Shimizu, M.; Suzuki, K.; Sueoka, S.; Niwa, M.

    2015-12-01

    The age spectrum of detrital monazite grains is used to unravel the tectono-thermal history of the pre-Neogene terranes, which is required for geological disposal of high-level radioactive waste on tectonically active Japanese Islands. The CHIME (Chemical Th-U-total Pb isochron method, Suzuki and Adachi, 1991) is best suited for dating of detrital monazite whose grains are not chronologically uniform. In the previous studies (eg, Suzuki, 2011), EPMA equipped with conventional R=140 mm spectrometers was used for measurement of U, Th and Pb. However the spectrometers have low count rate of measurement of Pb. The JEOL JXA-8530F FE-EPMA equipped with R=100 mm spectrometers has been applied for the CHIME monazite dating. The intrinsic responses of each of the R=100 mm spectrometers for PbMβ are around ten times higher than that of the R=140 mm spectrometer. The R=100 mm spectrometers permits obtaining high count rate, which enables us to shorten measurement time than before. As these spectrometers have peculiar spectral interference, the method reported by Amli and Griffin (1978) is applied for correction of the interference. In order to verify the dating using the FE-EPMA and the interference correction method, two distinct age groups of monazite were measured. The ages were 425±25 Ma for monazite from Cooma granite in southeastern Australia, which had dated by SHRIMP as 432.8 ± 3.5 Ma (Williams, 2001) and 67 ± 7 Ma for monazite of the Kojaku granite in southwestern Japan, which is corresponding to the LA-ICP-MS U-Pb zircon ages of 68.5 ± 0.7 Ma. These results indicate that the FE-EPMA and the interference correction method are useful for the CHIME monazite dating and for revealing the tectono-thermal history of the terranes. This study was carried out under a contract with Agency of Natural Resources and Energy(ANRE), part of Ministry of Economy, Trade and Industry (METI) of Japan as part of its R&D supporting program for developing geological disposal technology.

  5. [Determination of heavy metals in four traditional Chinese medicines by ICP-MS].

    PubMed

    Wen, Hui-Min; Chen, Xiao-Hui; Dong, Ting-Xia; Zhan, Hua-Qiang; Bi, Kai-Shun

    2006-08-01

    To establish a ICP-MS method for the determination of heavy metals, including As, Hg, Pb, Cd, in four traditional Chinese medicines. The samples were digested by closed-versel microwave. The four heavy metals were directly analyzed by ICP-MS. Select internal standard element in for the method by which the analyse signal drife is corrected by the signal of another element (internal standard elements) added to both the standard solution and sample. For all of the analyzed heary methals, the correlative coefficient of the calibration curves was over 0.999 2. The recovery rates of the procedure were 97.5%-108.0%, and its RSD was lower than 11.6%. This method was convenient, quick-acquired, accurate and highly sensitive. The method can be used for the quality control of trace elements in traditional Chinese medicines and for the contents determination of traditional Chinese medicines from different habitats and species.

  6. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.

    PubMed

    Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S

    2008-01-01

    The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.

  7. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta

    2018-05-15

    Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  9. Correcting sensitivity drift during long-term multi-element signal measurements by solid sampling-ETV-ICP-MS.

    PubMed

    Martin-Esteban, A; Slowikowski, B; Grobecker, K H

    2004-06-17

    Solid sampling-electrothermal vaporisation-inductively coupled plasma-mass spectrometry (SS-ETV-ICP-MS) is an attractive technique for the direct simultaneous determination of trace elements in solid samples and especially in long-term studies (i.e. assessment of the homogeneity of reference materials). However, during these studies a downward drift in the instrument sensitivity has been observed due likely to deposits on the sampling and skimmer cones and on the ion lens of the mass spectrometer. Accordingly, in this paper, several means of correcting and/or suppressing sensitivity drift are proposed and evaluated for the monitoring of Cd, Cu, Hg, Mn, Pb, Sb, Se, Sn, Tl, U and V in different reference materials of inorganic and organic (biological) origin. From that studies, the combination of the use of the argon dimer as internal standard together with a modification in the ETV-ICP connection tube seems to be the best mean of getting stable sensitivity during at least 60 consecutive ETV runs.

  10. Connecting the U-Th and U-Pb Chronometers: New Algorithms and Applications

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Smith, C. J. M.; Roberts, N. M. W.; Richards, D. A.

    2016-12-01

    The U-Th and U-Pb geochronometers are important clocks for separate intervals of the geologic timescale. U-Th dates exploit disequilibrium in the 238U intermediate daughter isotopes 234U and 230Th, and are often used to date corals and speleothems that are zero age through 800 ka. The U-Pb system relies on secular equilibrium decay of 238U to 206Pb and 235U to 207Pb over longer timescales, and can be used to date samples from <1 Ma to 4.5 Ga. Disequilibrium plays a role in young U-Pb dates, but only as a nuisance correction. Both chronometers can produce dates with uncertainties <0.1% near the center of their applicable age ranges, but become less precise at their intersection, when the 238U decay chain approaches secular equilibrium and there has been little time for ingrowth of radiogenic Pb. However, if measurements or assumptions about both chronometers can be made, then they can be combined into a single, more informed date. Coupling the datasets can improve their precision and accuracy and help interrogate the assumptions that underpin each. Working with this data is difficult for two reasons. The Bateman equations are long and cumbersome for U decay chains that include 238U, 234U, 230Th, 226Ra, 206Pb and 235U, 231Pa, and 207Pb. Also, Pb measurements often comprise varying amounts of radiogenic Pb from locally heterogeneous U concentrations mixed with varying amounts of common Pb. At present there is no established, flexible computational framework to combine information from measurements and/or assumptions of these parameters, and no way to visualize and interpret the results. We present new algorithms to quickly and accurately solve the system of differential equations defined by both of the uranium decay chains and the linear regression through the U-Pb isochron. The results are illustrated on a new concordia diagram, where the concordia curve is determined by measured and/or assumed U-series disequilibrium and can have unfamiliar topologies. We

  11. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS Usbnd Pb ages

    NASA Astrophysics Data System (ADS)

    Ganwa, Alembert Alexandre; Klötzli, Urs Stephan; Hauzenberger, Christoph

    2016-08-01

    The main geological feature of Central Cameroon is the wide spread occurrence of granitoids emplaced in close association with transcurrent regional shear zones. The basement of this vast domain is a Paleoproterozoic ortho-and para-derivative formation, which has been intensely reworked, together with subsequent intrusions and sediments, during the Panafrican orogenesis in the Neoproterozoic. As consequence, the area underwent pervasive metamorphism and intense deformation. This makes it difficult to distinguish between Panafrican metasediments or syntectonic plutonites and their respective basement. Our study presents zircon features (CL-BSE-SE) and in-situ U-Th-Pb LA-MC-ICP-MS geochronology of a meta-sedimentary pyroxene-amphibole-bearing gneiss of the Méiganga area in Central Cameroon. Based on the Internal structures of the zircon four characteristic zonation patterns can be deciphered: 1) cores with magmatic oscillatory zonation 2) zircons with oscillatory or sector zonation, 3) zircons with sector zoning or blurred zoning, and 4) narrow bright un-zoned rims. These groups suggest that the rock experienced a number of geological events. Considering this zircon characteristic, the U-Th-Pb data allow to distinguish four ages: 2116 ± 57 Ma, consistent with ages from the Paleoproterozoic West Central African Belt; 2551 ± 33 Ma which marks a late Neoarchean magmatic event; 2721 ± 27 Ma related to a Neoarchean magmatic even in Central Cameroon, similar to one found in the Congo Craton. A zircon core gives ages around 2925 Ma which provides some evidence of the presence of the Mesoarchean basement prior to the Neoarchean magmatism. A weighted average of lower intercepts ages gives a value of 821 ± 50 Ma, representing the age of later metamorphism event. The various characteristic group and related ages reflect not only the complexity of the history of the pyroxene amphibole gneiss, but also show that the meta-sediment has at least three zircon contributing

  12. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  13. Determination of (236)U and transuranium elements in depleted uranium ammunition by alpha-spectrometry and ICP-MS.

    PubMed

    Desideri, D; Meli, M A; Roselli, C; Testa, C; Boulyga, S F; Becker, J S

    2002-11-01

    It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement. The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.

  14. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  15. ICP-MS Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  16. The Influence of Non-spectral Matrix Effects on the Accuracy of Isotope Ratio Measurement by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Barling, J.; Shiel, A.; Weis, D.

    2006-12-01

    Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del

  17. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  18. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  19. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  20. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  1. Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS.

    PubMed

    Fu, Liang; Xie, Hualin; Shi, Shuyun

    2018-06-01

    The concentrations of trace elements (Cr, Ni, As, Cd, Hg, and Pb) in Zanthoxylum bungeanum Maxim. essential oil (ZBMEO) were determined by inductively coupled plasma tandem mass spectrometry. The ZBMEO sample was directly analyzed after simple dilution with n-hexane. Aiming for a relatively high vapor pressure of n-hexane and its resultant loading on plasma, we used a narrow injector torch and optimized plasma radio frequency power and carrier gas flow to ensure stable operation of the plasma. An optional gas flow of 20% O 2 in Ar was added to the carrier gas to prevent the incomplete combustion of highly concentrated organic carbon in plasma and the deposition of carbon on the sampling and skimmer cone orifices. In tandem mass spectrometry mode, O 2 was added to the collision/reaction cell to eliminate the interferences. The limits of detection for Cr, Ni, As, Cd, Hg, and Pb were 2.26, 1.64, 2.02, 1.35, 1.76, and 0.97 ng L -1 , respectively. After determination of 23 ZBMEO samples from different regions in China, we found that the average concentration ranges of trace elements in the 23 ZBMEO samples were 0.72-6.02 ng g -1 , 0.09-2.87 ng g -1 , 0.21-5.84 ng g -1 , 0.16-2.15 ng g -1 , 0.13-0.92 ng g -1 , and 0.17-0.73 ng g -1 for Cr, Ni, As, Cd, Hg, and Pb, respectively. The trace elements in ZBMEO differed significantly when different extraction technologies were used. The study revealed that the contents of the toxic elements As, Cd, Hg, and Pb were extremely low, and hence they are unlikely to pose a health risk following ZBMEO ingestion. Graphical abstract The working mechanism of sample analysis by ICP-MS/MS.

  2. Natural radionuclide mobility and its influence on U-Th-Pb dating of secondary minerals from the unsaturated zone at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.V.

    2008-01-01

    Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my-1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages. Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ?? 3.7 to 361.3 ?? 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ?? 0.070 to 7.02 ?? 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ???1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ?? 0.0080 to 9.10 ?? 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my-1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ?? 0.006 to 2.091 ?? 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool. In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct ??-recoil from U-rich opal. Calcite from coatings devoid of opal

  3. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    NASA Astrophysics Data System (ADS)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  4. Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite.

    PubMed

    Meyer, S; López-Serrano, A; Mitze, H; Jakubowski, N; Schwerdtle, T

    2018-01-24

    Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus.

  5. Association of glass fragments by their trace elemental content using ICP-MS and LA-ICP-MS in the analysis scheme

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.

    2002-08-01

    The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.

  6. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.

    PubMed

    Ammann, Adrian A

    2007-04-01

    Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.

  7. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS.more » Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.« less

  8. Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from Small Samples.

    NASA Astrophysics Data System (ADS)

    Field, P.; Lloyd, N. S.

    2016-12-01

    V002: Advances in approaches and instruments for isotope studies Session ID#: 12653 Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from small samples.M. Paul Field 1 & Nicholas S. Lloyd. 1 Elemental Scientific Inc., Omaha, Nebraska, USA. field@icpms.com 2 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany. nicholas.lloyd@thermofisher.com Uranium isotope ratio determination for nuclear, nuclear safeguards and for environmental applications can be challenging due to, 1) the large isotopic differences between samples and 2) low abundance of 234U and 236U. For some applications the total uranium quantities can be limited, or it is desirable to run at lower concentrations for radiological protection. Recent developments in inlet systems and detector technologies allow small samples to be analyzed at higher precisions using MC-ICP-MS. Here we evaluate the combination of Elemental Scientific apex omega desolvation system and microFAST-MC dual loop-loading flow-injection system with the Thermo Scientific NEPTUNE Plus MC-ICP-MS. The inlet systems allow for the automated syringe loading and injecting handling of small sample volumes with efficient desolvation to minimize the hydride interference on 236U. The highest ICP ion sampling efficiency is realized using the Thermo Scientific Jet Interface. Thermo Scientific 1013 ohm amplifier technology allows small ion beams to be measured at higher precision, offering the highest signal/noise ratio with a linear and stable response that covers a wide dynamic range (ca. 1 kcps - 30 Mcps). For nanogram quantities of low enriched and depleted uranium standards the 235U was measured with 1013 ohm amplifier technology. The minor isotopes (234U and 236U) were measured by SEM ion counters with RPQ lens filters, which offer the lowest detection limits. For sample amounts ca. 20 ng the minor isotopes can be moved onto 1013 ohm amplifiers and the 235U onto standard 1011 ohm amplifier. To illustrate the

  9. Determination of toxic elements in yerba mate by ICP-MS after diluted acid digestion under O2 pressure.

    PubMed

    Pardinho, Renan B; Dalla Vecchia, Paula; Mendes, Ana L G; Bizzi, Cezar A; Mello, Paola A; Duarte, Fabio A; Flores, Erico M M

    2018-10-15

    In this work, a procedure allowing effective digestion of a high mass of yerba mate (up to 1500 mg) using diluted HNO 3, in a system pressurized with oxygen, is proposed. Digests were suitable for direct analysis by ICP-MS, virtually free of interferences. Digestion was performed using 7 mol l -1 HNO 3 and 8 bar O 2 . The digestion efficiency was better than 92% and digests presented a relatively low acidity (<10 mmol HNO 3 ). The limit of quantification was 4.0, 1.0 and 1.0 ng g -1 for As, Cd and Pb, respectively. Under optimized conditions up to 1500 mg of sample were digested and no interferences were observed during analyses by ICP-MS, making this approach suitable for routine determination of As, Cd and Pb in yerba mate and also in agreement with the quality control requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  11. Prospects for Practical Laser Ablation U/Pb and (U-Th)/He Double-Dating (LADD) of Detrital Apatite

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2017-12-01

    A laser ablation micro-analytical technique for (U-Th)/He dating has been shown to be an effective approach to the thermochronologic study of detrital zircons (Tripathy-Lang et al., J. Geophys. Res., 2013), while Evans et al. (J. Anal. At. Spectrom., 2015) and Horne et al. (Geochim. Cosmochim. Acta, 2016) demonstrated how the technique could be modified to enable laser ablation U/Pb and (U-Th)/He double-dating (LADD) of detrital zircon and titanite. These successes beg the question of whether or not LADD is viable for another commonly encountered detrital mineral: apatite. Exploratory LADD studies in Arizona State University's Group 18 Laboratories - using Durango fluorapatite, apatite from the Fish Canyon tuff, and detrital apatite from modern fluvial sediments in the eastern Sierra Nevada of California - illustrate that the method is indeed viable for detrital apatite. However, the method may not be appropriate for all detrital samples. For example, many apatite grains encountered in detrital samples from young orogenic settings have low concentrations of U and Th and small crystal sizes. This can lead to imprecise laser ablation (U-Th)/He dates, especially for very young grains potentially obscuring or inhibiting relevant interpretations of the data set.

  12. Elemental analysis of silicon based minerals by ultrasonic slurry sampling electrothermal vaporisation ICP-MS.

    PubMed

    Rodríguez, Pablo Fernández; Marchante-Gayón, Juan Manuel; Sanz-Medel, Alfredo

    2006-01-15

    Ultrasonic slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) was applied to the elemental analysis of silicate based minerals, such as talc or quartz, without any pre-treatment except the grinding of the sample. The electrothermal vaporisation device consists of a tungsten coil connected to a home-made power supply. The voltage program, carrier gas flow rate and sonication time were optimised in order to obtain the best sensitivity for elements determined. The relationship between the amount of sample in the slurry and the signal intensity was also evaluated. Unfortunately, in all cases, quantification had to be carried out by the standard additions method owing to the strong matrix interferences. The global precision of the proposed method was always better than 12%. The limits of detection, calculated as three times the standard deviation of the blank value divided by the slope of the calibration curve, were between 0.5 ng/g for As and 3.5 ng/g for Ba. The method was validated by comparing the concentrations found for Cu, Mn, Cr, V, Li, Pb, Sn, Mg, U, Ba, Sr, Zn, Sb, Rb and Ce using the proposed methodology with those obtained by conventional nebulisation ICP-MS after acid digestion of the samples in a microwave oven. The concentration range in the solid samples was between 0.2 microg/g for Cr and 60 microg/g for Ba. All results were statistically in agreement with those found by conventional nebulisation.

  13. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models

    NASA Astrophysics Data System (ADS)

    Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.

    2018-01-01

    Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

  14. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  15. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  16. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements.

    PubMed

    Hanousek, Ondrej; Brunner, Marion; Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-11-14

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3-0.5% ( u c,rel ), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement u c,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%).

  17. U, Th, Pb and REE abundances and Pb 207/Pb 206 ages of individual minerals in returned lunar material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1972-01-01

    Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.

  18. U-Pb Geochronology and Hf-isotope constrains on Formation of Archaean Crust From the Lewisian of NW Scotland, Great Britain

    NASA Astrophysics Data System (ADS)

    Crowley, Q. G.; Noble, S. R.; Key, R.

    2006-12-01

    The Lewisian complex of NW Scotland is dominantly composed of Archaean tonalitic to granodioritic gneisses, ultramafic bodies and minor metasedimentary components. Although the area is internationally well known and has been much studied for over a century, the precise timing of crustal forming events has proven difficult to ascertain. We present data from both in-situ laser ablation (LA) ICP-MS and an adaptation of a new U-Pb chemical abrasion ID-TIMS technique (Mattinson 2006) applied to multi-age component zircons from the Assynt block of this region. The new data reveal a previously unrecognised complexity and provide the first unequivocal proof of an Archean metamorphic event in the area. In a wider context the data also elucidate some of the processes involved in early global crust formation and plate tectonic events. In-situ LA-ICPMS U-Pb dating has indicated a ca 2.8Ga protolith age for a tonalite gneiss with evidence for a ca. 3.6Ga xenocrystic component (the oldest discovered in the UK). Non-conventional U-Pb ID-TIMS utilising a combination of high-temperature annealing followed by multi-step incremental dissolution on single grains has dated zircon growth at ca 2.7Ga (Badcallian) and 2.5Ga (Inverian) with later Pb-loss occurring at ca 1.9Ga and ca 1.7Ga (early and late Laxfordian respectively). This latter method combines a pseudo-spatial resolution normally associated with an in-situ technique but benefits from the high-precision analysis of ID-TIMS. Zircon Hf isotopes indicate that some rocks from the Assynt area are typical of Archaean continental crust (epsilon Hf ca -1. The tonalite gneisses however have strongly negative epsilon Hf values of -7 to -10 indicating a more complex history of derivation through partial melting of ancient crust with residual garnet as a long- lived control on Hf. Archaean events at ca. 3.6Ga, ca 2.8Ga and ca 2.7Ga have also been recorded in west Greenland (e.g. Mojzsis & Harrison 1999, Richards and Appel, 1987

  19. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  20. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  1. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    NASA Astrophysics Data System (ADS)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  2. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurementmore » at very low femtogram levels using this method in a ground water matrix is also demonstrated.« less

  3. Studies on the content of heavy metals in Aries River using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voica, Cezara, E-mail: Cezara.Voica@itim-cj.ro; Kovacs, Melinda, E-mail: Cezara.Voica@itim-cj.ro; Feher, Ioana, E-mail: Cezara.Voica@itim-cj.ro

    2013-11-13

    Among the industrial branches, the mining industry has always been an important source of environmental pollution, both aesthetically and chemically. Through this paper results of ICP-MS characterization of Aries River Basin are reported. Mining activities from this area has resulted in contamination of environment and its surrounding biota. This is clearly evidenced in analyzed water samples, especially from Baia de Aries site where increased amount of trace elements as Cr, Zn, As, Se, Cd, Pb and U were founded. Also in this site greater amount of rare earth elements was evidenced also. Through monitoring of Aries River from other non-miningmore » area it was observed that the quantitative content of heavy metals was below the maximum permissible levels which made us to conclude that the water table wasn't seriously affected (which possibly might be attributed to the cessation of mining activities in this area from a few years ago)« less

  4. High resolution analysis of trace elements in corals by laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Sinclair, Daniel J.; Kinsley, Leslie P. J.; McCulloch, Malcolm T.

    1998-06-01

    A method has been developed using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for rapid high resolution analysis of B, Mg, Sr, Ba, and U in corals. Corals represent a challenge for a microbeam technique due to their compositional and structural heterogeneity, their nonsilicate matrix, and their unusual range of trace element compositions relative to available standards. The method employs an argon-fluoride excimer laser (λ = 193 nm), masked to produce a beam 600 μm wide by 20 μm across to average ablation sampling over a range of structural features. Coral sections are scanned at a constant rate beneath the laser to produce a continuous sampling of the coral surface. Sensitivity drift is controlled by careful preconditioning of the ICP-MS to carbonate material, and standardisation is carried out by bracketing each traverse down the coral sample by analyses of a CaSiO 3 glass synthesised from coral powder. The method demonstrates excellent reproducibility of both the shape and magnitude of coralline trace element profiles, with typical precisions of between 1.0 and 3.7% based on analysis of the synthetic standard. Accuracy varies between 3.8% for B and 31% for U. Discrepancies are attributed to heterogeneities in the synthetic standard, and matrix differences between the silicate standard and carbonate sample. The method is demonstrated by analysis of a coral collected from Australia's Great Barrier Reef near a weather station recording in-situ sea-surface-temperature (SST). The elements B, Mg, Sr, and U show seasonal compositional cycles, and tentative calibrations against SST have been derived. Using independent ICP-MS solution estimates of the coral composition to correct for standardisation uncertainties, the following calibrations have been derived: B/Ca (μmol/mol)= 1000 (±20)- 20.6 (±0.8)× SSTMg/Ca (mmol/mol)= 0.0 (±0.3)+ 0.16 (±0.01)× SSTSr/Ca (mmol/mol)= 10.8 (±0.1)- 0.070 (±0.004)× SSTU/Ca (μmol/mol)= 2.24 (±0

  5. Evaluating the cause(s) of Ti, Ta, and Nb (TITAN) enrichment in ocean island basalts using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Lyakov, J.; Durkin, K.; Hirsch, L.; Peters, B.; Hattingh, R.; Day, J. M.

    2017-12-01

    Titanium, Ta, and Nb (TITAN) enrichments in some ocean island basalt (OIB) lavas have been attributed to mantle source, or to partial melting and fractional crystallization Iprocesses. TITAN anomalies in the mantle sources of OIB would imply these trace elements can be used to track mantle heterogeneity in a manner similar to some isotopic tracers (e.g., He, Os, W), whereas a petrogenetic process to account for TITAN anomalies would be more prosaic. To further evaluate this issue, we have performed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of phenocryst phases and matrix on petrographically well-characterized polished-sections of OIB samples. These samples come from five ocean island archipelagos (Canary Islands, the Azores, Samoa, Tubuai'i, Réunion), and are used to assess the citing of Ti, Ta, Nb and associated trace-elements within bulk-rocks. We find poorly-defined but broadly positive correlations between olivine and clinopyroxene modal abundance and Ta/Ta*, Nb/Nb*, but no correlation with Ti/Ti* (where, for example, Ti/Ti* is the primitive mantle normalized ratio, written as: Ti/√[Sm × Tb]). Abundances of olivine and clinopyroxene with samples spanned a wide-range, from 0-70 modal %. We determined trace-element abundances by LA-ICP-MS in a sub-set of samples for major (olivine, clinopyroxene) and minor (e.g., magnetite) phenocryst phases, and for the typically vitrophyric to partly crystallized matrices of samples. Modal reconstruction relative to the bulk rock are broadly similar, although the Ta/Ta*, Nb/Nb* and, especially Ti/Ti* anomalies cannot always be reproduced, especially if Fe-Ti oxide phases were not analyzed due to their limited presence within polished sections. LA-ICP-MS analyses reveal that, while TITAN anomalies are dominantly preserved in the matrix and oxide phases, the role of fractional crystallization of olivine and clinopyroxene is a controlling factor in the magnitude of TITAN anomaly generated. Our

  6. High spatial resolution analysis of ferromanganese concretions by LA-ICP-MS†

    PubMed Central

    Axelsson, Mikael D; Rodushkin, Ilia; Baxter, Douglas C; Ingri, Johan; Öhlander, Björn

    2002-01-01

    A procedure was developed for the determination of element distributions in cross-sections of ferromanganese concretions using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The effects of carrier flow rates, rf forward power, ablation energy, ablation spot size, repetition rate and number of shots per point on analyte intensity were studied. It is shown that different carrier gas flow rates are required in order to obtain maximum sensitivities for different groups of elements, thus complicating the optimisation of ICP parameters. On the contrary, LA parameters have very similar effects on almost all elements studied, thus providing a common optimum parameter set for the entire mass range. However, for selected LA parameters, the use of compromise conditions was necessary in order to compensate for relatively slow data acquisition by ICP-MS and maintain high spatial resolution without sacrificing the multielemental capabilities of the technique. Possible variations in ablation efficiency were corrected for mathematically using the sum of Fe and Mn intensities. Quantification by external calibration against matrix-matched standards was successfully used for more than 50 elements. These standards, in the form of pressed pellets (no binder), were prepared in-house using ferromanganese concentrates from a deep-sea nodule reference material as well as from shallow-marine concretions varying in size and having different proportions of three major phases: aluminosilicates, Fe- and Mn-oxyhydroxides. Element concentrations in each standard were determined by means of conventional solution nebulisation ICP-MS following acid digestion. Examples of selected inter-element correlations in distribution patterns along the cross-section of a concretion are given.

  7. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS.

    PubMed

    Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su

    2013-12-15

    This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Simultaneous Speciation of Arsenic, Selenium, and Chromium by HPLC-ICP-MS

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Morrison, Jean M.; Lamothe, Paul J.

    2008-01-01

    An adaptation of an analytical method developed for chromium speciation has been utilized for the simultaneous determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) species using high performance liquid chromatography (HPLC) separation with ICP-MS detection. Reduction of interferences for the determination of As, Se, and Cr by ICP-MS is a major consideration for this method. Toward this end, a Dynamic Reaction Cell (DRC) ICP-MS system was used to detect the species eluted from the chromatographic column. A variety of reaction cell gases and conditions may be utilized, and the advantages and limitations of the gases tested to date will be presented and discussed. The separation and detection of the As, Se, and Cr species of interest can be achieved using the same chromatographic conditions in less than 2 minutes by complexing the Cr(III) with EDTA prior to injection on the HPLC column. Practical aspects of simultaneous speciation analysis will be presented and discussed, including issues with HPLC sample vial contamination, standard and sample contamination, species stability, and considerations regarding sample collection and preservation methods. The results of testing to determine the method's robustness to common concomitant element and anion effects will also be discussed. Finally, results will be presented using the method for the analysis of a variety of environmental and geological samples including waters, soil leachates and simulated bio-fluid leachates.

  9. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  10. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  11. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed.

  12. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Stockli, Daniel F.; Snedden, John W.

    2017-10-01

    Detrital zircon U-Pb analysis is an effective approach for investigating sediment provenance by relating crystallization age to potential crystalline source terranes. Studies of large passive margin basins, such as the Gulf of Mexico Basin, that have received sediment from multiple terranes with non-unique crystallization ages or sedimentary strata, benefit from additional constraints to better elucidate provenance interpretation. In this study, U-Pb and (U-Th)/He double dating analyses on single zircons from the lower Miocene sandstones in the northern Gulf of Mexico Basin reveal a detailed history of sediment source evolution. U-Pb age data indicate that most zircon originated from five major crystalline provinces, including the Western Cordillera Arc (<250 Ma), the Appalachian-Ouachita orogen (500-260 Ma), the Grenville (1300-950 Ma) orogen, the Mid-Continent Granite-Rhyolite (1500-1300 Ma), and the Yavapai-Mazatzal (1800-1600 Ma) terranes as well as sparse Pan-African (700-500 Ma) and Canadian Shield (>1800 Ma) terranes. Zircon (U-Th)/He ages record tectonic cooling and exhumation in the U.S. since the Mesoproterozoic related to the Grenville to Laramide Orogenies. The combined crystallization and cooling information from single zircon double dating can differentiate volcanic and plutonic zircons. Importantly, the U-Pb-He double dating approach allows for the differentiation between multiple possible crystallization-age sources on the basis of their subsequent tectonic evolution. In particular, for Grenville zircons that are present in all of lower Miocene samples, four distinct zircon U-Pb-He age combinations are recognizable that can be traced back to four different possible sources. The integrated U-Pb and (U-Th)/He data eliminate some ambiguities and improves the provenance interpretation for the lower Miocene strata in the northern Gulf of Mexico Basin and illustrate the applicability of this approach for other large-scale basins to reconstruct sediment

  14. Investigating sources of ignimbrites in the Altiplano-Puna Volcanic Complex using U-Pb dating of zircons

    NASA Astrophysics Data System (ADS)

    Kern, J. M.; de Silva, S. L.; Schmitt, A. K.

    2011-12-01

    Large silicic volcanic fields (LSVFs) are thought to represent the surface expression of upper crustal batholith emplacement, with the spatiotemporal distribution of the vents and eruptions representing the development of the system. The Altiplano-Puna Volcanic Complex (APVC) in the Central Andes is a LSVF active from 11-1 Ma that erupted over 13,000 km3 of magma from large, multicyclic caldera centers and smaller ignimbrite shields during 3 distinct pulses of volcanism at 8.4, 5.5, and 4.0 Ma. Links to the magmatic system beneath are being pursued through U-Pb zircon dating of APVC ignimbrites. Initial results comprise 61 238U/206Pb zircon ages of mostly marginal crystal domains from five APVC ignimbrites-the 0.98 ± 0.03 Ma Purico, 3.96 ± 0.08 Ma Atana, 4.0 ± 0.9 Ma Toconao, 4.09 ± 0.02 Ma Puripicar, and 8.33 ± 0.06 Ma Sifon ignimbrites-dated by high-resolution secondary ionization mass spectrometry (SIMS). Each zircon analyzed was less than 350 μm in length and cathodoluminescence images reveal zonations within individual zircons, though significant core-rim age differences are rare. The ~1 Ma Purico ignimbrite displays multiple zircon age populations significantly predating the 40Ar/39Ar eruption age, but younger than ages from the nearby large-volume Atana ignimbrite erupted from La Pacana caldera. Some peaks do, however, coincide with later resurgent activity within La Pacana as expressed by the 2.7 Ma Cerro Bola dome. Zircon ages in the Atana ignimbrite are indistinguishable from its eruption, while those from the 4.0 Ma Toconao ignimbrite-the volatile-rich cap of the Atana magma chamber-contains three populations of xenocrystic zircons from the Proterozoic-Ordivician, ~13 Ma, and ~9 Ma. The ~9 Ma zircons correlate with K-Ar ages from an underlying ignimbrite, whereas the 13 Ma xenocrysts likely have a plutonic source. The Purico ignimbrite thus provides direct evidence of zircon inheritance from previous eruption cycles, while the Toconao records a

  15. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening andmore » collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.« less

  16. An approach for quantification of platinum distribution in tissues by LA-ICP-MS imaging using isotope dilution analysis.

    PubMed

    Moraleja, I; Mena, M L; Lázaro, A; Neumann, B; Tejedor, A; Jakubowski, N; Gómez-Gómez, M M; Esteban-Fernández, D

    2018-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been revealed as a convenient technique for trace elemental imaging in tissue sections, providing elemental 2D distribution at a quantitative level. For quantification purposes, in the last years several approaches have been proposed in the literature such as the use of CRMs or matrix matched standards. The use of Isotope Dilution (ID) for quantification by LA-ICP-MS has been also described, being mainly useful for bulk analysis but not feasible for spatial measurements so far. In this work, a quantification method based on ID analysis was developed by printing isotope-enriched inks onto kidney slices from rats treated with antitumoral Pt-based drugs using a commercial ink-jet device, in order to perform an elemental quantification in different areas from bio-images. For the ID experiments 194 Pt enriched platinum was used. The methodology was validated by deposition of natural Pt standard droplets with a known amount of Pt onto the surface of a control tissue, where could be quantified even 50pg of Pt, with recoveries higher than 90%. The amount of Pt present in the whole kidney slices was quantified for cisplatin, carboplatin and oxaliplatin-treated rats. The results obtained were in accordance with those previously reported. The amount of Pt distributed between the medullar and cortical areas was also quantified, observing different behavior for the three drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2005-04-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) with a special laser ablation system for bulk analyses (LINA-Spark(TM)-Atomiser) was applied for direct determinations of chlorine, bromine, and iodine in rock and sediment samples. Special attention was focused on possible inter-halogen fractionations and analyte/spike isotope fractionations by using LA-ICP-MS and LA-ICP-IDMS, respectively. A variation of Br/Cl and I/Cl element intensity ratios by a factor of 1.3-3 was observed when changing the nebulizer gas flow rate in the range of 0.84-1.0 L min-1 and the laser power density in the range of 2-10 GW cm-2, respectively. When using an internal standard for halogen quantification in LA-ICP-MS, this inter-element fractionation can cause systematic errors, which can be avoided by applying the isotope dilution technique. However, at high laser power densities (>5.7 GW cm-2 for iodine and >4.0 GW cm-2 for bromine and chlorine) the corresponding measured isotope ratio of the isotope-diluted sample deviates significantly from the target value. Under optimised conditions concentrations in the range of 30 [mu]g g-1-16 × 103 [mu]g g-1 for chlorine, <2-140 [mu]g g-1 for bromine, and <0.1-31 [mu]g g-1 for iodine were determined by LA-ICP-IDMS in two sediment reference materials (SRM 1646, SRM 2704) and three rock reference samples (GS-N, Granite; BX-N, Bauxite; DT-N, Disthene), which have not been certified for these halogens. The sediment results agree well within the given uncertainties with indicative values by different methods and the results of the rock samples with those obtained by negative thermal ionisation isotope dilution mass spectrometry. The detection limits of LA-ICP-IDMS are 8 [mu]g g-1 for chlorine, 1.7 [mu]g g-1 for bromine, and 0.1 [mu]g g-1 for iodine.

  18. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic.

    PubMed

    Heitland, Peter; Blohm, Martin; Breuer, Christian; Brinkert, Florian; Achilles, Eike Gert; Pukite, Ieva; Köster, Helmut Dietrich

    2017-05-01

    ICP-MS and HPLC-ICP-MS were applied for diagnosis and therapeutic monitoring in a severe intoxication with a liquid containing hexavalent chromium (Cr(VI)) and inorganic arsenic (iAs). In this rare case a liver transplantation of was considered as the only chance of survival. We developed and applied methods for the determination of Cr(VI) in erythrocytes and total chromium (Cr) and arsenic (As) in blood, plasma, urine and liver tissue by ICP-MS. Exposure to iAs was diagnosed by determination of iAs species and their metabolites in urine by anion exchange HPLC-ICP-MS. Three days after ingestion of the liquid the total Cr concentrations were 2180 and 1070μg/L in whole blood and plasma, respectively, and 4540μg/L Cr(VI) in erythrocytes. The arsenic concentration in blood was 206μg/L. The urinary As species concentrations were <0.5, 109, 115, 154 and 126μg/L for arsenobetaine, As(III), As(V), methylarsonate (V) and dimethylarsinate (V), respectively. Total Cr and As concentrations in the explanted liver were 11.7 and 0.9mg/kg, respectively. Further analytical results of this case study are tabulated and provide valuable data for physicians and toxicologists. Copyright © 2017. Published by Elsevier GmbH.

  19. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  20. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    PubMed

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  1. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements

  2. In-Situ U-Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science.

    PubMed

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U-Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U-Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.

  3. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  4. ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.

    PubMed

    Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K

    2017-01-01

    Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A table of polyatomic interferences in ICP-MS

    USGS Publications Warehouse

    May, Thomas W.; Wiedmeyer, Ray H.

    1998-01-01

    Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are caused by atomic or molecular ions that have the same mass-to-charge as analytes of interest. Current ICP-MS instrumental software corrects for all known atomic “isobaric” interferences, or those caused by overlapping isotopes of different elements, but does not correct for most polyatomic interferences. Such interferences are caused by polyatomic ions that are formed from precursors having numerous sources, such as the sample matrix, reagents used for preparation, plasma gases, and entrained atmospheric gases.

  6. Precise U/Pb zircons dates of bentonites in Upper Ordovician and Lower Silurian reference sections in North America and Britain.

    NASA Astrophysics Data System (ADS)

    Suarez, S. E.; Brookfield, M. E.; Catlos, E. J.; Stockli, D. F.; Batchelor, R. A.

    2016-12-01

    The end of the Ordovician marks one of the greatest of the Earth's mass extinctions. One hypothesis explains this mass extinction as the result of a short-lived, major glaciation preceded by episodes of increased volcanism brought on by the Taconic orogeny. K-bentonites, weathered volcanic ash, provide evidence for increased volcanism. However, there is a lack of modern precise U-Pb dating of these ashes and some confusion in the biostratigraphy. The aim of this study is to obtain more precise U-Pb zircon ages from biostratigraphically constrained bentonites which will lead to better correlation of the Upper Ordovician and Lower Silurian relative time scales, as well as time the pulses of eruption. Zircon grains were extracted from the samples by heavy mineral separation and U-Pb dated using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer at the University of Texas-Austin. We report here 3 precise U-Pb zircon ages from the Trenton Group, Ontario, Canada, and Dob's Linn, Scotland. The youngest age from the top of the Kirkfield Formation in Ontario is 448.0 +/- 18 Ma, which fits with existing late Ordovician stratigraphic ages. At Dob's Linn, Scotland, the site of the Ordovician/Silurian Global Boundary Stratigraphic Section and Point (GSSP), the youngest age for DL7, a bentonite 5 meters below the GSSP is 402.0 +/- 12.0 Ma, and for DL24L, a bentonite 8 meters above the GSSP is 358.2 +/- 7.9 Ma. These are Devonian ages in current timescales - the current age for the GSSP is 443.8 +/- 1.8 Ma, based on an U/Pb dates from a bentonite 1.6 meters above the GSSP at Dob's Linn. We are confident that our techniques rule out contamination and the most likely explanation is that the small zircons we analyzed either suffered Pb loss, or grew overgrowths during low grade hydrothermal metamorphism of the sediments during the intrusion of the Southern Upland Devonian granites during the Caledonian orogeny. These Devonian ages suggest that the 443.8 +/- 1.8 Ma age

  7. The India and South China cratons at the margin of Rodinia — Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Linnemann, U.; Rai, V.; Becker, S.; Gärtner, A.; Sagawe, A.

    2011-04-01

    The palaeogeographic position of South China in relation to India in the Neoproterozoic is controversial. Resolution of this controversy constrains the reconstruction of Rodinia during its breakup and contributes to our understanding of Snowball Earth. This work compares the Neoproterozoic histories of the Lesser Himalaya in northern India and the Yangtze block in southern China. We present U-Pb LA-ICP-MS ages of detrital zircon grains from six Indian and three Chinese siliciclastic sedimentary rocks, such as sandstones or diamictites/tillites. In total, 1148 grains were analysed from which 833 measurements gave ages with a degree of concordance between 90 and 110%. The correlation of the Indian and the Chinese sections is possible using the tillites of both areas purportedly deposited during the Snowball Earth time interval: the Blaini tillite from India and the Nantuo tillite from China. The U-Pb ages confirm the Marinoan age of the Chinese Liantuo tillite. Although the youngest zircon age for the Indian Blaini tillite is about 678 Ma, the Marinoan age is indicated by the presence of a typical Marinoan white to bright yellowish overlying cap carbonate. In addition to the tillites, representative detrital zircon ages from over- and underlying clastic rocks were determined. The Chinese samples are dominated by zircons with Neoproterozoic ages with a main peak between ca. 750 Ma and ca. 950 Ma and are characterised by the absence of Archaean ages. The Indian samples contain abundant Neoproterozoic zircon grains, but also contain Mesoproterozoic to Archaean zircons. For all samples, a local source area that provided the Neoproterozoic zircons is likely. A synchronous Neoproterozoic magmatic event in both cratons probably reflects the breakup of the supercontinent Rodinia and therefore the same tectono-magmatic event. Our results indicate a similar history for India and South China which both underwent at least one synchronous episode of crustal growth during the

  8. Metabolomic and elemental analysis of camel and bovine urine by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Alhaider, Abdul Qader; Raish, Mohammad; Shakeel, Faiyaz

    2017-01-01

    Recent studies from the author's laboratory indicated that camel urine possesses antiplatelet activity and anti-cancer activity which is not present in bovine urine. The objective of this study is to compare the volatile and elemental components of bovine and camel urine using GC-MS and ICP-MS analysis. We are interested to know the component that performs these biological activities. The freeze dried urine was dissolved in dichloromethane and then derivatization process followed by using BSTFA for GC-MS analysis. Thirty different compounds were analyzed by the derivatization process in full scan mode. For ICP-MS analysis twenty eight important elements were analyzed in both bovine and camel urine. The results of GC-MS and ICP-MS analysis showed marked difference in the urinary metabolites. GC-MS evaluation of camel urine finds a lot of products of metabolism like benzene propanoic acid derivatives, fatty acid derivatives, amino acid derivatives, sugars, prostaglandins and canavanine. Several research reports reveal the metabolomics studies on camel urine but none of them completely reported the pharmacology related metabolomics. The present data of GC-MS suggest and support the previous studies and activities related to camel urine.

  9. U Pb ages of angrites

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri

    2008-01-01

    Precise U-Pb ages, determined with double spike ( 202Pb- 205Pb) thermal ionization m1ass spectrometry, are reported for angrites Angra dos Reis (AdoR), Lewis Cliff 86010 (LEW), and D'Orbigny. Nineteen of 23 acid-washed pyroxene fractions from these meteorites and whole rock fractions from D'Orbigny contain between 0.5 and 1.3 pg of total common Pb, indistinguishable from analytical blank. Measured 206Pb/ 204Pb ratios in these fractions are between 6300 and 14,100 for AdoR, 1160-4500 for LEW, and 608-8500 for D'Orbigny. Blank-corrected 206Pb/ 204Pb ratios for all three meteorites vary from 2160 to over 100,000. These fractions yielded precise and reproducible 207Pb ∗/ 206Pbdates with the average values of 4557.65 ± 0.13 Ma for AdoR, 4558.55 ± 0.15 Ma for LEW, and 4564.42 ± 0.12 Ma for D'Orbigny. Pb-Pb isochrons including data with slightly elevated common Pb, and U-Pb upper concordia intercepts, yield similar dates. The implications of these new Pb-isotopic ages of angrites are threefold. First, they demonstrate that AdoR and LEW are not coeval, and the group of "slowly cooled" angrites is therefore genetically diverse. Second, the new age of LEW suggests an upward revision of 53Mn- 53Cr "absolute" ages by 0.7 Ma. Third, a precise age of D'Orbigny allows consistent linking of the 53Mn- 53Cr and 26Al- 26Mg extinct nuclide chronometers to the absolute lime scale.

  10. Examination of the Mass Transfer of Additive Elements in Barium Titanate Ceramics during Sintering Process by Laser Ablation ICP-MS.

    PubMed

    Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki

    2018-01-01

    The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.

  11. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system.

    PubMed

    Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue

    2017-02-01

    Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).

  12. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    PubMed

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  13. Lead isotopes in lichen transplants around a Cu smelter in Russia determined by MC-ICP-MS reveal transient records of multiple sources.

    PubMed

    Spiro, B; Weiss, D J; Purvis, O W; Mikhailova, I; Williamson, B J; Coles, B J; Udachin, V

    2004-12-15

    Transplants of the lichen Hypogymnia physodes, which is relatively tolerant to SO2 and heavy metals, were deployed for 3 months over a 60 km long SW-NE transect centered on a highly polluting Cu smelter and its adjoining town of Karabash, southern Urals, Russia. The abundance of 206Pb, 207Pb, 208Pb, and 204Pb were determined by MC-ICP-MS. The measurement of 204Pb revealed critical features, which would otherwise remain concealed: (i) The precise isotope ratios referenced to 204Pb allowed several different sources to be resolved even within the small area covered: (a) the obvious pollutant source of the Karabash Cu smelter; (b) two dispersed sources, likely to include soil with lower and different contributions of thorogenic and uranogenic lead; and (c) one anthropogenic source with higher contribution of 235U derived Pb. (ii) In part of the transect, the Pb isotope composition changed while the Pb concentrations remained the same. This indicates that the Pb content of the transplantation material from the background site was largely replaced and that the transplants provide a transient record reflecting a continuous accumulation and loss of environmental Pb, probably mainly in the form of extracellular particles. Overall, the method of lichen transplantation coupled with Pb isotope ratio determinations proved effective in assessing the usefulness of lichens in biomonitoring and in resolving different sources of atmospheric deposition.

  14. In-situ Strontium Isotopes Analysis on Single Conodont Apatite by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhang, L.; Chen, Z. Q.; Ma, D.; Qiu, H.; Lv, Z.; Hu, Z.; Wang, F.

    2014-12-01

    Strontium isotope played an important role in stratigraphic chronology and sedimentary geochemistry research (McArthur et al., 2001). Conodonts is a kind of extinct species of marine animals and widely distributed in marine sediments all over the world. Rich in radiogenic Sr contents and difficulty to be affected during diagenesis alteration makes conodonts a good choice in seawater Sr isotope composition studies (John et al., 2008). Conodont samples were collected from 24th to 39th layer across Permian-Triassic boundary at Meishan D section (GSSP), Zhejiang Province, South China (Yin et al., 2001). Conodonts was originated from fresh limestone and only conodont elements with CAI<2 were chosen for in-situ strontium isotope analysis using laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Conodont samples are from totally 25 layers in seven conodont zones making it possible for a high resolution 87Sr/ 86Sr curve reconstruction during the Permian-Triassic transition. 87Sr/ 86Sr ratio kept a relatively high value (0.70752) in the middle part of the Clarkina yini zone and a lower value (0.70634) in the upperpart of Clarkina taylorae zone. Of which, 87Sr/ 86Sr ratio emerged a rapid decrease within the Clarkina taylorae zone. After a subsequent increase, 87Sr/ 86Sr ratio dropped to 0.70777 in the Isarcicella staeschei zone. These results helps providing reference data for the biological mass extinction events during the Permian-Triassic transition. Our study also makes is possible for high resolution 87Sr/ 86Sr ratio testing on the single conodont apatite and riched the in-situ studies on the conodont apatite, which of great significance for the future conodont Sr isotope research (Zhao et al., 2009; Zhao et al., 2013). Keywords: Conodonts, Strontium isotope, LA-MC-ICP-MS, Permian-Triassic transition, Meishan D section [1] John et al., 2008 3P[2] McArthur et al., 2001 J. of Geology [3] Yin et al., 2001 Episodes [4] Zhao et al

  15. Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES).

    PubMed

    de la Calle, Inmaculada; Menta, Mathieu; Klein, Marlène; Séby, Fabienne

    2017-08-15

    Cosmetics are part of the daily life of most of the people. Thus, a complete characterization of the products we applied in our skin is necessary. In this work, an analytical investigation of a wide variety of cosmetics from the point of view of total element content and metallic nanoparticles (NPs) has been performed. Firstly, we analyzed the total element content by ICP-MS and ICP-OES after acid digestion as an assessment of the presence of metal impurities. Prohibited elements in cosmetics, according to the European Commission regulation No 1223/2009, were not detected, and only elements mentioned in the label were found (e.g. Al, Fe, Ti and Si). Secondly, a screening of the presence of NPs has been performed by Dynamic Light Scattering (DLS) and Single Particle Inductively-Coupled Plasma Mass Spectrometry (SP-ICP-MS). Two sample preparation procedures were applied. The first protocol consisted in the preparation of suspensions in 0.1% w/v SDS and the second based on defatting with hexane followed by resuspension in water. DLS was employed as a routine method for a fast analysis of NPs, but this technique showed limitations due to the lack of specificity. SP-ICP-MS analyses were then performed, first as a screening technique to evaluate the presence of TiO 2 and Au NPs in cosmetics suspensions prepared in SDS; and second, when a positive answer was obtained about the presence of NPs from the screening, SP-ICP-MS was used for particle size determination. Results showed that only TiO 2 NPs were present in two sunscreens, one anti-wrinkle day cream, one lip balm protector labeled as 'nano' and in one brand of toothpaste not labeled as 'nano'. Sizes obtained for both sample preparations were compared and ranged from 30 to 120nm in most of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    PubMed

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  17. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data

  18. Self-aliquoting micro-grooves in combination with laser ablation-ICP-mass spectrometry for the analysis of challenging liquids: quantification of lead in whole blood.

    PubMed

    Nischkauer, Winfried; Vanhaecke, Frank; Limbeck, Andreas

    2016-08-01

    We present a technique for the fast screening of the lead concentration in whole blood samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The whole blood sample is deposited on a polymeric surface and wiped across a set of micro-grooves previously engraved into the surface. The engraving of the micro-grooves was accomplished with the same laser system used for LA-ICP-MS analysis. In each groove, a part of the liquid blood is trapped, and thus, the sample is divided into sub-aliquots. These aliquots dry quasi instantly and are then investigated by means of LA-ICP-MS. For quantification, external calibration against aqueous standard solutions was relied on, with iron as an internal standard to account for varying volumes of the sample aliquots. The (208)Pb/(57)Fe nuclide ratio used for quantification was obtained via a data treatment protocol so far only used in the context of isotope ratio determination involving transient signals. The method presented here was shown to provide reliable results for Recipe ClinChek® Whole Blood Control levels I-III (nos. 8840-8842), with a repeatability of typically 3 % relative standard deviation (n = 6, for Pb at 442 μg L(-1)). Spiked and non-spiked real whole blood was analysed as well, and the results were compared with those obtained via dilution and sectorfield ICP-MS. A good agreement between both methods was observed. The detection limit (3 s) for lead in whole blood was established to be 10 μg L(-1) for the laser ablation method presented here. Graphical Abstract Micro-grooves are filled with whole blood, dried, and analyzed by laser ablation ICP-mass spectrometry. Notice that the laser moves in perpendicular direction with regard to the micro-grooves.

  19. Elemental bioimaging by means of LA-ICP-OES: investigation of the calcium, sodium and potassium distribution in tobacco plant stems and leaf petioles.

    PubMed

    Thyssen, G M; Holtkamp, M; Kaulfürst-Soboll, H; Wehe, C A; Sperling, M; von Schaewen, A; Karst, U

    2017-06-21

    Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g -1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.

  20. Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz

    2017-06-01

    Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.

  1. Two high resolution terrestrial records of atmospheric Pb deposition from New Brunswick, Canada, and Loch Laxford, Scotland.

    PubMed

    Kylander, Malin E; Weiss, Domink J; Kober, Bernd

    2009-02-15

    Environmental archives like peat deposits allow for the reconstruction of both naturally and anthropogenically forced changes in the biogeochemical cycle of Pb as well as the quantification of past and present atmospheric Pb pollution. However, records of atmospheric Pb deposition from pre-industrial times are lacking. In a publication by Weiss et al. [Weiss, D., Shotyk, W., Boyle, E.A., Kramers, J.D., Appleby, P.G., Cheburkin, A.K., Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Sci Total Environ 2002;292:7-18]. Pb isotopes data measured by Q-ICP-MS and TIMS, concentration and enrichment data was presented for sites in eastern Canada (PeW1) and northwestern Scotland (LL7c), dating to 1586 A.D and 715 A.D., respectively. Here these same cores are re-analysed for Pb isotopes by MC-ICP-MS thereby acquiring 204Pb data and improving on the original data in terms of resolution and temporal coverage. Significant differences were found between the Q-ICP-MS/TIMS and MC-ICP-MS measurements, particularly at PeW1. These discrepancies are attributed to the problematic presence of organic matter during sample preparation and analysis complicated by the heterogeneity of the organic compounds that survived sample preparation steps. The precision and accuracy of Pb isotopes in complex matrices like peat is not always well estimated by industrial standards like NIST-SRM 981 Pb. Lead pollution histories at each site were constructed using the MC-ICP-MS data. The entire LL7c record is likely subject to anthropogenic additions. Contributions from local mining were detected in Medieval times. Later, coal use and mining in Scotland, Wales and England became important. After industrialization (ca. 1885 A.D.) contributions from Broken Hill type ores and hence, leaded petrol, dominate atmospheric Pb signatures right up to modern times. At PeW1 anthropogenic impacts are first distinguishable in the late 17th

  2. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Meharg, Andrew A; Charnock, John M; Feldmann, Jörg

    2008-04-01

    The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

  3. Spatial investigation of the elemental distribution in Wilson's disease liver after d-penicillamine treatment by LA-ICP-MS.

    PubMed

    Hachmöller, Oliver; Zibert, Andree; Zischka, Hans; Sperling, Michael; Groba, Sara Reinartz; Grünewald, Inga; Wardelmann, Eva; Schmidt, Hartmut H-J; Karst, Uwe

    2017-12-01

    At present, the copper chelator d-penicillamine (DPA) is the first-line therapy of Wilson's disease (WD), which is characterized by an excessive copper overload. Lifelong DPA treatments aim to reduce the amount of detrimental excess copper retention in the liver and other organs. Although DPA shows beneficial effect in many patients, it may cause severe adverse effects. Despite several years of copper chelation therapy, discontinuation of DPA therapy can be linked to a rapidly progressing liver failure, indicating a high residual liver copper load. In order to investigate the spatial distribution of remaining copper and additional elements, such as zinc and iron, in rat and human liver samples after DPA treatment, a high resolution (spotsize of 10μm) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method was applied. Untreated LPP -/- rats, an established animal model for WD, appeared with a high overall copper concentration and a copper distribution of hotspots distributed over the liver tissue. In contrast, a low (>2-fold decreased) overall copper concentration was detected in liver of DPA treated animals. Importantly, however, copper distribution was highly inhomogeneous with lowest concentrations in direct proximity to blood vessels, as observed using novel zonal analysis. A human liver needle biopsy of a DPA treated WD patient substantiated the finding of an inhomogeneous copper deposition upon chelation therapy. In contrast, comparatively homogenous distributions of zinc and iron were observed. Our study indicates that a high resolution LA-ICP-MS analysis of liver samples is excellently suited to follow efficacy of chelator therapy in WD patients. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Determination of Heavy Metals in Almonds and Mistletoe as a Parasite Growing on the Almond Tree Using ICP-OES or ICP-MS.

    PubMed

    Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa

    2017-12-28

    In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.

  5. 206Pb-230Th-234U-238U and 207Pb-235U geochronology of Quaternary opal, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.

    2000-01-01

    -lived isotopes are nonlinearly biased by younger mineral additions. Use of the combined U–Th–Pb technique to date Yucca Mountain Quaternary opals significantly extends the age range beyond that of the 230Th/U dating method and shows that selected fracture pathways in the unsaturated zone felsic tuffs of Yucca Mountain have been active throughout the Quaternary.

  6. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  7. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    PubMed

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Zircon Zoning, Trace Elements and U-Pb Dates Reveal Crustal Foundering Beneath the Pamir

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Shaffer, M. E. F.; Ratschbacher, L.; Kylander-Clark, A. R.

    2017-12-01

    Xenoliths that erupted in the SE Pamir of Tajikistan at 11.2 Ma from 1000-1050°C and 90 km depth illuminate what happens when crust founders into the mantle. The xenoliths are a broad range of crustal rock types and contain abundant xenoliths whose U-Pb isotopic ratios and trace-element contents were examined by laser-ablation split stream inductively coupled plasma mass spectrometry. Cathodoluminescence imaging of the grains shows igneous cores with oscillatory zoning overprinted by substantial recrystallization. The bulk of the U-Pb dates are concordant and range from 160 Ma to 11 Ma. The range of dates suggest that the xenoliths were likely derived from the Jurassic-Cretaceous Andean-style magmatic arc and its Proterozoic-Mesozoic host rocks along the southern margin of Asia. The zircons show distinct changes in Eu anomaly, Lu/Gd ratio, and Ti concentrations that are interpreted to indicate garnet growth and minimal heating at 22-20 Ma, and then 200-300°C of heating, 25 km of burial, and alkali-carbonate melt injection at 14-11 Ma. These changes are interpreted to coincide with: i) heat input due to Indian slab breakoff at 22‒20 Ma; ii) rapid thickening and foundering of the Pamir lithosphere at 14‒11 Ma, prior to and synchronous with collision between deep Indian and Asian lithospheres beneath the Pamir.

  9. The Pb Isotope Pedigree of Western Samoan Volcanics: New Insights From High-Precision Analysis by NEPTUNE ICP/MS

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Workman, R. K.; Coetzee, M.; Blusztajn, J. S.; Ball, L.; Johnson, K. T.

    2002-12-01

    The Samoan hotspot has produced a chain of volcanism stretching from the island of Savai'i in the west to the presently active "leading-edge" volcano, Vailulu'u, in the east. An alignment of seamounts and submarine banks extending west of Savai'i is believed to be the earliest expression of the hotspot (Johnson, 1986). In 2001, we sampled the oldest shield exposures on Savai'i and western Upolu; these, and samples from the western banks Lalla Rookh, Combe and Alexa, have been analyzed for Pb isotopes using a new high precision Pb technique developed on the NEPTUNE ICP/Multi-Collector at W.H.O.I. Pb samples were doped with the NBS 997 thallium standard, with Pb/Tl ratios between 4 and 10; mass discrimination was adjusted to 205Tl/203Tl=2.387075 using an exponential fractionation law. Each run consisted of 35 cycles (16 s each) at an uptake rate of 0.13 μl/min (~12 minutes per run). The abundance sensitivity of the NEPTUNE is 2 ppm downmass and 1 ppm upmass; tailing at mass 204 from Tl is therefore ~30 ppm for 204Pb in a Pb/Tl = 4 solution. This can be adequately accounted for by careful selection of off-peak baseline positions. Beyond this effect, there is no dependence of Pb isotope ratios on Pb/Tl, over the range from 4-10. The correction on 204Pb for 204Hg was also minimal (20-30 ppm) and quite stable. Thirty runs of the NBS 981 standard (200 ppb solution, 12 different days over a period of 5 months) produced results very similar to the best TIMS data, with excellent external reproducibility: 206Pb/204Pb=19.9309(90), 207Pb/204Pb=15.4843(98), 208Pb/204Pb=36.6756(112) (in parenthesis, +/- 2σ in ppm). Similar external reproducibility was achieved for the Samoan basalt samples (duplicate runs on different days on solution splits from a single chemistry: +/- 2σ ppm = 101, 89 and 117, respectively). Over this time period, the variability of Tl mass bias was very small (+/- 130 ppm standard deviation). The only significant pitfall we have encountered is a memory

  10. Trace element study in scallop shells by laser ablation ICP-MS: the example of Ba/Ca ratios

    NASA Astrophysics Data System (ADS)

    Lorrain, A.; Pécheyran, C.; Paulet, Y.-M.; Chauvaud, L.; Amouroux, D.; Krupp, E.; Donard, O.

    2003-04-01

    As scallop shells grow incrementally at a rate of one line per day, environmental changes could then be evidenced on a daily basis. As an example for trace element incorporation studies, barium is a geochemical tracer that can be directly related to oceanic primary productivity. Hence, monitoring Ba/Ca variations in a scallop shell should give information about phytoplanktonic events encountered day by day during its life. The very high spatial resolution (typically 40 - 200 µm) and the high elemental sensitivity required can only be achieved by the combination of laser ablation coupled to inductively coupled plasma mass spectrometry. This study demonstrates that Laser ablation coupled to ICP-MS determination is a relevant tool for high resolution distribution measurement of trace elements in calcite matrix. The ablation strategy related to single line rastering and calcium normalisation were found to be the best analytical conditions in terms of reproducibility and sensitivity. The knowledge of P. maximus growth rings periodicity (daily), combined with LA-ICP-MS micro analysis allows the acquisition of time dated profiles with high spatial and thus temporal resolution. This resolution makes P. maximus a potential tool for environmental reconstruction and especially for accurate calibration of proxies. However, the relations among Ba/Ca peaks and phytoplanktonic events differed according to the animals and some inter-annual discrepancies complexify the interpretation.

  11. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  12. [Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu

    2012-06-01

    Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%.

  13. Unraveling the Switch from Subduction to Exhumation within a Collisional Orogen: Split-stream U-Pb and Trace-element Results from the Western Gneiss Region, Norway (Invited)

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Whitney, D. L.; Teyssier, C. P.; Fossen, H.; Desormeau, J. W.; Jessen, B.

    2013-12-01

    During continental collision, crustal material may be subducted to great depths and subsequently exhumed. Ultrahigh-pressure (UHP) terranes preserve a record of the subduction of crustal material during suturing of colliding continents and the exhumation of this material during extension and, in some cases, collapse of the orogen. The UHP rocks of the Western Gneiss Region (WGR), Norway, resulted from the collision of Baltica with Laurentia during the final stages of the Caledonian orogeny. The WGR represents one of the two largest UHP terranes on Earth and consists of a UHP eclogite-bearing domain south of the Møre-Trøndelag strike-slip fault and a HP mafic granulite-bearing domain north of the fault. At least some of the HP granulite is overprinted eclogite. To evaluate the metamorphic and structural relationship of mafic rocks and associated migmatite in both regions, we obtained LA-ICP-MS U-Pb dates and trace-element analyses for zircon from a variety of textural types of leucosome associated with mafic layers and lenses. Five leucosomes within highly deformed migmatite in the HP granulite complex on the Roan Peninsula reveal U-Pb lower-intercept ages from ca. 405 to 409 Ma and upper-intercept Proterozoic dates. These zircons have distinct trace-elements patterns: all of the zircons that yield Proterozoic dates have overall much higher REE concentrations, a more significant negative Eu anomaly (-0.3 to -0.7) and steeper HREE patterns (Lu/Dy = 5-12). In comparison, the Caledonian zircons reveal flatter Eu anomalies (-0.3 to 0.2) and less steep HREE patterns (Lu/Dy = 2-7), although the individual patterns do not seem to correlate with age. The Caledonian zircon patterns suggest crystallization at high-pressures and are distinct from the inherited Proterozoic grains. Similar results were obtained from zircon rims extracted from layer-parallel to crosscutting leucosomes from the UHP domain. Trace elements in zircon in these samples record the transition from high

  14. Characterization of Nanomaterials Using Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometery (FFF-ICP-MS and SP-ICP-MS): Scientific Operating Procedure SOP-C

    DTIC Science & Technology

    2015-04-01

    monodisperse particles. ENPs in environmental samples will likely have much broader size distributions and thus FFF-ICP-MS was tested over a greater...Figure 6). Resolution is based on ICP-MS sensitivity, and will likely decrease as the difference in particle diameter decreases. Second, this...Alvarez. 2006. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environmental Science

  15. High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

    NASA Technical Reports Server (NTRS)

    Tang, Ming; McDonough, William F.; Arevalo, Ricardo, Jr.

    2014-01-01

    Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (greater than 100 millimeters) and line scanning mode. In addition: (1) ion yields decrease when using spot sizes above 100 millimeters; (2) (Eu/Eu*)(sub raw) (i.e. Europium anomaly) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(sub raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference

  16. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  17. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less

  18. Mesoproterozoic evolution of the Río de la Plata Craton in Uruguay: at the heart of Rodinia?

    NASA Astrophysics Data System (ADS)

    Gaucher, Claudio; Frei, Robert; Chemale, Farid; Frei, Dirk; Bossi, Jorge; Martínez, Gabriela; Chiglino, Leticia; Cernuschi, Federico

    2011-04-01

    Mesoproterozoic volcanosedimentary units and tectonic events occurring in the Río de la Plata Craton (RPC) are reviewed. A belt consisting of volcanosedimentary successions exhibiting greenschist-facies metamorphism is exposed in the eastern RPC (Nico Pérez Terrane) in Uruguay. The Parque UTE Group consists of basic volcanics and gabbros at the base (1,492 ± 4 Ma, U-Pb on zircon), carbonates in its middle part and interbedded carbonates, shales and acid volcanics (1,429 ± 21 Ma, U-Pb on zircon) at the top. The Mina Verdún Group is made up of rhyolites and acid pyroclastics at its base and top, and Conophyton-bearing limestones and massive dolostones in the middle. A U-Pb LA-ICP MS zircon age of 1,433 ± 6 Ma is reported here for lapilli-tuffs at the base of the Mina Verdún Group (Cerro de las Víboras Formation). This age shows that the Mina Verdún Group immediately postdates the Parque UTE Group, a fact supported by carbon isotope chemostratigraphy. Both units were deformed and metamorphosed between 1.25 and 1.20 Ga, as shown by K-Ar and Ar-Ar ages. This tectonic event affected most of the RPC and led to the accretion of the Nico Pérez Terrane to the remainder of the RPC along the Sarandí del Yí megashear. We report a U-Pb LA-ICP MS zircon age (upper intercept) of 3,096 ± 45 Ma for metatonalites of the La China Complex (Nico Pérez Terrane), which yield a lower intercept age of 1,252 Ma. A proto-Andean, Mesoproterozoic belt is envisaged to account for abundant Mesoproterozoic detrital zircon ages occurring in Ediacaran sandstones of the RPC. If the RPC is fringed at both sides by Mesoproterozoic, Grenville-aged belts it is likely that it occupied a rather central position in Rodinia. A possible location between Laurentia and the Kalahari Craton, and to the south of Amazonia, is suggested.

  19. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  20. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin.

    PubMed

    Moraleja, Irene; Esteban-Fernández, Diego; Lázaro, Alberto; Humanes, Blanca; Neumann, Boris; Tejedor, Alberto; Luz Mena, M; Jakubowski, Norbert; Gómez-Gómez, M Milagros

    2016-03-01

    The study of the distribution of the cytostatic drugs cisplatin, carboplatin, and oxaliplatin along the kidney may help to understand their different nephrotoxic behavior. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows the acquisition of trace element images in biological tissues. However, results obtained are affected by several variations concerning the sample matrix and instrumental drifts. In this work, an internal standardization method based on printing an Ir-spiked ink onto the surface of the sample has been developed to evaluate the different distributions and accumulation levels of the aforementioned drugs along the kidney of a rat model. A conventional ink-jet printer was used to print fresh sagittal kidney tissue slices of 4 μm. A reproducible and homogenous deposition of the ink along the tissue was observed. The ink was partially absorbed on top of the tissue. Thus, this approach provides a pseudo-internal standardization, due to the fact that the ablation sample and internal standard take place subsequently and not simultaneously. A satisfactory normalization of LA-ICP-MS bioimages and therefore a reliable comparison of the kidney treated with different Pt-based drugs were achieved even for tissues analyzed on different days. Due to the complete ablation of the sample, the transport of the ablated internal standard and tissue to the inductively coupled plasma-mass spectrometry (ICP-MS) is practically taking place at the same time. Pt accumulation in the kidney was observed in accordance to the dosages administered for each drug. Although the accumulation rate of cisplatin and oxaliplatin is high in both cases, their Pt distributions differ. The strong nephrotoxicity observed for cisplatin and the absence of such side effect in the case of oxaliplatin could explain these distribution differences. The homogeneous distribution of oxaliplatin in the cortical and medullar areas could be related with its higher affinity for

  1. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  2. Geochemical (LA-ICP-MS) investigations of baddeleyite from the Palaeoproterozoic mafic and Palaeozoic alkaline intrusions in the Arctic part of the Baltic shield

    NASA Astrophysics Data System (ADS)

    Drogobuzhskaya, Svetlana; Bayanova, Tamara; Novikov, Andrey

    2017-04-01

    Baddeleyite is a zirconium dioxide mineral, which is very important, but less common as zircon. While the zircon microelementary composition study is widely applicable, the baddeleyite geochemical features are poorly known. The first data on REE concentrations and distribution in baddeleyite were published in the past century. Baddeleyite is used as a geochronometer for dating mafic and alkaline rocks. It may be noted that the data on its geochemical composition are quite contradictory with a strongly varying Ce anomaly value and absent Eu anomaly in some samples. The new data on the elementary composition of baddeleyite (REE, Hf, U, Th, Y, and Ti) from the Monchegorsk pluton mafic rocks (2.5 Ga) and Kovdor and Vuoriyarvi deposits (380 Ma) was obtained. The sample morphology was studied using an electronic spectroscopy method (Hitachi S-430), and the position of local analysis on baddeleyite crystals was chosen based on analyzed optic images of minerals. The content of REE and other elements was measured using LA-ICP-MS technique on quadrupole mass-spectrometer ELAN 9000 DRC-e (Perkin Elmer) with laser evaporator UP-266 MACRO (New Wave Research) with a wave length of 266 nm for sampling. The laser ablation was made in argon atmosphere in a 35 and 70 μm diameter spot or when scanning to a line with a pulse repetition rate of 10 Hz and pulse energy of 14-15 J/cm2. The device was calibrated using the NIST SRM 612 standard with a REE, U, and Th concentration of about 40 ppm. The baddeleyite from reference rocks of mafic intrusions are characterized by medium concentrations of Hf (0.69-1.9 %), Th (7.6-21.1), REE (50.3-162), U (164-357), Y (5.0-149) ppm for the sample M-2 from Monchegorsk. Another rocks of alkaline intrusions are depleted in Th (0.25-5.9), REE (9.2-103), U (1.8-48.1), Y(2.9-65.9) ppm and Hf (0.20-1.9%) for the sample Bd-400 from Vuoriyarvi and Hf (0.18-1.3 %), Th (0.4-5.2), REE (2.1-17.7), U (4.2-32.6), Y(2.2-68.4) ppm for the samples Bd-300 and Bd-300

  3. Petrogenesis of granodiorite in the Balong region, eastern Kunlun Orogen, China: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Huang, X.; Li, H.; Wang, Y.; Liu, Y.

    2017-12-01

    Numerous granitoid intrusions that close to the Balong region have great scientific significance to reveal tectonic evolution and geodynamic background of eastern Kunlun Orogen (EKO). Balong granodiorite (BLG) is located at the northern of the EKO. It generally emplaced into the Proterozoic to Lower Palaeozoic rocks and contains abundant mafic microgranular enclaves. LA-ICP-MS zircon U-Pb dating of the BLG gives a 206Pb/238U age of 230.7±1.9 Ma, indicating that it was emplaced in the Late Triassic. The BLG is high-K calc-alkaline series and metaluminous, with SiO2 of 59.86 61.83%, K2O+Na2O of 5.98 6.40%, CaO of 4.95 5.77% and P2O5 of 0.14% 0.18%. The granodioritic rocks are enriched in LILE (Ba, Rb, Sr), but depleted in HFSE (Nb, Ta, P, Ti), with weak negative Eu anomalies (δEu=0.70 0.82). Mineralogy and geochemistry of the rocks show an affinity to I-type granite. The BLG, having (87Sr/86Sr)i ratios of 0.70819 to 0.70832, ɛNd(t) values of -5.27 to -5.75, and zircon ɛHf(t) values ranging from -3.86 to -1.34. The whole-rock Nd isotopic model ages (1432 1471 Ma) and zircon Hf isotopic model ages (1205 1357 Ma) indicate that the BLG is generated by partial melting of lower crust (Precambrian metabasaltic basement rocks) with different degree of involvement of mantle material. Combined with regional geological data, the granodiorite was derived from dehydration melting of mafic lower crustal rocks during the subduction of the Anyemaqen ocean lithosphere at Late Permian-Triassic in a subduction setting. Basaltic magma underplating and crust-mantle mixing are main mechanisms for the origin of large-scale I-type granitoid in Balong.

  4. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  5. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    PubMed

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  6. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  7. Advances in the measurement of sulfur isotopes by multi-collector ICP-MS (MC-ICP- MS)

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Wilson, S. A.; Anthony, M. W.

    2006-12-01

    The demonstrated capability to measure 34S/32S by MC-ICP-MS with a precision (2ó) of ~0.2 per mil has many potential applications in geochemistry. However, a number of obstacles limit this potential. First, to achieve the precision indicated above requires sufficient mass resolution to separate isobaric interferences of 16O2 and 17O2 on 32S and 34S, respectively. These requirements for high resolution mean overall instrument sensitivity is reduced. Second, current methods preclude analysis of samples with complex matrices, a common characteristic of sulfur-bearing geologic materials. Here, we describe and discuss a method that provides both efficient removal of matrix constituents, and provides pre-concentration of S, thus overcoming these obstacles. The method involves the separation of sulfur from matrix constituents by high pressure (1000 psi) ion chromatography (HPIC), followed by isotope measurement using MC-ICP-MS. This combination allows for analysis of liquid samples with a wide range of S concentrations. A powerful advantage of this technique is the efficient separation of many sulfur species from matrix cations and anions (for instance in a seawater or acid mine drainage matrix), as well as the separation of sulfur species, e.g., sulfate, sulfite, thiosulfate, thiocynate, from each other for isotope analysis. The automated HPIC system uses a carbonate-bicarbonate eluent with eluent suppression, and has sufficient baseline separation to collect the various sulfur species as pure fractions. The individual fractions are collected over a specific time interval based upon a pre-determined elution profile and peak retention times. The addition of a second ion exchange column into the system allows pre-concentration of sulfur species by 2-3 orders of magnitude for samples that otherwise would have sulfur concentrations too low to provide precise isotopic ratios. The S isotope ratios are measured by MC-ICP-MS using a desolvating sample introduction system, a

  8. Correlating Cu-sulfide and Au mineralization in the Ertsberg-Grasberg District using LA-ICP-MS and HRXCT

    NASA Astrophysics Data System (ADS)

    Wright, K. A.; Miller, N. R.; Ketcham, R. A.; Kyle, R.

    2016-12-01

    The Ertsberg-Grasberg district in Papua, Indonesia, hosts to two of the largest intrusion-related Cu-Au deposits in the world: the Ertsberg East Skarn system and the Grasberg Intrusive Complex. Cu mineralization within the Grasberg porphyry and Ertsberg skarn systems primarily consists of bornite and chalcopyrite, with minor digenite and idiate. Native Au is commonly found in association with Cu mineralization where Au occurs as inclusions within or immediately proximal to primary Cu-sulfide minerals. At hydrothermal-ore forming temperatures, approximately 400° to 700° C, bornite and chalcopyrite can host up to 1800 ppm Au within the Cu-sulfide lattice. Upon retrograde cooling of the hydrothermal system, the ability of bornite and chalcopyrite to host Au decreases significantly to about 10 ppm, indicating that the Au could be expulsed from the sulfide lattice. Given the close association of native Au and Cu-sulfide concentrations, it is possible that native gold grains form as the Au emerges from the Cu-sulfides. Constraining the genetic and spatio-temporal relationship between Cu-sulfide and Au mineralization within these deposits is of significant interest with regard to the geometallurgical processing of the ore, and to future exploration. This study seeks to evaluate this relationship using High Resolution X-ray Computed Tomography (HRXCT) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Previous HRXCT studies on Ertsberg-Grasberg ore samples have identified numerous occurrences of native Au grains at the edges of Cu-sulfide masses. HRXCT data are used here to construct 3D Voronoi regions of potential Au "diffusional drainage" from within the Cu-sulfides, where the expectation is a positive correlation between Au grain size and modified Voronoi polyhedron volume, defined as the volume of sulfide closer to that grain than any other via a connected path through sulfide. LA-ICP-MS data are used to determine variations in Au contents

  9. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong

    2018-05-01

    The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios <0.66. The U-bearing granites were mainly derived from the partial melting of pelitic sedimentary source, whereas the psammitic source generated the barren granites. In addition, the barren granites show higher TFMM, Ba, and Eu/Eu* but lower SiO2, Rb/Sr and Al2O3/TiO2 ratios with higher zircon saturation temperatures relative to the U-bearing granites. These results indicate that the geochemical compositions of the U

  10. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite.

    PubMed

    Ikehata, Kei; Hirata, Takafumi

    2013-01-01

    We evaluated the capabilities of an in situ method for measuring copper isotopes of cubanite using UV-fs-LA-MC-ICP-MS. A comparison of the UV-fs laser results with those obtained from the NIR-fs laser system shows that there is obviously an improvement in the precision (<0.10‰, 2SE) when using the UV-fs laser. In both wavelength modes, matrix-matched standards are required for reliable in situ copper isotope analysis of cubanite. This method was applied to determinations for copper isotopes of minute cubanite grains in a skarn ore. Copper isotopic ratios of cubanite grains near a weathered surface of the sample are lower than those of intact cubanite grains within the sample, suggesting that selective leaching of heavier copper isotope in primary minerals occurred during weathering.

  11. Baddeleyite in PGE paleoproterozoic layered intrusions on Fennoscandian Shield (Arctic region): significance for timing, duration and continental reconstraction

    NASA Astrophysics Data System (ADS)

    Bayanova, Tamara; Korchagin, Aleksey; Chachshin, Viktor; Nerovich, Ludmila; Drogobuzhskaya, Svetlana

    2017-04-01

    Baddeleyite was firstly found and U-Pb dating in PGE layered intrusions of the Fennoscandian Shield in the rock-forming orthopyroxene (Lukkulaisvaara intrusion in Karelia region) and in magmatic zircon from gabbronorite Mt. Generalskaya (Kola region). Real crystals of baddeleyite were separated and U-Pb measured from Fedorovo-Pansky complex in gabbronorites lower part of the Pt-Pd reef intrusion (as first phase 2.50 Ga) and in upper part of Pt-Pd reef in anorthosites (second phase -2.45 Ga) and reflect time interval about 50 Ma of magmatic complex activity. In basite dykes from Cr-Ti-V Imandra lopolith baddeleyite were dating by U-Pb with 2.40 Ga. Therefore total duration time of Kola LIP and magmatic origin of the multimetal deposits are estimated as 100 Ma [1]. New additional isotope Nd-Sr-He data for the WR of the layered PGE intrusions in the Kola-Karelia-Finland big belt more than 500 km reflect EM-1 mantle reservoir. New REE (ELAN- 9000) distributions in the WR and dykes complexes of the Fedorovo-Pansky and Monshegorck Cu-Ni and PGE ore deposits gave OIB, N-MORB and E-MORB primary plume mantle source due to Re-Os data [2]. LA-ICP-MS data of REE investigations in baddeleyite crystals from Monchegorsk ore region yielded 1000 C forming of the grains and high U-Pb closure temperatures compared with zircon. Baddeleyite also primary magmatic minerals in the layered PGE intrusions and dykes complexes from Fennoscandian Shield and U-Pb precise data using artificial 205 Pb spike of the crystals together with time data for different continents gave new important information concerning break up and super continental reconstruction of geological history in paleoproterozoic time [3]. Acknowledgements: Many thanks to G.Wasserburg for 205 Pb artificial spike, J. Ludden, F. Corfu, V. Todt and U. Poller for assistance in the establishing of the U-Pb for single zircon and baddeleyite. All studies are supported by RFBR 16-05-00305. All investigations are devoted to memory of

  12. Provenance of sediments from Sumatra, Indonesia - Insights from detrital U-Pb zircon geochronology, heavy mineral analyses and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liebermann, C.; Hall, R.; Gough, A.

    2017-12-01

    The island of Sumatra is situated at the southwestern margin of the Indonesian archipelago. Although it is the sixth largest island in the world, the geology of the Sumatra sedimentary basins and their underlying basement is relatively poorly understood in terms of their provenance. This work is a multi-proxy provenance study utilizing U-Pb detrital zircon dating by LA-ICP-MS combined with optical and Raman spectroscopy-based heavy mineral analysis. It will help to unravel the stratigraphy of Sumatra, contribute to paleogeographic reconstruction of western SE Asia, and aid a wider understanding of Sumatran petroleum plays. Thin section analyses, heavy mineral assemblages, and >3500 concordant U-Pb zircon ages, from samples acquired during two fieldwork seasons indicate a mixed provenance for Cenozoic sedimentary formations, including both local igneous sources and mature basement rocks. Characteristic Precambrian zircon age spectra are found in all analysed Cenozoic sedimentary strata. These can be correlated with zircon age populations found in Sumatran basement rocks; Neoproterozoic and Mesoproterozoic age groups are dominant (c. 500-600 Ma, c. 850-1000 Ma, c. 1050-1200 Ma). Paleoproterozoic to Archaean zircons occur as minor populations. The Phanerozoic age spectra of the Cenozoic formations are characterised by distinct Carboniferous, Permo-Triassic, and Jurassic-Cretaceous zircon populations. Permo-Triassic zircons are interpreted to come from granitoids in the Malay peninsula or Sumatra itself. Eocene to Lower Miocene strata are characterised by ultrastable heavy minerals such as zircon, tourmaline, and rutile, which together with garnet, suggest the principal sources were igneous and metamorphic basement rocks. Cenozoic zircons appear only from the Middle Miocene onwards. This change is interpreted to indicate a new contribution from a local volcanic arc, and is supported by the occurrence of unstable heavy minerals such as apatite and clinopyroxene, and the

  13. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  14. Monitoring of metallic contaminants in energy drinks using ICP-MS.

    PubMed

    Kilic, Serpil; Cengiz, Mehmet Fatih; Kilic, Murat

    2018-03-09

    In this study, an improved method was validated for the determination of some metallic contaminants (arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), copper (Cu), Mn, and antimony (Sb)) in energy drinks using inductive coupled plasma mass spectrometry (ICP-MS). The validation procedure was applied for the evaluation of linearity, repeatability, recovery, limit of detection, and quantification. In addition, to verify the trueness of the method, it was participated in an interlaboratory proficiency test for heavy metals in soft drink organized by the LGC (Laboratory of the Government Chemist) Standard. Validated method was used to monitor for the determination of metallic contaminants in commercial energy drink samples. Concentrations of As, Cr, Cd, Pb, Fe, Ni, Cu, Mn, and Sb in the samples were found in the ranges of 0.76-6.73, 13.25-100.96, 0.16-2.11, 9.33-28.96, 334.77-937.12, 35.98-303.97, 23.67-60.48, 5.45-489.93, and 0.01-0.42 μg L -1 , respectively. The results were compared with the provisional guideline or parametric values of the elements for drinking waters set by the WHO (World Health Organization) and EC (European Commission). As, Cd, Cu, and Sb did not exceed the WHO and EC provisional guideline or parametric values. However, the other elements (Cr, Pb, Fe, Ni, and Mn) were found to be higher than their relevant limits at various levels.

  15. High resolution ID-ICP-MS certification of an estuary water reference material (LGC 6016) and analysis of matrix induced polyatomic interferences.

    PubMed

    Evans, P; Fairman, B

    2001-10-01

    Reliable trace metal analysis of environmental samples is dependent upon the availability of high accuracy, matrix reference standards. Here, we present Cd, Cu, Ni, Pb and Zn isotope dilution determination for an estuary water certified reference material (LGC 6016). This work highlights the need for high-accuracy techniques in the development of trace element CRMs rather than conventional inter-laboratory trials. Certification of the estuary water LGC6016 was initially determined from a consensus mean from 14 laboratories but this was found to be unsatisfactory due to the large discrepancies in the reported concentrations. The material was re-analysed using isotope dilution ICP-MS techniques. Pb and Cd were determined using a conventional quadrupole ICP-MS (Elan 5000). Cu, Zn and Ni were determined using a magnetic sector ICP-MS (Finnigan Element), which allowed significant polyatomic interferences to be overcome. Using the magnetic sector instrument, precise mass calibration to within 0.02 amu permitted identification of the interferences. Most interferences derived from the sample matrix. For example, the high Na content causes interferences on 63Cu, due to the formation of 40Ar23Na and 23Na2 16O1H, which in a conventional quadrupole instrument would relate to an erroneous increase in signal intensity by up to 20%. For each analyte a combined uncertainty calculation was performed following the Eurachem/GTAC and ISO guideline. For each element a combined uncertainty of 2-3% was found, which represents a 10-fold improvement compared to certification by inter-laboratory comparison. Analysis of the combined uncertainty budget indicates that the majority of systematic uncertainty derives from the instrumental isotope ratio measurements.

  16. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  17. Application of SEC-ICP-MS for comparative analyses of metal-containing species in cancerous and healthy human thyroid samples.

    PubMed

    Boulyga, Sergei F; Loreti, Valeria; Bettmer, Jörg; Heumann, Klaus G

    2004-09-01

    Size exclusion chromatography (SEC) was coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for speciation study of trace metals in cancerous thyroid tissues in comparison to healthy thyroids aimed to estimation of changes in metalloprotein speciation in pathological tissue. The study showed a presence of species binding Cu, Zn, Cd and Pb in healthy thyroid tissue with a good reproducibility of chromatographic results, whereas the same species could not be detected in cancerous tissues. Thus, remarkable differences with respect to metal-binding species were revealed between healthy and pathological thyroid samples, pointing out a completely different distribution of trace metals in cancerous tissues. The metal-binding species could not be identified in the frame of this work because of a lack of appropriate standards. Nevertheless, the results obtained confirm the suitability of SEC-ICP-MS for monitoring of changes in trace metal distribution in cancerous tissue and will help to better understand the role of metal-containing species in thyroid pathology.

  18. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  19. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome.

    PubMed

    Konz, Tobias; Migliavacca, Eugenia; Dayon, Loïc; Bowman, Gene; Oikonomidi, Aikaterini; Popp, Julius; Rezzi, Serge

    2017-05-05

    We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.

  20. Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U-Pb dating of Solar System events

    NASA Astrophysics Data System (ADS)

    Darling, James R.; Moser, Desmond E.; Barker, Ivan R.; Tait, Kim T.; Chamberlain, Kevin R.; Schmitt, Axel K.; Hyde, Brendt C.

    2016-06-01

    The accurate dating of igneous and impact events is vital for the understanding of Solar System evolution, but has been hampered by limited knowledge of how shock metamorphism affects mineral and whole-rock isotopic systems used for geochronology. Baddeleyite (monoclinic ZrO2) is a refractory mineral chronometer of great potential to date these processes due to its widespread occurrence in achondrites and robust U-Pb isotopic systematics, but there is little understanding of shock-effects on this phase. Here we present new nano-structural measurements of baddeleyite grains in a thin-section of the highly-shocked basaltic shergottite Northwest Africa (NWA) 5298, using high-resolution electron backscattered diffraction (EBSD) and scanning transmission electron microscopy (STEM) techniques, to investigate shock-effects and their linkage with U-Pb isotopic disturbance that has previously been documented by in-situ U-Pb isotopic analyses. The shock-altered state of originally igneous baddeleyite grains is highly variable across the thin-section and often within single grains. Analyzed grains range from those that preserve primary (magmatic) twinning and trace-element zonation (baddeleyite shock Group 1), to quasi-amorphous ZrO2 (Group 2) and to recrystallized micro-granular domains of baddeleyite (Group 3). These groups correlate closely with measured U-Pb isotope compositions. Primary igneous features in Group 1 baddeleyites (n = 5) are retained in high shock impedance grain environments, and an average of these grains yields a revised late-Amazonian magmatic crystallization age of 175 ± 30 Ma for this shergottite. The youngest U-Pb dates occur from Group 3 recrystallized nano- to micro-granular baddeleyite grains, indicating that it is post-shock heating and new mineral growth that drives much of the isotopic disturbance, rather than just shock deformation and phase transitions. Our data demonstrate that a systematic multi-stage microstructural evolution in

  1. High-Precision U-Pb Geochronology of Ice River Perovskite: A Possible Interlaboratory and Intertechnique EARTHTIME Standard

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.; Heaman, L. M.

    2012-12-01

    Accurate and precise U-Pb geochronology of accessory phases other than zircon are required for dating some LIP basalts or determining the temporal patterns of kimberlite pipes, for example. Advances in precision and accuracy lead directly to an increase in the complexity of questions that can be posed. U-Pb geochronology of perovskite (CaTiO3) has been applied to silica-undersaturated basalts, carbonatites, alkaline igneous rocks, and kimberlites. Most published IDTIMS perovskite dates have 2-sigma precisions at the ~0.2% level for weighted mean 206Pb/238U dates, much less than possible with IDTIMS analyses of zircons, which limits the applicability of perovskite in high-precision applications. Precision on perovskite dates is lower than zircon because of common Pb, which in some cases can be up to 50% of the total Pb and must be corrected for and accurately partitioned between blank and initial. Relatively small changes in the composition of common Pb can result in inaccurate but precise dates. In many cases minerals with significant common Pb are corrected using Stacey and Kramers (1975) two stage Pb evolution model. This can be done without serious consequence to the final date for minerals with high U/Pb ratios. In the more common case where U/Pb ratios are relatively low and the proportion of common Pb is large, applying a model-derived Pb isotopic composition rather than measuring it directly can introduce percent-level inaccuracy to dates calculated with precisely known U/Pb ratios. Direct measurement of the common Pb composition can be done on a U-poor mineral that co-crystallized with perovskite; feldspar and clinopyroxene are commonly used. Clinopyroxene can contain significant in-grown radiogenic Pb and our experiments indicate that it is not eliminated by aggressive step-wise leaching. The U/Pb ratio in clinopyroxene is generally low (20 < mu < 50) but significant. Other workers (e.g. Kamo et al., 2003; Corfu and Dahlgren, 2008), have used two methods

  2. U-Pb Geochronology of Hydrous Silica (Siebengebirge, Germany)

    NASA Astrophysics Data System (ADS)

    Tomaschek, Frank; Nemchin, Alexander; Geisler, Thorsten; Heuser, Alexander; Merle, Renaud

    2015-04-01

    Low-temperature, hydrous weathering eventually leads to characteristic products such as silica indurations. Elevated U concentrations and the ability of silica to maintain a closed system permits silica to be dated by the U-Pb method, which, in turn, will potentially allow constraining the timing of near-surface processes. To test the feasibility of silica U-Pb geochronology, we sampled opal and chalcedony from the Siebengebirge, Germany. This study area is situated at the terminus of the Cenozoic Lower Rhine Basin on the Rhenish Massif. The investigated samples include silicified gravels from the Mittelbachtal locality, renowned for the embedded wood opal. Structural characterization of the silica phases (Raman spectroscopy) was combined with in situ isotopic analyses, using ion microprobe and LA-ICPMS techniques. In the Siebengebirge area fluviatile sediments of Upper Oligocene age were covered by an extended trachyte tuff at around 25 Ma. Silica is known to indurate some domains within the tuff and, in particular, certain horizons within the subjacent fluviatile sediments ('Tertiärquarzite'). Cementation of the gravels occurred during at least three successive growth stages: early paracrystalline silica (opal-CT), fibrous chalcedony, and late microcrystalline quartz. It has traditionally been assumed that this silica induration reflects intense weathering, more or less synchronous with the deposition of the volcanic ashes. Results from U-Pb geochronology returned a range of discrete 206Pb-238U ages, recording a protracted silicification history. For instance, we obtained 22 ± 1 Ma for opal-CT cement from a silicified tuff, 16.6 ± 0.5 Ma for silicified wood and opal-CT cement in the fluviatile gravels, as well as 11 ± 1 Ma for texturally late chalcedony. While silicification of the sampled tuff might be contemporaneous with late-stage basalts, opaline silicification of the subjacent sediments and their wood in the Mittelbachtal clearly postdates active

  3. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.

  4. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS.

    PubMed

    Loeschner, Katrin; Correia, Manuel; López Chaves, Carlos; Rokkjær, Inge; Sloth, Jens J

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by conventional ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N = 21), respectively. Aluminium-containing nanoparticles were detected by spICP-MS in all 21 samples. Depending on the assumed particle composition, Al 2 O 3 or Al 2 O 3 ∙2SiO 2 ∙2H 2 O, the median particle diameters were either below or above 100 nm, respectively. The minimum detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass recovery of aluminium in the form of particles was between 5% and 18%. The presented work reports for the first time the detection of Al-containing particles in food by spICP-MS.

  5. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  6. Simultaneous Determination of 10 Ultratrace Elements in Infant Formula, Adult Nutritionals, and Milk Products by ICP/MS After Pressure Digestion: Single-Laboratory Validation.

    PubMed

    Dubascoux, Stephane; Nicolas, Marine; Rime, Celine Fragniere; Payot, Janique Richoz; Poitevin, Eric

    2015-01-01

    A single-laboratory validation (SLV) is presented for the simultaneous determination of 10 ultratrace elements (UTEs) including aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), molybdenum (Mo), lead (Pb), selenium (Se), and tin (Sn) in infant formulas, adult nutritionals, and milk based products by inductively coupled plasma (ICP)/MS after acidic pressure digestion. This robust and routine multielemental method is based on several official methods with modifications of sample preparation using either microwave digestion or high pressure ashing and of analytical conditions using ICP/MS with collision cell technology. This SLV fulfills AOAC method performance criteria in terms of linearity, specificity, sensitivity, precision, and accuracy and fully answers most international regulation limits for trace contaminants and/or recommended nutrient levels established for 10 UTEs in targeted matrixes.

  7. 210Pb dating

    USGS Publications Warehouse

    Swarzenski, Peter W.

    2014-01-01

    Roughly fifty years ago, a small group of scientists from Belgium and the United States, trying to better constrain ice sheet accumulation rates, attempted to apply what was then know about environmental lead as a potential geochronometer. Thus Goldberg (1963) developed the first principles of the 210Pb dating method, which was soon followed by a paper by Crozaz et al. (1964), who examined accumulation history of Antarctic snow using 210Pb. Shortly thereafter, Koide et al. (1972, 1973) adapted this technique to unravel sediment deposition and accumulation records in deep-sea environments. Serendipitously, they chose to work in a deep basin off California, where an independent and robust age model had already been developed. Krishanswami et al. (1971) extended the use of this technique to lacustrine deposits to reconstruct depositional histories of lake sediment, and maybe more importantly, contaminant inputs and burial. Thus, the powerful tool for dating recent (up to about one century old) sediment deposits was established and soon widely adopted. Today almost all oceanographic or limnologic studies that address recent depositional reconstructions employ 210Pb as one of several possible geochronometers (Andrews et al., 2009; Gale, 2009; Baskaran, 2011; Persson and Helms, 2011). This paper presents a short overview of the principles of 210Pb dating and provides a few examples that illustrate the utility of this tracer in contrasting depositional systems. Potential caveats and uncertainties (Appleby et al., 1986; Binford, 1990; Binford et al., 1993; Smith, 2001; Hancock et al., 2002) inherent to the use and interpretation of 210Pb-derived age-models are also introduced. Recommendations as to best practices for most reliable uses and reporting are presented in the summary.

  8. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  9. Determination of phosphorus in small amounts of protein samples by ICP-MS.

    PubMed

    Becker, J Sabine; Boulyga, Sergei F; Pickhardt, Carola; Becker, J; Buddrus, Stefan; Przybylski, Michael

    2003-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.

  10. Potentialities of mass spectrometry (ICP-MS) for actinides determination in urine.

    PubMed

    Bouvier-Capely, C; Ritt, J; Baglan, N; Cossonnet, C

    2004-05-01

    The applicability of inductively coupled plasma-mass spectrometry (ICP-MS) for determining actinides in urine was investigated. Performances of ICP-MS including detection limit and analysis time were studied and compared with alpha spectrometry performances. In the field of individual monitoring of workers, the comparison chart obtained in this study can be used as a guide for medical laboratories to select the most adequate procedure to be carried out depending on the case in question (the radioisotope to be measured, the required sensitivity, and the desired response time).

  11. Usefulness of laser ablation ICP-MS for analysis of metallic particles released to oral mucosa after insertion of dental implants.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta

    2018-03-01

    Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids.

    PubMed

    Sarmiento-González, Alejandro; Marchante-Gayón, Juan Manuel; Tejerina-Lobo, José María; Paz-Jiménez, José; Sanz-Medel, Alfredo

    2005-06-01

    A sector field high-resolution (HR)-ICP-MS and an octapole reaction system (ORS)-ICP-MS have been compared for the simultaneous determination of traces of metals (Ti, V, Cr, Co, Ni, and Mo) released from dental implants and articular prostheses in human biological fluids. Optimum sample treatments were evaluated to minimize matrix effects in urine and whole blood. Urine samples were diluted tenfold with ultrapure water, whereas whole blood samples were digested with high-purity nitric acid and hydrogen peroxide and finally diluted tenfold with ultrapure water. In both matrices, internal standardization (Ga and Y) was employed to avoid potential matrix interferences and ICP-MS signal drift. Spectral interferences arising from the plasma gases or the major components of urine and whole blood were identified by (HR)-ICP-MS at 3,000 resolving power. The capabilities of (HR)-ICP-MS and (ORS)-ICP-MS for the removal of such spectral interferences were evaluated and compared. Results indicate that polyatomic interferences, which hamper the determination of such metallic elements in these biological samples, could be overcome by using a resolving power of 3,000. Using (ORS)-ICP-MS, all those elements could be quantified except Ti and V (due to the polyatomic ions 31P16O and 35Cl16O, respectively). The accuracy of the proposed methodologies by (HR)- and (ORS)-ICP-MS was checked against two reference materials. Good agreement between the given values and the concentrations obtained for all the analytes under scrutiny was found except for Ti and V when analyzed by (ORS)-ICP-MS.

  13. GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination

    USGS Publications Warehouse

    Jochum, K.P.; Wilson, S.A.; Abouchami, W.; Amini, M.; Chmeleff, J.; Eisenhauer, A.; Hegner, E.; Iaccheri, L.M.; Kieffer, B.; Krause, J.; McDonough, W.F.; Mertz-Kraus, R.; Raczek, I.; Rudnick, R.L.; Scholz, Donna K.; Steinhoefel, G.; Stoll, B.; Stracke, A.; Tonarini, S.; Weis, D.; Weis, U.; Woodhead, J.D.

    2011-01-01

    This paper contains the results of an extensive isotopic study of United States Geological Survey GSD-1G and MPI-DING reference glasses. Thirteen different laboratories were involved using high-precision bulk (TIMS, MC-ICP-MS) and microanalytical (LA-MC-ICP-MS, LA-ICP-MS) techniques. Detailed studies were performed to demonstrate the large-scale and small-scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD-1G and the MPI-DING glasses are suitable reference materials for microanalytical and bulk analytical purposes. Ce document contient les r??sultats d'une importante ??tude isotopique des verres de r??f??rence USGS GSD-1G et MPI-DING. Treize laboratoires diff??rents ont particip?? au travers de techniques analytiques de haute pr??cision travaillant soit sur ??chantillon total (TIMS, MC-ICP-MS) soit par microanalyse ??in situ?? (LA-MC-ICP-MS, LA-ICP-MS). ?? 2010 The Authors. Geostandards and Geoanalytical Research ?? 2010 International Association of Geoanalysts.

  14. New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian-Ordovician boundary

    USGS Publications Warehouse

    Davidek, K.; Landing, E.; Bowring, S.A.; Westrop, S.R.; Rushton, A.W.A.; Fortey, R.A.; Adrain, J.M.

    1998-01-01

    A crystal-rich volcaniclastic sandatone in the lower Peltura scarabaeoides Zone at Ogof-odi near Criccieth, North Wales, yields a U-Pb zircon age of 491 ?? 1 Ma. This late Late Cambrian date indicates a remarkably young age for the Cambrian-Ordovician boundary whose age must be less than 491 Ma. Hence the revised duration of the post-Placentian (trilobite-bearing) Cambrian indicates that local trilobite zonations allow a biostratigraphic resolution comparble to that provided by Ordovician graptolites and Mesozoic ammonites.

  15. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  16. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less

  17. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Sujuan; Hu, Jianmin; Ren, Minghua; Gong, Wangbin; Liu, Yang; Yan, Jiyuan

    2014-11-01

    The Bayanwulashan Metamorphic Complex (BMC) exposes along the eastern margin of the Alxa Block, the westernmost part of the North China Craton (NCC). BMC is principally composed of metamorphic rocks with amphibole plagiogneiss, biotite plagioclase gneiss and granitic gneiss. Our research has been focused on the petrography and zircon U-Pb geochronology of the BMC to better understand the evolution of the Alxa Block and its relationship with the NCC. Evidences from field geology, petrography, and mineral chemistry indicate that two distinct metamorphic assemblages, the amphibolite and greenschist facies, had overprinted the preexisting granitic gneiss and suggest that the BMC experienced retrograde metamorphic episodes. The LA-ICP-MS zircon U-Pb ages reveal that the primary magmatic activities of BMC were at ca. 2.30-2.24 Ga and the two metamorphic events were at ca. 1.95-1.91 Ga and ca. 1.88-1.85 Ga respectively. These ages indicate that BMC initially intruded during Paleoproterozoic, not as previously suggested at Archean period. The Early Paleoproterozoic metamorphic records and the magmatic thermochronological data in BMC exhibit different evolution paths between the Alxa Block and the NCC. The Alxa Block was most likely an independent Early Paleoproterozoic terrain. Following different amalgamation processes, The Alxa Block combined with Western Block at ca. 1.95 Ga and then united with NCC at ca. 1.85 Ga.

  18. Comparative evaluation of GFAAS and ICP-MS for analyses of cadmium in blood.

    PubMed

    Fukui, Yoshinari; Ohashi, Fumiko; Sakuragi, Sonoko; Moriguchi, Jiro; Ikeda, Masayuki

    2011-01-01

    Cadmium in blood (Cd-B) is an important indicator, next to Cd in urine, in biological monitoring of exposure to Cd. The present study was initiated to examine compatibility in results of analysis for Cd-B between graphite furnace atomic absorption spectrophotometry (GFAAS) and inductively-coupled plasma mass-spectrometry (ICP-MS). For this purpose, 1,159 blood samples were collected from adult women (with no occupational exposure to Cd) in eight prefectures nation-widely in Japan. The samples were analyzed by the two methods; geometric mean (the maximum) concentrations were 1.22 (6.90) μg/l by ICP-MS, and 1.47 (7.40) μg/l by GFAAS. Statistical analyses showed that there was a close correlation between the results by the two methods. The regression line (with ICP-MS and GFAAS results as an independent variable and a dependent variable, respectively) had a slope close to one and an intercept next to zero to suggest that ICP-MS gave values compatible with that of GFAAS. Further analysis with the ratio of Cd-B by GFAAS over that by ICP-MS revealed that the two results were close to each other, and that the agreement was even closer when Cd-B was >2 μg/l. Thus, the two methods can be employed inter-convertibly when Cd-B is relatively high, e.g. >2 μg/l. Care may need to be practiced, however, for possible 'between methods' difference when Cd-B is low, e.g., ≤2 μg/l.

  19. EXTRACTION AND DETECTION OF A NEW ARSINE SULFIDE CONTAINING ARSENOSUGAR IN MOLLUSCS BY IC-ICP-MS AND IC-ESI-MS/MS

    EPA Science Inventory

    Using IC-ICP-MS and IC-ESI-MS/MS, an unknown arsenical compound in mollusks has been identified as a new arsine sulfide containing analog of a known arsenosugar and is referred to as As(498). This species has been observed in four separate shellfish species following a mild metha...

  20. Lutetian arc-type magmatism along the southern Eurasian margin: New U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ustaömer, P. Ayda; Ustaömer, Timur; Collins, Alan S.; Reischpeitsch, Jörg

    2009-07-01

    The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6 ± 2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the İzmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.

  1. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and (1)H NMR analysis.

    PubMed

    Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook

    2014-10-15

    ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The 238U/235U isotope ratio of the Earth and the solar system: Constrains from a gravimetrically calibrated U double spike and implications for absolute Pb-Pb ages

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Noordmann, Janine; Brennecka, Greg; Richter, Stephan

    2010-05-01

    The ratio of 238U and 235U, the two primordial U isotopes, has been assumed to be constant on Earth and in the solar system. The commonly accepted value for the 238U/235U ratio, which has been used in Pb-Pb dating for the last ~ 30 years, was 137.88. Within the last few years, it has been shown that 1) there are considerable U isotope variations (~1.3‰) within terrestrial material produced by isotope fractionation during chemical reactions [1-3] and 2) there are even larger isotope variations (at least 3.5‰) in calcium-aluminum-rich inclusions (CAIs) in meoteorites that define the currently accepted age of the solar system [4]. These findings are dramatic for geochronology, as a known 238U/235U is a requirement for Pb-Pb dating, the most precise dating technique for absolute ages. As 238U/235U variations can greatly affect the reported absolute Pb-Pb age, understanding and accurately measuring variation of the 238U/235U ratio in various materials is critical, With these new findings, the questions also arises of "How well do we know the average U isotope composition of the Earth and the solar system?" and "How accurate can absolute Pb-Pb ages be?" Our results using a gravimetrically calibrated 233U/236U double spike IRMM 3636 [5] indicate that the U standard NBL 950a, which was commonly used to define the excepted "natural" 238U/235U isotope ratio, has a slightly lower 238U/235U of 137.836 ± 0.024. This value is indistinguishable from the U isotope compositions for NBL 960 and NBL112A, which have been determined by several laboratories, also using the newly calibrated U double spike IRMM 3636 [6]. These findings provide new implications about the average U isotope composition of the Earth and the solar system. Basalts display a very tight range of U isotope variations (~0.25-0.32‰ relative to SRM 950a). Their U isotope composition is also very similar to that of chondrites [4], which however appear to show a slightly larger spread. Accepting terrestrial

  3. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  4. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2017-12-01

    A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  6. Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences.

    PubMed

    Pin, Christian; Gannoun, Abdelmouhcine

    2017-02-21

    A fast and efficient sample preparation method in view of isotope ratio measurements is described, allowing the separation of 11 elements involved, either as "parent" or as "daughter" isotopes, in six radiogenic isotope systems used as chronometers and tracers in earth, planetary, and environmental sciences. The protocol is based on small extraction chromatographic columns, used either alone or in tandem, through which a single nitric acid solution is passed, without any intervening evaporation step. The columns use commercially available extraction resins (Sr resin, TRU resin, Ln resin, RE resin, and again Ln resin for isolating Sr and Pb, LREE then La-Ce-Nd-Sm, Lu(Yb), and Hf, Th, and U, respectively) along with an additional, in-house prepared resin for separating Rb. A simplified scheme is proposed for samples requiring the separation of Sr, Pb, Nd, and Hf only. Adverse effects of troublesome major elements (Fe 3+ , Ti) are circumvented by masking with ascorbic acid and hydrofluoric acid, respectively. Typical recoveries in the 85-95% range are achieved, with procedural blanks of 10-100 pg, negligible with regard to the amounts of analytes processed. The fractions separated are suitable for high precision isotope ratio measurements by TIMS or MC-ICP-MS, as demonstrated by the repeat analyses of several international reference materials of basaltic composition for 87 Sr/ 86 Sr, 208,207,206 Pb/ 204 Pb, 143 Nd/ 144 Nd, 176 Hf/ 177 Hf, and 230 Th/ 232 Th. Concentration data could be obtained by spiking and equilibrating the sample with appropriate isotopic tracers before the onset of the separation process and, finally, measuring the isotope ratios modified by the isotope dilution process.

  7. Determination of Metal Levels in Shamma (Smokeless Tobacco) with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in Najran, Saudi Arabia

    PubMed

    Brima, Eid Ibrahim

    2016-10-01

    Objective: The use of Shamma (smokeless tobacco) by certain groups is giving rise to health problems, including cancer, in parts of Saudi Arabia. Our objective was to determine metals levels in Shamma using inductively coupled plasma mass spectrometry (ICP-MS). Methods: Thirty-three samples of Shamma (smokeless tobacco) were collected, comprising four types: brown Shamma (n = 14.0), red Shamma (n = 9.0), white Shamma (n = 4.0), and yellow Shamma (n = 6.0). All samples were collected randomly from Shamma users in the city of Najran. Levels of 11 elements (Al, As, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, and Zn) were determined by ICP-MS. Results: A mixed standard (20 ppb) of all elements was used for quality control, and average recoveries ranged from 74.7% to 112.2%. The highest average concentrations were found in the following order: Al (598.8–812.2 μg/g), Mn (51.0–80.6 μg/g), and Ni (23.2–53.3 μg/g) in all four Shamma types. The lowest concentrations were for As (0.7–1.0 μg/g) and Cd (0.0–0.06 μg/g). Conclusions: The colour of each Shamma type reflects additives mixed into the tobacco. Cr and Cu were showed significant differences (P < 0.05) among Shamma types. Moreover, Pb levels are higher in red and yellow Shamma, which could be due to use (PbCrO4) as yellow colouring agent and lead tetroxide, Pb3O4 as a red colouring agent. The findings from this study can be used to raise public awareness about the safety and health effects of Shamma, which is clearly a source of oral exposure to metals. Creative Commons Attribution License

  8. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Deng, Ke; Li, Qiugen; Chen, Yanjing; Zhang, Cheng; Zhu, Xuefeng; Xu, Qiangwei

    2018-01-01

    Mesozoic granitoid rocks represent a volumetrically component of the Northeastern (NE) China and preserve useful information about the tectonomagmatic history of this region. The Sankuanggou intrusion associated with skarn Fe-Cu deposit in the Duobaoshan ore field within NE China primarily consists of granodiorite with minor alkali-feldspar granite and diorite, which intrudes the Ordovician Duobaoshan Formation in the region. Zircon LA-ICP-MS U-Pb geochronology and whole-rock geochemistry, and Sr-Nd-Pb-Hf isotope analysis were performed on the Sankuanggou intrusion to investigate the petrogenesis and geodynamic implications. Zircon U-Pb dating of magmatic zircons from the granodiorite rock suggests that the intrusion was emplaced in the Early Jurassic (177 ± 1 Ma). Geochemically, it belongs to the metaluminous to slightly peraluminous high-K calc-alkaline I-type granitoids with a narrow range of SiO2 concentration (65.73-67.33 wt.%), high Ba, Sr, LREE and LILE contents and low abundance of Rb, Y, HREE and HFSE. All of these studied samples have homogeneous initial isotope traits with (87Sr/86Sr)i ranging from 0.70415 to 0.70423, εNd(t) of + 3.6 to + 4.0, (206Pb/204Pb)i = 17.933-18.458, (207Pb/204Pb)i = 15.520-15.587 and (208Pb/204Pb)i = 37.523-38.087, and zircon εHf(t) values varying from + 4.8 to + 9.9. These results, combined with the previous data, demonstrate that the Sankuanggou granitoids were formed by partial melting of the pre-existing juvenile crust in an extensional regime related to the post-collisional setting following the closure of the CAOB rather than previously proposed continental arc setting related to Paleo-Pacific or the Mongol-Okhotsk subduction, although their potential influence should not be dismissed.

  9. Application of CE-ICP-MS and CE-ESI-MS/MS for identification of Zn-binding ligands in Goji berries extracts.

    PubMed

    Ruzik, Lena; Kwiatkowski, Piotr

    2018-06-01

    The identification of groups of ligands binding metals is a crucial issue for the better understanding of their bioaccessibility. In the current study, we have intended an approach for identification of Zn-binding ligands based on using capillary electrophoresis combined with inductively coupled plasma mass spectrometry (CE-ICP-MS) and tandem electrospray ionization mass spectrometry (CE-ESI-MS/MS). The approach, which featured the use of the coupling of capillary electrophoresis with inductively coupled plasma mass spectrometry allows to separate and observe zinc ions present in complexes with respect to their size and charge and to identify nine compounds with zinc isotopic profile. CE-ICP-MS provides us with information about presence of zinc species and elemental information about zinc distribution. CE-ESI-MS/MS provide us with information about the most favorable Zn binding ligands: amino acids, flavonols, stilbenoids, fenolic acids and carotenoids. The presented work is the continuation of previous studies based on using LC-ESI-MS/MS, though, now we presented a new solutions with the possibility of changing detectors without changing the separation techniques, what is important without re-optimizing the method. The new presented method allows to identify the zinc-binding ligands in shorter time. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern Aegean Sea, Greece).

    PubMed

    Pell, Albert; Kokkinis, Giannis; Malea, Paraskevi; Pergantis, Spiros A; Rubio, Roser; López-Sánchez, José Fermín

    2013-11-01

    The content of total arsenic and arsenic compounds in the dominant seaweed species in the Thermaikos Gulf, Northern Aegean Sea was determined in samples collected in different seasons. Total arsenic was determined by acid digestion followed by ICP-MS. Arsenic speciation was analyzed by water extraction followed by LC-ICP-MS. Total arsenic concentrations in the seaweeds ranged from 1.39 to 55.0 mg kg(-1). Cystoseira species and Codium fragile showed the highest total As contents, while Ulva species (U. intestinalis, U. rigida,U. fasciata) had the lowest Arsenosugars, the most common arsenic species in seaweeds, were found in all samples, and glycerol-arsenosugar was the most common form; however, phosphate-arsenosugar and sulfate-arsenosugar were also present. Inorganic arsenic was measured in seven algae species and detected in another. Arsenate was the most abundant species in Cystoseira barbata (27.0 mg kg(-1)). Arsenobetaine was measured in only one sample. Methylated arsenic species were measured at very low concentrations. The information should contribute to further understanding the presence of arsenic compounds in dominant seaweeds from the Thermaikos Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    Pi, Qiaohui; Hu, Ruizhong; Xiong, Bin; Li, Qiuli; Zhong, Richen

    2017-12-01

    The contiguous region between Guangxi, Guizhou, and Yunnan, commonly referred to as the Golden Triangle region in SW China, hosts many Carlin-type gold deposits. Previously, the ages of the gold mineralization in this region have not been well constrained due to the lack of suitable minerals for radiometric dating. This paper reports the first SIMS U-Pb age of hydrothermal rutile crystals for the Zhesang Carlin-type gold deposit in the region. The hydrothermal U-bearing rutile associated with gold-bearing sulfides in the deposit yields an U-Pb age of 213.6 ± 5.4 Ma, which is within the range of the previously reported arsenopyrite Re-Os isochron ages (204 ± 19 to 235 ± 33 Ma) for three other Carlin-type gold deposits in the region. Our new and more precise rutile U-Pb age confirms that the gold mineralization was contemporaneous with the Triassic W-Sn mineralization and associated granitic magmatism in the surrounding regions. Based on the temporal correlation, we postulate that coeval granitic plutons may be present at greater depths in the Golden Triangle region and that the formation of the Carlin-type gold deposits is probably linked to the coeval granitic magmatism in the region. This study clearly demonstrates that in situ rutile U-Pb dating is a robust tool for the geochronogical study of hydrothermal deposits that contain hydrothermal rutile.

  12. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    PubMed

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  13. Zircon U-Pb Age Distributions in Cogenetic Crystal-Rich Dacitic and Crystal-Poor Rhyolitic Members of Zoned Ignimbrites in the Southern Rocky Mountains by Chemical Abrasion Inductively-Coupled-Plasma Mass Spectrometry (CA-LA-ICP-MS).

    NASA Astrophysics Data System (ADS)

    Sliwinski, J.; Zimmerer, M. J.; Guillong, M.; Bachmann, O.; Lipman, P. W.

    2015-12-01

    The San Juan locus of the Southern Rocky Mountain Volcanic Field (SRMVF) in SW Colorado represents an erosional remnant of a mid-Tertiary (~37-23 Ma) ignimbrite flare up that produced some of the most voluminous ignimbrites on Earth. A key feature of many SRMVF ignimbrites is compositional zonation, with many volcanic units comprising both dacitic and rhyolitic horizons. Geochemical, field and petrographic evidence suggests that dacites and rhyolites are cogenetic. Here, we report U-Pb zircon ages by chemical abrasion inductively-coupled-plasma mass spectrometry (CA-LA-ICPMS) for rhyolitic and dacitic components in four units: the Bonanza, Rat Creek, Carpenter Ridge and Nelson Mountain Tuffs. All units show zircon age spectra that are either within analytical uncertainty of Ar/Ar ages or are appreciably older, indicating prolonged magma residence times (~500 ka) prior to eruption. Anomalously young Pb-loss zones in zircon have been largely removed by chemical abrasion. Older, inherited zircons and zircon cores (60-2000 Ma) are rare in all samples, suggesting limited assimilation of upper crustal Precambrian country rock or complete resorption during recharge events and magma chamber growth.

  14. Provenance establishment of coffee using solution ICP-MS and ICP-AES.

    PubMed

    Valentin, Jenna L; Watling, R John

    2013-11-01

    Statistical interpretation of the concentrations of 59 elements, determined using solution based inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma emission spectroscopy (ICP-AES), was used to establish the provenance of coffee samples from 15 countries across five continents. Data confirmed that the harvest year, degree of ripeness and whether the coffees were green or roasted had little effect on the elemental composition of the coffees. The application of linear discriminant analysis and principal component analysis of the elemental concentrations permitted up to 96.9% correct classification of the coffee samples according to their continent of origin. When samples from each continent were considered separately, up to 100% correct classification of coffee samples into their countries, and plantations of origin was achieved. This research demonstrates the potential of using elemental composition, in combination with statistical classification methods, for accurate provenance establishment of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Laser ablation ICP-MS analysis on nano-powder pellets and applications to granite bulk rock analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shitou; Karius, Volker; Wörner, Gerhard

    2017-04-01

    Granites are a ubiquitous component of the continental crust and knowing their precise trace element signatures is essential in understanding the origins and evolution of the continental crust. ICP-MS bulk analysis of granite is generally conducted on solution after acid-digestion. However this technique has several deficiencies related to the difficulty of completely dissolving accessary minerals such as zircon and the instability/adsorption of high valence trace elements (Nb, Ta et al.) in acid solutions. The development of a nano-powder pellet technique by using wet milling procedure, and its combination with laser ablation ICP-MS has been proposed to overcome these problems. In this study, we produced nano-powders from a series of granite rock standards by wet milling in agate using a high power planetary ball mill instrument. The procedure was tested and optimized by modifying parameters (ball to powder ratio, water to powder ratio, milling power etc.). Characterization of nano-powders was conducted by various techniques including electron microprobe (EMP), secondary electron imaging, polarizing microscope, and laser particle size analyzer (LPSA) and laser scanning confocal microscope (LSCM). Particle sizes range from a few nm to 5 μm with a small secondary mode at around 10 to 20 μm that probably represent particle aggregates rather than remaining crystal grains after milling. Pellets of 5 mm in diameter were pressed into molds of cellulose at 1.75 *103 N/cm2. Surface roughness of the pellets was measured by LSCM and gave a Ra of 0.494 μm, which is an order higher than the surface of polished ATGH-G reference glass surface (Ra: 0.048 μm), but sufficient for laser ablation. Sources of contamination either from abrading agate balls or from ultrapure water were evaluated and quantified. The homogeneity of powder pellets down to less than 5 μm size was documented based on EMPA element mapping and statistical analyses of LA-ICP-MS in discrete spot and line

  16. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-guo; Jahn, Bor-ming; Li, Xian-hua; Zhang, Ru-yuan; Li, Qiu-li; Yang, Ya-nan; Wang, Jun; Liu, Tong; Hu, Pei-yuan; Tang, Suo-han

    2017-06-01

    Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin of zircon, i.e., magmatic or metamorphic, is commonly assessed by its external morphology, internal structure, mineral inclusions, Th/U ratios and trace element composition. In this study, we present an unusual case of metamorphic zircon from the Qiangtang eclogite, north-central Tibet. The zircon grains contain numerous eclogite-facies mineral inclusions, including omphacite, phengite, garnet and rutile; hence, they are clearly of metamorphic origin. However, they display features similar to common magmatic zircon, including euhedral crystal habit, high Th/U ratios and enriched heavy rare earth elements pattern. We suggest that these zircon grains formed from a different reservoir from that for garnet where no trace elements was present and trace element equilibrium between zircon and garnet was achieved. U-Pb dating of zircon gave an age of 232-237 Ma for the eclogite, and that of rutile yielded a slightly younger age of ca. 217 Ma. These ages are consistent with the reported Lu-Hf mineral isochron and phengite Ar-Ar ages. The zircon U-Pb and mineral Lu-Hf isochron ages are interpreted as the time of the peak eclogite-facies metamorphism, whereas the rutile U-Pb and phengite Ar-Ar ages represent the time of exhumation to the middle crust. Thus, the distinction between metamorphic and magmatic zircons cannot be made using only Th/U ratios and heavy REE compositions for HP-UHP metamorphic rocks of oceanic derivation.

  17. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies.

    PubMed

    Coufalíková, Kateřina; Benešová, Iva; Vaculovič, Tomáš; Kanický, Viktor; Preisler, Jan

    2017-05-22

    A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Online immunocapture ICP-MS for the determination of the metalloprotein ceruloplasmin in human serum.

    PubMed

    Bernevic, Bogdan; El-Khatib, Ahmed H; Jakubowski, Norbert; Weller, Michael G

    2018-04-02

    The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32 S mass trace. The ICP-MS signals were normalized on a 59 Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS.

  19. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg-1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g-1 for the dressing floor and waste heap and 18 to <1 Bq g-1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the respective

  20. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a ‘standard’ instrument setup.

    PubMed Central

    Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.

    2015-01-01

    Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050

  1. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Measurement of technetium-99 in Marshall Islands soil samples by ICP-MS

    PubMed

    Tagami; Uchida; Hamilton; Robison

    2000-07-01

    Extraction techniques for recovery of technetium-99 (99Tc) for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements were evaluated using soil samples collected from the Marshall Islands. The results of three different extraction techniques were compared: (MI) acid leaching of Tc from ashed soil; (M2) acid leaching of Tc from raw dry soil; and (M3) Tc volatilization from ashed soil using a combustion apparatus. Total Tc recoveries varied considerably between the extraction techniques but each method yielded similar analytical results for 99Tc. Applications of these extraction techniques to a series of environmental samples and ICP-MS measurements have yielded first data on the 99Tc content of Marshall Islands soil samples contaminated with close-in radioactive fallout from nuclear weapons testing. The 99Tc activity concentration in the soil samples ranged between 0.1 and 1.1 mBq g(-1) dry weight (dw). The limit of detection for 99Tc by ICP-MS was 0.17 mBq per sample or 0.014 mBq g(-1) dw under standard operating conditions.

  3. Cretaceous crust beneath SW Borneo: U-Pb dating of zircons from metamorphic and granitic rocks

    NASA Astrophysics Data System (ADS)

    Davies, L.; Hall, R.; Armstrong, R.

    2012-12-01

    Metamorphic basement rocks from SW Borneo are undated but have been suggested to be Palaeozoic. This study shows they record low pressure 'Buchan-type' metamorphism and U-Pb SHRIMP dating of zircons indicates a mid-Cretaceous (volcaniclastic) protolith. SW Borneo is the southeast promontory of Sundaland, the continental core of SE Asia. It has no sedimentary cover and the exposed basement has been widely assumed to be a crustal fragment from the Indochina-China margin. Metamorphic rocks of the Pinoh Group in Kalimantan (Indonesian Borneo) are intruded by granitoid rocks of Jurassic-Cretaceous age, based on K-Ar dating, suggesting emplacement mainly between 130 and 80 Ma. The Pinoh metamorphic rocks have been described as a suite of pelitic schists, slates, phyllites, and hornfelses, and have not been dated, although they have been correlated with rocks elsewhere in Borneo of supposed Palaeozoic age. Pelitic schists contain biotite, chlorite, cordierite, andalusite, quartz, plagioclase and in some cases high-Mn almandine-rich garnet. Many have a shear fabric associated with biotite and fibrolite intergrowth. Contact metamorphism due to intrusion of the granitoid rocks produced hornfelses with abundant andalusite and cordierite porphyroblasts. Granitoids range from alkali-granite to tonalite and contain abundant hornblende and biotite, with rare white mica. Zircons from granitoid rocks exhibit sector- and concentric- zoning; some have xenocrystic cores mantled by magmatic zircon. There are four important age populations at c. 112, 98, 84 and 84 Ma broadly confirming earlier dating studies. There is a single granite body with a Jurassic age (186 ± 2.3 Ma). Zircons from pelitic metamorphic rocks are typically euhedral, with no evidence of rounding or resorbing of grains; a few preserve volcanic textures. They record older ages than those from igneous rocks; U-Pb ages are Cretaceous with a major population between 134 and 110 Ma. A single sample contains Proterozoic

  4. Silicon Isotopic Measurements in Desolvated Samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Cardinal, D.; Alleman, L.; Ziegler, K.; de Jong, J.; Andre, L.

    2002-12-01

    Silicon, the most ubiquitous rock-forming element presents also a key role in biological processes. In particular, its biogeochemical cycle constitutes one of the most challenging issues in recent years due to its close relationship with the carbon cycle in marine environments (Tréguer et al., 1995; Ragueneau et al., 2000). The most recent silicon isotopic investigations on various natural samples have highlighted the great potential of this (palaeo)-proxy for oceanographers (De La Rocha et al., 1997, 1998). Better understanding the silicon isotope fractionation due to various biogeochemical processes can be achieved by facilitating its measurements through MC-ICPMS technique (De La Rocha et al., 2002; Alleman et al., 2002). In this regard we have developed an original method to analyze silicon isotopes under dry plasma conditions. We demonstrate that coupling a Nu Plasma MC-ICP-MS with a Cetac Aridus desolvator allows the rapid acquisition of natural silicon isotope abundances with high sensitivity and accuracy. To adequately correct for the mass fractionation occurring at the interface between the plasma source and the mass spectrometer line, we combine external normalization using Mg as a dopant with standard-sample bracketing using NBS-28 as the reference. With the desolvating nebulization system, the measurement of 28Si and 29Si isotopes is not hampered by significant interferences. δ29Si values are obtained with an accuracy and repeatability better than 0.1 \\permil. The accuracy has been successfully calibrated against the laser fluorination line technique (De La Rocha et al., 1996; Alleman et al., 2002). We could demonstrate that the isotopic fractionation that might occur in the plasma or the desolvator was adequately corrected by combining Mg isotopes and the sample-standard bracketing procedure. Moreover, the preservation of the Si isotopic signatures of the samples is validated by the different chemical sample treatments required by these two

  5. Re-appraisal of the stratigraphy and determination of new U-Pb dates for the Sterkfontein hominin site, South Africa.

    PubMed

    Pickering, Robyn; Kramers, Jan D

    2010-07-01

    Sterkfontein Caves is the single richest early hominin site in the world with deposits yielding one or more species of Australopithecus and possible early Homo, as well as an extensive faunal collection. The inability to date the southern African cave sites accurately or precisely has hindered attempts to integrate the hominin fossil evidence into pan-African scenarios about human evolutionary history, and especially hominin biogeography. We have used U-Pb and U-Th techniques to date sheets of calcium carbonate flowstone inter-bedded between the fossiliferous sediments. For the first time, absolute age ranges can be assigned to the fossil-bearing deposits: Member 2 is between 2.8 +/- 0.28 and 2.6 +/- 0.30 Ma and Member 4 between 2.65 +/- 0.30 and 2.01 +/- 0.05 Ma. The age of 2.01 +/- 0.05 Ma for the top of Member 4 constrains the last appearance of Australopithecus africanus to 2 Ma. In the Silberberg Grotto we have reproduced the U-Pb age of approximately 2.2 Ma of for the flowstones associated with StW573. We believe that these deposits, including the fossil and the flowstones, accumulated rapidly around 2.2 Ma. The stratigraphy of the site is complex as sediments are exposed both in the underground chambers and at surface. We present a new interpretation of the stratigraphy based on surface mapping, boreholes logs and U-Pb ages. Every effort was made to retain the Member system, however, only Members 2 and 4 are recognized in the boreholes. We propose that the deposits formally known as Member 3 are in fact the distal equivalents of Member 4. The sediments of Members 2 and 4 consisted of cone-like deposits and probably never filled up the cave. The U-Th ages show that there are substantial deposits younger than 400 ka in the underground cave, underlying the older deposits, highlighting again that these cave fills are not simple layer-cakes.

  6. A candidate reference method using ICP-MS for sweat chloride quantification.

    PubMed

    Collie, Jake T; Massie, R John; Jones, Oliver A H; Morrison, Paul D; Greaves, Ronda F

    2016-04-01

    The aim of the study was to develop a method for sweat chloride (Cl) quantification using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to present to the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a candidate reference method for the diagnosis of cystic fibrosis (CF). Calibration standards were prepared from sodium chloride (NaCl) to cover the expected range of sweat Cl values. Germanium (Ge) and scandium (Sc) were selected as on-line (instrument based) internal standards (IS) and gallium (Ga) as the off-line (sample based) IS. The method was validated through linearity, accuracy and imprecision studies as well as enrolment into the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) for sweat electrolyte testing. Two variations of the ICP-MS method were developed, an on-line and off-line IS, and compared. Linearity was determined up to 225 mmol/L with a limit of quantitation of 7.4 mmol/L. The off-line IS demonstrated increased accuracy through the RCPAQAP performance assessment (CV of 1.9%, bias of 1.5 mmol/L) in comparison to the on-line IS (CV of 8.0%, bias of 3.8 mmol/L). Paired t-tests confirmed no significant differences between sample means of the two IS methods (p=0.53) or from each method against the RCPAQAP target values (p=0.08 and p=0.29). Both on and off-line IS methods generated highly reproducible results and excellent linear comparison to the RCPAQAP target results. ICP-MS is a highly accurate method with a low limit of quantitation for sweat Cl analysis and should be recognised as a candidate reference method for the monitoring and diagnosis of CF. Laboratories that currently practice sweat Cl analysis using ICP-MS should include an off-line IS to help negate any pre-analytical errors.

  7. U-Pb dating of large zircons in low-temperature jadeitite from the Osayama serpentinite melange, southwest Japan: insights into the timing of serpentinization

    USGS Publications Warehouse

    Tsujimori, T.; Liou, J.G.; Wooden, J.; Miyamoto, T.

    2005-01-01

    Crystals of zircon up to 3 mm in length occur in jadeitite veins in the Osayama serpentinite mélange, Southwest Japan. The zircon porphyroblasts show pronounced zoning, and are characterized by both low Th/U ratios (0.2-0.8) and low Th and U abundances (Th = 1-81 ppm; U = 6-149 ppm). They contain inclusions of high-pressure minerals, including jadeite and rutile; such an occurrence indicates that the zircon crystallized during subduction-zone metamorphism. Phase equilibria and the existing fluid-inclusion data constrain P-T conditions to P > 1.2 GPa at T > 350°C for formation of the jadeitite. Most U/Pb ages obtained by SHRIMP-RG are concordant, with a weighted mean 206Pb/238U age of 472 ± 8.5 Ma (MSWD = 2.7, n = 25). Because zircon porphyroblasts contain inclusions of high-pressure minerals, the SHRIMP U-Pb age represents the timing of jadeitite formation, i.e., the timing of interaction between alkaline fluid and ultramafic rocks in a subduction zone. Although this dating does not provide a direct time constraint for serpentinization, U-Pb ages of zircon in jadeitite associated with serpentinite result in new insights into the timing of fluid-rock interaction of ultramafic rocks at a subduction zone and the minimum age for serpentinization.

  8. Determination of Trace and Volatile Element Abundance Systematics of Lunar Pyroclastic Glasses 74220 and 15426 Using LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.

    2017-01-01

    Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.

  9. Analysis of Trace Siderophile Elements at High Spatial Resolution Using Laser Ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Humayun, M.

    2006-05-01

    Laser ablation inductively coupled plasma mass spectometry is an increasingly important method of performing spatially resolved trace element analyses. Over the last several years we have applied this technique to measure siderophile element distributions at the ppm level in a variety of natural and synthetic samples, especially metallic phases in meteorites and experimental run products intended for trace element partitioning studies. These samples frequently require trace element analyses to be made at a finer spatial resolution (25 microns or better) than is frequently attained using LA-ICP-MS. In this presentation we review analytical protocols that were developed to optimize the LA-ICP-MS measurements for high spatial resolution. Particular attention is paid to the trade-offs involving sensitivity, ablation pit depth and diameter, background levels, and number of elements measured. To maximize signal/background ratios and avoid difficulties associated with ablating to depths greater than the ablation pit diameter, measurement involved integration of rapidly varying, transient but well-behaved signals. The abundances of platinum group elements and other siderophile elements in ferrous metals were calibrated against well-characterized standards, including iron meteorites and NIST certified steels. The calibrations can be set against the known abundance of an independently determined element, but normalization to 100 percent can also be employed, and was more useful in many circumstances. Evaluation of uncertainties incorporated counting statistics as well as a measure of instrumental uncertainty, determined by replicate analyses of the standards. These methods have led to a number of insights into the formation and chemical processing of metal in the early solar system.

  10. Exploring the U-Pb systematics of titanite from the Archean Stillwater Complex

    NASA Astrophysics Data System (ADS)

    Friedman, R. M.; Wall, C. J.; Scoates, J. S.; Weis, D. A.; Meurer, W. P.

    2011-12-01

    The Stillwater Complex is a large mafic-ultramafic layered intrusion in the Beartooth Mountains of Montana (USA) and host to the world-class J-M Reef platinum group element deposit. The size and geologic/economic importance of this igneous complex make it an important target for high-precision U-Pb dating. As a part of a comprehensive U-Pb study of the Stillwater Complex, we present ID-TIMS U-Pb titanite data, including new single grain results produced using the EARTHTIME ET535 spike, for very low-volume, relatively felsic granophyric and pegmatitic rocks associated with Stillwater layered rocks. Four samples studied include a pegmatitic ksp-qtz core to a gabbroic pegmatoid in the Lower Banded Series (N1), an alaskite (quartz diorite) and an amphibole-rich reaction zone between the alaskite and anorthosite (AN1) in the Middle Banded Series, and an amphibole-bearing granophyre from the Upper Banded Series (GN3). CA-TIMS U-Pb dating of zircon from these samples yielded concordant results only for the pegmatitic rock (weighted 207Pb/206Pb: 2709.65 ± 0.80 Ma, n = 5), which agrees with new zircon ages from Stillwater layered rocks. Results for high-U (up to 1438 ppm) metamict zircon that occurs in the other three rocks were highly discordant and did not yield precise ages. Titanite U-Pb results for the pegmatite are about -1% to +1% discordant with two groupings of 207Pb/206Pb dates: one with a weighted average of 2708.1 ± 2.0 Ma (n = 2), which overlaps in age with zircon from the same sample and the crystallization age of the Stillwater Complex, and a second, younger grouping of 2701.1 ± 1.3 Ma (n = 5). Younger dates record an early Pb-loss event, possibly related to intrusion of cross-cutting quartz monzonites. The alaskite data also shows two groupings of 207Pb/206Pb dates, although more subtle: a weighted average of 2709.3 ± 1.8 Ma (n = 3) and a single result of 2706.5 ± 1.7 Ma. Titanite from the other two samples has undergone significant Pb-loss. Results for

  11. Multi-isotope tracers to investigate processes in the Elbe, Weser and Ems river catchment using B, Mo, Sr, and Pb isotope ratios assessed by MC ICP-MS

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Reese, Anna; Zimmermann, Tristan; Prohaska, Thomas; Retzmann, Anika; Wieser, Michael E.; Zitek, Andreas; Proefrock, Daniel

    2017-04-01

    Environmental monitoring of complex ecosystems requires reliable sensitive techniques based on sound analytical strategies to identify the source, fate and sink of elements and matter. Isotopic signatures can serve to trace pathways by making use of specific isotopic fingermarks or to distinguish between natural and anthropogenic sources. The presented work shows the potential of using the isotopic variation of Sr, Pb (as well-established isotopic systems), Mo and B (as novel isotopic system) assessed by MC ICP-MS in water and sediment samples to study aquatic ecosystem transport processes. The isotopic variation of Sr, Pb, Mo and B was determined in different marine and estuarine compartments covering the catchment of the German Wadden Sea and its main tributaries, the Elbe, Weser and Ems River. The varying elemental concentrations, the complex matrix and the expected small variations in the isotopic composition required the development and application of reliable analytical measurement approaches as well as suited metrological data evaluation strategies. Aquatic isoscapes were created using ArcGIS® by relating spatial isotopic data with geographical and geological maps. The elemental and isotopic distribution maps show large variation for different parameters and also reflect the numerous impact factors (e.g. geology, anthropogenic sources) influencing the catchment area.

  12. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods

    PubMed Central

    Jackson, Brian; Liba, Amir; Nelson, Jenny

    2014-01-01

    Recent reports of As concentrations in certain food and drinks have garnered public concern and led to a lowering of the US guideline maximum concentration for inorganic As in apple juice and proposed limits for As in rice products. In contrast Se is an essential micro-nutrient that can be limiting when Se-poor soils yield Se-poor food crops. Rare earth element (REE) doubly charged interferences on As and Se can be significant even when initial ICP-MS tuning minimizes doubly charged formation. We analyzed NIST 1547 (peach leaves) and 1515 (apple leaves), which contain high levels of REEs, by quadrupole ICP-MS with (He) collision mode, H2 reaction mode or triple quadrupole ICP-MS (ICP-QQQ) in mass-shift mode (O2 and O2/H2). Analysis by collision cell ICP-MS significantly over-estimated As and Se concentration due to REE doubly charged formation; mathematical correction increased the accuracy of analysis but is prone to error when analyte concentration and sensitivity is low and interferent is high. For Se, H2 reaction mode was effective in suppressing Gd2+ leading to accurate determination of Se in both SRMs without the need for mathematical correction. ICP-QQQ using mass-shift mode for As+ from m/z 75 to AsO+ at m/z 91 and Se+ from m/z 78 to SeO+ at m/z 94 alleviated doubly charged effects and resulted in accurate determination of As and Se in both SRMs without the need for correction equations. Zr and Mo isobars at 91 and 94 were shown to be effectively rejected by the MS/MS capability of the ICP-QQQ. PMID:25609851

  13. "Invisible" gold and PGE elements in synthetic crystals of sphalerite and covellite: A EPMA, LA-ICP-MS and XAFS study

    NASA Astrophysics Data System (ADS)

    Tonkacheev, Dmitry; Chareev, Dmitry; Abramova, Vera; Tagirov, Boris

    2016-04-01

    Sphalerite and covellite are widespread minerals in the different genetic types of deposits and forms under the various conditions. The purpose of this work is to determine the possible range of concentration and chemical state of Au and PGE (Pt, Pd, Rh) in sphalerite (Zn,Fe) S and covellite (CuS). These minerals were synthesized using gas transport and salt flux techniques. The crystals of ZnS were grown using the gas transport method at 850°C and the salt flux one using NaCl/KCl, CsCl/NaCl/KCl, and LiCl/RbCl eutectic mixtures at 850, 645 and 470°C, respectively. CuS crystals were synthesized using the salt flux method in RbCl/LiCl melt at 470 and 340°C. The trace metal activity was always controlled by the presence of pure metal or its sulfide, and, therefore, the concentration of these elements in synthesized phases represent the maximum possible value for given T/f(S2) synthesis parameters. The LA-ICP-MS and/or EPMA techniques were used to determine the Au concentration in synthesized phases. The concentration of Au in sphalerite, synthesized at 850°C with admixture of Cd, Se, In, Fe, and Mn, reached 0.3wt%, whereas the sphalerite cell parameter extremely increased up to 5.4161Å relatively to 5.4060 Å for pure ZnS. It was found that the observed high Au concentration is caused by the presence of In (2091±46 ppm Au in sample with Fe and In in comparison with 14±7 for Se-bearing ZnS, 94±12 ppm for Fe-Mn-bearing sphalerite, and 96±46 for Fe-bearing sphalerite. The concentration of Au in Fe-bearing sphalerite synthesized at 645°C does not exceed 5 ppm. Therefore, increase of temperature results in the increase of Au concentration in sphalerite. The concentration of Au in another Fe-bearing-sphalerite series synthesized using gas transport method at 850°C various from 200 to 500 ppm and depends on the iron content. This fact could be related to the oxidation state or Fe in ZnS-FeS solid solution series. The concentration of Pt and Pd, Rh in sphalerite is

  14. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    USGS Publications Warehouse

    Coble, Matthew A.; Burgess, Seth; Klemetti, Erik W.

    2017-01-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to

  15. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    NASA Astrophysics Data System (ADS)

    Coble, Matthew A.; Burgess, Seth D.; Klemetti, Erik W.

    2017-09-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to accurate

  16. Significance of zircon U-Pb ages from the Pescadero felsite, west-central California coast ranges

    USGS Publications Warehouse

    McLaughlin, Robert J.; Moore, Diane E.; ,; Martens, UWE C.; Clark, J.C.

    2011-01-01

    Weathered felsite is associated with the late Campanian–Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio–Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ∼185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ± prehnite ± laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefly Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86–90 Ma. Reflecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio–Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ∼100 km to the east in the Diablo Range–San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper

  17. Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders

    NASA Astrophysics Data System (ADS)

    Girard, G.; Rooney, T. O.

    2013-12-01

    Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and

  18. First U-Pb geochronology on detrital zircons from Early-Middle Cambrian strata of the Torgau-Doberlug Syncline (eastern Germany) and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Abubaker, Atnisha; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Elicki, Olaf

    2017-10-01

    LA-ICP-MS U-Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia, Germany) are reported for the first time. The majority of 203 analysed zircon grains is Proterozoic with minor amount of Archean and Palaeozoic grains. The U-Pb ages fall into three groups: 2.8-2.4 Ga (3%), Neoarchean to earliest Palaeoproterozoic; 2.3-1.6 Ga (46%), early to late Palaeoproterozoic; 1.0-0.5 Ga (47%), Neoproterozoic to Cambrian. This age distribution is typical for the West African Craton as the source area and for Cadomian orogenic events in northwestern Gondwana. The samples show an age gap between 1.6 and 1.0 Ga, which is characteristic for West African provenance and diagnostic in distinguishing this unit from East Avalonia and Baltica. The dataset shows clusters of Palaeoproterozoic ages at 2.2-1.7 Ga, that is typical for western Gondwana, which was affected by abundant magmatic intrusions (ca. 2.2-1.8 Ga) during the Eburnean orogeny (West African craton). Neoarchean zircon ages (3%) point to recycling of magmatic rocks formed during the Liberian and Leonian orogenies. Ediacaran to earliest Cambrian rocks of the TDS originated in an active margin regime of the Gondwanan shelf. The following early Palaeozoic overstep sequence was deposited within rift settings that reflects instability of the West-Gondwanan shelf and the separation of terranes from Ordovician onward. The results of this study demonstrate distinct northwestern African provenance of the Cambrian siliciclastics of the TDS. Due to Th-U ratios from concordant zircon analysis, igneous origin from felsic melts is concluded as the source of these grains.

  19. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  20. Two-dimensional on-line detection of brominated and iodinated volatile organic compounds by ECD and ICP-MS after GC separation.

    PubMed

    Schwarz, A; Heumann, K G

    2002-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.

  1. Titanite chronology, thermometry, and speedometry of ultrahigh-temperature (UHT) calc-silicates from south Madagascar: U-Pb dates, Zr temperatures, and lengthscales of trace-element diffusion

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2017-12-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  2. [Interest and limits of inductively coupled plasma mass spectrometry (ICP-MS) for urinary diagnosis of radionuclide internal contamination].

    PubMed

    Lecompte, Yannick; Bohand, Sandra; Laroche, Pierre; Cazoulat, Alain

    2013-01-01

    After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (β emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.

  3. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): on-line generation of plumbane using potassium hexacyanomanganate(III)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha

    2012-01-01

    A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K3Mn(CN)6, as an additive to facilitate the generation of plumbane (PbH4). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO3 and H2SO4. The solutions prepared in 1% v/v/ H2SO4 were found to be stable for over a period of 24 h. The least suitable medium was 1% v/v HNO3. For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed online along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH4). A concentration of 0.5% m/v K3Mn(CN)6 facilitated the generation of PbH4 remarkably. In comparison to H2SO4, HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL−1 levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL−1 Cu were alleviated by increasing the concentration of K3Mn(CN)6 to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3s) was 0.008 μg L−1 for 208Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL−1 Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS. PMID:23312310

  4. U-Th-Pb zircon dating of the 13.8-Ma dacite volcanic dome at Cerro Rico de Potosi, Bolivia

    USGS Publications Warehouse

    Zartman, R.E.; Cunningham, C.G.

    1995-01-01

    The temporal relationship between the extrusion of the Miocene dacite volcanic dome at Cerro Rico de Potasi, Bolivia, and the associated Ag-Sn mineralization has an important bearing on the heat and metal sources for this world class mineral deposit. The present study uses U-Th-Pb dating of sparse zircon contained in the dacite to demonstrate that, at most, only several hundred thousand years separate dome emplacement from main stage mineralization. -from Authors

  5. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-03-01

    The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.

  6. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS).

    PubMed

    Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M

    2017-11-07

    One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.

  7. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  8. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane.

    PubMed

    Wortman; Samson; Hibbard

    2000-05-01

    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  9. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Matthews, N. E.; Calvert, A. T.

    2015-12-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). Tephra from the eruption blanketed much of the western United States, and is a key Quaternary chronostratigraphic marker, in particular for dating deposition of mid-Pleistocene glacial and pluvial deposits in western North America. We performed 40Ar/39Ar dating of single sanidines to delimit eruption age, and ion microprobe U-Pb and trace-element analyses of crystal faces on single zircons to characterize magmatic evolution and date near-eruption crystallization, as well as analyses of crystal interiors to date the interval of zircon crystallization. Sanidines from the two LCT members A and B yield an 40Ar/39Ar isochron date of 631 ± 4 ka (2σ). Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 627 ± 6 ka (2σ) and have trace element concentrations that vary with eruptive stratigraphy. Zircon interiors yield a weighted mean 206Pb/238U date of 660 ± 6 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high-U concentrations and dark cathodoluminescence (CL) cores. These crystals with high-U cores are possibly sourced from 'defrosting' of melt-impregnated margins of the growing subvolcanic reservoir. LCT sanidines mirror the variation of zircon composition within the eruptive stratigraphy, with crystals from upper LCT-A and basal LCT-B having bright-CL rims with high Ba concentrations, suggesting late crystallization after addition of less evolved silicic magma. The occurrence of distal LCT in stratigraphic sequences marking the Marine Isotope Stage 16-15 transition supports the apparent eruption age of ca. 631 ka. These results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103-104 year interval

  10. Concordant ages for the Lava Creek Tuff from high-spatial-resolution U-Pb dating of zircon rim faces and single-crystal sanidine 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Vazquez, J. A.; Calvert, A. T.

    2013-12-01

    The last great explosive supereruption from the Yellowstone Plateau formed present-day Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). The LCT eruption blanketed much of the western United States in ash, and consequently is a key chronostratigraphic marker bed for delimiting Quaternary uplift rates, the age of middle Pleistocene glacial and pluvial deposits, and tephra correlation in North America. Previous 40Ar/39Ar dating of the two mineralogically distinct LCT members (A & B) yield ages ranging from ca. 600 ka (Gansecki et al., 1998) to ca. 640 ka (Lanphere et al., 2002). To resolve the timing of eruption and crystallization timescale for the LCT magma, we dated both LCT members using a dual-method approach as follows: (1) ion microprobe (SHRIMP-RG) U-Pb dating and trace-element characterization of the final few micrometers of zircon crystallization by analysis of unpolished rims on indium-mounted crystals, and dating of the onset of zircon crystallization by traditional analysis of sectioned crystal interiors, and (2) laser-fusion 40Ar/39Ar dating of single sanidine crystals from bulk LCT ignimbrite and pumice. The unpolished rims of zircon from LCT members A & B yield indistinguishable ages, with a mean age of 621.8 × 2.5 ka (1σ) after correction for initial 230Th disequilibrium as constrained by ion-probe analyses of LCT melt inclusions. Single sanidine crystals from LCT-B yield a mean age of 624.9 × 2.6 ka (FCT=28.17 Ma) that is indistinguishable from the zircon rim ages for both members. These results indicate that LCT members A & B erupted over a geologically brief interval, which is supported by the direct and gradational contact of their equivalent fallout in distal lacustrine deposits and a lack of field evidence for a significant time-break between the LCT A & B in proximal deposits (Christiansen, 2001), but contrasts with older Yellowstone ignimbrite (e.g., Huckleberry Ridge) that may have erupted

  11. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    suitable internal reference material for U-Pb dating.

  12. Determination of uranium in tap water by ICP-MS.

    PubMed

    El Himri, M; Pastor, A; de la Guardia, M

    2000-05-01

    A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.

  13. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    USGS Publications Warehouse

    Matthews, Naomi E.; Vazquez, Jorge A.; Calvert, Andrew T.

    2015-01-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff. Tephra from the Lava Creek eruption is a key Quaternary chronostratigraphic marker, in particular for dating the deposition of mid Pleistocene glacial and pluvial deposits in western North America. To resolve the timing of eruption and crystallization history for the Lava Creek magma, we performed (1) 40Ar/39Ar dating of single sanidine crystals to delimit eruption age and (2) ion microprobe U-Pb and trace-element analyses of the crystal faces and interiors of single zircons to date the interval of zircon crystallization and characterize magmatic evolution. Sanidines from the two informal members composing Lava Creek Tuff yield a preferred 40Ar/39Ar isochron date of 631.3 ± 4.3 ka. Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 626.5 ± 5.8 ka, and have trace element concentrations that vary with the eruptive stratigraphy. Zircon interiors yield a mean 206Pb/238U date of 659.8 ± 5.5 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high U concentration cores that likely grew from highly evolved melt. The occurrence of distal Lava Creek tephra in stratigraphic sequences marking the Marine Isotope Stage 16–15 transition supports the apparent eruption age of ∼631 ka. The combined results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103−104 year interval before eruption.

  14. Provenance of Modern Soils and Limestone and Chert Bedrock of Middle Tennessee Assessed Using Detrital Zircon U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Ayers, J. C.; Katsiaficas, N. J.; Wang, X.

    2014-12-01

    Relatively thick soils mantle limestone bedrock throughout much of middle TN. Detrital zircon U-Pb geochronology was used to test two hypotheses: 1) That soil formed by accumulation of insoluble residue during chemical weathering of "dirty" limestone bedrock. 2) That an exotic component, perhaps wind-blown loess, was deposited and weathered to form soil. Samples of soil and underlying bedrock were collected from flat surfaces at the tops of cliffs. At Site 1 the Mississippian cherty limestone of the Fort Payne Formation was collected along with the B1 and B2 horizons of the overlying ultisol. At Site 2 a composite sample of A and B horizons of an alfisol and a sample of the underlying Ordovician limestone of the Hermitage Formation were collected. Zircon was recovered from soil and limestone samples, imaged using cathodoluminescence, and analyzed for trace elements and U-Pb isotopes using a 193 nm laser and quadrupole ICP-MS. Discordant analyses were discarded and 206Pb/238U ages are reported. Trace element concentrations and ratios in zircon seem to not be useful as provenance indicators. However, comparison of U-Pb age spectra showed that soils at both sites predominantly formed by weathering of limestone, with a small exotic component. The Hermitage has significant age peaks at ~1330, 1043, 955 and 439 Ma, and its overlying soil has age peaks at 1410, 1235, 1036 and 442 Ma. The age spectra are significantly different (Kolmogorov-Smirnov probability P = 0.01 < 0.05 significance). The Fort Payne has age peaks at ~1253, 967 and 417 Ma, while the B1 has age peaks at 1440, 1182, 1012 and 450 Ma (K-S P = 0.051) and the B2 at 1240, 941, 362, 81 and 33 Ma (K-S P = 0.073). The young ages in B2 require an exotic component that may account for ~25% of the measured ages. The source of the exotic material has not yet been identified, but its zircon age spectrum does not match previously published age spectra for the regional Pleistocene Peoria loess. Bedrock age peaks

  15. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS.

    PubMed

    Candás-Zapico, S; Kutscher, D J; Montes-Bayón, M; Bettmer, J

    2018-04-01

    Titanium dioxide (TiO 2 ) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO 2 , better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope 47 Ti. Different cell gases like He, O 2 and NH 3 were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO 2 . The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the 47 Ti or 48 Ti reaction products using O 2 and NH 3 as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO 2 particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO 2 particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the

  16. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    USGS Publications Warehouse

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly Au deposit formed during the early stages of magmatism. LA-ICP-MS zircon U-Pb geochronology of host andesite and 40Ar/39Ar dating of two samples of gold-associated adularia show that the ore-stage adularia (19.83 ± 0.10 and 19.2 ± 0.5 Ma) is younger, by as much as 1.5 million years, than the volcanic host rock (20.32 ± 0.4 Ma). Therefore, either hydrothermal activity continued well after volcanism or a second magmatic event rejuvenated hydrothermal activity. This second magmatic event may be related to eruption of porphyritic andesite at ~20.32 ± 0.40 Ma, which is within error of ~19.83 ± 0.10 Ma adularia. The new LA-ICP-MS zircon U-Pb host rock and vein adularia 40Ar/39Ar ages suggest that early Miocene magmatism and mineralization in the Bazman area is of a similar age to that of the Saindak porphyry and Tanjeel porphyry center of the giant Reko Diq deposit. This confirms the existence of early Miocene arc magmatism and mineralization along the Iranian part of the Makran volcanic arc. Ore, alteration mineralogy, and alteration patterns indicate that the Chahnaly deposit is a typical low-sulfidation epithermal Au deposit, located in a poorly explored part of the Makran volcanic arc in Iran.                   

  17. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  18. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    USGS Publications Warehouse

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  19. Trace Elements in the Marine Sediments of the La Paz Lagoon, Baja California Peninsula, Mexico: Pollution Status in 2013.

    PubMed

    Pérez-Tribouillier, Habacuc; Shumilin, Evgueni; Rodríguez-Figueroa, Griselda Margarita

    2015-07-01

    To determine the actual concentrations of trace elements in surface sediments from the La Paz Lagoon, as well as their associations and possible origins, 91 sediment samples were analyzed for more than 50 elements using a combination of ICP-MS and ICP-AES. The results of a principal component analysis are used to distinguish four associative groups within the elements. Natural enrichment of As, Cd and U occurs due to the supply of weathered phosphorites from the El Cien formation located to the north-west of the lagoon. Sediment quality indices for potentially toxic trace elements do not show any probable impact on the biota of the lagoon. Only the concentrations of As in 30 % of the stations and Cu in 20 % of them exceed related effect range low levels. The highest concentration of Pb (36.8 mg kg(-1)) was measured in the sediments near the City of La Paz.

  20. Determination of traces of 237Np in environmental samples by ICP-MS after separation using TOA extraction chromatography.

    PubMed

    Ji, Y Q; Li, J Y; Luo, S G; Wu, T; Liu, J L

    2001-09-01

    A simple, rapid, cost-efficient, and robust method for separation of 237Np with an extraction chromatographic column (TOA: tri-n-octylamine on Teflon powder) is outlined in detail and further improved for direct ICP-MS analysis. The column efficiently retained 237Np in 2 mol L(-1) HNO3 medium and all of the 237Np was easily eluted with 0.02 mol L(-1) oxalic acid in 0.16 mol L(-1) HNO3 at 95 degrees C. The separated solutions were free from most matrix elements and were aspirated into the ICP-MS directly. The decontamination factor for 238U is more than 10(4). The instrumental detection limit for 237Np was 0.46 pg mL(-1), which corresponds to 1.2 x 10(-5) Bq mL(-1). The method is more rapid than traditional radiometric techniques. It is also considered to be more suitable for environmental monitoring than existing methods based on TOA.

  1. 26Al- 26Mg and 207Pb- 206Pb systematics of Allende CAIs: Canonical solar initial 26Al/ 27Al ratio reinstated

    NASA Astrophysics Data System (ADS)

    Jacobsen, Benjamin; Yin, Qing-zhu; Moynier, Frederic; Amelin, Yuri; Krot, Alexander N.; Nagashima, Kazuhide; Hutcheon, Ian D.; Palme, Herbert

    2008-07-01

    -crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS. The radiogenic 208Pb*/ 206Pb* ratio obtained as a by-product from the Pb-Pb age dating is used to estimate time-integrated 232Th/ 238U ratio ( κ value) of CAIs. Limited κ variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the κ value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed.

  2. 238U-230Th dating of chevkinite in high-silica rhyolites from La Primavera and Yellowstone calderas

    USGS Publications Warehouse

    Vazquez, Jorge A.; Velasco, Noel O.; Schmitt, Axel K.; Bleick, Heather A.; Stelten, Mark E.

    2014-01-01

    Application of 238U-230Th disequilibrium dating of accessory minerals with contrasting stabilities and compositions can provide a unique perspective on magmatic evolution by placing the thermochemical evolution of magma within the framework of absolute time. Chevkinite, a Th-rich accessory mineral that occurs in peralkaline and metaluminous rhyolites, may be particularly useful as a chronometer of crystallization and differentiation because its composition may reflect the chemical changes of its host melt. Ion microprobe 128U-230Th dating of single chevkinite microphenocrysts from pre- and post-caldera La Primavera, Mexico, rhyolites yields model crystallization ages that are within 10's of k.y. of their corresponding K-Ar ages of ca. 125 ka to 85 ka, while chevkinite microphenocrysts from a post-caldera Yellowstone, USA, rhyolite yield a range of ages from ca. 110 ka to 250 ka, which is indistinguishable from the age distribution of coexisting zircon. Internal chevkinite-zircon isochrons from La Primavera yield Pleistocene ages with ~5% precision due to the nearly two order difference in Th/U between both minerals. Coupling chevkinite 238U-230Th ages and compositional analyses reveals a secular trend of Th/U and rare earth elements recorded in Yellowstone rhyolite, likely reflecting progressive compositional evolution of host magma. The relatively short timescale between chevkinite-zircon crystallization and eruption suggests that crystal-poor rhyolites at La Primavera were erupted shortly after differentiation and/or reheating. These results indicate that 238U-230Th dating of chevkinite via ion microprobe analysis may be used to date crystallization and chemical evolution of silicic magmas.

  3. U-Pb geochronology and paleomagnetism of the Neoproterozoic St Simeon dolerite dykes, Quebec: an eastern Laurentian perspective of Ediacaran Rodinia breakup

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Sergei; Murphy, Brendan; Hamilton, Mike; Söderlund, Ulf; Hodych, Joseph

    2013-04-01

    The St Simeon (SS) mafic dykes (150 km NE of Quebec City) are now dated at 548 ± 1 Ma (U-Pb; baddeleyite). This age is similar to a published LA-ICPMS zircon age of 550 ± 7 Ma for the Mt. St-Anselme (MS) basalts, which supports previous inferences of (i) a genetic relationship between them, (ii) the pene-contemporaneity of OIB-type mafic magmatism in East Laurentia and (iii) the existence of two late Ediacaran plumes that attended the final breakup of Rodinia and opening of the Iapetus Ocean and Tornquist Sea. Both the SS dykes and the MS basalts were sampled for paleomagnetic study. The paleomagnetic pole for SS is similar to the previously published pole for coeval basalts (Skinner Cove, SC) from Newfoundland. Unlike SC, the St Simeon pole represents rocks which are unambiguously coherent tectonically with the Laurentian Craton. This new pole is also coeval with high quality poles from the Winter Coast (Baltica) and provides paleomagnetic constraints on the history of the final breakup of Rodinia and opening of Eastern Iapetus and Tornquist Sea.

  4. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less

  5. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS.

    PubMed

    Kautenburger, Ralf; Hein, Christina; Sander, Jonas M; Beck, Horst P

    2014-03-13

    The complexation behavior of Aldrich humic acid (AHA) and a modified humic acid (AHA-PB) with blocked phenolic hydroxyl groups for trivalent lanthanides (Ln) is compared, and their influence on the mobility of Ln(III) in an aquifer is analyzed. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For metal loading experiments 25 mg L(-1) of AHA and different concentrations (cLn(Eu+Gd)=100-6000 μg L(-1)) of Eu(III) and Gd(III) in 10mM NaClO4 at pH 5 were applied. By CE-ICP-MS, three Ln-fractions, assumed to be uncomplexed, weakly and strongly AHA-complexed metal can be detected. For the used Ln/AHA-ratios conservative complex stability constants log βLnAHA decrease from 6.33 (100 μg L(-1) Ln(3+)) to 4.31 (6000 μg L(-1) Ln(3+)) with growing Ln-content. In order to verify the postulated weaker and stronger humic acid binding sites for trivalent Eu and Gd, a modified AHA with blocked functional groups was used. For these experiments 500 μg L(-1) Eu and 25 mg L(-1) AHA and AHA-PB in 10mM NaClO4 at pH-values ranging from 3 to 10 have been applied. With AHA-PB, where 84% of the phenolic OH-groups and 40% of the COOH-groups were blocked, Eu complexation was significantly lower, especially at the strong binding sites. The log β-values decrease from 6.11 (pH 10) to 5.61 at pH 3 (AHA) and for AHA-PB from 6.01 (pH 7) to 3.94 at pH 3. As a potential consequence, particularly humic acids with a high amount of strong binding sites (e.g. phenolic OH- and COOH-groups) can be responsible for a higher metal mobility in the aquifer due to the formation of dissolved negatively charged metal-humate species. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  7. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  8. ESR dating of tooth enamel: comparison with {230Th }/{234U } speleothem dates at La Chaise-de-Vouthon (Charente), France

    NASA Astrophysics Data System (ADS)

    Blackwell, Bonnie; Porat, N.; Schwarcz, H. P.; Debénath, A.

    One way to assess a new dating method's reliability is by comparing its results with those from well established, independent techniques. A controlled test of the electron spin resonance (ESR) dating method as it is currently being applied to teeth was attempted for the time range 100-250 ka, beyond that of 14C, at the archaeological site of La Chaise-de-Vouthon (Charente, France). Although absent in modern enamel, a single ESR signal with g = 2.0018 in fossil tooth enamel hydroxyapatite increases in amplitude with increasing irradiation doses. ESR ages are derived from the ratio of the AD, the radiation dose needed to produce the observed ESR signal, relative to the natural, environmental dose rate (ED) experienced by the tooth after deposition. Since the age depends on the uranium (U) uptake history assumed, three ages are calculated assuming: (1) early U uptake (EU); (2) continuous (linear) uptake (LU); (3) recent uptake (RU). Generally, the LU age agrees best with known ages determined by other methods, although the RU model is better for some teeth. ESR dating assumes that the fossil has not suffered recrystallization or significant diagenetic alteration. In the preliminary test, three teeth were dated. In Bourgeois-Delaunay, a bovid molar associated with Palaeolithic artefacts was collected from layers dated at 101 ± 12 to 114 ± 7 ka by {230Th }/{234U } dating of the over- and underlying stalagmitic floors. From Suard, two Equus teeth were collected from beneath a stalagmitic floor dating 112 ± 12 ka. ESR dating teeth significantly underestimated the true age for the teeth: the mean ESR ages range from 37 to 94 ka with standard errors of 2-6 ka, and good replicability. Although more teeth at La Chaise need to be tested to ascertain that the underestimation does not result from random variation commonly seen among teeth within one unit, the consistent underestimation suggests a fault in one of the assumptions underlying the dating method. The most obvious

  9. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Grün, Rainer; Aubert, Maxime; Joannes-Boyau, Renaud; Moncel, Marie-Hélène

    2008-11-01

    We have mapped U ( 238U) and Th ( 232Th) elemental concentrations as well as U-series isotope distributions in a Neanderthal tooth from the Middle Palaeolithic site of Payre using laser ablation ICP-MS. The U-concentrations in an enamel section varied between 1 and 1500 ppb. The U-concentration maps show that U-migration through the external enamel surface is minute, the bulk of the uranium having migrated internally via the dentine into the enamel. The uranium migration and uptake is critically dependent on the mineralogical structure of the enamel. Increased U-concentrations are observed along lineaments, some of which are associated with cracks, and others may be related to intra-prismatic zones or structural weaknesses reaching from the dentine into the enamel. The uranium concentrations in the dentine vary between about 25,000 and 45,000 ppb. Our systematic mapping of U-concentration and U-series isotopes provides insight into the time domain of U-accumulation. Most of the uranium was accumulated in an early stage of burial, with some much later overprints. None of the uranium concentration and U-series profiles across the root of the tooth complied with a single stage diffusion-adsorption (D-A) model that is used for quality control in U-series dating of bones and teeth. Nevertheless, in the domains that yielded the oldest apparent U-series age estimates, U-leaching could be excluded. This means that the oldest apparent U-series ages of around 200 ka represent a minimum age for this Neanderthal specimen. This is in good agreement with independent age assessments (200-230 ka) for the archaeological layer, in which it was found. The Th elemental concentrations in the dental tissues were generally low (between about 1 and 20 ppb), and show little relationship with the nature of the tissue.

  10. Timing of tectonic evolution of the East Kunlun Orogen, Northern Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng

    2017-04-01

    The East Kunlun Orogen, located at the northern Tibet Plateau, represents the western segment of the Central China Orogenic Belt which was formed by amalgamation of the North China blocks and South China blocks. It is a key to understanding the formation of Eastern Asian continent as well as the evolution of the Pangea supercontinent. Based on detailed geological mapping, geochemical and geochronological investigations, the orogen is divided into three main tectonic belts, from north to south, including the Northern Qimantagh, Central Kunlun and Southern Kunlun Belts by the Qimantagh suture, Central Kunlun suture and South Kunlun fault. The Qimantagh suture is marked by the Early Paleozoic ophiolites outcropped in the Yangziquan, Wutumeiren, and Tatuo areas, which consist mainly of peridotites, gabbros, diabases and basalts. Besides, the ophiolite in the Wutumeiren is characterized by occurring anorthosite while the ophiolite in the Tatuo occurring chert. The basalts and diabases from both Yaziquan and Tatuo areas display depletion of Nb, Ta, P and Ti, and enrichment of LILE, suggesting a subduction related tectonic setting. LA-ICP-MS zircon U-Pb age of 421 Ma for the diabase represents the formation age of the Yaziquan ophiolite, while the U-Pb ages of 490 Ma and 505 Ma for gabbro and anorthosite, respectively, constrain the formation age of the Tatuo ophiolite. The basaltic rocks in the Wutumeiren area display flat distribution of HFSEs (such as Nb, Ta, K, La, Ce, Pr, Nd, Zr, Sm, Eu, Ti, Dy, Y, Yb and Lu) and slightly enrichment in LREEs, while the peridotites showing depletion in MREEs. The LA-ICP-MS zircon U-Pb age of 431 Ma for the gabbro represents the formation age of the Wutumeiren ophiolite. Together with regional geology, we suggest herewith a back-arc basin tectonic setting during ca. 505-421 Ma at least for the Qimantagh suture. The Central Kunlun suture is represented by the ophiolite in the Wutuo area, which is characterized by depletion of Nb, Ta, P

  11. Zircon U-Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, Da; Xiong, Guangqiang; Zhao, Hongtao; Di, Yongjun; Wang, Zhong; Zhou, Zhiguang

    2016-04-01

    Late Paleozoic was a critical period for the tectonic evolution of the northern margin of the Alxa-North China craton, but the evolutionary history is not well constrained. The Carboniferous intrusions in the Langshan area in the western part of the northern margin of the Alxa-North China craton are mainly composed of tonalite, quartz diorite, olivine gabbro and pyroxene peridotite. Zircon LA-ICP-MS U-Pb dating indicates that the Langshan Carboniferous intrusions were emplaced at ca. 338-324 Ma. The quartz diorites are characterized by high amounts of compatible trace elements (Cr, Ni and V) and high Mg# values, which may suggest a significant mantle source. The positive Pb and negative Nb-Ta-Ti anomalies, the variable εHf(t) (-6.9 to 2.0) values and the old Hf model ages (1218-1783 Ma) imply some involvement of ancient continental materials in its petrogenesis. The tonalite has relatively high Sr/Y ratios, low Mg#, Yb and Y contents, features of adakite-like rocks, negative εHf(t) values (-9.8 to -0.1) and older Hf model ages (1344-1953 Ma), which suggest significant involvement of ancient crust materials and mantle-derived basaltic component in its petrogenesis. The high Mg# values, high Cr and Ni contents, and low Zr and Hf contents of the mafic-ultramafic rocks show evidence of a mantle source, and the relatively low zircon εHf(t) values (-5.9 to 3.2) might point to an enriched mantle. The trace element characteristics indicate the influence of subducted sediments and slab-derived fluids. In the tectonic discrimination diagrams, all the rocks plot in subduction-related environment, such as volcanic arc and continental arc. Considering the regional geology, we suggest that the Carboniferous intrusions in the Langshan area were likely emplaced during the late stage of the southward subduction of the Paleo-Asian Ocean plate, which formed a continental arc along the northern margin of the Alxa-North China craton.

  12. Determination of (90)Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS).

    PubMed

    Feuerstein, J; Boulyga, S F; Galler, P; Stingeder, G; Prohaska, T

    2008-11-01

    A rapid method is reported for the determination of (90)Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of (90)Zr, which is present in soils at concentrations higher by more than six orders of magnitude than (90)Sr. Zirconium was separated from strontium in two steps to reduce the interference by (90)Zr(+) ions by a factor of more than 10(7): (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from (88)Sr on mass 90 u was found to be about 3 x 10(-9). Detection limits of 4 fg g(-1) (0.02 Bq g(-1)) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 microg g(-1) Sr and 50 ng g(-1) Zr a detection limit of 0.2 pg g(-1) soil (1 Bq g(-1) soil) was determined. (90)Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66+/-0.27, 13.48+/-0.68 and 12.9+/-1.5 pg g(-1) corresponding to specific activities of 23.7+/-1.3, 68.6+/-3.5 and 65.6+/-7.8 Bq g(-1), respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level (90)Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g(-1).

  13. 210Pb dating of sediments in a heavily contaminated drainage channel to the La Plata estuary in Buenos Aires, Argentina.

    PubMed

    Di Gregorio, D E; Fernández Niello, J O; Huck, H; Somacal, H; Curutchet, G

    2007-01-01

    Concentrations of (210)Pb and (137)Cs in sediment samples collected from two cores at a drainage channel to the La Plata river estuary in Buenos Aires, Argentina, were measured using ultralow-background detection systems. The (210)Pb data were used to determine the rate of sediment accumulation of the sites. These results were correlated with some heavy metal (chromium and lead) concentrations of the samples in an attempt to characterize the historical input of contaminants due to the industrial development, which has taken place in this area over the last century. The (137)Cs measurements demonstrate that cesium dating is not adequate in regions of the southern hemisphere.

  14. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region

    USGS Publications Warehouse

    Ludwig, K. R.; Simmons, K.R.

    1992-01-01

    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  15. Zircon U-Pb and molybdenite Re-Os geochronology and geological significance of the Baoshan porphyry Cu polymetallic deposit in Jiangxi province

    NASA Astrophysics Data System (ADS)

    Jia, Liqiong; Wang, Liang

    2017-10-01

    Baoshan porphyry Cu polymetallic deposit belongs to Jiujiang-Ruichang Cu-Au ore field, which is a component part of the Middle-Lower Yangtze River Cu-Au metallogenic belt. The U-Pb LA-MC-TCP MS dating of the zircons from Baoshan granodiorite porphyry yields an age of 147.81±0.48Ma (MSWD=1.07). Six molybdenite samples separated from Baoshan deposit are used for Re-Os dating and obtained the weighted average age of 147.42±0.84Ma and an isochron age of 147.7±1.2Ma. These ages suggest that the mineralization in the Baoshan deposit is genetically associated to the granodiorite porphyry, and the process of rock-and ore-forming is continuous. These data indicate that ages of intrusion and ore-body from Baoshan deposit are almost identical to other typical magmatic intrusion and deposits in Jiujiang-Ruichang metallogenic district. Tt is inferred that the Baoshan deposit was formed in the transition from EW-striking Tndosinian tectonic domain to NE-striking Paleo-Pacific tectonic domain.

  16. Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?

    PubMed

    Santamaria-Fernandez, Rebeca

    2010-06-01

    This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.

  17. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less

  18. Quantitative mapping of elements in basil leaves (Ocimum basilicum) based on cesium concentration and growth period using laser ablation ICP-MS.

    PubMed

    Ko, Jung Aa; Furuta, Naoki; Lim, Heung Bin

    2018-01-01

    Quantitative elemental mapping of metallic pollutants in sweet basil was studied by laser ablation (LA)-ICP-MS. For this, the sweet basil was cultivated in Hoagland nutrient solution spiked with 100 and 1000 ng mL -1 of Cs for 10-60 days. Then, the Cs distribution in collected leaves was determined by LA-ICP-MS using lab-synthesized standard pellets based on NIST 1573a tomato leaves. For comparison, S, Ca, and K were also simultaneously determined in this measurement with a 13 C + signal from the leaves as an internal standard. The obtained calibration curves showed linear coefficient of determination (R 2 ) of 0.991 for K and 0.999 for Cs. The concentration of Cs measured in the basil leaves increased with growth period and pollutant concentration, and accumulation followed the order of leaf margin, petiole, midrib, and veins. Although no visible symptom was detected, significant suppression of the growth rate was observed due to the presence of high-concentration Cs. The experimental model demonstrated herein showed potential for studying the influence of radioactive pollutants on plants and other organisms in the food chain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of inorganic and organic constituents of myrrh resin by GC-MS and ICP-MS: An emphasis on medicinal assets.

    PubMed

    Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman

    2017-07-01

    The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.

  20. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    PubMed

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is <0.3‰ (1s). No significant matrix effects have been identified in calcite with the amplitude of chemical composition variation (i.e., MnO, SrO, MgO, or FeO) up to 2.5 wt %. Two modern corals were investigated using magmatic calcite as the calibration standard, and the average δ 13 C values for both corals are similar to the bulk IRMS values. Moreover, coral exhibits significant heterogeneity in carbon isotope compositions, with differences up to 4.85‰ within an individual coral. This study indicates that LA-MC-ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  1. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.

  2. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  3. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS.

    PubMed

    Yang, Yuan; Luo, Li; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang; Qu, Zhi-Peng; Ding, Ru

    2018-05-15

    Developing quantification and characterization methodology for metallic nanoparticles (MNPs) and their ionic component in complex matrix are crucial for the evaluation of their environmental behavior and health risks to humans. In this study, reversed phase high performance liquid chromatography combined ICP-MS was established for the characterization of MNPs in complex matrix. The ionic component could be separated from NPs with the optimized parameters of aqueous mobile phase. Good linear relationship between average diameter and retention time of NPs was obtained using HPLC-ICP-MS and the size smaller than 40 nm could be determined with this method, the detected results were in accordance with TEM results. The low detection limit of AuNPs and Au(Ⅲ) (both in sub-μg/L level) showed that this method was promising for the characterization of AuNPs and Au(Ⅲ) in environmental water. The mass concentration of ionic Au(Ⅲ) in environmental water could be detected using the proposed HPLC-ICP-MS and the concentration of AuNPs was obtained by subtracting the Au(Ⅲ) concentration from the total Au (The concentration of total Au was detected by ICP-MS after microwave digestion). Furthermore this proposed HPLC-ICP-MS method and single particle-ICPMS (SP-ICP-MS) was used for the analysis of the Ag speciation in commercial antibacterial products. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes.

    PubMed

    Boros, Eszter; Pinkhasov, Omar R; Caravan, Peter

    2018-01-01

    Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Two known peptide-DOTA conjugates were chelated with nat Ga and nat In. Limit of detection of HPLC-ICP-MS for 69 Ga and 115 In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. The limits of detection were 0.16 pmol for 115 In and 0.53 pmol for 69 Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.

  5. Zinc isotope ratio imaging of rat brain thin sections from stable isotope tracer studies by LA-MC-ICP-MS.

    PubMed

    Urgast, Dagmar S; Hill, Sarah; Kwun, In-Sook; Beattie, John H; Goenaga-Infante, Heidi; Feldmann, Jörg

    2012-10-01

    Zinc stable isotope tracers (⁶⁷Zn and ⁷⁰Zn) were injected into rats at two different time points to investigate the feasibility of using tracers to study zinc kinetics at the microscale within distinct tissue features. Laser ablation coupled to multi-collector ICP-MS was used to analyse average isotope ratios in liver thin sections and to generate bio-images showing zinc isotope ratio distribution in brain thin sections. Average isotope ratios of all samples from treated animals were found to be statistically different (P < 0.05) from samples from untreated control animals. Furthermore, differing isotope ratios in physiological features of the brain, namely hippocampus, amygdala, cortex and hypothalamus, were identified. This indicates that these regions differ in their zinc metabolism kinetics. While cortex and hypothalamus contain more tracer two days after injection than 14 days after injection, the opposite is true for hippocampus and amygdala. This study showed that stable isotope tracer experiments can be combined with laser ablation MC-ICP-MS to measure trace element kinetics in tissues at a microscale level.

  6. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Bowring, J. F.; Bowring, S. A.

    2011-06-01

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.

  7. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  8. Comparative evaluation of ICP sample introduction systems to be used in the metabolite profiling of chlorine-containing pharmaceuticals via HPLC-ICP-MS.

    PubMed

    Klencsár, Balázs; Sánchez, Carlos; Balcaen, Lieve; Todolí, José; Lynen, Frederic; Vanhaecke, Frank

    2018-05-10

    A systematic evaluation of four different ICP sample introduction systems to be used in the context of metabolite profiling of chlorine-containing pharmaceuticals via HPLC-ICP-MS was carried out using diclofenac and its major metabolite, 4'-hydroxy-diclofenac, as model compounds. The strict requirements for GMP validation of chromatographic methods in the pharmaceutical industry were adhered to in this context. The final aim of this investigation is an extension of the applicability and validatability of HPLC-ICP-MS in the field of pharmaceutical R&D. Five different gradient programmes were tested while the baseline peak width (w b ), peak capacity (P), USP tailing factor (A s ) and USP signal-to-noise ratio (USP S/N) were determined as major indicators of the chromatographic performance and the values obtained were compared to the corresponding FDA recommendations (if applicable). Four different ICP-MS sample introductions systems were investigated involving two units typically working at higher flow rates (∼1.0 mL min -1 ) and another two systems working at lower flow rates (∼0.1 mL min -1 ). Optimal conditions with potential for applicability under GMP conditions were found at a mobile phase flow rate of 1.0 mL min -1 by using a pneumatic micro-flow LC nebulizer mounted onto a Peltier-cooled cyclonic spray chamber cooled to -1 °C for sample introduction. Under these conditions, HPLC-ICP-MS provided a chromatographic performance similar to that of HPLC with UV detection. The peak shape (USP tailing factor = 1.1-1.4) was significantly improved compared to that obtained with the Peltier-cooled Scott-type spray chamber. Two alternative sample introduction systems - a POINT ® and a High-Temperature Torch-Integrated Sample Introduction System (hTISIS) - were also tested at a flow rate of 0.1 mL min -1 using a chromatographic column with 1.0 mm ID. Although these systems allowed the peak shape to be improved compared to that obtained with

  9. Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftalion, M.; Bowes, D.R.; Dash, B.

    1988-11-01

    Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less

  10. Novel calibration for LA-ICP-MS-based fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Soares, C. J.; Guedes, S.; Hadler, J. C.; Mertz-Kraus, R.; Zack, T.; Iunes, P. J.

    2014-01-01

    We present a novel age-equation calibration for fission-track age determinations by laser ablation inductively coupled plasma mass spectrometry. This new calibration incorporates the efficiency factor of an internal surface, [ ηq]is, which is obtained by measuring the projected fission-track length, allowing the determination of FT ages directly using the recommended spontaneous fission decay constant. Also, the uranium concentrations in apatite samples are determined using a Durango (Dur-2, 7.44 μg/g U) crystal and a Mud Tank (MT-7, 6.88 μg/g U) crystal as uranium reference materials. The use of matrix-matched reference materials allows a reduction in the uncertainty of the uranium measurements to those related to counting statistics, which are ca. 1 % taking into account that no extra source of uncertainty has to be considered. The equations as well as the matrix-matched reference materials are evaluated using well-dated samples from Durango, Fish Canyon Tuff, and Limberg as unknown samples. The results compare well with their respective published ages determined through other dating methods. Additionally, the results agree with traditional fission-track ages using both the zeta approach and the absolute approach, suggesting that the calibration presented in this work can be robustly applied in geological context. Furthermore, considering that fission-track ages can be determined without an age standard sample, the fission-track thermochronology approach presented here is assumed to be a valuable dating tool.

  11. Contribution to the certification of B, Cd, Cu, Mg and Pb in a synthetic water sample, by use of isotope-dilution ICP-MS, for Comparison 12 of the International Measurement Evaluation Programme.

    PubMed

    Diemer, J; Quétel, C R; Taylor, P D P

    2002-09-01

    The contribution of the Institute for Reference Materials and Measurements to the certification of the B, Cd, Cu, Mg, and Pb content of a synthetic water sample used in Comparison 12 of the International Measurement Evaluation Programme (IMEP-12) is described. The aim of the IMEP programme is to demonstrate objectively the degree of equivalence and quality of chemical measurements of individual laboratories on the international scene by comparing them with reference ranges traceable to the SI (Système International d'Unités). IMEP is organized in support of European Union policies and helps to improve the traceability of values produced by field chemical measurement laboratories. The analytical procedure used to establish the reference values for the B, Cd, Cu, Mg, and Pb content of the IMEP-12 sample is based on inductively coupled plasma-isotope-dilution mass spectrometry (ICP-IDMS) applied as a primary method of measurement. The measurements performed for the IMEP-12 study are described in detail. Focus is on the element boron, which is particularly difficult to analyze by ICP-MS because of potential problems of low sensitivity, high mass discrimination, memory effects, and abundance sensitivity. For each of the certified amount contents presented here a total uncertainty budget was calculated using the method of propagation of uncertainties according to ISO (International Organization for Standardization) and Eurachem guidelines. For all investigated elements with concentrations in the low micro g kg(-1) and mg kg(-1) range (corresponding to pmol kg(-1) to the high micro mol kg(-1) level), SI-traceable reference values with relative expanded uncertainties ( k=2) of less than 2 % were obtained.

  12. Ion-probe U–Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium

    USGS Publications Warehouse

    Neymark, Leonid; Paces, James B.

    2013-01-01

    Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U–Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ∼25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition.Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium–lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of μg/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2σ) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples.These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional

  13. Multielemental analysis of 18 essential and toxic elements in amniotic fluid samples by ICP-MS: Full procedure validation and estimation of measurement uncertainty.

    PubMed

    Markiewicz, B; Sajnóg, A; Lorenc, W; Hanć, A; Komorowicz, I; Suliburska, J; Kocyłowski, R; Barałkiewicz, D

    2017-11-01

    Amniotic fluid is the substantial factor in the development of an embryo and fetus due to the fact that water and solutes contained in it penetrate the fetal membranes in an hydrostatic and osmotic way as well as being swallowed by the fetus. Elemental composition of amniotic fluid influences the growth and health of the fetus, therefore, an analysis of amniotic fluid is important because the results would indicate abnormal levels of minerals or toxic elements. Inductively coupled plasma mass spectroscopy (ICP-MS) is often used for determination of trace and ultra-trace level elements in a wide range of matrices including biological samples because of its unique analytical capabilities. In the case of trace and ultra-trace level analysis detailed characteristics of analytical procedure as well as properties of the analytical result are particularly important. The purpose of this study was to develop a new analytical procedure for multielemental analysis of 18 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, Sb, Se, Sr, U, V and Zn) in amniotic fluid samples using ICP-MS. Dynamic reaction cell (DRC) with two reaction gases, ammonia and oxygen, was involved in the experiment to eliminate spectral interferences. Detailed validation was conducted using 3 certified reference mterials (CRMs) and real amniotic fluid samples collected from patients. Repeatability for all analyzed analytes was found to range from 0.70% to 8.0% and for intermediate precision results varied from 1.3% to 15%. Trueness expressed as recovery ranged from 80% to 125%. Traceability was assured through the analyses of CRMs. Uncertainty of the results was also evaluated using single-laboratory validation approach. The obtained expanded uncertainty (U) results for CRMs, expressed as a percentage of the concentration of an analyte, were found to be between 8.3% for V and 45% for Cd. Standard uncertainty of the precision was found to have a greater influence on the combined standard uncertainty

  14. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  15. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    PubMed Central

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  16. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    USGS Publications Warehouse

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  17. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate

    PubMed Central

    Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H.; Pappas, R. Steven

    2017-01-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method limit of detection (LOD) was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. PMID:28164228

  18. U-Pb Isotope Systematic of SNC Meteorites

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.; Jotter, R.; Kubny, A.; Zartman, R.

    2005-12-01

    A stepwise dissolution technique was applied to several nakhlite meteorites that were heavily contaminated by terrestrial Pb. Pulverized samples were subjected to three acid leaches of increasing strength followed by HF-HNO3 digestion of the remaining residue. Using this procedure the major portion of the terrestrial contamination was removed in Leaches 1 and 2, while essentially uncontaminated Pb was recovered in Leach 3 and the Residue. We give further details here about some of the insights gained from this improved ability to distinguish between the primary and terrestrial Pb components in meteorites. Firstly, we ran one sample of Nakhla as a test of the procedure. The result showed L1 and L2 to be mainly dominated by terrestrial Pb while L3 yielded Pb close to the initial Pb of other Nakhlites. The Pb in the Res, however, was very radiogenic and had a 206Pb/204Pb relative to 207Pb/204Pb indicating a drastic increase of the U/Pb at 1.3 Ga. Furthermore, the relatively unradiogenic 208Pb/204Pb suggested that there might be zircon or other high U/Th mineral in the Res. We made an in-depth study on a thin-section using an electron microscope and found indeed tiny 10 m grains of Baddeleyeite. The same dissolution technique was then applied to other Nakhlites from the Antarctic NIPR collection and NASA (MIL) with similar results, indicating that all Nakhlites may have the same age. In addition, an identical initial Pb isotopic composition indicates that all of these meteorites were derived from the same homogeneous source. Moreover, it is strongly suggested by their initial Pb that the "olivine Shergottites", like SAU, DAG, Que, and Y, likewise come from this Nakhla source. While "normal" Shergottites like Shergotty, LA are from sources having a more evolved Pb isotopic composition. "Olivine Shergottites" are clearly younger than Nakhlites. Their Sm Nd and Rb Sr isotopic systems are highly disturbed. Analyzing the existing data we favor an age of 800 my for the

  19. Multi-element screening by ICP-MS of two specimens of Napoleon's hair.

    PubMed

    Kintz, Pascal; Ginet, Morgane; Cirimele, Vincent

    2006-10-01

    Since 1960, it has been demonstrated by various analytical procedures that high concentrations of arsenic were present in Napoleon's hair. Various authors, indicating that the detected arsenic levels are a consequence of external contamination, have challenged the results of these examinations. In order to shed more light on this historical controversy, we have tested two samples of Napoleon's hair by inductively coupled plasma-mass spectrometry (ICP-MS). The samples of hair were decontaminated with acetone and were cut into small segments. For multi-element screening, hair samples were mineralized in concentrated nitric acid for 1 h at 70 degrees C, diluted 1:40 in specific solution with rhodium as an internal standard, and finally analyzed by ICP-MS on a Thermo Electron ICP/MS X7. Multi-element analysis of Napoleon's hair samples revealed massive amounts of arsenic (42.1 and 37.4 ng/mg), antimony (2.1 and 1.8 ng/mg) and elevated levels of mercury (3.3 and 4.7 ng/mg) and lead (229 and 112 ng/mg). In the case of arsenic, these concentrations, 40 times higher than the normal values, confirm the hypothesis of a significant exposure to arsenic. The concentrations of the other elements, in particular antimony and mercury, are in agreement with the data already known about the therapeutic treatments given to Napoleon, which were based on calomel (salt of mercury) and tartar emetic (antimony).

  20. Constraints on the timing of multiple thermal events and re-equilibration recorded by high-U zircon and xenotime: Case study of pegmatite from Piława Górna (Góry Sowie Block, SW Poland)

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Sláma, Jiří; Kozub-Budzyń, Gabriela A.; Konečný, Patrik; Holický, Ivan; Rzepa, Grzegorz; Jastrzębski, Mirosław

    2018-06-01

    The application of zircon and xenotime geochronometers requires knowledge of their potential and limitations related to possible disturbance of the age record. The alteration of the intergrown zircon and xenotime in pegmatite from the Góry Sowie Block (SW Poland) was studied using the electron microprobe analysis, X-ray WDS compositional mapping, micro-Raman analysis, and LA-ICP-MS U-Pb dating of zircon and xenotime, as well as the U-Th-total Pb dating of uraninite. These microanalytical techniques were applied to understand the formation mechanisms of the secondary textures related to post-magmatic processes in the zircon and xenotime intergrowth, and to constrain their timing. Textural and compositional features combined with U-Pb data indicate that the pegmatite-related crystallization of the zircon and xenotime intergrowth occurred ca. 2.09 Ga (2086 ± 35 Ma for zircon and 2093 ± 52 Ma for xenotime), followed by the re-equilibration of zircon and xenotime ca. 370 Ma (373 ± 18 Ma and 368 ± 6 Ma, respectively) during the formation of the younger pegmatite. The zircon and xenotime were most likely derived from Precambrian basement rocks and emplaced in the pegmatite as a restite. The zircon preserved textures related to diffusion-reaction processes that affected its high-U core (up to ca. 9.6 wt% UO2), which underwent further metamictization and amorphization due to self-radiation damage. The zircon rim and xenotime were affected by coupled dissolution-reprecipitation processes that resulted in patchy zoning, age disturbance and sponge-like textures. Xenotime was also partially replaced by fluorapatite or hingganite-(Y) and Y-enriched allanite-(Ce). The termination of the low-temperature alteration was constrained by the U-Th-total Pb age of the uraninite inclusions that crystallized in zircon at 281 ± 2 Ma, which is consistent with the age of 278 ± 15 Ma obtained from the youngest cluster of U-Pb ages in the re-equilibrated high-U zircon domains. This study

  1. Monitoring marine heavy metal contamination via the chemical analysis of foraminifera and growth increments in bivalves - a pilot study from a Pb and Zn mining region in western Greenland

    NASA Astrophysics Data System (ADS)

    Jessen, C.; Asmund, G.; Elberling, B.; Frei, D.; Knudsen, C.; Rasmussen, P.

    2011-12-01

    Annual monitoring of heavy metal concentrations in the fjords (sea water, seaweed, lichens, blue mussels, shorthorn sculpin and Northern prawn) adjacent to the Black Angel lead-zinc mine (active 1973-1990) at Maarmorilik, western Greenland was initiated during operation of the mine and continues through to today. This pilot study tests whether the calcareous shells of bivalves and foraminifera register these known variations in heavy metal concentrations. Live individuals of Mytilus edulis were collected through a transect of monitoring stations in 2009 and PB-Zn concentrations were measured at multiple points within the yearly increments using LA-ICP-MS. Individuals aged between 12 and 28 years were measured and demonstrated a clear signal of mine closure even at 40 km distance from the plant. Foraminifera (Melonis barleeanus) from a sediment core dating from 1880 AD to present have previously been shown to display a greater percentage of deformities during the period of mining activity (Elberling et al. 2003) possibly suggesting a correlation between heavy metal concentrations in sea water and morphological development. LA-ICP-MS analysis of individual foraminifera confirms an increase in Pb-Zn uptake during mining operations. Although it could therefore be expected that Pb-Zn concentrations would be enhanced in the 'deformed' foraminifera relative to the 'non-deformed', no difference in Pb-Zn was concentrations was detected. This short pilot study (Jessen et al.2010) demonstrates the potential of calcareous material as indicators of environmental pollution and their applicability as a monitoring tool in remote regions. Jessen CA, Asmund G, Elberling B, Frei D, Knudsen C and Rasmussen P. 2010 Monitoring marine heavy metal contamination via the chemical analysis of growth increments in bivalves - a pilot study. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/86. 1-20 Elberling, B., Knudsen, K. L., Kristensen, P. H., and Asmund, G. (2003) Applying

  2. A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells.

    PubMed

    Yang, Bin; Zhang, Yuan; Chen, Beibei; He, Man; Yin, Xiao; Wang, Han; Li, Xiaoting; Hu, Bin

    2017-10-15

    Inductively coupled plasma-mass spectrometry (ICP-MS) based bioassay and multimodal imaging have attracted increasing attention in the current development of cancer research and theranostics. Herein, a sensitive, simple, timesaving, and reliable immunoassay for cancer cells counting and dual-modal imaging was proposed by using ICP-MS detection and down-conversion fluorescence (FL)/upconversion luminescence (UCL) with the aid of a multifunctional probe for the first time. The probe consisted of a recognition unit of goat anti-mouse IgG to label the anti-EpCAM antibody attached cells, a fluorescent dye (Cy3) moiety for FL imaging as well as upconversion nanoparticles (UCNPs) tag for both ICP-MS quantification and UCL imaging of cancer cells. Under the optimized conditions, an excellent linearity and sensitivity were achieved owing to the signal amplification effect of nanoparticles and low spectral interference. Accordingly, a limit of detection (3σ) of 1×10 2 HepG2 cells and a relative standard deviation of 7.1% for seven replicate determinations of 1×10 3 HepG2 cells were obtained. This work proposed a method to employ UCNPs with highly integrated functionalities enabling us not only to count but also to see the cancer cells, opening a promising avenue for biological research and clinical theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High-Resolution Zircon U-Pb CA-TIMS Dating of the Carboniferous—Permian Successions, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Mundil, R.; Montanez, I. P.; Isbell, J.; Fedorchuk, N.; Lopes, R.; Vesely, F.; Iannuzzi, R.

    2015-12-01

    The late Paleozoic Ice Age (LPIA) is Earth's only record of a CO2-forced climatic transition from an icehouse to greenhouse state in a vegetated world. Despite a refined framework of Gondwanan ice distribution, questions remain about the timing, volume, and synchronicity of high-latitude continental ice and the subsequent deglaciation. These questions ultimately preclude our understanding of linkages between ice volume, sea level, and high- and low-latitude climate. Poor constraints on the timing and synchronicity of glacial and interglacial transitions reflect a lack of high-resolution radioisotopic dates from high-latitude, ice-proximal Carboniferous-Permian successions. The Rio Bonito Fm in Rio Grande do Sul State of southern Brazil hosts the oldest non-glaciogenic Carboniferous- Permian deposits of the Paraná Basin, thus recording the icehouse-to-greenhouse transition. Despite a widespread effort over the last two decades to constrain these deposits in time by means of U-Pb zircon geochronology, published data sets of the Candiota and Faxinal coals of the Rio Bonito Fm host discrepancies that may reflect post- eruptive open system behavior of zircon and analytical artifacts. These discrepancies have hindered the correlation of the Candiota and Faxinal sediments within the larger Gondwanan framework. Here we present the first U-Pb ages on closed system single zircons using CA-TIMS techniques on Permo-Carboniferous ash deposits of the Paraná Basin. Preliminary results indicate two major and distinct coal-forming periods that are separated by ca 10 Ma. Our results and conclusions are not in agreement with multi- crystal U-Pb TIMS and SIMS ages that suggest coeval deposition of the Candiota and Faxinal coals. CA-TIMS analyses applied to zircons from additional ash deposits are aimed at constructing a robust chronostratigraphic framework for the Carboniferous- Permian succession of the Paraná Basin, which will facilitate a better understanding of the timing and

  4. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca.

    PubMed

    Wang, Bo-Shian; Lee, Chih-Ping; Ho, Tung-Yuan

    2014-10-01

    A fully automated high pressure pretreatment system with Nobias Chelate-PA1 resin (PA1) was developed for trace metal determination by ICP-MS in natural waters. By varying the concentrations of Mg and Ca to mimic the concentrations in the eluate obtained by PA1 or iminodiacetate type resins, the overall analytical performance of the system was assessed for the determination of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Cd, Ag, Pb and REE. Comparing with the low mM level Mg and Ca (both ranging from 1 to 4mM) eluted by iminodiacetate type resins, the eluate obtained by PA1 contains sub-μM level Mg and Ca, which remarkably decrease matrix effect in ICP-MS analysis and significantly improve the analytical performance. With recovery better than 90% for most the trace metals examined, the accuracy was further verified through the analysis of five natural water reference materials with salinity spanning from 0 to 35‰. We have successfully applied the pretreatment system to determine trace metals in the seawater samples collected in the Western Philippine Sea through Taiwan GEOTRACES cruise. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone

    NASA Astrophysics Data System (ADS)

    Hill, Carol A.; Polyak, Victor J.; Asmerom, Yemane; P. Provencio, Paula

    2016-04-01

    The uplift and denudation of the Colorado Plateau is important in reconstructing the geomorphic and tectonic evolution of western North America. A Late Cretaceous (64 ± 2 Ma) U-Pb age for the Long Point limestone on the Coconino Plateau, which overlies a regional erosional surface developed on Permo-Triassic formations, supports unroofing of the Coconino Plateau part of Grand Canyon by that time. U-Pb analyses of three separate outcrops of this limestone gave ages of 64.0 ± 0.7, 60.5 ± 4.6, and 66.3 ± 3.9 Ma, which dates are older than a fossil-based, early Eocene age. Samples of the Long Point limestone were dated using the isotope dilution isochron method on well-preserved carbonates having high-uranium and low-lead concentrations. Our U-Pb ages on the Long Point limestone place important constraints on the (1) time of tectonic uplift of the southwestern Colorado Plateau and Kaibab arch, (2) time of denudation of the Coconino Plateau, and (3) Late Cretaceous models of paleocanyon incision west of, or across, the Kaibab arch. We propose that the age of the Long Point limestone, interbedded within the Music Mountain Formation in the Long Point area, represents a period of regional aggradation and a time of drainage blockage northward and eastward across the Kaibab arch, with possible diversion of northward drainage on the Coconino Plateau westward around the arch via a Laramide paleo-Grand Canyon.

  6. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    PubMed

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  8. Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintern, Melvyn J.; Hough, Robert M.; Ryan, Chris G.

    2009-04-02

    Highly anomalous Au concentrations in calcrete were discovered in 1987 at the Bounty Gold Deposit, Western Australia. A strong correlation was noted between the Ca, Mg, Sr and Au in soil profiles which have not only attracted the interest of mineral explorers but also chemists, soil scientists, metallurgists and climatologists. Gold has been considered an inert element and so its strong association with the alkaline earth group of relatively mobile elements is both remarkable and intriguing. Despite widespread interest, there have been few published papers on the Au-calcrete phenomenon. Here, we present work conducted on calcareous soil samples from abovemore » the Bounty mineralization in Western Australia, prior to mining. Using SXRF (synchrotron X-ray fluorescence) and XANES (micro-X-ray absorption near-edge structure), we have shown for the first time the distribution of Au in calcrete and that it occurs in both particulate and ionic form. Much of the ionic Au associated with Br is found in a root tubule. The observations are consistent with an evapotranspiration model for the formation of Au in the calcrete; Au has been mobilized then precipitated as vadose water has been removed from the soil by trees and shrubs. While the association between Au and Ca is very strong in bulk sample analyses down the soil profile, other detailed analyses on sub-samples using wet chemical, LA-ICP-MS (laser ablation inductively coupled mass spectrometry) and SXRF techniques show that it is not apparent at the sub-millimeter scale. This suggests that the Au and Ca are behaving similarly but independently and they do not (at the {micro}m scale) co-precipitate with carbonate minerals. These results corroborate other studies that suggest biotic influences can affect the mobilization and distribution of Au in surficial materials. Water-extractable Au in calcrete has been reported previously and the ionic Au described in this study likely represents that soluble component. The

  9. ICP-MS measurement of natural radioactivity at LNGS

    NASA Astrophysics Data System (ADS)

    Nisi, S.; Copia, L.; Dafinei, I.; di Vacri, M. L.

    2017-10-01

    Rare events search experiments, like those dedicated to the direct evidence of dark matter or neutrinoless double beta decay, are among the most exciting challenges of modern physics. The sensitivity of such experiments is driven by the background, which depends substantially on the radiopurity of the materials used for the experimental apparatus. Cutting edge measurement techniques are needed for a fast, sensitive and efficient screening of these materials and the certification of their production. Trace element measurements of high sensitivity and quick execution are mandatory also in other fields like tracing the geographical origin of food, temporal and geographical assignment of cultural heritage or monitoring environmental radioactivity. This work is an overview of the inorganic mass spectrometry facility available at Gran Sasso National Laboratory (LNGS) for radiopure material screening and is especially focused on its ICP-MS instrumentation. Analytical methods developed to achieve lowest detection limits in different types of matrix, like metals, polymers, crystals and composite materials, are also indicated. Detection limits of 10-18gg-1 for 226Ra, 10-14gg-1 for U and Th and 10-12gg-1 for K are attained through dedicated operation conditions of the instrumentation. Details are given on the results obtained for different experiments ongoing or under construction at LNGS.

  10. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  11. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  12. Advances in HPLC-ICP-MS interface techniques for metal speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, S.J.

    The relentless demand for lower detection limits is increasingly coupled to the requirement for elemental speciation. This is particularly true in environmental and clinical fields where total levels are often insufficient for mobility and toxicity studies. This demand for both qualitative and quantitative data on the individual species present in complex samples has led to the development of various interfaces to couple some form of chromatography, usually gas chromatography (GC) or high performance liquid chromatography (HPLC) to an element specific detector. Today inductively coupled plasma-mass spectrometry is often employed since it offers excellent detection limits, element specific information (including isotopicmore » data) and the potential for multi-element studies. Ms presentation will concentrate on HPLC couplings although the advantages and disadvantages of both GC and HPLC couplings to ICP-MS will be discussed. Particular attention will be given to the optimization of both the chromatography and detection systems. Details will be presented of several successful HPLC interface designs and ways of facilitating high levels of a range of organic solvents (e.g. methanol and THF) in the HPLC mobile phase will be highlighted. The advantages of using a sheath gas and practical ways of achieving this will also be discussed. Finally the use of isotope dilution analysis in conjunction with HPLC-ICP-MS will be outlined. In all cases the impact of using the most appropriate approach will be demonstrated using both environmental and clinical samples.« less

  13. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  14. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  15. LA-ICP-MS analysis of isolated phosphatic grains indicates selective rare earth element enrichment during reworking and transport processes

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2016-04-01

    Rare earth elements (REE) are a commonly used proxy to reconstruct water chemistry and oxygen saturation during the formation history of authigenic and biogenic phosphates in marine environments. In the modern ocean REE exhibit a distinct pattern with enrichment of heavy REE and strong depletion in Cerium. Studies of ancient phosphates and carbonates, however, showed that this 'modern' pattern is only rarely present in the geological past. Consequently, the wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry had to have been radically different in the earth's past. A wealth of studies has already shown that both early and late diagenesis can strongly affect REE signatures in phosphates and severely alter primary marine signals. However, no previous research was conducted on how alteration processes occurring prior to final deposition affect marine phosphates. Herein we present a dataset of multiple LA-ICP-MS measurements of REE signatures in isolated phosphate and carbonate grains deposited in a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene "Monterey event". The phosphates are represented by authigenic, biogenic and detrital grains emplaced in bioclastic grain- to packstones dominated by bryozoan and echinoderm fragments, as well as abundant benthic and planktic foraminifers. The results of 39 grain specific LA-ICP-MS measurements in three discrete rock samples reveals four markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Considering grain shape and REE patterns together indicate that authigenic, detrital and biogenic phosphates have distinct REE patterns irrespective of the sample. Our results show that the observed REE patterns in phosphates only broadly reflect

  16. Geochemical differences of magnetite from the Algoma- and Superior- type banded iron formations based on in situ LA-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Park, J. W.; Yang, X.

    2017-12-01

    Precambrian banded iron formations (BIFs) have been highly attractive study issues for decades about their genesis. Recently, more detailed geochemical studies have been conducted on mineral chemistry of magnetite using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Magnetite geochemistry enables us to constrain the physicochemical controlling factors for abundance of trace elements in magnetite and understand depositional environment of BIFs. In this study, we provide results of magnetite trace elemental features from two representative types of BIFs which are Algoma- and Superior- type BIF in the world, with aims to understand systematic differences in magnetite compositions between Algoma- and Superior- type BIF. The magnetites are divided into two groups according to their Al, Mn, Ti, V, and Ni concentration. The magnetites from the Algoma-type BIFs are more enriched in trace elements than those from the Superior-type. The geochemical differences are caused by difference precipitation condition including oxygen fugacity, temperature and fluid source.

  17. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright 2010 John Wiley & Sons, Ltd.

  18. The potential of inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous determination of trace elements in whole blood, plasma and serum.

    PubMed

    Krachler, M; Irgolic, K J

    1999-11-01

    The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.

  19. NanoSIMS U-Pb dating of hydrothermally altered monazite: Constraints on the Timing of LaoZaiWan Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    PI, Q.

    2017-12-01

    Abstract: Direct dating of Carlin-type Au deposits was restricted due to the absence of a geochronometer. Back-scattered electron (BSE) imaging and X-ray element mapping of monazite in gold-rich ore samples from the LaoZaiWan Au deposit in SW China, reveal the presence of distinct, high-Th cores surrounded by low-Th, inclusion-rich rims. The monazite grain is considered to be the product of fluid-aided coupled dissolution-reprecipitation during Au mineralization via prograde metamorphic reactions. We present results of in situ NonSIMS U-Pb dating applied to the rims of monazite . NonSIMS U-Pb age of hydrothermal monazite gave ages of 228 ± 9 Ma(2σ) and 230 ± 16 Ma(2σ) for LaoZaiWan Au deposit. These ages are interpreted as Au mineralization ages, which consistent with the Re-Os age of arsenopyite for JinYa Au deposit, the U-Pb age of rutile for and 40Ar-39Ar age of sericite for Zhesang Au deposit. We postulate that the formation of the Carlin-type Au deposits in the Golden Triangle region was triggered by the Indosinian Orogen, related to collision of the Indochina Block with South China Block.

  20. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai

    2017-09-01

    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  1. Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from Lingshan Island in the Sulu Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Meng, Yuanku; Santosh, M.; Li, Rihui; Xu, Yang; Hou, Fanghui

    2018-07-01

    The Dabie-Sulu orogenic belt in eastern China marks the boundary between the Yangtze Block and the North China Block. Here we investigate a suite of volcanic rocks from Lingshan Island in the Sulu belt comprising rhyolite, trachyte, trachyandesite and basaltic trachyandesite. We present petrological, geochemical and zircon Usbnd Pb ages and Hfsbnd O isotope data with a view to gain insights on the petrogenesis and tectonic implications. SHRIMP II analyses of zircon grains from the rhyolite yield 206Pb/238U age of 127.6 ± 1.3 Ma and LA-MC-ICP-MS dating show 126.3 ± 1.2 Ma and 127.3 ± 1.1 Ma, together constraining the eruption time as Early Cretaceous. LA-MC-ICP-MS analyses of zircon grains from the andesitic rocks yield 206Pb/238U ages of 129.0 ± 1.6 Ma, 129.8 ± 1.5 Ma and 130.9 ± 1.0 Ma. Geochemically, the rhyolite shows shoshonitic features with low MgO and Cr, but high Na2O + K2O. The zircon grains from these rocks yield negative εHf(t) values and low δ18O values, and these together with the presence of Neoproterozoic inherited zircons suggest that the magma source involved melting of the Yangtze crust. The andesitic rocks, including basaltic trachyandesite, trachyandesite and trachyte, show a wide range of SiO2, Mg# values, and Cr, enriched in LILE and LREE, depleted in HFSE (Nb, Ta and Ti), and have significantly negative zircon εHf(t) values, suggesting derivation from subcontinental lithosphere mantle that was metasomatized by felsic melts. Our results, integrated with those from previous studies suggest heterogeneous magma involving the mixing of mantle and crustal sources within an extensional setting in the Early Cretaceous.

  2. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  3. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE PAGES

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam; ...

    2017-10-07

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  4. Elemental Analysis in Biological Matrices Using ICP-MS.

    PubMed

    Hansen, Matthew N; Clogston, Jeffrey D

    2018-01-01

    The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.

  5. Specific determination of bromate in bread by ion chromatography with ICP-MS.

    PubMed

    Akiyama, Takumi; Yamanaka, Michiko; Date, Yukiko; Kubota, Hiroki; Nagaoka, Megumi Hamano; Kawasaki, Yoko; Yamazaki, Takeshi; Yomota, Chikako; Maitani, Tamio

    2002-12-01

    A sensitive method for detecting bromate in bread by ion chromatography with inductively-coupled plasma mass spectrometry (IC/ICP-MS) was developed. Bromate was extracted from bread with water. The clean-up procedure included a 0.2 micron filter, a C18 cartridge for defatting, a silver cartridge to remove halogen anions, a centrifugal ultrafiltration unit to remove proteins, and a cation-exchange cartridge to remove silver ions. A 500 microL sample solution was applied to IC/ICP-MS. The detection limit and the quantitation limit of bromate in the solution were 0.3 ng/mL and 1.0 ng/mL, expressed as HBrO3, respectively, which corresponded to 2 ng/g and 5 ng/g, respectively, in bread. Recovery of bromate was about 90%, and the CV was about 2%. Based on the detection limit in solution and recovery from bread, the detection limit of bromate in bread was estimated to be 2 ng/g.

  6. U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA

    NASA Astrophysics Data System (ADS)

    Rasbury, T.; Luczaj, J.

    2017-12-01

    Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the

  7. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Patrick Allen

    2005-12-17

    Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges

  8. Results from the (U-Th)/He dating systems in Japan Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hanamuro, T.; Tagami, T.; Yamada, R.; Umeda, K.

    2007-12-01

    Japan Atomic Energy Agency (JAEA) has jointly set up the lab of the (U-Th)/He dating in cooperation with Kyoto University and National Research Institute for Earth Science and Disaster Prevention. We use the MM5400 rare gas mass spectrometer and the SPQ9000 ICP quadrupole mass spectrometer, belonging to JAEA, and built a new vacuum heater using infrared laser to extract helium. HF decomposes zircon after the alkali-fusion method using XRF bead sampler and LiBO3 in the preparation of ICP solution. Helium is quantified using sensitivity method. Uranium and thorium are using standard addition method. Quantifications of uranium-238 and thorium-232 are only need for parent isotopes to date samples because they are expected that the state of secular equilibrium becomes established and samarium does not compose the samples. At the present stage, we calibrate our systems by dating some standards, such as zircon from the Fish Canyon Tuff and apatite from the Durango, those are the international age standard, and apatite and zircon from the Tanzawa Tonalite Complex, that was dated in Yamada's PhD thesis, as a working standard. We report the results and detailed views of the dating systems.

  9. Validation and use of three complementary analytical methods (LC-FLS, LC-MS/MS and ICP-MS) to evaluate the pharmacokinetics, biodistribution and stability of motexafin gadolinium in plasma and tissues.

    PubMed

    Miles, Dale R; Mesfin, Mimi; Mody, Tarak D; Stiles, Mark; Lee, Jean; Fiene, John; Denis, Bernie; Boswell, Garry W

    2006-05-01

    Liquid chromatography-fluorescence (LC-FLS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC-FLS method exhibited the greatest sensitivity (0.0057 microg mL(-1)), and was used for pharmacokinetic, biodistribution, and protein binding studies with small sample sizes or low MGd concentrations. The LC-MS/MS method, which exhibited a short run time and excellent selectivity, was used for routine clinical plasma sample analysis. The ICP-MS method, which measured total Gd, was used in conjunction with LC methods to assess MGd stability in plasma. All three methods were validated using human plasma. The LC-FLS method was also validated using plasma, liver and kidneys from mice and rats. All three methods were shown to be accurate, precise and robust for each matrix validated. For three mice, the mean (standard deviation) concentration of MGd in plasma/tissues taken 5 hr after dosing with 23 mg kg(-1) MGd was determined by LC-FLS as follows: plasma (0.025+/-0.002 microg mL(-1)), liver (2.89+/-0.45 microg g(-1)), and kidney (6.09+/-1.05 microg g(-1)). Plasma samples from a subset of patients with brain metastases from extracranial tumors were analyzed using both LC-MS/MS and ICP-MS methods. For a representative patient, > or = 90% of the total Gd in plasma was accounted for as MGd over the first hour post dosing. By 24 hr post dosing, 63% of total Gd was accounted for as MGd, indicating some metabolism of MGd.

  10. A powerful tool for assessing distribution and fate of potentially toxic metals (PTMs) in soils: integration of laser ablation spectrometry (LA-ICP-MS) on thin sections with soil micromorphology and geochemistry.

    PubMed

    Scarciglia, Fabio; Barca, Donatella

    2017-04-01

    The dynamic behavior and inherent spatial heterogeneity, at different hierarchic levels, of the soil system often make the spatial distribution of potentially toxic metals (PTMs) quite complex and difficult to assess correctly. This work demonstrates that the application of laser ablation spectrometry (LA-ICP-MS) to soil thin sections constitutes an ancillary powerful tool to well-established analytical methods for tracing the behavior and fate of potential soil contaminants at the microsite level. It allowed to discriminate the contribution of PTMs in distinct soil sub-components, such as parent rock fragments, neoformed, clay-enriched or humified matrix, and specific pedogenetic features of illuvial origin (unstained or iron-stained clay coatings) even at very low contents. PTMs were analyzed in three soil profiles located in the Muravera area (Sardinia, Italy), where several, now abandoned mines were exploited. Recurrent trends of increase of many PTMs from rock to pedogenic matrix and to illuvial clay coatings, traced by LA-ICP-MS compositional data, revealed a pedogenetic control on metal fractionation and distribution, based on adsorption properties of clay minerals, iron oxyhydroxides or organic matter, and downprofile illuviation processes. The main PTMs patterns coupled with SEM-EDS analyses suggest that heavy metal-bearing mineral grains were sourced from the mine plants, in addition to the natural sedimentary input. The interplay between soil-forming processes and geomorphic dynamics significantly contributed to the PTMs spatial distribution detected in the different pedogenetic horizons and soil features.

  11. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium.

    PubMed

    Jeong, Arong; Lim, H B

    2018-02-01

    In this work, a magnetophoretic separation ICP-MS immunoassay using newly synthesized multicore magnetic nanoparticles (MMNPs) was developed for the determination of salmonella typhimurium (typhi). The uniqueness of this method was the use of MMNPs doped with Cs for both separation and detection, which enable us to achieve fast analysis, high sensitivity, and good reliability. For demonstration, heat-killed typhi in a phosphate buffer solution was determined by ICP-MS after the MMNP-typhi reaction product was separated from unreacted MMNPs in a micropipette tip filled with 25% polyethylene glycol through magnetophoretic separation. The calibration curve obtained by plotting 133 Cs intensity vs. the number of synthetic standard, showed a coefficient of determination (R 2 ) of 0.94 with a limit of detection (LOD) of 102 cells/mL without cell culturing. Excellent recoveries, between 98-100%, were obtained from four replicates and compared with a sandwich-type ICP-MS immunoassay for further confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Rapid and simple determination of selenium in blood serum by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Labat, L; Dehon, B; Lhermitte, M

    2003-05-01

    An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.

  13. Correlating rates of magmatic arc unroofing and sedimentation using detrital zircon U/Pb and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Fosdick, J. C.

    2017-12-01

    Double and triple dating of minerals using multiple geo-thermochronometers has revolutionized efforts to evaluate complex thermotectonic histories of orogens, isolate unique sedimentary sources, and quantify basin burial reheating. A persisting challenge is to distinguish volcanic sources from rapidly exhumed sources, with the simplistic premise that coincident cooling dates among high- to low-temperature thermochronometers are diagnostic of volcanic sources. Coupled zircon U/Pb and (U-Th)/He geo-thermochronometry from the Miocene Bermejo foreland basin in the southern Central Andes reveals a high temporal resolution of unroofing signatures of the Choiyoi Group, a Permian-Triassic silicic volcanic and plutonic complex, and the Pennsylvanian-Permian Colangüil batholith. Both units are important sediment sources within the High Andes for the Cenozoic east-flowing sediment routing systems. Results show fluvial sourcing of Colangüil detrital zircons with progressively greater partial loss of He (<8% to 12-23% fractional loss from 9.5 Ma to 6 Ma), as indicated by upsection younging of zircon He dates for a given U/Pb age cluster. These findings suggest erosion of increasingly deeper levels of the Colangüil arc during late Miocene development of the High Andes. This progression of higher He loss and thus younger He dates during sedimentation for a given U/Pb age cluster is analogous to the magmatic arc unroofing trend revealed by undissected to dissected arc provenance fields in sandstone petrography. Multi-method thermochronometry of detrital minerals may reveal an added level of information regarding rates of cooling, unroofing, and thermal evolution of magmatic systems as preserved in the detrital record.

  14. [Study on distribution of five heavy metal elements in different parts of Cordyceps sinensis by microwave digestion ICP-MS].

    PubMed

    Zhou, Li; Hao, Qing-Xiu; Wang, Sheng; Yang, Quan; Kang, Chuan-Zhi; Yang, Wan-Zhen; Guo, Lan-Ping

    2017-08-01

    The contents of five heavy metals (Cu, Pb, As, Cd, Hg) in 17 batches of Cordyceps sinensis were determined by microwave digestion-ICP-MS, and their distribution in C. sinensis were analyzed. The results showed that the contents of Cu, Pb, Cd and Hg in all batches were in accordance with the international standards of Chinese Medicine-Chinese Herbal Medicine Heavy Metal Limit, with their contents in the stroma higher than that in the caterpillar body, and the excess rate of As, which mainly concentrated in the caterpillar body part of C. sinensis, was 88.24%, as the content of As in the caterpillar body was 7 to 12 fold of that in the stroma. In this study, the distribution of five heavy metals in C. sinensis was clarified, and the existing problems of arsenic limit of heavy metal in C. sinensis were analyzed, and some suggestions were put forward. It is hoped that the reference standard can be provided for the limited standard of arsenic in C. sinensis. Copyright© by the Chinese Pharmaceutical Association.

  15. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  16. Late Permian volcanic dykes in the crystalline basement of the Považský Inovec Mts. (Western Carpathians): U-Th-Pb zircon SHRIMP and monazite chemical dating

    NASA Astrophysics Data System (ADS)

    Pelech, Ondrej; Vozárová, Anna; Uher, Pavel; Petrík, Igor; Plašienka, Dušan; Šarinová, Katarína; Rodionov, Nikolay

    2017-08-01

    This paper presents geochronological data for the volcanic dykes located in the northern Považský Inovec Mts. The dykes are up to 5 m thick and tens to hundreds of metres long. They comprise variously inclined and oriented lenses, composed of strongly altered grey-green alkali basalts. Their age was variously interpreted and discussed in the past. Dykes were emplaced into the Tatricum metamorphic rocks, mostly consisting of mica schists and gneisses of the Variscan (early Carboniferous) age. Two different methods, zircon SHRIMP and monazite chemical dating, were applied to determine the age of these dykes. U-Pb SHRIMP dating of magmatic zircons yielded the concordia age of 260.2 ± 1.4 Ma. The Th-U-Pb monazite dating of the same dyke gave the CHIME age of 259 ± 3Ma. Both ages confirm the magmatic crystallization at the boundary of the latest Middle Permian to the Late Permian. Dyke emplacement was coeval with development of the Late Paleozoic sedimentary basin known in the northern Považský Inovec Mts. and could be correlated with other pre-Mesozoic Tethyan regions especially in the Southern Alps.

  17. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters

    NASA Astrophysics Data System (ADS)

    Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.

    2015-04-01

    In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.

  18. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles.

    PubMed

    Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R

    2016-11-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.

  19. Development of a large volume injection method using a programmed temperature vaporization injector - gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters.

    PubMed

    Terán-Baamonde, J; Bouchet, S; Tessier, E; Amouroux, D

    2018-04-27

    The current EU legislation lays down Environmental Quality Standards (EQS) for 45 priority substances in surface waters; among them levels for (organo)metallic species of Hg, Sn and Pb are set between ng L -1 (for Hg and Sn) and μg L -1 (for Pb). To date, only a few analytical methods can reach these very restrictive limits and there is thus a need for comprehensive methods able to analyze these species down to these levels in natural waters. The aim of this work was to develop an online automated pre-concentration method using large volume injections with a Programmed Temperature Vaporization (PTV) injector fitted with a sorbent packed liner coupled to GC-ICP-MS to further improve the detection limits associated to this well-established method. The influence of several parameters such as the PTV transfer temperature and time, carrier gas flow rate and amount of packing material was investigated. Finally, the maximum volume injected through single or multiple injection modes was optimized to obtain the best compromise between chromatographic resolution and sensitivity. After optimization, very satisfactory results in terms of absolute and methodological detection limits were achieved, down to the pg L -1 level for all species studied. The potential of the method was exemplified by determining the concentrations of organometallic compounds in unpolluted river waters samples from the Adour river basin (SW France) and results were compared with conventional (splitless) GC-ICP-MS. The strength of this analytical method lies in the low detection limits reached for the simultaneous analysis of a wide group of organometallic compounds, and the potential to transfer this method to other gas chromatographic applications with inherent lower sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  1. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France)

    NASA Astrophysics Data System (ADS)

    Fréville, Kévin; Trap, Pierre; Faure, Michel; Melleton, Jérémie; Li, Xian-Hua; Lin, Wei; Blein, Olivier; Bruguier, Olivier; Poujol, Marc

    2018-02-01

    A structural and petrochronological study was carried out in the southern part of the Belledonne crystalline massif. A first tectonometamorphic event, Dx, corresponds to the eastward thrusting of the Chamrousse ophiolitic complex characterized by a low-temperature-moderate-pressure metamorphism reaching 0.535 ± 0.045 GPa and 427.5 ± 17.5 °C. A subsequent D1 deformation is defined by a penetrative S1 foliation that mostly dips toward the west and displays an E-W- to NE-SW-trending mineral and stretching lineation L1. D1 is associated with a top-to-the east shearing and is responsible for the crustal thickening accommodated by the eastward nappe stacking and the emplacement of the Chamrousse ophiolitic complex upon the Rioupéroux-Livet unit. This event is characterized by an amphibolite facies metamorphism (0.58 GPa ± 0.06; 608 ± 14 °C) that attains partial melting at the base of the nappe pile (0.78 ± 0.07 GPa; 680.5 ± 11.5 °C). LA-ICP-MS U-Pb dating of monazite grains from the mica schists of the Rioupéroux-Livet unit constrain the age of D1 to 337 ± 7 Ma. The D2 tectono-metamorphic event is characterized by NE-SW trending, upright to NE-verging synfolial folding. Folding associated with D2 is pervasively developed in all lithotectonic units with the development of a steeply-dipping S2 foliation. In particular, D2 involves the uppermost weakly metamorphosed Taillefer unit. LA-ICP-MS U-Pb dating performed on detrital zircon grains shows that the Taillefer conglomerates was deposited during the Visean. A zircon SIMS U-Pb age of 352 ± 1 Ma from a plagioglase-rich leucocratic sill of the Rioupéroux-Livet unit is interpreted as the age of magmatic emplacement. Our results suggest that the D2 event took place between 330 Ma and 310 Ma. We propose a new interpretation of the tectonometamorphic evolution of the southern part of the Belledonne massif, focusing on the Middle Carboniferous stages of the Variscan orogeny.

  2. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous

  3. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    PubMed

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.

    PubMed

    Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi

    2013-11-19

    Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.

  5. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  6. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-01-15

    The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.

  7. Isotope ratios of trace elements in samples from human nutrition studies determined by TIMS and ICP-MS: precision and accuracy compared.

    PubMed

    Turnlund, Judith R; Keyes, William R

    2002-09-01

    Stable isotopes are used with increasing frequency to trace the metabolic fate of minerals in human nutrition studies. The precision of the analytical methods used must be sufficient to permit reliable measurement of low enrichments and the accuracy should permit comparisons between studies. Two methods most frequently used today are thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to compare the two methods. Multiple natural samples of copper, zinc, molybdenum, and magnesium were analyzed by both methods to compare their internal and external precision. Samples with a range of isotopic enrichments that were collected from human studies or prepared from standards were analyzed to compare their accuracy. TIMS was more precise and accurate than ICP-MS. However, the cost, ease, and speed of analysis were better for ICP-MS. Therefore, for most purposes, ICP-MS is the method of choice, but when the highest degrees of precision and accuracy are required and when enrichments are very low, TIMS is the method of choice.

  8. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration.

    PubMed

    O'Sullivan, Jeanette E; Watson, Roslyn J; Butler, Edward C V

    2013-10-15

    An automated procedure including both in-line preconcentration and multi-element determination by an inductively coupled plasma mass spectrometer (ICP-MS) has been developed for the determination of Cd, Co, Cu, Ni, Pb and Zn in open-ocean samples. The method relies on flow injection of the sample through a minicolumn of chelating (iminodiacetate) sorbent to preconcentrate the trace metals, while simultaneously eliminating the major cations and anions of seawater. The effectiveness of this step is tested and reliability in results are secured with a rigorous process of quality assurance comprising 36 calibration and reference samples in a run for analysis of 24 oceanic seawaters in a 6-h program. The in-line configuration and procedures presented minimise analyst operations and exposure to contamination. Seawater samples are used for calibration providing a true matrix match. The continuous automated pH measurement registers that chelation occurs within a selected narrow pH range and monitors the consistency of the entire analytical sequence. The eluent (0.8M HNO3) is sufficiently strong to elute the six metals in 39 s at a flow rate of 2.0 mL/min, while being compatible for prolonged use with the mass spectrometer. Throughput is one sample of 7 mL every 6 min. Detection limits were Co 3.2 pM, Ni 23 pM, Cu 46 pM, Zn 71 pM, Cd 2.7 pM and Pb 1.5 pM with coefficients of variation ranging from 3.4% to 8.6% (n=14) and linearity of calibration established beyond the observed concentration range of each trace metal in ocean waters. Recoveries were Co 96.7%, Ni 102%, Cu 102%, Zn 98.1%, Cd 92.2% and Pb 97.6%. The method has been used to analyse ~800 samples from three voyages in the Southern Ocean and Tasman Sea. It has the potential to be extended to other trace elements in ocean waters. © 2013 Elsevier B.V. All rights reserved.

  9. Determination of 99Tc in fresh water using TRU resin by ICP-MS.

    PubMed

    Guérin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila; de Silva, Nimal; Cornett, Jack; Dai, Xiongxin

    2017-10-02

    Technetium-99 ( 99 Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine 99 Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO 4 ) solution. After the reduction of KMnO 4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: Implications for the magmatic evolution in central Patagonia

    NASA Astrophysics Data System (ADS)

    Hauser, N.; Cabaleri, N. G.; Gallego, O. F.; Monferran, M. D.; Silva Nieto, D.; Armella, C.; Matteini, M.; Aparicio González, P. A.; Pimentel, M. M.; Volkheimer, W.; Reimold, W. U.

    2017-10-01

    The Cañadón Asfalto basin, central Chubut, Argentina, comprises a volcano-sedimentary sequence related to the opening of the Atlantic Ocean during Mesozoic times. The Lonco Trapial, Cañadón Asfalto and Cañadón Calcáreo formations are the main units related to the evolution of this basin. The Las Chacritas and Puesto Almada members are distinguished in the Cañadón Asfalto Formation. LA-HR-ICP-MS U-Pb and Lu-Hf data on zircon were obtained on these units. The Lonco Trapial Formation gave a weighted average age of 172.3 ± 1.8 Ma. A pyroclastic level from the Las Chacritas Member gave a weighted average age of 168.2 ± 2.2 Ma. Two U-Pb concordant ages of 160.3 ± 1.7 Ma on a laminated tuffite and 158.3 ± 1.3 Ma on a pyroclastic level were obtained for the Puesto Almada Member. Two maximum depositional ages constrain the sedimentary provenance areas for the basin: 1) A sample from the Sierra de la Manea range, where a controversial unit related either to the Cañadón Asfalto or to the Cañadón Calcáreo formation occurs, gave an age of 176.6 ± 1.0 Ma. Two younger zircon crystals indicate that this unit may be related to the Cañadón Calcáreo Formation. 2) A sandstone with cross-stratification from the Puesto Almada Member gave a maximum depositional age of 173.6 ± 6.4 Ma. In terms of U-Pb and Lu-Hf isotopes, two magmatic events are identified in central Patagonia: the Mamil Choique magmatic event characterized by negative εHf values around -5.0 and representing recycling during Permian times of Mesoproterozoic crust (TDM of ∼1.5 Ga), and the Cañadón Asfalto magmatic event with negative (-8.2) to positive (+4) εHf values and Meso- to Neoproterozoic TDM between 1.5 and 0.8 Ga. The younger event is characterized by three main cycles: C1 related to the Lonco Trapial magmatism, C2 to the Las Chacritas volcanism, and C3 to the Puesto Almada volcanism. These cycles are related with Marifil, Chon Aike and El Quemado formations volcanics events of

  11. Atmospheric lead deposition to Okefenokee Swamp, Georgia, USA

    USGS Publications Warehouse

    Jackson, B.P.; Winger, P.V.; Lasier, P.J.

    2004-01-01

    'Capsule:' Coal combustion emissions appear to be a major source of Pb in the Okefenokee wetland. Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a Pb-210-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The Pb-206/Pb-207 ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic Pb-206/Pb-207 ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.

  12. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    PubMed Central

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  13. Sharpening the U-Th Chronometer: Progress and Outlook

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Henderson, G. M.; Richards, D. A.; Noble, S.; Mason, A.

    2013-12-01

    Uranium is incorporated into a variety of natural materials when they form, including carbonates like speleothems and corals. The two most abundant naturally occurring uranium isotopes, 238U and 235U, decay to 206Pb and 207Pb over long timescales with half-lives of 4.5 and 0.7 billion years respectively, but transition through several intermediate daughter isotopes with shorter half-lives first. Fractionation between these daughter isotopes, including 234U, 230Th, and 231Pa, and their parent isotopes, followed by their time-dependent return to secular equilibrium over the course of up to ~800 kyr, forms the basis for U-series geochronology, and allows speleothems and corals to be precisely dated. These carbonates often additionally incorporate chemical and isotopic signatures (e.g., trace elements, δ18O and δ13C) from the environment in which they form, and thus are some of the best dated paleoclimate archives, offering clues about past and future conditions for life on Earth. Over the past decade, the analytical precision of U-series isotope measurements has improved dramatically, largely due to the steadily increasing sensitivity of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Analytical uncertainties in U-Th dates now approach or are better than 0.1% (2σ), for instance ×100 years for a speleothem or coral that is 130 kyr old (Cheng et al., 2013). However, the accuracy of U-series dates also depends on the accuracy of tracer calibrations, reference solutions and data reduction protocols, which has not kept pace in many laboratories. This means that dates measured in different labs, while impressively precise, may not be directly comparable. To address issues of inter-laboratory bias and improve the accuracy and inter-comparability of U-Th dates, we have instigated work in three related directions. First, we report on the mixing of three synthetic U-Th age solutions, created by combining high-purity mono-isotopic solutions to

  14. Exsolution lamellae as fast diffusion pathways in rutile: implications for U-Pb thermochronology and Zr thermometry

    NASA Astrophysics Data System (ADS)

    Smye, A.; Seman, S.; Roberts, N. M. W.; Condon, D. J.; Davis, B.

    2017-12-01

    Geophysical processes impart characteristic thermal signatures to the lithosphere. Near-continuous thermal histories can be obtained from inversion of intracrystalline U-Pb age profiles in rutile and apatite provided that it can be shown that profile formed in response to Fickian-type diffusion. Here, we present the results of a combined LA-ICPMS and ID-TIMS U-Pb study on rutile grains from two garnet-bearing granulite xenoliths from a kimberlite in the Archean Slave province. Interpreted using numerical models, we show that the rutile U-Pb isotope systematics are consistent with slow-cooling following crystallization at 1.2 Ga, contemporaneous with the Mackenzie dike swarm. However, inversion of rutile U-Pb age gradients is complicated by the ubiquitous presence of ilmenite exsolution lamellae. We show that these lamellae act as fast diffusion pathways for Pb and High Field Strength Elements, including Zr. This has important implications for the use of rutile as a U-Pb themochronometer and as a single-phase thermometer.

  15. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil

    USGS Publications Warehouse

    Tatsumoto, M.; Unruh, D.M.; Desborough, G.A.

    1976-01-01

    U-Th-Pb systematics study of Allende inclusions showed that U, Th and Sr concentrations in Ca, Al (pyroxene)-rich chondrules and white and pinkish-white aggregate separates of Allende are five to ten times higher than those of the matrix, whereas Mg (olivine)-rich chondrules have U and Th concentrations about twice as high as the matrix. Th concentrations are extremely high in white aggregates and in pinkish-white (spinel-rich) aggregates while U and Sr concentrations in white aggregates are more than twice as high as those in pinkish-white aggregates. Large enrichment of these refractory elements in the white aggregates indicates that they contain high-temperature condensates from the solar nebula. The Pb concentrations in the inclusions are less than half of those in the whole rock and matrix, indicating that the matrix is a lower-temperature condensate. The isotopic composition of lead in the matrix is less radiogenic than that of the whole meteorite, whereas lead in Ca- and Al-rich chondrules and aggregates is extremely radiogenic. The 206Pb/204Pb ratio reaches as high as 55.9 in a white aggregate separate. The lead of Mg-rich chondrules is moderately radiogenic and the 206Pb/204Pb ratio ranges from 18 to 26. A striking linear relationship exists among leads in the chondrules, aggregates and matrix on the 207Pb/204Pb vs 204Pb/204Pb plot. The slope of the best fit line is 0.6188 ?? 0.0016, yielding an isochron age of 4553 ?? 4 m.y. The regression line passes through primordial lead values obtained from Canyon Diablo troilite. The data, when corrected for Canyon Diablo troilite Pb and plotted on a U-Pb concordia diagram, show that the pink and white aggregates and the Ca-Al-rich and Mg-rich inclusions have excess Pb and define a chord which intersects the concordia curve at 4548 ?? 25 m.y. and 107 ?? 70 m.y. The intercepts might correspond to the agglomeration age of the meteorite and a time of probably later disturbance, respectively. The matrix and some

  16. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  17. Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS.

    PubMed

    Zhao, Xiangsheng; Wei, Jianhe; Shu, Xiaoyan; Kong, Weijun; Yang, Meihua

    2016-12-01

    Contents of twenty elements (Mg, K, Ca, Na, Fe, Al, Zn, Ba, Mn, Cu, Mo, Cr, Ni, As, Se, Cd, Hg, Tl, Pb and V) in two medical and edible plant species, Alpinia oxyphylla and Morinda officinalis were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS) method after microwave digestion with HNO 3 -H 2 O 2 (6:1, v/v) as the digestion solvent. Certified standard reference material Poplar leaf was used to assess the accuracy of the method. The greatest contents of Mg, K, Ca, Al, Fe and Na were found in dried Alpinia oxyphylla and Morinda officinalis samples. The contents of five heavy metals including Pb, Cd, As, Hg and Cu in Alpinia oxyphylla did not exceed the limits. The contents of Pb in 76.67% samples and Cd in two batches of Morinda officinalis samples exceeded the limits set by Chinese Pharmacopeia. The contents of the selected elements in different parts (leaves, stems, roots and fruits) of Alpinia oxyphylla varied considerably. The highest concentrations of Mg, Ca, Mn and Se were found in the leaves of Alpinia oxyphylla, at the same time, while, the contents of 9 elements including Cd, Cr, Cu, As, Pb in the roots were the highest. The transfer ratios of selected elements from both species of herbs into their decoctions were reduced. Especially for the heavy metals, the transfer ratios were below 30% except As (79.73%) in Morinda officinalis. The results showed that decoction of the samples may reduce the intake of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Complex Histories of Two Lunar Zircons as Evidenced by their Internal Structures and U-Pb Ages

    NASA Technical Reports Server (NTRS)

    Pidgeon, R. T.; Nemchin, A. A.; Meyer, Charles

    2006-01-01

    The U-Pb dating of lunar zircon by ion-microprobe provides a robust technique for investigating the timing of lunar events [1,2]. However, we have now identified two cases where the U-Pb systems in a single zircon show more than one age. These complex zircons provide new opportunities for extending our knowledge on the timing of events in the early history of the Moon.

  19. Direct determination of platinum group elements and their distributions in geological and environmental samples at the ng g(-1) level using LA-ICP-IDMS.

    PubMed

    Boulyga, Sergei F; Heumann, Klaus G

    2005-10-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) was applied to the direct and simultaneous determination of the platinum group elements (PGEs) Pt, Pd, Ru, and Ir in geological and environmental samples. A special laser ablation system with high ablation rates was used, along with sector field ICP-MS. Special attention was paid to deriving the distributions of PGEs in the pulverized samples. IDMS could not be applied to the (mono-isotopic) Rh, but the similar ablation behavior of Ru and Rh allowed Rh to be simultaneously determined via relative sensitivity coefficients. The laser ablation process produces hardly any oxide ions (which usually cause interference in PGE analysis with liquid sample injection), so the ICP-MS can be run in its low mass resolution but high-sensitivity mode. The detection limits obtained for the geological samples were 0.16 ng g(-1), 0.14 ng g(-1), 0.08 ng g(-1), 0.01 ng g(-1) and 0.06 ng g(-1) for Ru, Rh, Pd, Ir and Pt, respectively. LA-ICP-IDMS was applied to different geological reference materials (TDB-1, WGB-1, UMT-1, WMG-1, SARM-7) and the road dust reference material BCR-723, which are only certified for some of the PGEs. Comparisons with certified values as well as with indicative values from the literature demonstrated the validity of the LA-ICP-IDMS method. The PGE concentrations in subsamples of the road dust reference material correspond to a normal distribution, whereas the distributions in the geological reference materials TDB-1, WGB-1, UMT-1, WMG-1, and SARM-7 are more complex. For example, in the case of Ru, a logarithmic normal distribution best fits the analyzed concentrations in TDB-1 subsamples, whereas a pronounced nugget effect was found for Pt in most geological samples.

  20. Synthesis of cross-linked chitosan modified with the glycine moiety for the collection/concentration of bismuth in aquatic samples for ICP-MS determination.

    PubMed

    Oshita, Koji; Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2007-10-01

    A chelating resin, cross-linked chitosan modified with the glycine moiety (glycine-type chitosan resin), was developed for the collection and concentration of bismuth in aquatic samples for ICP-MS measurements. The adsorption behavior of bismuth and 55 elements on glycine-type chitosan resin was systematically examined by passing a sample solution containing 56 elements through a mini-column packed with the resin (wet volume; 1 ml). After eluting the elements adsorbed on the resin with nitric acid, the eluates were measured by ICP-MS. The glycine-type chitosan resin could adsorb several cations by a chelating mechanism and several oxoanions by an anion-exchange mechanism. Especially, the resin could adsorb almost 100% Bi(III) over a wide pH region from pH 2 to 6. Bismuth could be strongly adsorbed at pH 3, and eluted quantitatively with 10 ml of 3 M nitric acid. A column pretreatment method with the glycine-type chitosan resin was used prior to removal of high concentrations of matrices in a seawater sample and the preconcentration of trace bismuth in river water samples for ICP-MS measurements. The column pretreatment method was also applied to the determination of bismuth in real samples by ICP-MS. The LOD of bismuth was 0.1 pg ml(-1) by 10-fold column preconcentration for ICP-MS measurements. The analytical results for bismuth in sea and river water samples by ICP-MS were 22.9 +/- 0.5 pg ml(-1) (RSD, 2.2%) and 2.08 +/- 0.05 pg ml(-1) (RSD, 2.4%), respectively.

  1. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics.

    PubMed

    Li, Po-Chien; Jiang, Shiuh-Jen

    2006-07-01

    Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS-ETV-DRC-ICP-MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC-ICP-MS. The precision between sample replicates was better than 17% with the USS-ETV-DRC-ICP-MS method. The method detection limits, estimated from standard addition curves, were about 6-9, 1-2 and 8-11 ng g(-1) for Cr, Cd and Pb, respectively, in the original plastic samples.

  2. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  3. SHRIMP U-Pb detrital zircon dating to check subdivisions in metamorphic complexes: a case of study in the Nevado-Filábride complex (Betic Cordillera, Spain)

    NASA Astrophysics Data System (ADS)

    Santamaría-López, Ángel; Sanz de Galdeano, Carlos

    2018-04-01

    U-Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the Nevado-Filábride complex (Betic Cordillera, Spain). Five of eight samples correspond to the lower part of the lithologic sequence of this complex, where radiometric dating of metasediments has not been presented till the present. The youngest age populations in the majority of samples are Carboniferous. The estimation of the maximum age of deposition in the lower and upper units is 349.1 ± 1.6 and 334.6 ± 2.9 Ma, respectively. In addition, samples show common age populations at ca. 490-630 and ca. 910-1010 Ma. Observations agree with the Carboniferous to early Permian U-Pb ages previously obtained in orthogneisses levels which are situated in the upper part of the complex. Combination of the minimum age of deposition deducible from the orthogneisses studies and the maximum ages of deposition obtained from the detrital zircons of this work, allow establishing the deposition of de studied lithological succession comprised between ca. 282 and 349 Ma or a shorter period.

  4. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    PubMed

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  5. Determination of trace level thorium and uranium in high purity gadolinium sulfate using ICP-MS with solid-phase chromatographic extraction resins

    NASA Astrophysics Data System (ADS)

    Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.

    2018-01-01

    The Super Kamiokand-Gadolinium (SK-Gd) project is the upgrade of the Super-Kamiokande (SK) detector in order to discover Supernova Relic Neutrinos (SRNs) by loading 0.2% of Gd2(SO4)3 into a 50 kton of the SK water tank. In order to continue solar neutrino measurement with low energy threshold at ˜3.5 MeV, main radioactive contamination, U and Th in Gd2(SO4)3, should be purified before loading. We developed solid-phase extraction technique to measure low concentration of U and Th in Gd2(SO4)3 by ICP-MS. The extraction technique and current status will be presented.

  6. Determination of Arsenic Species in Ophiocordyceps sinensis from Major Habitats in China by HPLC-ICP-MS and the Edible Hazard Assessment.

    PubMed

    Guo, Lian-Xian; Zhang, Gui-Wei; Wang, Jia-Ting; Zhong, Yue-Ping; Huang, Zhi-Gang

    2018-04-26

    This study sought to determine the concentration and distribution of arsenic (As) species in Ophiocordyceps sinensis ( O. sinensis ), and to assess its edible hazard for long term consumption. The total arsenic concentrations, measured through inductively coupled plasma mass spectrometry (ICP-MS), ranged from 4.00 mg/kg to 5.25 mg/kg. As determined by HPLC-ICP-MS, the most concerning arsenic species—AsB, MMA V , DMA V , As V , and As Ш —were either not detected (MMA V and DMA V ) or were detected as minor As species (AsB: 1.4⁻2.9%; As V : 1.3⁻3.2%, and As Ш : 4.1⁻6.0%). The major components were a cluster of unknown organic As (uAs) compounds with As Ш , which accounted for 91.7⁻94.0% of the As content. Based on the H₂O₂ test and the chromatography behavior, it can be inferred that, the uAs might not be toxic organic As. Estimated daily intake ( EDI) , hazard quotient ( HQ ), and cancer risk ( CR ) caused by the total As content; the sum of inorganic As (iAs) and uAs, namely i+uAs; and iAs exposure from long term O. sinensis consumption were calculated and evaluated through equations from the US Environmental Protection Agency and the uncertainties were analyzed by Monte-Carlo Simulation (MCS). EDI total As and EDI i+uAs are approximately ten times more than EDI iAs ; HQ total As and HQ i+u As > 1 while HQ i As < 1; and CR total As and CR i+uAs > 1 × 10 −4 while CR iAs < 1 × 10 −4 . Thus, if the uAs is non-toxic, there is no particular risk to local consumers and the carcinogenic risk is acceptable for consumption of O. sinensis because the concentration of toxic iAs is very low.

  7. Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40/39Ar age determinations, Fuerteventura, Canary Islands

    USGS Publications Warehouse

    Allibon, James; Ovtcharova, Maria; Bussy, Francois; Cosca, Michael; Schaltegger, Urs; Bussien, Denise; Lewin, Eric

    2011-01-01

    High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. 40Ar/39Ar amphibole dating yielded ages from 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between 40Ar/39Ar and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i.e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (Tc) of zircon (699-988 °C) to amphibole (500-600 °C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the 40Ar/39Ar and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520,000 to 800,000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 ± 0.07/0.08/0.15 Ma and 21.58 ± 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope δ18O values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.

  8. Using Cluster Analysis and ICP-MS to Identify Groups of Ecstasy Tablets in Sao Paulo State, Brazil.

    PubMed

    Maione, Camila; de Oliveira Souza, Vanessa Cristina; Togni, Loraine Rezende; da Costa, José Luiz; Campiglia, Andres Dobal; Barbosa, Fernando; Barbosa, Rommel Melgaço

    2017-11-01

    The variations found in the elemental composition in ecstasy samples result in spectral profiles with useful information for data analysis, and cluster analysis of these profiles can help uncover different categories of the drug. We provide a cluster analysis of ecstasy tablets based on their elemental composition. Twenty-five elements were determined by ICP-MS in tablets apprehended by Sao Paulo's State Police, Brazil. We employ the K-means clustering algorithm along with C4.5 decision tree to help us interpret the clustering results. We found a better number of two clusters within the data, which can refer to the approximated number of sources of the drug which supply the cities of seizures. The C4.5 model was capable of differentiating the ecstasy samples from the two clusters with high prediction accuracy using the leave-one-out cross-validation. The model used only Nd, Ni, and Pb concentration values in the classification of the samples. © 2017 American Academy of Forensic Sciences.

  9. Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS).

    PubMed

    Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2016-05-30

    A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability <10% RSD) and accurate (recovery between 95 and 105%) and shows a linear dynamic range (R(2)>0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An integrated automatic system to evaluate U and Th dynamic lixiviation from solid matrices, and to extract/pre-concentrate leached analytes previous ICP-MS detection.

    PubMed

    Ceballos, Melisa Rodas; García-Tenorio, Rafael; Estela, José Manuel; Cerdà, Víctor; Ferrer, Laura

    2017-12-01

    Leached fractions of U and Th from different environmental solid matrices were evaluated by an automatic system enabling the on-line lixiviation and extraction/pre-concentration of these two elements previous ICP-MS detection. UTEVA resin was used as selective extraction material. Ten leached fraction, using artificial rainwater (pH 5.4) as leaching agent, and a residual fraction were analyzed for each sample, allowing the study of behavior of U and Th in dynamic lixiviation conditions. Multivariate techniques have been employed for the efficient optimization of the independent variables that affect the lixiviation process. The system reached LODs of 0.1 and 0.7ngkg -1 of U and Th, respectively. The method was satisfactorily validated for three solid matrices, by the analysis of a soil reference material (IAEA-375), a certified sediment reference material (BCR- 320R) and a phosphogypsum reference material (MatControl CSN-CIEMAT 2008). Besides, environmental samples were analyzed, showing a similar behavior, i.e. the content of radionuclides decreases with the successive extractions. In all cases, the accumulative leached fraction of U and Th for different solid matrices studied (soil, sediment and phosphogypsum) were extremely low, up to 0.05% and 0.005% of U and Th, respectively. However, a great variability was observed in terms of mass concentration released, e.g. between 44 and 13,967ngUkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS

    DOE PAGES

    Thompson, Robert L.; Bank, Tracy; Roth, Elliot; ...

    2016-07-30

    Here, the supply and price of rare earth elements (REEs) have become a concern to many countries in the world, which has led to renewed interest in exploration and recovery of REEs from secondary or waste sources. Potential high REE waste sources that are of particular interest are coal mining, preparation, combustion, and other fossil energy by-products, including those from natural gas production. In this work, we have examined a set of five solid samples from the treatment of produced and flowback water containing elevated concentrations of barium. In order to confirm the correct concentrations of Eu, we studied thesemore » materials using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), which is capable of resolving species of nearly identical masses, including Eu and BaO. While the use of quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) for the REE analysis of most geological sample matrices should pose no problem, the presence of large amounts of Ba, as encountered in water treatment solids from natural gas produced and flowback samples may require SF-ICP-MS for accurate determination of all REEs.« less

  12. Estimation of the formation rates of polyatomic species of heavy metals in plutonium analyses using a multicollector ICP-MS with a desolvating nebulizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitroshkov, Alexandre V.; Olsen, Khris B.; Thomas, Linda M.

    2015-01-01

    The analyses of IAEA and environmental samples for Plutonium isotopic content are conducted normally at very low concentrations of Pu–usually in the range of part per trillion level and even more often at the parts per quadrillion level. To analyze such low concentrations, the interferences in the analytical solution must be reduced as much as possible. Polyatomic interferences (PIs), formed by the heavy metals (HMs) from Hf to Bi are known to create the problems for Pu isotopic analyses, because even the relatively high resolution of a modern multicollector ICP-MS is not enough to separate Pu isotopes from this PIsmore » in most of the cases. Desolvating nebulizers (DSN) (e.g. APEX and AridusII) reduce significantly the formation of PIs compare to the use of wet plasma. The purpose of this work was to investigate the rate of formation of PIs, produced by HMs, when high resolution MC ICP-MS with desolvating nebulizer was used for Pu isotopic analyses and to estimate the influence of the metals present in the sample on the results of analyses. The NU Plasma HR Multicollector and AridusII desolvating nebulizer were used in this investigation. This investigation was done for all Pu isotopes normally analyzed by ICP-MS, including ²⁴⁴Pu, with the exception of ²³⁸Pu, which most of the time can’t be analyzed by ICP-MS, because of the overwhelming presence of ²³⁸U in the solutions. The PI formation rates were determined and reported for all 12 HMs from Hf to Bi. Selected IAEA samples were scanned for the presence of HMs and the influence of HMs on the results of Pu isotopic analyses was evaluated. It was found that the implemented separation procedure provides sufficient separation of HM from Pu, although the effect of PIs on the measurement of low level isotopes like ²⁴¹Pu and ²⁴²Pu in some cases can still be observed.« less

  13. Metals detected by ICP/MS in wound tissue of war injuries without fragments in Gaza

    PubMed Central

    2010-01-01

    Background The amount and identity of metals incorporated into "weapons without fragments" remain undisclosed to health personnel. This poses a long-term risk of assumption and contributes to additional hazards for victims because of increased difficulties with clinical management. We assessed if there was evidence that metals are embedded in "wounds without fragments" of victims of the Israeli military operations in Gaza in 2006 and 2009. Methods Biopsies of "wounds without fragments" from clinically classified injuries, amputation (A), charred (C), burns (B), multiple piercing wounds by White Phosphorus (WP) (M), were analyzed by ICP/MS for content in 32 metals. Results Toxic and carcinogenic metals were detected in folds over control tissues in wound tissues from all injuries: in A and C wounds (Al, Ti, Cu, Sr, Ba, Co, Hg, V, Cs and Sn), in M wounds (Al, Ti, Cu, Sr, Ba, Co and Hg) and in B wounds (Co, Hg, Cs, and Sn); Pb and U in wounds of all classes; B, As, Mn, Rb, Cd, Cr, Zn in wounds of all classes, but M; Ni was in wounds of class A. Kind and amounts of metals correlate with clinical classification of injuries, exposing a specific metal signature, similar for 2006 and 2009 samples. Conclusions The presence of toxic and carcinogenic metals in wound tissue is indicative of the presence in weapon inducing the injury. Metal contamination of wounds carries unknown long term risks for survivors, and can imply effects on populations from environmental contamination. We discuss remediation strategies, and believe that these data suggest the need for epidemiological and environmental surveys. PMID:20579349

  14. [Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].

    PubMed

    Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun

    2016-01-01

    By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.

  15. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    PubMed

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  16. Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite

    PubMed Central

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  17. Testing the age calibration of the Newark-Hartford APTS by magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the Late Traissic Chinle Formation in core PFNP-1A from the Petrified Forest National Park (Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Kent, D. V.; Olsen, P. E.; Mundil, R.; Lepre, C. J.

    2017-12-01

    The Newark-Hartford APTS extends over 27 Myr according to cycle stratigraphy of the Norian and Rhaetian of the Late Triassic and Hettangian and Sinemurian of the Early Jurassic and an additional 6 Myr by extrapolation into the Carnian; the entire sequence is anchored by U-Pb zircon dating of CAMP activity that provides a calibration date of 201.6 Ma for Chron E23r just below the end-Triassic extinction and the earliest CAMP basalts in the Newark basin (Blackburn+2013 Science; Kent+2017 ESR). The developing APTS has been successfully used for global correlations in marine and non-marine facies but there have been ongoing suggestions that millions of years of Rhaetian time are missing in a cryptic unconformity that supposedly occurs just above E23r in the Newark Supergroup basins. Testing the continuity of the APTS by magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the Chinle Formation was a prime scientific objective for core PFNP-1A. Paleomagnetic results were obtained using stepwise thermal demagnetization to 680°C from >150 samples of finer-grained red lithologies from the upper 250 m of the cored section of the Chinle (upper Sonsela, Petrified Forest including the Black Forest Bed, and lower Owl Rock Members). Characteristic directions isolated in 2/3 of the samples showed antipodal directions that were shallow with respect to reference directions (flattening factor 0.5), consistent with early acquisition of remanence. Seven polarity magnetozones produce a distinctive pattern correlated to Chrons E17r to E14r of the APTS. The Black Forest Bed at 209.93±0.26 Ma (Ramezani+2011 GSAB), confirmed by our new U-Pb dates from core PFNP-1A, occurs in a reverse polarity magnetozone correlated to E16r (209.95-210.25 Ma), which puts the U-Pb zircon date(s) in excellent agreement with the inferred APTS age. Rather than a 'missing Rhaetian', the apparent regional differences in appearances and disappearances of palynoflora, conchostracans, and other

  18. Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation

    DOE PAGES

    Bonamici, Chloe E.; Fanning, C. Mark; Kozdon, Reinhard; ...

    2015-02-11

    Here, titanite is an important U-Pb chronometer for dating geologic events, but its high-temperature applicability depends upon its retention of radiogenic lead (Pb). Experimental data predict similar rates of diffusion for lead (Pb) and oxygen (O) in titanite at granulite-facies metamorphic conditions (T = 650-800°C). This study therefore investigates the utility of O-isotope zoning as an indicator for U-Pb zoning in natural titanite samples from the Carthage-Colton Mylonite Zone of the Adirondack Mountains, New York. Based on previous field, textural, and microanalytical work, there are four generations (types) of titanite in the study area, at least two of which preservemore » diffusion-related δ 18O zoning. U-Th-Pb was analyzed by SIMS along traverses across three grains of type-2 titanite, which show well-developed diffusional δ 18O zoning, and one representative grain from each of the other titanite generations.« less

  19. La Escalerilla pluton, San Luis Argentina: The orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis

    NASA Astrophysics Data System (ADS)

    Morosini, Augusto Francisco; Ortiz Suárez, Ariel Emilio; Otamendi, Juan Enrique; Pagano, Diego Sebastián; Ramos, Gabriel Alejandro

    2017-01-01

    Field relationships, geochemical analysis and two new absolute ages (LA-MC-ICP-MS U/Pb-zircon) allow the division of the La Escalerilla pluton (previously considered to be a single granitic body) into two different plutons: a new La Escalerilla pluton (s.s.), dated at 476.7 ± 9.6 Ma, that represents the northern portion, and the El Volcán pluton, dated at 404.5 ± 8.5 Ma, located in the southern sector. The La Escalerilla pluton is composed of three facies: (1) biotite-bearing granodiorite, (2) porphyritic biotite-bearing granite, and (3) porphyritic two micas-bearing leucogranite, being the presence of late-magmatic dykes in these facies common. The El Volcán pluton is composed of two main facies: 1) porphyritic biotite-bearing granite, and 2) two micas-bearing leucogranite, but amphibole-bearing monzodioritic and tonalititic mega-enclaves are also common, as well as some dykes of amphibole and clinopyroxene-bearing syenites. A peculiarity between the two plutons is that their most representative facies (porphyritic biotite-bearing granites) have, apart from different absolute ages, distinctive geochemical characteristics in their concentrations of trace elements; the La Escalerilla granite is comparatively poorer in Ba, Sr, Nb, La, Ce, P, and richer in Rb, Tb, Y, Tm and Yb. The El Volcán granite is notably enriched in Sr and depleted in Y, resulting in high Sr/Y ratios (12.67-39.08) compared to the La Escalerilla granite (1.11-2.41). These contrasts indicate that the separation from their sources occurred at different depths: below 25 km for the La Escalerilla, and above 30 km for the El Volcán. Moreover, the contrasts allow us to interpret a thin crust linked to an environment of pre-collisional subduction for the first case, and a thickened crust of post-collisional environment for the second, respectively.

  20. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL -1 ) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of arsenic species in marine samples by HPLC-ICP-MS.

    PubMed

    Hirata, Shizuko; Toshimitsu, Hideki; Aihara, Masato

    2006-01-01

    Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).

  2. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  3. [Study on microwave digestion of gypsum for the determination of multielement by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yang, Rui-ming; Yao, Qiang; Chen, Chang-he

    2010-09-01

    Three acids (HNO3, HNO3/HF and HNO3 /HF+ H3BO3) were used to decompose gypsum with microwave digestion system. The contents of 10 mineral elements (Al, Ca, Mg, Fe, K, Na, S, Ti, Si and Sr) in gypsum were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) while 6 heavy metals (V, Cr, Mn, Zn, Se and Ce) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). GBW03109a, GBW03110 and FGD-2 were used as gypsum standard reference materials. The results showed that two-step microwave digestion with HNO3/HF at 210 degrees C and then adding H3BO3 for the removal of HF and fluorides completely decomposed the gypsums, while this method achieved good recoveries for all elements in the three gypsum standard reference materials. The recovery was from 88% to 112% and the RSD of tests was below 3%. The method was applied to the elemental analysis for flue gas desulfurization gypsums from three coal-fired power plants.

  4. A comparison of the metal content of some benthic species from coastal waters of the Florida panhandle using high-resolution inductively coupled plasma mass spectrometry (ICP-MS) analysis.

    PubMed

    Philp, R B; Leung, F Y; Bradley, C

    2003-02-01

    Benthic marine invertebrates, sediment, and water from several locations along the Florida panhandle coast from St. Joseph Bay in the west to the mouth of the Wakulla River in the east, including from several river estuaries, were analyzed by double focusing ICP-MS (Finnigan MAT ELEMENT) for Cd, Hg, Pb, Cu, Zn, and As. All were detected in all samples. Sponges generally contained higher levels of Cd than other species. Microciona prolifera sponges from St. Joseph Bay had higher As levels (8.1-13.6 microg/g dry weight) than sponges collected from Dickerson Bay or Appalachee Bay (2.20-9.7) and higher Cd levels (0.43-0.73) than that of a single Microciona specimen collected from Dickerson Bay (0.29). Water content of As was about 20-30x higher in St. Joseph Bay than in any other location, and sediment levels of Cd were about 9x higher. Cu and Zn were higher in organic sediment from St. Joseph Bay than they were in other areas. The Pb content of several sponge species and two of tunicates was considerably higher than in other species. The uptake of most metals in this study (except As) appeared to be affected by the metal, genus, species, and location as much as by levels in either water or sediment. In general, sponges and tunicates seemed to accumulate higher levels than most other species, possibly a function of high filtration rates. The ICP-MS method is useful for environmental studies, but the instrument requires considerable maintenance.

  5. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system.

    PubMed

    D'Ilio, S; Violante, N; Di Gregorio, M; Senofonte, O; Petrucci, F

    2006-10-10

    A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulization system (APEX-IR) was employed to determine 17 elements (Al, As, Ba, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, V, and Zr) in blood samples. Ammonia (for Al, Cr, Mn, and V) and O2 (for As and Se) were used as reacting gases. Selection of the best flow rate of the gases and optimization of the quadrupole dynamic bandpass tuning parameter (RPq) were carried out, using digested blood diluted 1+9 with deionized water and spiked with 1 microg L(-1) of Al, Cr, Mn, V and 5 microgL(-1) of As and Se. Detection limits were determined in digested blood using the 3sigma criterion. The desolvating system allowed a sufficient sensitivity to be achieved to determine elements at levels of ng L(-1) without detriment of signal stability. The accuracy of the method was tested with the whole blood certified reference material (CRM), certified for Al, As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Sb, Se, and V, and with indicative values for Ba, Li, Sn, Sr, and Zr. The addition calibration approach was chosen for analysis. In order to confirm the DRC data, samples were also analyzed by means of sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), operating in medium (m/Deltam=4000) and high (m/Deltam=10,000) resolution mode and achieving a good agreement between the two techniques.

  6. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  7. First 226Ra- 210Pb dating of a young speleothem

    NASA Astrophysics Data System (ADS)

    Condomines, M.; Rihs, S.

    2006-10-01

    Whereas the method based on the decrease of excess 210Pb has already been used to date young (< 120 yr) speleothems (e.g. [M. Baskaran, T. M. Iliffe, Age determination of recent cave deposits using excess 210Pb — A new technique, Geophys. Res. Lett. 20 (1993) 603-606.]), this paper presents the first dating of a speleothem through the 226Ra- 210Pb method. Dating of a young hydrothermal stalagmite from the Mt Cornadore cave (St Nectaire, French Massif Central) was made possible by the high 226Ra and negligible 210Pb contents of such carbonates, formed by precipitation from CO 2-rich thermal waters. ( 210Pb/ 226Ra) ratios regularly increase with depth along the axis of the 33 cm long stalagmite. The age-depth relationship can be interpreted by two main phases of growth, with high but variable axial growth rates of 5.3 mm/yr from 1909 to 1967, and 2.6 mm/yr from 1967 to 1989 (alternatively, the oldest phase can be subdivided in three episodes with growth rates varying from 2 to 7 mm/yr). Thin-section examination reveals the presence of numerous laminae, indicating infra-annual variations. We suggest that this fine layered structure might reflect short-term fluctuations in drip waters, possibly induced by near-surface mixing between thermal and ground waters, and ultimately linked to the pluviometry. A detailed examination of this laminated structure combined with 226Ra- 210Pb dating could thus provide a high-resolution record of local paleohydrological fluctuations.

  8. Status Report on the 40Ar/39Ar and U/Pb Dating of Tuffs in the Dewey Lake Formation of West Texas Towards Constraining the Permo-Triassic Magnetostratigraphic Time Scale

    NASA Astrophysics Data System (ADS)

    Chang, S.; Renne, P. R.; Mundil, R.

    2007-12-01

    A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite

  9. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Wooden, Joe; Murphy, Fred; Williams, Ross W.

    2005-04-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ˜60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few μm deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems.

  10. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  11. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    NASA Astrophysics Data System (ADS)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18-24Ab79-82Or0.3-0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclase-dominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong

  12. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    PubMed

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  13. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay.

    PubMed

    Ko, Jung Aa; Lim, H B

    2016-09-28

    Metal-doped inorganic nanoparticles were synthesized for the multiplex detection of biomarkers by a sandwich-type inductively coupled plasma mass spectrometry (ICP-MS) immunoassay. The synthesized Cs-doped multicore magnetic nanoparticles (MMNPs) were used not only for magnetic extraction of targets but also for ratiometric measurement in ICP-MS. In addition, three different metal/dye-doped silica nanoparticles (SNPs) were synthesized as probes for multiplex detection: Y/RhBITC (rhodamine B isothiocyanate)-doped SNPs for CRP (cardiovascular disease), Cd/RhBITC-doped SNPs for AFP (tumor), and Au/5(6)-XRITC (X-rhodamine-5-(and-6)-isothiocyanate)-doped SNPs for NSE (heart disease). For quantification, the doped metals of SNPs were measured by ICP-MS and then the signal ratio to Cs of MMNPs was plotted with respect to the concentration of targets by a ratiometry. Limits of detection (LOD) of 0.35 ng/mL to 77 ng mL(-1) and recoveries of 83%-125% were obtained for serum samples spiked with the biomarkers. Since no sample treatment was necessary prior to the extraction, the proposed method provided short analysis time and convenience for the multiplex determination of biomarkers, which will be valuable for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pre-Alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): Constraints from in-situ LA-ICP-MS Usbnd Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Mandl, Magdalena; Kurz, Walter; Hauzenberger, Christoph; Fritz, Harald; Klötzli, Urs; Schuster, Ralf

    2018-01-01

    The Variscan European Belt is a complex orogen with its southern margin partly obscured by Alpine tectonics and metamorphism. We present a study of one of the units, the Seckau Complex, that constitute the southern part of the Variscan European Belt in the Eastern Alps in order to clarify its origin, age and lithostratigraphy. The magmatic and geochronological evolution of this Complex in the northwestern part of the Seckau Nappe (as part of the Austroalpine Silvretta-Seckau Nappe System) was investigated by zircon Usbnd Pb dating of paragneisses and metagranitoids coupled with petrological and geochemical data. This reveals the distinction of three newly defined lithostratigraphic/lithodemic sub-units: (1) Glaneck Metamorphic Suite, (2) Hochreichart Plutonic Suite and (3) Hintertal Plutonic Suite. The Glaneck Metamorphic Suite is mainly composed of fine-grained paragneisses that yield Usbnd Pb zircon ages in the range between 2.7 Ga and 2.0 Ga, as well as concordia ages from 572 ± 7 Ma to 559 ± 11 Ma. All of these ages are interpreted as detrital zircon ages originating from an igneous source. The paragneisses are the host rock for the large volumes of metagranitoids of the Hochreichart Plutonic Suite and the Hintertal Plutonic Suite. The Hochreichart Plutonic Suite comprises highly fractionated melts with mainly S-type characteristics and late Cambrian to Early Ordovician Usbnd Pb zircon ages (508 ± 9 Ma to 486 ± 9 Ma), interpreted as magmatic protolith ages. The Hintertal Plutonic Suite is composed of metagranitoids with Late Devonian to early Carboniferous (365 ± 11 Ma and 331 ± 10 Ma) protolith ages, that intruded during an early phase of the Variscan tectonometamorphic event. The metagranitoids of the Hintertal Plutonic Suites define a magmatic fractionation trend, seen in variable Rb/Sr ratios. On this base they can be further subdivided into (a) the Griessstein Pluton characterized by S-type metagranitoids and (b) the Pletzen Pluton distinguished by

  15. On the certification of cadmium at trace and ultratrace levels in standard reference materials using ID ICP-MS.

    PubMed

    Murphy, K E; Long, S E; Vocke, R D

    2007-04-01

    Analytical methods used for the isotope dilution inductively coupled plasma mass spectrometric (ID-ICP-MS) measurement of Cd at microg kg(-1) and sub-microg kg(-1) levels are described and applied to the certification of new dietary supplement, blood, and serum Standard Reference Materials (SRMs). The materials are: SRM 3240 Ephedra sinica Stapf Aerial Parts, SRM 3241 Ephedra sinica Stapf Native Extract, SRM 3243 Ephedra-Containing Solid Oral Dosage Form, SRM 3244 Ephedra-Containing Protein Powder, SRM 966 Toxic Metals in Bovine Blood, Level 1 (L1) and Level 2 (L2), and SRM 1598a Animal Serum. The concentration of Cd in the materials ranges from 120 microg kg(-1) down to 0.03 microg kg(-1). At these levels, the factors that most influence the accuracy of the ICP-MS data are the procedure blank and spectral and nonspectral interferences. Nonspectral interference, caused by the high concentration of dissolved solids in the matrices investigated, resulted in signal suppression. Matrix separation was used to enhance signal intensity and to reduce spectral interference for the accurate determination of Cd in SRM 1598a and SRM 3244. Chromatographic separation procedures using Chelex for SRM 1598a and anion exchange for SRM 3244 were optimized to achieve the desired separation characteristics without substantially increasing the procedure blank. Sensitivity for the determination of Cd in serum was additionally enhanced through the use of desolvation nebulization. We determined that separations were not required for the accurate ICP-MS determination of Cd in SRM 3240, SRM 3241, SRM 3243, and SRM 966 L2 under optimized analysis conditions. These samples were diluted to a minimum volume and introduced to the ICP-MS via low flow (40-100 microL/min) microconcentric nebulizers. SRM 966 L1 was also analyzed directly, but results were highly variable. The ID-ICP-MS sample preparation and ratio measurement protocols described here resulted in total expanded uncertainties of less

  16. Chemical vapor generation sample introduction for the determination of As, Cd, Sb, Hg, and Pb in nail polish by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Fan-Feng; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A. C.

    2018-02-01

    This paper describes a flow injection vapor generation (VG) method using inductively coupled plasma mass spectrometry (ICP-MS) for determining As, Cd, Sb, Hg, and Pb in nail polish. The samples for VG were prepared as aqueous slurries of a nail polish (0.5% m/v), thiourea (1% m/v), Co(II) (0.75 μg mL- 1), and HCl (1.2% v/v). Chemical VG of As, Cd, Sb, Hg, and Pb ions, by reduction with tetrahydroborate (3% m/v in 0.2% m/v NaOH), enabled their separation from the slurry. With VG sample introduction, As, Cd, Sb and Hg signals were increased by 1-2 orders (except Pb) compared to solution nebulization due to better sample introduction. Quantifications were performed by VG ICP-MS using isotope dilution and standard addition methods as slopes of calibration plots of analytes in the slurries were higher. Using the reported procedure, samples of three nail polishes purchased locally were analyzed for their levels of As, Cd, Sb, Hg, and Pb. The results obtained were in good agreement with those measured using electrothermal vaporization ICP-MS. In the original nail polish sample, the detection limits, calculated as 3σ of blank measurements, for As, Cd, Sb, Hg, and Pb, estimated from standard addition curves, were 0.06, 0.12, 0.14, 0.2, and 12 ng g- 1, respectively.

  17. Interpreting U-Pb data from primary and secondary features in lunar zircon

    NASA Astrophysics Data System (ADS)

    Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.

    2013-01-01

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.

  18. Development of an electrothermal vaporization ICP-MS method and assessment of its applicability to studies of the homogeneity of reference materials.

    PubMed

    Friese, K C; Grobecker, K H; Wätjen, U

    2001-07-01

    A method has been developed for measurement of the homogeneity of analyte distribution in powdered materials by use of electrothermal vaporization with inductively coupled plasma mass spectrometric (ETV-ICP-MS) detection. The method enabled the simultaneous determination of As, Cd, Cu, Fe, Mn, Pb, and Zn in milligram amounts of samples of biological origin. The optimized conditions comprised a high plasma power of 1,500 W, reduced aerosol transport flow, and heating ramps below 300 degrees C s(-1). A temperature ramp to 550 degrees C ensured effective pyrolysis of approximately 70% of the organic compounds without losses of analyte. An additional hold stage at 700 degrees C led to separation of most of the analyte signals from the evaporation of carbonaceous matrix compounds. The effect of time resolution of signal acquisition on the precision of the ETV measurements was investigated. An increase in the number of masses monitored up to 20 is possible with not more than 1% additional relative standard deviation of results caused by limited temporal resolution of the transient signals. Recording of signals from the nebulization of aqueous standards in each sample run enabled correction for drift of the sensitivity of the ETV-ICP-MS instrument. The applicability of the developed method to homogeneity studies was assessed by use of four certified reference materials. According to the best repeatability observed in these sample runs, the maximum contribution of the method to the standard deviation is approximately 5% to 6% for all the elements investigated.

  19. Determination of Trace Elements in Uranium by HPLC-ID-ICP-MS: NTNFC Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manard, Benjamin Thomas; Wylie, Ernest Miller II; Xu, Ning

    This report covers the FY 16 effort for the HPLC-ID-ICP-MS methodology 1) sub-method validation for the group I&II elements, 2) sub-method stood-up and validation for REE, 3) sub-method development for the transition element, and 4) completion of a comprehensive SOP for three families of elements.

  20. Ar-40/Ar-39 and U-Th-Pb dating of separated clasts from the Abee E4 chondrite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Unruh, D. M.; Tatsumoto, M.

    1983-01-01

    Ar-40/Ar-39 and U-Th-Pb are investigated for three clasts from the Abee (E4) enstatite chondrite, yielding Ar-40/Ar-39 plateau ages (and/or maximum ages) of 4.5 Gy, while two of the clasts give average ages of 4.4 Gy. The 4.4-4.5 Gy range does not resolve possible age differences among the clasts. The U-Th-Pb data are consistent with the interpretation that initial clast formation occurred 4.58 Gy ago, and that the clasts have since remained closed systems which have been contaminated with terrestrial Pb. The thermal history of Abee deduced from Ar data seems consistent with that deduced from magnetic data, suggesting that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, experiencing no significant subsequent heating.