Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing
2018-04-01
Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.
Chemical solution deposition method of fabricating highly aligned MgO templates
Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2012-01-03
A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.
NASA Astrophysics Data System (ADS)
Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai
2017-08-01
La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.
NASA Astrophysics Data System (ADS)
Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji
2017-07-01
This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.
Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie
2013-02-27
La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.
Buffer architecture for biaxially textured structures and method of fabricating same
Norton, David P.; Park, Chan; Goyal, Amit
2004-04-06
The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
Improving fatigue resistance of Pb(Zr,Ti)O3 thin films by using PbZrO3 buffer layers
NASA Astrophysics Data System (ADS)
Mensur Alkoy, Ebru; Uchiyama, Kiyoshi; Shiosaki, Tadashi; Alkoy, Sedat
2006-05-01
Ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin films with PbZrO3 (PZ) buffer layers were prepared on Pt(111)/Ti/SiO2/Si(100) substrates using a hybrid rf magnetron sputtering and sol-gel process. Texture of PZT films was found to depend on Pb content of PZ buffer layers. Buffered PZT films displayed comparable ferroelectric properties (2Pr=38-53 μC/cm2,2Ec=136-170 kV/cm) with unbuffered PZT. Asymmetric leakage current and fatigue behavior with superior fatigue resistance was observed in PZ buffered PZT compared to unbuffered films. PZ buffer layers were found to affect crystallization and texture of PZT, and act as a capacitive interface layer possibly blocking charge injection from electrodes.
Pollak, C; Malic, B; Kosec, M; Javoric, S; Hutter, H
2002-10-01
Chemical solution-deposited thin films of PbZr(0.53)Ti(0.47)O(3)/La(0.5)Sr(0.5)CoO(3) on Pt/TiO(2)/SiO(2)/Si substrates have been investigated by dynamic SIMS. The PbZr(0.53)Ti(0.47)O(3) (PZT) is intended to serve as a ferroelectric layer for microelectronic or microelectromechanical applications; conducting La(0.5)Sr(0.5)CoO(3) (LSCO) is a buffer layer intended to eliminate fatigue effects which usually occur at the Pt/PZT interface. Depth profiles of the main components were obtained and revealed that significant diffusion occurred during the deposition and crystallisation processes. Two types of sample, with different thickness of PZT and different types of poly(vinyl alcohol) (PVA) added to the LSCO precursor, were investigated.
Rare earth zirconium oxide buffer layers on metal substrates
Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland
2001-01-01
A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0
NASA Technical Reports Server (NTRS)
Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.
1988-01-01
Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.
Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland
2002-01-01
A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0
NASA Astrophysics Data System (ADS)
Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.
1993-09-01
A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.
Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer
2013-01-01
To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524
Thickness effect of Gd2Zr2O7 buffer layer on performance of YBa2Cu3O7-δ coated conductors
NASA Astrophysics Data System (ADS)
Qiu, Wenbin; Fan, Feng; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing
2014-12-01
Bilayer buffer architecture of Gd2Zr2O7 (GZO)/Y2O3 was prepared on the biaxially textured tape of Ni-5 at% W (NiW) by reactive sputtering deposition technique. The buffer layer of GZO films were deposited with different thicknesses on Y2O3 seeding layer with a given thickness of 20 nm. According to the results of φ-scan, the in-plane FWHMs of GZO films decreased and then reversed with increasing thickness of GZO, which corresponded with the in-plane FWHMs and superconducting properties of YBa2Cu3O7-δ (YBCO) films. Reflection High-Energy Electron Diffraction (RHEED) was carried out to examine the surface texture of GZO films and the deteriorated surface alignment was found for thicker films. The thickness effect of GZO on performance of YBCO is the coupling result of surface texture and blocking effect caused by thickness. With the balance of these two factors, the YBCO/GZO(120 nm)/Y2O3/NiW architecture exhibit relatively high performance with the transition temperature Tc of 92 K, a transition width ΔTc below 1 K, and a critical current density Jc of 0.65 MA/cm2.
Goyal, Amit; Kroeger, Donald M.; Paranthaman, Mariappan; Lee, Dominic F.; Feenstra, Roeland; Norton, David P.
2002-01-01
A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO.sub.2, YSZ, LaAlO.sub.3, SrTiO.sub.3, Y.sub.2 O.sub.3, RE.sub.2 O.sub.3, SrRuO.sub.3, LaNiO.sub.3 and La.sub.2 ZrO.sub.3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates
NASA Technical Reports Server (NTRS)
Valco, G. J.; Rohrer, N. J.; Warner, J. D.; Bhasin, K. B.
1989-01-01
The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates.
Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam
2006-01-01
Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.
Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina
2017-05-01
In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.
Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering
NASA Astrophysics Data System (ADS)
Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu
2004-08-01
This study found "stress-induced magnetization" for epitaxial ferrite films with spinel structure. We grew (111)- and (001)-epitaxial Ni0.17Zn0.23Fe2.60O4(NZF) films on CeO2/Y0.15Zr0.85O1.93(YSZ )/Si(001) and oxide single-crystal substrates, respectively. There is a window of lattice mismatch (between 0 and 6.5%) to achieve bulk saturation magnetization (Ms). An NZF film grown on CeO2/YSZ //Si(001) showed tensile stress, but that stress was relaxed by introducing a ZnCo2O4(ZC ) buffer layer. NZF films grown on SrTiO3(ST )(001) and (La,Sr)(Al,Ta)O3(LSAT)(001) had compressive stress, which was enhanced by introducing a ZC buffer layer. In both cases, bulk Ms was achieved by introducing the ZC buffer layer. This similarity suggests that magnetization can be controlled by the stress.
NASA Astrophysics Data System (ADS)
Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli
2016-12-01
In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.
2001-10-01
Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.
Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S
2018-04-25
Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.
NASA Astrophysics Data System (ADS)
Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young
2017-02-01
Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.
Microstructure and Mechanics of Superconductor Epitaxy via the Chemical Solution Deposition Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick F. Lange
2006-11-30
Executive Summary: Initially the funds were sufficient funds were awarded to support one graduate student and one post-doc. Lange, though other funds, also supported a graduate intern from ETH Zurich, Switzerland for a period of 6 months. The initial direction was to study the chemical solution deposition method to understand the microstructural and mechanical phenomena that currently limit the production of thick film, reliable superconductor wires. The study was focused on producing thicker buffer layer(s) on Ni-alloy substrates produced by the RABiTS method. It focused on the development of the microstructure during epitaxy, and the mechanical phenomena that produce cracksmore » during dip-coating, pyrolysis (decomposition of precursors during heating), crystallization and epitaxy. The initial direction of producing thicker layers of a know buffer layer material was redirected by co-workers at ORNL, in an attempt to epitaxially synthesize a potential buffer layer material, LaMnO3, via the solution route. After a more than a period of 6 months that showed that the LaMnO3 reacted with the Ni-W substrate at temperatures that could produce epitaxy, reviewers at the annual program review strongly recommended that the research was not yielding positive results. The only positive result presented at the meeting was that much thicker films could be produce by incorporating a polymer into the precursor that appeared to increase the precursor’s resistance to crack growth. Thus, to continue the program, the objectives were changed to find compositions with the perovskite structure that would be a) chemically compatible with either the Ni-W RABiTS or the MgO IBAD Ni-alloy substrates, and produce a better lattice parameter fit between either of the two substrates. At the start of the second year, the funding was reduced to 2/3’s of the first year level, which required the termination of the post-doc after approximately 5 months into the second year. From then on, further funding was intermittent to say the least, and funding to support the student and the research expenses has to be supplemented by Lange’s gift funds. During the first part of the second year, strontium zirconate was identified as an alternative to lanthanum manganite as a buffer layer for use on the IBAD MgO superconducting wire. A lattice parameter of 4.101 Angstroms offers a reduced lattice mismatch between the MgO and SrZrO3. Studies were focused on investigating hybrid precursor routes, combining Sr acetate with a number of different Zr alkoxides. Initial results from heat treating precursors to form powders are positive with the formation of orthorhombic SrZrO3 at temperatures between 800°C and 1100°C under a reducing atmosphere of Ar – 5% H2. Buffer layer research on RABiTS substrates were centered on GdAlO3 (3.71 Å) and YAlO3 (3.68 Å) buffer layer materials. Powder experiments in YAlO3 have shown the perovskite phase to be metastable at processing temperatures below 1500 °C. Experiments involving spin coating of YAlO3 precursors have found significant problems involved with wettability of the YAlO3 precursor (Yttrium acetate, Aluminum tri-sec butoxide, DI water and Formic Acid) on RABiTS substrates; this, and the demise of the funds precluded further research using YAlO3. The diminished funds for the second year, and the small, tricked funds during the third year lead to a redirection of the student to another research area., and a stop to any experimental achievements that were much too ambition relative to the available funds. The only positive results obtained during this latter period was the understanding why two dissimilar structures could result in an epitaxial relation. It was shown that two rules of crystal chemistry, cation/anion coordination and charge balance, could be applied to understand the epitaxy of SrTiO3 on Ni c(2 X 2)S, TiO2 (anatase) on LaAlO3, TiO2 (rutile) on r-plane Al2O3, and Zr1-x(Yx)O2 on (0001) Al2O3. This new understanding of the interface between two dissimilar structures has important implications that include the buffer layers used for the superconductor program, namely, the epitaxy of perovskites such as the epitaxy of SrTiO3 on the Ni c(2 X 2)S wire. This discovery is the major part of the finial report that follows.« less
High thermal stability of La 2O 3 and CeO 2-stabilized tetragonal ZrO 2
Wang, Shichao; Xie, Hong; Lin, Yuyuan; ...
2016-02-15
Catalyst support materials of tetragonal ZrO 2, stabilized by either La 2O 3 (La 2O 3-ZrO 2) or CeO 2 (CeO 2-ZrO 2), were synthesized under hydrothermal conditions at 200 °C with NH 4OH or tetramethylammonium hydroxide as the mineralizer. From In Situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La 2O 3-ZrO 2 and CeO 2-ZrO 2 supports were nonporous nanocrystallites that exhibited rectangular shapes with thermal stability up to 1000 °C in air. These supports had an average size of ~10 nm and a surface area of 59-97 m 2/g. The catalysts Pt/La 2Omore » 3-ZrO 2 and Pt/CeO 2-ZrO 2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3-12.4 wt %. Mono-dispersed Pt nanoparticles of ~3 nm were obtained for these catalysts. As a result, the incorporation of La 2O 3 and CeO 2 into the t-ZrO 2 structure did not affect the nature of the active sites for the Pt/ZrO 2 catalysts for the water-gas-shift (WGS) reaction.« less
Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7
NASA Astrophysics Data System (ADS)
Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing
2015-03-01
Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).
Enhanced dielectric properties of Pb0.92La0.08 Zr0.52Ti0.48O3 films with compressive stress
NASA Astrophysics Data System (ADS)
Ma, Beihai; Liu, Shanshan; Tong, Sheng; Narayanan, Manoj; (Balu) Balachandran, U.
2012-12-01
We deposited ferroelectric (Pb0.92La0.08)(Zr0.52Ti0.48)O3 (PLZT 8/52/48) films on nickel foils and platinized silicon (PtSi) substrates by chemical solution deposition. Prior to the deposition of PLZT, a conductive oxide buffer layer of LaNiO3 (LNO) was deposited on the nickel foil. Residual stresses of the films were determined by x-ray diffraction. Compressive stress of ≈-370 MPa and tensile stress of ≈250 MPa were measured in ≈2-μm-thick PLZT grown on LNO-buffered Ni foil and PtSi substrate, respectively. We also measured the following electrical properties for the PLZT films grown on LNO-buffered Ni and PtSi substrates, respectively: remanent polarization, ≈23.5 μC/cm2 and ≈10.1 μC/cm2; coercive electric field, ≈23.8 kV/cm and ≈27.9 kV/cm; dielectric constant at room temperature, ≈1300 and ≈1350; and dielectric loss at room temperature, ≈0.06 and ≈0.05. Weibull analysis determined the mean breakdown strength to be 2.6 MV/cm and 1.5 MV/cm for PLZT films grown on LNO-buffered Ni and PtSi substrates, respectively. The difference in dielectric properties and breakdown strength can be attributed to the residual stress in the PLZT films. Our results suggest that compressive stress enhances the dielectric breakdown strength of the PLZT films.
2014-01-01
Fast-conducting phase-pure cubic Ga-bearing Li7La3Zr2O12 was obtained using solid-state synthesis methods with 0.08 to 0.52 Ga3+ pfu in the garnet. An upper limit of 0.72 Ga3+ pfu in garnet was obtained, but the synthesis was accompanied by small amounts of La2Zr2O12 and LiGaO3. The synthetic products were characterized by X-ray powder diffraction, electron microprobe and SEM analyses, ICP-OES measurements, and 71Ga MAS NMR spectroscopy. The unit-cell parameter, a0, of the various garnets does not vary significantly as a function of Ga3+ content, with a value of about 12.984(4) Å. Full chemical analyses for the solid solutions were obtained giving: Li7.08Ga0.06La2.93Zr2.02O12, Li6.50Ga0.15La2.96Zr2.05O12, Li6.48Ga0.23La2.93Zr2.04O12, Li5.93Ga0.36La2.94Zr2.01O12, Li5.38Ga0.53La2.96Zr1.99O12, Li4.82Ga0.60La2.96Zr2.00O12, and Li4.53Ga0.72La2.94Zr1.98O12. The NMR spectra are interpreted as indicating that Ga3+ mainly occurs in a distorted 4-fold coordinated environment that probably corresponds to the general 96h crystallographic site of garnet. PMID:24874559
NASA Astrophysics Data System (ADS)
Pokhrel, Madhab; Burger, Arnold; Groza, Michael; Mao, Yuanbing
2017-06-01
We report the generation of La2Zr2O7:5%Eu3+@Y2O3 (LZO5E@YO) core@shell crystalline inorganic-inorganic heterogeneous nanoparticles (NPs). The Y2O3 (YO) shell coating process based on a chemical sol-gel method led to the growth of a thin YO shell on the ordered pyrochlore La2Zr2O7:5%Eu3+ (LZO5E) core NPs. Photoluminescence (PL) analyses demonstrated a blue shift of 15 nm on charge transfer (CT) excitation band of the core@shell NPs from that of the core NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) along x-ray diffraction (XRD), Fourier-transform Infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) studies confirmed the formation of the thin YO layer over the LZO5E core NPs. The PL intensity of the LZO5E@YO core@shell NPs was enhanced by three fold compared to that of the LZO5E core NPs, and higher quantum yield (QY) was observed for the former compared to the original NPs by more than 70%. Higher radioluminescence (RL) emission was also observed for the core@shell NPs compared to the core NPs. Our ability of obtaining near-perfect core@shell heterostructure with enhanced luminescence performance opens the door for the development of efficient La2Zr2O7:5%Eu3+@Y2O3 NPs for both optical and x-ray scintillation applications.
Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...
2015-01-31
In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A 2Zr 2O 7, A = La, Nd and Sm). It shows that both cations and anions in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 are generally more likely to be displaced than those in La 2Zr 2O 7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 are lower than those in La 2Zr 2O 7. These results suggest thatmore » the order–disorder structural transition more easily occurs in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less
Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying
2015-02-27
The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang
2018-03-01
A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Hien Thu; Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn; Inorganic Materials Science
2015-12-15
Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectricmore » properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between grains) of the former films.« less
Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering
NASA Astrophysics Data System (ADS)
Wang, Chun; Kryder, Mark H.
2009-09-01
Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.
NASA Astrophysics Data System (ADS)
Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji
2017-12-01
This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.
Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin
2017-05-01
Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 filmmore » amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less
Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films
Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; ...
2017-05-01
Pyrochlore-structure oxides, A 2B 2O 7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. In this paper, the mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La 2Zr 2O 7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr + at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopymore » (STEM). At lower doses, the surface of the La 2Zr 2O 7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La 2Zr 2O 7, the bandgap of a thick La 2Zr 2O 7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Bansal, Narottam P.; Miller, Robert A.
2003-01-01
HfO2-Y2O3 and La2Zr2O7 are candidate thermal and environmental barrier coating (T/EBC) materials for gas turbine ceramic matrix composite (CMC) combustor applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature stability of hot-pressed and plasma sprayed specimens with representative partially-stabilized and fully-cubic HfO2-Y2O3 compositions and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasmasprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC hexoloy or SiC/SiC CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Yuxing; Lai, Wei
2015-02-01
High Li-content lithium garnet oxides are promising solid electrolyte materials for lithium batteries. Being the highest Li-content lithium garnet oxides, Li7La3Zr2O12 has been reported to crystallize in either the tetragonal or cubic phase with no consensus on the exact conditions under which these two phases are formed, which may be due to unintentional Al contamination and air exposure. In this work, the effects of Ta substitution and H2O/CO2 exposure have been studied under Al-contamination free conditions with minimal air exposure. We showed that 1) the Ta-substitution induced phase transition occurred through a two-phase mechanism and a minimum 0.6 mol of Ta substitution to Zr is needed to stabilize the cubic phase; 2) H2O and CO2 can individually induce the tetragonal-cubic phase transition in Li7La3Zr2O12 through proton exchange and Li extraction, respectively, which can have great influence on the transport properties of Li7La3Zr2O12.
The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets
Rettenwander, D.; Geiger, C.A.; Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G.
2015-01-01
A series of Fe3+-bearing Li7La3Zr2O12 (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and 57Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe3+ pfu could be incorporated in Li7−3xFexLa3Zr2O12 garnet solid solutions. At Fe3+ concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe3+ contents lower than 0.52 Fe3+ pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a0, for all solid-solution garnets is similar with a value of a0≈12.98 Å regardless of the amount of Fe3+. 57Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO3 in syntheses with Fe3+ contents greater than 0.16 Fe3+ pfu. The composition of different phase pure Li7−3xFexLa3Zr2O12 garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li6.89Fe0.03La3.05Zr2.01O12, Li6.66Fe0.06La3.06Zr2.01O12, Li6.54Fe0.12La3.01Zr1.98O12, and Li6.19Fe0.19La3.02Zr2.04O12. The 57Fe Mössbauer spectrum of cubic Li6.54Fe0.12La3.01Zr1.98O12 garnet indicates that most Fe3+ occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe3+ in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li6.54Fe0.12La3.01Zr1.98O12 this Fe3+ has a distorted 4-fold coordination. PMID:26435549
NASA Astrophysics Data System (ADS)
Liang, K.; Zhou, P.; Ma, Z. J.; Qi, Y. J.; Mei, Z. H.; Zhang, T. J.
2017-05-01
Magnetoelectric (ME) coupling effect of 2-2-type ferromagnetic/ferroelectric bi-layer multiferroic epitaxial thin film (La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3, LSMO/PZT) on SrRuO3 (SRO) substrate is investigated systematically by using Landau-Ginzburg-Devonshire (LGD) thermodynamic theory and modified constitutive equations. The calculating results clarify the detail relationships between ME coupling response and the residual strain, the volume fraction of constituent phases, the interface coupling coefficients, the magnetic field and the temperature. It also shows that improved ME coupling response can be modulated by these parameters. External magnetic fields (H1) induced ME coupling effect could be enhanced around Curie Temperature (Tc) of ferromagnetic phase and ME voltage coefficient (αE31) approaches a maximum at H1 ∼ 4.5 kOe near Tc. The remarkable variations of ME coupling response can be used to provide useful guidelines on the design of multifunctional devices.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.
2006-11-01
Chemical diffusion of Zr under anhydrous, pO2-buffered conditions has been measured in natural titanite. The source of diffusant was either zircon powder or a ZrO2-Al2O3-titanite mixture. Experiments were run in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. The following Arrhenius parameters were obtained for Zr diffusion parallel to c over the temperature range 753-1,100°C under NNO-buffered conditions: D Zr = 5.33 × 10-7 exp(-325 ± 30 kJ mol-1/RT) m2 s-1 Diffusivities are similar for experiments buffered at QFM. These data suggest that titanite should be moderately retentive of Zr chemical signatures, with diffusivities slower than those for O and Pb in titanite, but faster than those for Sr and the REE. When applied in evaluation of the relative robustness of the recently developed Zr-in-titanite geothermometer (Hayden and Watson, Abstract, 16th V.M. Goldschmidt Conference 2006), these findings suggest that Zr concentrations in titanite will be less likely to be affected by later thermal disturbance than the geothermometer based on Zr concentrations in rutile (Zack et al. in Contrib Mineral Petrol 148:471-488, 2004; Watson et al. in Contrib Mineral. Petrol, 2006), but much less resistant to diffusional alteration subsequent to crystallization than the Ti-in-Zircon geothermometer (Watson and Harrison in Science 308:841-844, 2005).
NASA Astrophysics Data System (ADS)
Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi
2017-10-01
A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.
NASA Astrophysics Data System (ADS)
Zhang, X. D.; Dho, Joonghoe; Park, Sungmin; Kwon, Hyosang; Hwang, Jihwan; Park, Gwangseo; Kwon, Daeyoung; Kim, Bongju; Jin, Yeryeong; Kim, Bog. G.; Karpinsky, D.; Kholkin, A. L.
2011-09-01
In this work, we investigated structural, electrical, and magnetic properties of ferroelectric PbZr0.2Ti0.8O3 (PZT) and ferrimagnetic/ferroelectric [CoFe2O4(CFO)/PZT] bilayers grown on (100)LaAlO3 (LAO) substrates supplied with bottom 50 nm thick LaNiO3 electrodes. Interestingly, structural and electrical properties of the PZT layer exhibited remarkable changes after the top-layer CFO deposition. X-ray diffraction data suggested that both the c- and a-domains exist in the PZT layer and the tetragonality of the PZT decreases upon the top-layer deposition. A variation in the electrical properties of the PZT layer upon the CFO deposition was investigated by polarization versus voltage (P-V), capacitance versus voltage (C-V), and capacitance versus frequency (C-f) measurements. The CFO deposition induced a slight decrease of the remnant polarization and more symmetric behavior of P-V loops as well as led to the improvement of fatigue behavior. The tentative origin of enhanced fatigue endurance is discussed based on the measurement results. These results were corroborated by local piezoelectric measurements. Ferrimagnetic property of the CFO/PZT bilayer was confirmed by magnetic measurement at room temperature.
NASA Astrophysics Data System (ADS)
Bouali, Imane; Rocca, Emmanuel; Veys-Renaux, Delphine; Rhouta, Benaissa; Khalil, Aziza; Aït Aghzzaf, Ahmed
2017-11-01
The control of the corrosion phenomenon occurring at the metal interface requires the development of new non-toxic anticorrosion additives. For this purpose, zirconium orthophosphate compounds (Zr(HPO4)2,H2O noted α-ZrP) were synthesized by both hydrothermal and refluxing methods The Ca2+-cationic exchange in the layered structure is kinetically favoured by low crystallinity of α-ZrP synthesized by refluxing process, and leads to the formation of CaZr(PO4)2,4H2O, noted Ca2+-ZrP. The H+/Ca2+ exchange mechanism is mainly triggered by acid-base considerations, and especially the pKa of α-ZrP/Ca2+-ZrP acid-base couple (evaluated to 2.5). Both compounds are acidic compounds by internal exchangeable H+ for α-ZrP and surface protons for Ca2+-ZrP, and can be used as potential inhibitors of zinc corrosion. Electrochemical measurements show that Ca2+-ZrP compounds dispersed in the NaCl electrolyte buffer the pH value over a long time and therefore allow controlling the corrosion rate of zinc.
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...
2017-09-26
AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less
NASA Astrophysics Data System (ADS)
Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam
2018-05-01
We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.
Effects of interfacial layer on characteristics of TiN/ZrO2 structures.
Kim, Younsoo; Kang, Sang Yeol; Choi, Jae Hyoung; Lim, Jae Soon; Park, Min Young; Chung, Suk-Jin; Chung, Jaegwan; Lee, Hyung Ik; Kim, Ki Hong; Kyoung, Yong Koo; Heo, Sung; Yoo, Cha Young; Kang, Ho-Kyu
2011-09-01
To minimize the formation of unwanted interfacial layers, thin interfacial layer (ZrCN layer) was deposited between TiN bottom electrode and ZrO2 dielectric in TiN/ZrO2/TiN capacitor. Carbon and nitrogen were also involved in the layer because ZrCN layer was thermally deposited using TEMAZ without any reactant. Electrical characteristics of TiN/ZrO2/TiN capacitor were improved by insertion of ZrCN layer. The oxidation of TiN bottom electrode was largely inhibited at TiN/ZrCN/ZrO2 structure compared to TiN/ZrO2 structure. While the sheet resistance of TiN/ZrCN/ZrO2 structure was constantly sustained with increasing ZrO2 thickness, the large increase of sheet resistance was observed in TiN/ZrO2 structure after 6 nm ZrO2 deposition. When ZrO2 films were deposited on ZrCN layer, the deposition rate of ZrO2 also increased. It is believed that ZrCN layer acted both as a protection layer of TiN oxidation and a seed layer of ZrO2 growth.
Chen, Yunzhong; Green, Robert J; Sutarto, Ronny; He, Feizhou; Linderoth, Søren; Sawatzky, George A; Pryds, Nini
2017-11-08
Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO 3 (STO) achieved using polar La 7/8 Sr 1/8 MnO 3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.
Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.
2004-01-01
HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.
Wisniewski, Wolfgang; Seidel, Sabrina; Patzig, Christian; Rüssel, Christian
2017-01-01
The crystallization behavior of a glass with the composition 54.7 SiO2·10.9 Al2O3·15.0 MgO·3.4 ZrO2·16.0 Y2O3 is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallization of four different yttrium silicates of the composition Y2Si2O7 (YS). The almost simultaneous but independent nucleation of α-, β-, δ-, and ε-YS at the surface is followed by growth into the bulk, where ε-YS quickly dominates a first crystallized layer. An accumulation of Mg at the growth front probably triggers a secondary nucleation of β-YS, which forms a thin compact layer before fragmenting into a highly oriented layer of fine grained crystals occupying the remaining bulk. The residual glass between the YS growth structures allows the crystallization of indialite, yttrium stabilized ZrO2 (Y-ZrO2) and very probably μ-cordierite during cooling. Hence, this glass basically shows the inverted order of crystallization observed in other magnesium yttrium alumosilicate glasses containing less Y2O3. An epitaxial relationship between Y-ZrO2 and ε-YS is proven and multiple twinning relationships occur in the YS phases. PMID:28281661
NASA Astrophysics Data System (ADS)
Berger, S.; Contour, J.-P.; Drouet, M.; Durand, O.; Khodan, A.; Michel, D.; Régi, F.-X.
1998-03-01
SrTiO_3 had been often tentatively used as an insulating barrier for HT superconductor/insulator heterostructures. Unfortunately, the deposition of SrTiO_3 on the YBa_2Cu_3O_7 inverse interface results in a poor epitaxial regrowth producing a high roughness dislocated titanate layer. Taking into account the good matching with YBa_2Cu_3O_7 and LaAlO_3, CeO_2 and Ce_{1-x}M_xO_2 (M = La, Zr), epitaxial layers were grown by pulsed laser deposition on LaAlO_3 substrates and introduced into YBa_2Cu_3O_7 based heterostructures as insulating barrier. After adjusting the growth parameters from RHEED oscillations, epitaxial growth is achieved, the oxide crystal axes being rotated by 45^circ from those of the substrate. The surface roughness of 250 nm thick films is very low with a rms value lower than 0.5 nm over 1;μ m^2. The YBa_2Cu_3O_7 layers of a YBa_2Cu_3O_7/CeO_2 /YBa_2Cu_3O_7 heterostructures grown using these optimized parameters show an independent resistive transition, when the thickness is larger than 25 nm, respectively at T_c_1 = 89.6;K and T_c_2 = 91.4;{K}. SrTiO3 est souvent utilisé comme barrière isolante dans des hétérostructures SIS de cuprates supraconducteurs, cependant les défauts générés lors de la croissance de ce titanate sur l'interface inverse de YBa2Cu3O7 conduisent à un matériau dont la qualité cristalline et les propriétés physiques sont médiocres. L'oxyde de cérium CeO2 est également une barrière isolante potentielle intéressante pour ces structures SIS basées sur YBa2Cu3O7 car cet oxyde cubique (a = 0,5411 nm, asqrt{2}/2 = 0,3825 nm) qui est peu désaccordé par rapport au plan ab du cuprate (Δ a/a = - 0,18 %, Δ b/a = 1,6 %) présente de plus un coefficient de dilatation thermique (10,6 × 10^{-6 circ}C^{-1}) très voisin de celui de YBa2Cu3O7 (13 × 10^{-6 circ}C^{-1}). Nous avons donc étudié l'épitaxie de CeO2 et des oxydes de type Ce{1-x}MxO2 (M = La, Zr) en ablation laser pulsée afin de définir des conditions de croissance optimisées pour la réalisation de barrières isolantes ultra-minces à faible rugosité d'interface. L'interface de croissance a été caractérisée par analyse en diffraction d'électrons rapides en incidence rasante (RHEED) en temps réel et par analyse ex-situ en microscopie par force atomique (AFM) et diffraction de rayons X (DRX). Lorsque les paramètres de la croissance (T, p_O_2, fréquence du laser, distance cible-substrat...) sont optimisés par observation des oscillations d'intensité de RHEED, les films sont épitaxiés à 45^{circ} des axes du substrat. La rugosité rms d'un film de 250 nm d'épaisseur déterminée par AFM sur 1 μ m^2 est alors inférieure à 0,5 nm, c'est-à-dire de l'ordre de la hauteur d'une maille élémentaire. Ces conditions optimisées ont été utilisées pour la réalisation d'hétérostructures YBa2Cu3O7/CeO2/YBa2Cu3O7, lorsque l'épaisseur est supérieure à 25 nm, les couches élémentaires de YBa2Cu3O7 présentent des transitions résistive indépendantes respectivement à T_c_1 = 89,6 K et T_c_2 = 91,4 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xingye; Hu, Bin; Wei, Changdong
Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less
Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers
NASA Astrophysics Data System (ADS)
Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.
Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.
Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application
NASA Astrophysics Data System (ADS)
Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo
2003-04-01
A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.
NASA Astrophysics Data System (ADS)
Coloma Ribera, R.; van de Kruijs, R. W. E.; Sturm, J. M.; Yakshin, A. E.; Bijkerk, F.
2017-03-01
The initial growth of DC sputtered ZrO2 on top of a-Si, SiN, and SiO2 layers has been studied by in vacuo high-sensitivity low energy ion scattering for two gas deposition conditions with different oxygen contents (high-O and low-O conditions). This unique surface sensitive technique allowed the determination of surface composition and thicknesses required to close the ZrO2 layer on all three substrates for both conditions. The ZrO2 layer closes similarly on all substrates due to more favorable enthalpies of formation for ZrO2 and ZrSiO4, resulting in passivation of the Si from the substrate. However, this layer closes at about half of the thickness (˜1.7 nm) for low-O conditions due to less oxidative conditions and less energetic particles arriving at the sample, which leads to less intermixing via silicate formation. In contrast, for high-O conditions, there is more ZrSiO4 and/or SiOx formation, giving more intermixing (˜3.4 nm). In vacuo X-ray photoelectron spectroscopy (XPS) measurements revealed similar stoichiometric ZrO2 layers deposited by both conditions and a higher interaction of the ZrO2 layer with the underlying a-Si for high-O conditions. In addition, oxygen diffusion through low-O ZrO2 films on a-Si has been investigated by ex situ angular-resolved XPS of samples annealed in atmospheric oxygen. For temperatures below 400 °C, no additional oxidation of the underlying a-Si was observed. This, together with the amorphous nature and smoothness of these samples, makes ZrO2 a good candidate as an oxidation protective layer on top of a-Si.
Conductive buffer layers and overlayers for the thermal stability of coated conductors
NASA Astrophysics Data System (ADS)
Cantoni, C.; Aytug, T.; Verebelyi, D. T.; Paranthaman, M.; Specht, E. D.; Norton, D. P.; Christen, D. K.
2001-03-01
We analyze fundamental issues related to the thermal and electrical stability of a coated conductor during its operation. We address the role of conductive buffer layers in the stability of Ni-based coated conductors, and the effect of a metallic cap layer on the electrical properties of Ni alloy-based superconducting tapes. For the first case we report on the fabrication of a fully conductive RABiTS architecture formed of bilayers of conductive oxides SrRuO3 and LaNiO3 on textured Ni tapes. For the second case we discuss measurements of current-voltage relations on Ag/YBa2Cu3O7-d and Cu/Ag/ YBa2Cu3O7-d prototype multilayers on insulating substrates. Limitations on the overall tape structure and properties that are posed by the stability requirement are presented.
Ferroelectricity emerging in strained (111)-textured ZrO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Zhen, E-mail: a0082709@u.nus.edu, E-mail: msecj@nus.edu.sg; Deng, Jinyu; Liu, Ziyan
2016-01-04
(Anti-)ferroelectricity in complementary metal-oxide-semiconductor (CMOS)-compatible binary oxides have attracted considerable research interest recently. Here, we show that by using substrate-induced strain, the orthorhombic phase and the desired ferroelectricity could be achieved in ZrO{sub 2} thin films. Our theoretical analyses suggest that the strain imposed on the ZrO{sub 2} (111) film by the TiN/MgO (001) substrate would energetically favor the tetragonal (t) and orthorhombic (o) phases over the monoclinic (m) phase of ZrO{sub 2}, and the compressive strain along certain 〈11-2〉 directions may further stabilize the o-phase. Experimentally ZrO{sub 2} thin films are sputtered onto the MgO (001) substrates buffered bymore » epitaxial TiN layers. ZrO{sub 2} thin films exhibit t- and o-phases, which are highly (111)-textured and strained, as evidenced by X-ray diffraction and transmission electron microscopy. Both polarization-electric field (P-E) loops and corresponding current responses to voltage stimulations measured with appropriate applied fields reveal the ferroelectric sub-loop behavior of the ZrO{sub 2} films at certain thicknesses, confirming that the ferroelectric o-phase has been developed in the strained (111)-textured ZrO{sub 2} films. However, further increasing the applied field leads to the disappearance of ferroelectric hysteresis, the possible reasons of which are discussed.« less
NASA Astrophysics Data System (ADS)
Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho
2017-09-01
In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.
NASA Astrophysics Data System (ADS)
Sieger, M.; Hänisch, J.; Iida, K.; Gaitzsch, U.; Rodig, C.; Schultz, L.; Holzapfel, B.; Hühne, R.
2014-05-01
YBa2Cu3O7-δ (YBCO) films with a thickness of up to 3 μm containing nano-sized BaHfO3 (BHO) have been grown on Y2O3/Y-stabilized ZrO2/CeO2 buffered Ni-9at% W tapes by pulsed laser deposition (PLD). Structural characterization by means of X-ray diffraction confirmed that the YBCO layer grew epitaxial. A superconducting transition temperature Tc of about 89 K with a transition width of 1 K was determined, decreasing with increasing BHO content. Critical current density in self-field and at 0.3 T increased with increasing dopant level.
NASA Astrophysics Data System (ADS)
Lu, Shengbo; Xu, Zhengkui
2009-09-01
Ba0.6Sr0.4TiO3 (BST) thin films were deposited on La0.7Sr0.3CoO3 (LSCO) buffered and unbuffered Pt (111)/Ti/SiO2/Si substrates by pulsed laser deposition. The former exhibits a (100) preferred orientation and the latter a random orientation, respectively. Grazing incident x-ray diffraction study revealed that the tensile residual stress observed in the latter is markedly reduced in the former. As a result, the dielectric property of the LSCO buffered BST thin film is greatly improved, which shows a larger dielectric constant and tunability, smaller loss tangent, and lower leakage current than those of the unbuffered BST thin film. The relaxation of the larger tensile residual stress is attributed to the larger grain size in the buffered BST thin film and to a closer match of thermal expansion coefficient between the BST and the LSCO buffer layer.
Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.
Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin
2013-09-11
We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.
Membranes for separation of carbon dioxide
Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY
2011-03-01
Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.
Growth of ultrathin twin-free b-oriented YBa{sub 2}Cu{sub 3}O{sub 7} {sub –} {sub x} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepantsov, E. A., E-mail: stepantsov@ns.crys.ras.ru; Arpaia, R.; Lombardi, F.
2017-01-15
Twin-free b-oriented YBa{sub 2}Cu{sub 3}O{sub 7–x} films with a thickness less than 40 nm have been epitaxially grown on (100)SrLaGaO{sub 4} crystals. Based on the temperature dependence of resistance, the onset temperature of the transition to the superconducting state is found to be 90 K; the transition width is 4 K. The film growth has been performed in two stages. A (100)PrBa{sub 2}Cu{sub 3}O{sub 7–x} buffer layer was previously grown on a (100)SrLaGaO{sub 4} substrate by rf magnetron sputtering in an Ar–O{sub 2} gas mixture at a continuous and monotonic increase in temperature from 660 to 830°C. The main YBa{submore » 2}Cu{sub 3}O{sub 7–x} film was grown on the buffer layer surface by pulsed laser deposition in an oxygen medium at a fixed temperature (800°C). The above processes were implemented in different chambers, which were connected by a vacuum channel for transporting samples. Both films were grown in situ, without contacting atmosphere in all growth stages. An X-ray diffraction study has shown that the YBa{sub 2}Cu{sub 3}O{sub 7–x} films are single-crystal and free of precipitates of other phases and domains of other orientations.« less
Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures
NASA Astrophysics Data System (ADS)
Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.
1992-09-01
Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Chu; Hadavi, M. S.; Lee, K.-D.; Shen, Y. G.
2003-03-01
High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80°C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80°C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80°C were achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rettenwander, D., E-mail: daniel.rettenwander@sbg.ac.at; Geiger, C.A.; Tribus, M.
2015-10-15
A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses withmore » starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} this Fe{sup 3+} has a distorted 4-fold coordination. - Graphical abstract: Cubic nominally Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnet is a promising candidate to be used as a solid electrolyte in Li-ion batteries. A series of Fe{sup 3+}-bearing LLZO garnets was synthesized and characterized compositionally and structurally. {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. X-ray diffraction, electron microprobe, ICP-OES and {sup 57}Mössbauer measurements are needed to obtain a full description of the synthetic products, some of which contain small amounts of nano- or poorly crystalline FeLaO{sub 3}. - Highlights: • A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized and characterized compositionally and structurally. • {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. • Most Fe{sup 3+} substitutes for Li{sup +} in LLZO at the 24d and 96h sites in the cubic phase (Ia-3d). • No more than about 0.25 Fe{sup 3+} pfu can be incorporated into the LLZO garnet structure. • X-ray powder diffractions measurements indicate the presence of both cubic and tetragonal garnets phases in some syntheses. • The probable presence of small amounts of poorly or nano-crystalline FeLaO3 can only be identified by Mössbauer spectroscopy.« less
NASA Astrophysics Data System (ADS)
Zhou, Yunxia; Zhu, Jun; Liu, Xingpeng; Wu, Zhipeng
Ferroelectric Pb(Zr0.52,Ti0.48)O3(PZT) thin film was grown on n-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) 〈100〉 PZT//(002) 〈100〉 STO//(001) 〈110〉 GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45∘ in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5G (100mW/cm2) illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.
Schottky barrier SOI-MOSFETs with high-k La2O3/ZrO2 gate dielectrics
Henkel, C.; Abermann, S.; Bethge, O.; Pozzovivo, G.; Klang, P.; Stöger-Pollach, M.; Bertagnolli, E.
2011-01-01
Schottky barrier SOI-MOSFETs incorporating a La2O3/ZrO2 high-k dielectric stack deposited by atomic layer deposition are investigated. As the La precursor tris(N,N′-diisopropylformamidinato) lanthanum is used. As a mid-gap metal gate electrode TiN capped with W is applied. Processing parameters are optimized to issue a minimal overall thermal budget and an improved device performance. As a result, the overall thermal load was kept as low as 350, 400 or 500 °C. Excellent drive current properties, low interface trap densities of 1.9 × 1011 eV−1 cm−2, a low subthreshold slope of 70-80 mV/decade, and an ION/IOFF current ratio greater than 2 × 106 are obtained. PMID:21461054
On the use of copper-based substrates for YBCO coated conductors
NASA Astrophysics Data System (ADS)
Vannozzi, A.; Fabbri, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Padilla, J. A.; Xuriguera, E.; De Felicis, D.; Bemporad, E.; Celentano, G.
2014-05-01
It is well known that the recrystallization texture of heavily cold-rolled pure copper is almost completely cubic. However, one of the main drawbacks concerning the use of pure copper cube-textured substrates for YBCO coated conductor is the reduced secondary recrystallization temperature. The onset of secondary recrystallization (i.e., the occurrence of abnormal grains with unpredictable orientation) in pure copper substrate was observed within the typical temperature range required for buffer layer and YBCO processing (600-850 °C). To avoid the formation of abnormal grains the effect of both grain size adjustment (GSA) and recrystallization annealing was analyzed. The combined use of a small initial grain size and a recrystallization two-step annealing (TSA) drastically reduced the presence of abnormal grains in pure copper tapes. Another way to overcome the limitation imposed by the formation of abnormal grains is to deposit a buffer layer at temperatures where secondary recrystallization does not occur. For example, La2Zr2O7 (LZO) film with a high degree of epitaxy was grown by metal-organic decomposition (MOD) at 1000 °C on pure copper substrate. In several samples the substrate underwent secondary recrystallization. Our experiments indicate that the motion of grain boundaries occurring during secondary recrystallization process does not affect the quality of LZO film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun
Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...
2016-09-21
Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less
Electrical and magnetic properties of conductive Cu-based coated conductors
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.
2003-11-01
The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.
TiO2-Based Indium Phosphide Metal-Oxide-Semiconductor Capacitor with High Capacitance Density.
Cheng, Chun-Hu; Hsu, Hsiao-Hsuan; Chou, Kun-i
2015-04-01
We report a low-temperature InP p-MOS with a high capacitance density of 2.7 µF/cm2, low leakage current of 0.77 A/cm2 at 1 V and tight current distribution. The high-density and low-leakage InP MOS was achieved by using high-κ TiLaO dielectric and ultra-thin SiO2 buffer layer with a thickness of less than 0.5 nm. The obtained EOT can be aggressively scaled down to < 1 nm through the use of stacked TiLaO/SiO2 dielectric, which has the potential for the future application of high mobility III-V CMOS devices.
Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes
Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; ...
2017-10-28
Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less
Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan
Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less
NASA Astrophysics Data System (ADS)
Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il
2018-02-01
Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.
2012-12-27
Another super-valent substitution scheme involves either Nb (5þ) or Ta (5þ) on the 16a site ( Zr 4þ), that reduces the Li content and/or increases Li...substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb $ Zr ¼ V0Li (4) Likewise, super-valent substitution on the 24c (La 3þ) is...Substitution of La with Ce stabilizes the cubic LLZO garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super
NASA Astrophysics Data System (ADS)
Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.
2017-05-01
We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.
Karimi-Maleh, Hassan; Salehi, Mehdi; Faghani, Fatemeh
2017-10-01
The electrooxidation of N-acetylcysteine (N-AC) was studied by a novel Ni(II) complex modified ZrO 2 nanoparticle carbon paste electrode [Ni(II)/ZrO 2 /NPs/CPE] using voltammetric methods. The results showed that Ni(II)/ZrO 2 /NPs/CPE had high electrocatalytic activity for the electrooxidation of N-AC in aqueous buffer solution (pH = 7.0). The electrocatalytic oxidation peak currents increase linearly with N-AC concentrations over the concentration ranges of 0.05-600μM using square wave voltammetric methods. The detection limit for N-AC was equal to 0.009μM. The catalytic reaction rate constant, k h , was calculated (7.01 × 10 2 M -1 s -1 ) using the chronoamperometry method. Finally, Ni(II)/ZrO 2 /NPs/CPE was also examined as an ultrasensitive electrochemical sensor for the determination of N-AC in real samples such as tablet and urine. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.
1995-01-01
Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.
Thermal barrier coating having high phase stability
Subramanian, Ramesh
2002-01-01
A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
CaO-MgO-Al 2O 3-SiO 2 (CMAS) corrosion of Gd 2Zr 2O 7 and Sm 2Zr 2O 7
Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; ...
2016-08-08
Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al 2O 3-SiO 2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd 2Zr 2O 7 and Sm 2Zr 2O 7more » in CMAS is studied. Here, the results show that the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less
Kawabata, Hisaya; Koda, Yuki; Sumida, Hirosuke; Shigetsu, Masahiko; Takami, Akihide; Inumaru, Kei
2013-05-11
Rhodium on a La-containing ZrO2 support effectively eliminated NOx from a synthetic auto exhaust gas under fluctuating oxygen conditions. Rhodium particles maintained a low oxidation state on the ZrO2-La2O3 mixed oxide even after treatment with 5% O2 at 773 K, highlighting the significant effect of the La addition.
Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk
2014-11-01
The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
Zhu, Hui-fang; Chen, Li-ping; Zhang, Xiu-li; Zhang, Bao-wei
2009-06-01
To detect the genotoxicity of dental machinable ZrO(2)/LaPO(4) diphase ceramics on human peripheral blood lymphocytes in vitro. The evaluation of DNA damage on human lymphocytes was performed by comet assay for three groups of ZrO(2)/LaPO(4) diphase ceramics with 30wt% of LaPO(4) (with 3wt% and 5wt% of Y(2)O(3)) and 40wt% of LaPO(4) (with 5wt% of Y(2)O(3)). The results were analyzed with SPSS16.0 software package for one-factor ANOVA and LSD. Three experimental groups with different concentration of LaPO(4) of ZrO(2)/LaPO(4) diphase ceramics, the negative control of IPS Empress II ceramics and the blank behaved little migration of the DNA strands respectively after six-day test, and there was no significant difference in all the groups except the positive control (P>0.05). The study indicates little effect of DNA damage of ZrO(2)/LaPO(4) diphase ceramics.
Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand
2016-10-12
The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.
Zhang, Xuewen; Liang, Chunjun; Sun, Mengjie; Zhang, Huimin; Ji, Chao; Guo, Zebang; Xu, Yajun; Sun, Fulin; Song, Qi; He, Zhiqun
2018-03-14
Planar perovskite solar cells (PSCs) have gained great interest due to their low-temperature solution preparation and simple process. In inverted planar PSCs, an additional buffer layer is usually needed on the top of the PCBM electron-transport layer (ETL) to enhance the device performance. In this work, we used a new buffer layer, zirconium acetate (Zr(Ac) 4 ). The inclusion of the Zr(Ac) 4 buffer layer leads to the increase of FF from ∼68% to ∼79% and PCE from ∼14% to ∼17% in the planar PSCs. The UPS measurement indicates that the Zr(Ac) 4 layer has a low HOMO level of -8.2 eV, indicating that the buffer layer can act as a hole-blocking layer. Surface morphology and surface chemistry investigations reveal that the elements I, MA and Pb can diffuse across the PCBM ETL, damaging the device performance. The covering Zr(Ac) 4 molecules fill in the pinholes of the PCBM layer and effectively block the ions/molecules of the perovskite from diffusion across the ETL. The resulting more robust PCBM/Zr(Ac) 4 ETL leads to weaker ionic charge accumulation and lower diode leakage current. The double role of hole-and-ion blocking of the Zr(Ac) 4 layer explains the improved FF and PCE in the PSCs.
Thermal barrier coating having high phase stability
Subramanian, Ramesh
2001-01-01
A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
Buffer layers for high-Tc thin films on sapphire
NASA Technical Reports Server (NTRS)
Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.
1992-01-01
Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.
Doped ZrO2 for future lead free piezoelectric devices
NASA Astrophysics Data System (ADS)
Starschich, S.; Böttger, U.
2018-01-01
The ferroelectric and piezoelectric properties of doped ZrO2 prepared by chemical solution deposition (CSD) are investigated. Doping with different elements such as Mg, In, La, and Y leads to a stabilization of the constricted hysteresis. As shown in a previous work, for the constricted hysteresis of ZrO2, the piezoelectric response is significantly larger compared to ZrO2 with a normal hysteresis. The Mg doped ZrO2 shows a strong temperature and cycle stability. For the piezoelectric properties, a magnesium concentration of 7% shows the largest piezoelectric response with a piezoelectric coefficient of >10 pm/V, as well as the best cycle stability. Due to thicker films, which can be realized by the CSD technique, the shown doped ZrO2 films are a promising candidate for energy related applications such as piezoelectric energy harvesting as well as for microelectromechanical systems.
NASA Astrophysics Data System (ADS)
Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.
2004-01-01
ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong
2015-01-15
An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less
2012-02-01
AC05-00OR22725. REFERENCES 1. D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht , Q. He, B. Saffian, M. Paranthaman, C.E...critical current density. Science 274, 755 (1996). 2. A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht , D.M. Kroeger, D.K. Christen, Q...D.K. Christen, M. Paranthaman, E.D. Specht , J.D. Budai, Q. He, B. Saffian, F.A. List, D.F. Lee, E. Hatfield, P.M. Martin, C.E. Klabunde, J. Mathis
Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation
NASA Astrophysics Data System (ADS)
Muneshwar, Triratna; Cadien, Ken
2018-03-01
In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.
NASA Astrophysics Data System (ADS)
Choi, Kyeong-Keun; Park, Chan-Gyung; Kim, Deok-kee
2016-01-01
The electrical characteristics and step coverage of ZrO2 films deposited by atomic layer deposition were investigated for through-silicon via (TSV) and metal-insulator-metal applications at temperatures below 300 °C. ZrO2 films were able to be conformally deposited on the scallops of 50-µm-diameter, 100-µm-deep TSV holes. The mean breakdown field of 30-nm-thick ZrO2 films on 30-nm-thick Ta(N) increased about 41% (from 2.7 to 3.8 MV/cm) upon H2 plasma treatment. With the plasma treatment, the breakdown field of the film increased and the temperature coefficient of capacitance decreased significantly, probably as a result of the decreased carbon concentration in the film.
Comparison of fracture strength and failure mode of different ceramic implant abutments.
Elsayed, Adham; Wille, Sebastian; Al-Akhali, Majed; Kern, Matthias
2017-04-01
The whitish color of zirconia (ZrO 2 ) abutments offers favorable esthetics compared with the grayish color of titanium (Ti) abutments. Nonetheless, ZrO 2 has greater opacity, making it difficult to achieve natural tooth color. Therefore, lithium disilicate (LaT) abutments have been suggested to replace metal abutments. The purpose of this in vitro study was to evaluate the fracture strength and failure mode of single-tooth implant restorations using ZrO 2 and LaT abutments, and to compare them with titanium (Ti) abutments. Five different types of abutments, Ti; ZrO 2 with no metal base; ZrO 2 with a metal base (ZrT); LaT; and LaT combination abutment and crown (LcT) were assembled on 40 Ti implants and restored with LaT crowns. Specimens were subjected to quasistatic loading using a universal testing machine, until the implant-abutment connection failed. As bending of the metal would be considered a clinical failure, the values of force (N) at which the plastic deformation of the metal occurred were calculated, and the rate of deformation was analyzed. Statistical analysis was done using the Mann-Whitney U test (α=.05). Group ZrO 2 revealed the lowest resistance to failure with a mean of 202 ±33 N. Groups ZrT, LaT, and LaC withstood higher forces without fracture or debonding of the ceramic suprastructure, and failure was due to deformation of metal bases, with no statistically significant differences between these groups regarding the bending behavior. Within the limitations of this in vitro study, it was concluded that LaT abutments have the potential to withstand the physiological occlusal forces that occur in the anterior region and that ZrO 2 abutments combined with Ti inserts have much higher fracture strength than pure ZrO 2 abutments. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Gao, Yuan; Fu, Engang; Yang, Tengfei; Xue, Jianming; Yan, Sha; Chu, Paul K.; Wang, Yugang
2014-12-01
Irradiation induced structural changes in multilayered W/ZrO2 nanocomposites with periodic bilayer thicknesses of (7/14 nm) and (70/140 nm) were investigated following Au+ ion irradiation. The samples were irradiated by 4 MeV Au ions with fluences ranging from 6 × 1014 to 1 × 1016 ions/cm2. The immiscible W/ZrO2 interfaces remained unchanged without intermixing of the layers upon the irradiation. No voids were observed in the samples with different periodic layer thicknesses. The XRD and XTEM studies reveal thickness dependent microstructural changes in the samples. W and ZrO2 grains in the thinner (7/14 nm) bilayer sample exhibit significant resistance to grain growth compared to the thicker (70/140 nm) bilayer sample as well as a W monolayer film. The high fraction of flat interfaces as well as grain boundaries in multilayer films plays a role in suppressing ion irradiation-induced grain growth and void formation.
NASA Astrophysics Data System (ADS)
Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.
2007-06-01
Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.
NASA Astrophysics Data System (ADS)
Nandi, S.; Jana, Y. M.; Gupta, H. C.
2018-04-01
A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.
Study on preferred crystal orientations of Mg-Zr-O composite protective layer in AC-PDP
NASA Astrophysics Data System (ADS)
Bingang, G.; Chunliang, L.; Zhongxiao, S.; Liu, L.; Yufeng, F.; Xing, X.; Duowang, F.
2006-11-01
In order to study the preferred crystal orientations of Mg-Zr-O composite protective layers in PDP, Mg-Zr-O composite protective layers were deposited by Electron-beam Evaporator using (MgO+ZrO{2}) powder mixture as evaporation source material. X-ray diffractometer (XRD) was used to determine preferred crystal orientations of Mg-Zr-O composite protective layers, surface morphologies of films were analyzed by FESEM and voltage characteristics were examined in a testing macroscopic discharge cell of AC-PDP. On the basis of experimental analysis, the influence of oxide addition and deposition conditions on preferred orientations of Mg-Zr-O composite protective layers were investigated. The results showed that the preferred orientations of Mg-Zr-O films were determined by lattice distortion of MgO crystal. The deposition conditions have great effects on the preferred orientations of Mg-Zr-O films. The preferred orientations affect voltage characteristics through affecting surface morphology of Mg-Zr-O films. A small amount of Zr solution in MgO can decrease firing voltage compared with using pure MgO film. Firing voltage is closely related with the [ ZrO{2}/(MgO+ZrO{2})] ratio of evaporation source materials.
Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; ...
2013-07-24
Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li 6.28Al 0.24La 3Zr 2O 12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponchel, F., E-mail: freddy.ponchel@univ-valenciennes.fr; Rémiens, D.; Sama, N.
2014-12-28
350 nm-thick Perovskite PbZr{sub 0.54}Ti{sub 0.46}O{sub 3} (PZT) thin films were deposited on Al{sub 2}O{sub 3} substrates by sputtering with and without an additional 10-nm-thick TiO{sub x} buffer layer. X-ray diffraction patterns showed that in presence of TiO{sub x} buffer layer, PZT film was highly oriented along the (111) direction film, whereas the unbuffered, counterpart was polycrystalline. A full wave electromagnetic analysis using a vector finite element method was performed to determine the tunability and the complex permittivity up to 67 GHz. A comparison between the electromagnetic analysis and Cole-Cole relaxation model was proposed. Through an original study of the relaxation timemore » as a function of the electric field, values, such as 2 ps and 0.6 ps, were estimated for E{sub DC} = 0 kV/cm and 235 kV/cm, respectively, and in both cases (111)-PZT and polycrystalline-PZT. The distribution of relaxation times is found to be larger for (111)-PZT film, which is probably related to the film microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanc, Emil; Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl; Lu, Li
Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase inmore » a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.« less
On fabrication procedures of Li-ion conducting garnets
NASA Astrophysics Data System (ADS)
Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina
2017-04-01
Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaohua; Lucy, J. M.; Glavic, A.
2014-09-01
We have determined the depth-resolved magnetization structures of a series of highly orderedSr2CrReO6 (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry. The SCRO films deposited directly on (LaAlO3)0:3(Sr2AlTaO6)0:7 or SrTiO3 substrates show reduced magnetization of similar width near the interfaces with the substrates, despite having different degrees of strain. When the SCRO film is deposited on a Sr2CrNbO6 (SCNO) double perovskite buffer layer, the width the interfacial region with reduced magnetization is reduced, agreeing with an improved Cr/Re ordering. However, the relative reduction of the magnetization averaged over the interfacial regions aremore » comparable among the three samples. Interestingly, we found that the magnetization suppression region is wider than the Cr/Re antisite disorder region at the interface between SCRO and SCNO.« less
Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy
NASA Astrophysics Data System (ADS)
Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.
2003-09-01
High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.
Lu, Zigui; Darvish, Shadi; Hardy, John; ...
2017-07-19
This work probes the formation of SrZrO 3 at the SDC/YSZ interface (Sm doped ceria, SDC; Y stabilized zirconia, YSZ) during (La 1-xSr x) 1-δCo1 -yFe yO 3 (LSCF) cathode sintering. SEM/EDS and grazing incidence X-ray diffraction results of annealed LSCF and YSZ samples reveal that even without physical contact between LSCF and YSZ, SrZrO 3 was formed on the surface of YSZ, preferentially at the grain boundaries. It was suspected that the SrZrO 3 formation is due to the Sr-containing gas species diffused through the pores of the SDC layer and reacted with the YSZ electrolyte. Computational thermodynamics wasmore » adopted to predict the gas species formed in air during sintering by using the La-Sr-Co-Fe-O-H thermodynamic database. Sr(OH) 2 is identified as the dominant Sr-containing gas species under the experimental conditions. In addition, it was found that A-site deficiency in LSCF could effectively suppress the SrZrO 3 formation while a dense and pore-free SDC interlayer is required to totally block the SrZrO 3 formation. As a result, cell performance was significantly improved for a cell with a dense SDC interlayer fabricated by pulsed laser deposition, due to elimination of SrZrO 3 formation and therefore reduced interfacial resistance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zigui; Darvish, Shadi; Hardy, John
This work probes the formation of SrZrO 3 at the SDC/YSZ interface (Sm doped ceria, SDC; Y stabilized zirconia, YSZ) during (La 1-xSr x) 1-δCo1 -yFe yO 3 (LSCF) cathode sintering. SEM/EDS and grazing incidence X-ray diffraction results of annealed LSCF and YSZ samples reveal that even without physical contact between LSCF and YSZ, SrZrO 3 was formed on the surface of YSZ, preferentially at the grain boundaries. It was suspected that the SrZrO 3 formation is due to the Sr-containing gas species diffused through the pores of the SDC layer and reacted with the YSZ electrolyte. Computational thermodynamics wasmore » adopted to predict the gas species formed in air during sintering by using the La-Sr-Co-Fe-O-H thermodynamic database. Sr(OH) 2 is identified as the dominant Sr-containing gas species under the experimental conditions. In addition, it was found that A-site deficiency in LSCF could effectively suppress the SrZrO 3 formation while a dense and pore-free SDC interlayer is required to totally block the SrZrO 3 formation. As a result, cell performance was significantly improved for a cell with a dense SDC interlayer fabricated by pulsed laser deposition, due to elimination of SrZrO 3 formation and therefore reduced interfacial resistance.« less
Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells.
Bao, Xichang; Zhu, Qianqian; Wang, Ting; Guo, Jing; Yang, Chunpeng; Yu, Donghong; Wang, Ning; Chen, Weichao; Yang, Renqiang
2015-04-15
A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under the illumination of AM 1.5G (100 mW/cm(2)). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2 plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics.
NASA Astrophysics Data System (ADS)
Luo, W. B.; Zhu, J.; Li, Y. R.; Wang, X. P.; Zhang, Y.
2009-05-01
Hf-doped Bi4Ti3O12 (BTH) ferroelectric films with excellent electrical properties were epitaxially integrated with GaN semiconductor using (111) SrTiO3 (STO)/rutile (200) TiO2 as buffer layer. The STO/TiO2 buffer layer was deposited by laser molecular beam epitaxy. The structural characteristics of the buffer layer were in situ and ex situ characterized by reflective high energy electron diffraction, x-ray diffraction (XRD), and high resolution transmission microscopy. The overlaying SrRuO3 (SRO) and BTH films were then deposited by pulsed laser deposition. XRD spectra, including θ-2θ and Φ scans, show that the (208) BTH films were epitaxially grown on GaN, and the BTH films inherit the in-plane twin-domain of STO buffer layer. Electrical measurements demonstrate that the non-c axis BTH films possess a large remnant polarization (2Pr=45 μC/cm2), excellent fatigue endurance (10.2% degradation after 1.1×1010 switching cycles), and a low leakage current density (1.94×10-7 A/cm2 at an electric field of 200 kV/cm). These results reveal that the (208) BTH films with favorable electrical performance could be epitaxially grown on GaN template using STO/TiO2 buffer layer.
Effects of Cr-N-ZrO 2 seed layer formed on glass substrates for longitudinal recording media
NASA Astrophysics Data System (ADS)
Suzuki, Hiroyuki; Djayaprawira, David D.; Takahashi, Yoshio; Ishikawa, Akira; Ono, Toshinori; Yahisa, Yotsuo
1999-03-01
Effects of Cr-N-ZrO 2 seed layer deposited on glass substrates before the deposition of C/Co-Cr-Pt/Cr-Ti layers for longitudinal recording media have been investigated. The product of v and Is, the activation volume and the saturation magnetization per unit volume, media noise Nd and S0/ Nd, which is the half value of peak-to-peak output voltage of an isolated pulse over Nd at 11.8 kFC/mm, are evaluated. We find that vIs is decreased by adding N and ZrO 2 to Cr seed layer. Nd is reduced as vIs decreases by adding nitrogen to the Cr seed layer. This is mainly due to the decreased grain sizes of both Cr-Ti underlayer and Co-Cr-Pt magnetic layer. The Nd is further reduced by the addition of ZrO 2 to the Cr-N seed layer. Highest S0/ Nd is achieved for the media with Cr-N-ZrO 2 seed layer. On the other hand, the media with Cr-ZrO 2 seed layer deposited without nitrogen show the higher Nd. Therefore the decrease of the grain size by addition of nitrogen into Ar is essential to reduce Nd, and the ZrO 2 addition to the Cr-N seed layer seems to enhance the effect of grain size reduction by nitrogen addition.
Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V.
Li, Jianfang; He, Xiaojing; Zhang, Guannan; Hang, Ruiqiang; Huang, Xiaobo; Tang, Bin; Zhang, Xiangyu
2018-06-01
Ti-6Al-4V (TC4) has received increasing attention as biomaterial but also raised concerns about the long-term safety of releasing of metal ions and poor wear resistance. In this work, an ZrO 2 /TiO 2 alloyed layer was prepared on TC4 by plasma surface alloying with Zr and subsequently annealed in the air for improved corrosion and wear resistant. To assess the corrosion performance of the alloyed layer, the specimens were measured by open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid solution. The result shows that the ZrO 2 /TiO 2 alloyed layer exhibits strikingly high polarization resistance, wide passive region and very low current density, indicating the excellent corrosion resistance. The layer also displays significant improvement of wear resistance. Furthermore, the alloyed layer restricts cell adhesion and spreading. We infer that the ZrO 2 /TiO 2 alloyed layer might be potentially useful implanted devices such as biosensors, bioelectronics or drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Bingang; Liu, Chunliang; Song, Zhongxiao; Liu, Liu; Fan, Yufeng; Xia, Xing; Fan, Duowang
2005-08-01
Mg-Zr-O protective layers for alternating current plasma display panels were deposited by e-beam evaporation. The effect of the ZrO2 addition on both the discharge properties [firing voltage Vf, minimum sustaining voltage Vs, and memory coefficient (MC)] and the microstructure of deposited Mg-Zr-O films were investigated. The results show that the film microstructure changes and the electron emission enhancement due to the ZrO2 addition are the main reasons for the improvements of the discharge properties of Mg-Zr-O films. A small amount of Zr solution in MgO under its solid solubility can effectively increase the outer-shell valence electron emission yield so as to decrease Vf and Vs compared with using a pure MgO protective layer. The ZrO2/(MgO +ZrO2) ratio has a great effect on the film surface conditions. Proper surface morphologies make a good contribution to obtain large MC in accordance with lower firing voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, S. K.; Misra, D.; Agrawal, D. C.
2011-01-01
Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less
NASA Astrophysics Data System (ADS)
Long, Shiwei; Cao, Xun; Sun, Guangyao; Li, Ning; Chang, Tianci; Shao, Zewei; Jin, Ping
2018-05-01
Vanadium dioxide (VO2) is one of the most well-known thermochromic materials, which exhibits a notable optical change from transparent to reflecting in the infrared region upon a metal-insulator phase transition. For practical applications, VO2 thin films should be in high crystalline quality to obtain a strong solar modulation ability (ΔTsol). Meanwhile, narrow hysteresis loops and robust ambient durability are also indispensable for sensitivity and long-lived utilization, respectively. In this work, a series of high-quality V2O3/VO2 bilayer structures were grown on quartz glass substrates by reactive magnetron sputtering. Basically, the bottom V2O3 acts as the buffer layer to improve the crystallinity of the top VO2, while the VO2 serves as the thermochromic layer to guarantee the solar modulation ability for energy-saving. We observed an obvious increase in ΔTsol of 76% (from 7.5% to 13.2%) for VO2 films after introducing V2O3 buffer layers. Simultaneously, a remarkable reduction by 79% (from 21.9 °C to 4.7 °C) in width of hysteresis loop was obtained when embedding 60 nm V2O3 buffer for 60 nm VO2. In addition, VO2 with non-stoichiometry of V2O3±x buffer demonstrates a broadening hysteresis loops width, which is derived from the lattice distortion caused by lattice imperfection. Finally, durability of VO2 has been significantly improved due to positive effects of V2O3 buffer layer. Our results lead to a comprehensive enhancement in crystallinity of VO2 and shed new light on the promotion of thermochromic property by homologous oxides for VO2.
Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD
NASA Astrophysics Data System (ADS)
Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin
2003-04-01
FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming’En; Hu, Zhiwei; Zhu, Jiliang
A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O12 (Ga-LLZO) with nominal composition of Li6.55Ga0.15La3Zr2O12. The Ga-LLZO pellets were conventionally sintered at 1075∘C for 12h, and then were followed by HIP treatment at 120MPa and 1160∘C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as 1.13×10‑3S/cm at room temperature (25∘C), being two times higher than that of 4.58×10‑4S/cm for the untreated one.
Cordelair, Jens; Greil, Peter
2003-09-15
A new solution for the Poisson equation for the diffuse part of the double layer around spherical particles will be presented. The numerical results are compared with the solution of the well-known DLVO theory. The range of the diffuse layer differs considerably in the two theories. Also, the inconsistent representation of the surface and diffuse layer charge in the DLVO theory do not occur in the new theory. Experimental zeta potential measurements were used to determine the charge of colloidal Al2O3 and ZrO2 particles. It is shown that the calculated charge can be interpreted as a superposition of independent H+ and OH- adsorption isotherms. The corresponding Langmuir adsorption isotherms are taken to model the zeta potential dependence on pH. In the vicinity of the isoelectric point the model fits well with the experimental data, but at higher ion concentrations considerable deviations occur. The deviations are discussed. Furthermore, the numerical results for the run of the potential in the diffuse part of the double layer were used to determine the electrostatic interaction potential between the particles in correlation with the zeta potential measurements. The corresponding total interaction potentials, including the van der Waals attraction, were taken to calculate the coagulation half-life for a suspension with a particle loading of 2 vol%. It is shown that stability against coagulation is maintained for Al2O3 particles in the pH region between 3.3 and 7 and for ZrO2 only around pH 5. Stability against flocculation can be achieved in the pH regime between 4.5 and 7 for Al2O3, while the examined ZrO2 particles are not stable against flocculation in aqueous suspensions.
NASA Astrophysics Data System (ADS)
Wang, F.; Dong, B. J.; Zhang, Y. Q.; Liu, W.; Zhang, H. R.; Bai, Y.; Li, S. K.; Yang, T.; Sun, J. R.; Wang, Z. J.; Zhang, Z. D.
2017-09-01
The detailed crystal structure and antiferromagnetic properties of a 42 nm thick CaMnO3 film grown on a LaAlO3 substrate with a 9 nm La0.67Ca0.33MnO3 buffer layer have been investigated. Compared with a CaMnO3 film directly grown on a LaAlO3 substrate, only one kind of orthorhombic b axis orientation along the [100] axis of the substrate is observed in the CaMnO3 film with a La0.67Ca0.33MnO3 buffer layer. To determine the antiferromagnetic ordering type of our CaMnO3 film with a buffer layer, the first-principles calculations were carried out with the results, indicating that the CaMnO3 film, even under a tensile strain of 1.9%, is still a compensated G-type antiferromagnetic order, the same as the bulk. Moreover, the exchange bias effect is observed at the interface of the CaMnO3/La0.67Ca0.33MnO3 film, further confirming the antiferromagnetic ordering of the CaMnO3 film with a buffer layer. In addition, it is concluded that the exchange bias effect originates from the spin glass state at the La0.67Ca0.33MnO3/CaMnO3 interface, which arises from a competition between the double-exchange ferromagnetic La0.67Ca0.33MnO3 and super-exchange antiferromagnetic CaMnO3 below the spin glass freezing temperature.
Study of Pt-Rh/CeO2-ZrO2-MxOy (M = Y, La)/Al2O3 three-way catalysts
NASA Astrophysics Data System (ADS)
Jiaxiu, Guo; Zhonghua, Shi; Dongdong, Wu; Huaqiang, Yin; Maochu, Gong; Yaoqiang, Chen
2013-05-01
CeO2-ZrO2-MxOy (M = Y; La) mixed oxides, prepared by co-precipitation method and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra (RM) and oxygen pulse reaction, were comparatively investigated to elucidate the combinational effects of Y and/or La oxide promoters on the catalytic activity and anti-aging performance of monolithic cordierite honeycomb catalysts with low Pt and Rh content. The catalytic activities, water-gas shift (WGS) and steam reforming reaction (SR) were studied under a simulated gas mixture. The catalysts were also characterized by H2-temperature-programmed reduction (H2-TPR) and O2-temperature-programmed desorption (O2-TPD). The results showed that the prepared CeO2-ZrO2-MxOy oxides have a face-centered cubic fluorite structure and are nanosize. La3+ ions can significantly improve thermal stability and efficiently retard CeO2-ZrO2 crystal sintering and growth. Doped CeO2-ZrO2 with Y3+ and La3+ has 105 and 60 m2/g surface area and 460 and 390 μmol/g OSC before and after aging. The T50 of fresh Pt-Rh/CZYL/LA is 170 °C for CO, 222 °C for C3H8 and 189 °C for NO, and shift to 205, 262 and 228 °C after hydrothermal aging, which are better than those of Pt-Rh/CZY/LA or Pt-Rh/CZL/LA. WGS and SR are relate to the OSC of oxygen storage materials and absorbed oxygen species on the catalyst surface and affect the three-way catalytic activities of catalysts. The reductive property of noble metals and the dissociatively adsorbed O2 on the surface of catalysts are closely related to the catalytic activities.
NASA Astrophysics Data System (ADS)
Che, JunWei; Liu, XiangYang; Wang, XueZhi; Liang, GongYing
2018-04-01
This paper presents structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic by both theoretical and experimental results. It was found out that LZ7C3 powders had a pyrochlore structure after being heat-treated at temperatures higher than 1473 K or higher according to XRD and TEM results. The calculated average thermal expansion coefficient (TEC) was 7.12 × 10-6 K-1, which is a little smaller than experiment result, but changes of calculated average TECs of LZ, YSZ and LZ7C3 had the same trend with experimental results. Finally, the radial distribution function (RDF) was calculated to study the phase stability of LZ7C3.
Wang, X P; Gao, Y X; Xia, Y P; Zhuang, Z; Zhang, T; Fang, Q F
2014-04-21
The correlation and transport mechanism of lithium ions with the crystal structure of a fast lithium ion conductor Li7La3Zr2O12 are mainly investigated by internal friction (IF) and AC impedance spectroscopy techniques. Compared with the poor conductivity of tetragonal Li7La3Zr2O12, the Al stabilized cubic phase exhibits a good ionic conductivity that can be up to 1.9 × 10(-4) S cm(-1) at room temperature, which can be ascribed to the disordered distribution of lithium ions in the cubic phase. A well-pronounced relaxation IF peak (labeled as peak PC) is observed in the cubic phase while a very weak IF peak (labeled as PT) is observed in the tetragonal phase, further evidencing the difference in lithium ion migration in the two phases. Peak PC can be decomposed into two sub-peaks with the activation energy and the pre-exponential factor of relaxation time being E1 = 0.41 eV and τ01 = 1.2 × 10(-14) s for the lower temperature peak PC1 and E2 = 0.35 eV and τ02 = 1.9 × 10(-15) s for the higher temperature PC2 peak, respectively. Based on the crystalline structure of a cubic garnet-type Li7La3Zr2O12 compound, an atomistic mechanism of lithium ion diffusion via vacancies is suggested, i.e. 48g(96h) ↔ 48g(96h) for peak PC1 and 48g(96h) ↔ 24d for peak PC2, respectively. The weak PT peak in the tetragonal phase is preliminarily interpreted as due to the short jump process among neighboring octahedral sites and vacant tetrahedral sites.
A DFT+U study of Pu immobilization in Gd2Zr2O7
NASA Astrophysics Data System (ADS)
Zhao, F. A.; Xiao, H. Y.; Jiang, M.; Liu, Z. J.; Zu, X. T.
2015-12-01
The solubility of Pu in Gd2Zr2O7 has been investigated by the density functional theory plus Hubbard U correction. It is found that the formation of PuGdZr2O7, Gd2PuZrO7 and Gd2Pu1.5Zr0.5O7 are exothermic, whereas Pu0.5Gd1.5Zr2O7, Pu1.5Gd0.5Zr2O7 and Gd2Pu0.5Zr1.5O7 are energetically less stable than their respective separated states. The calculations show that both the Gd and Zr lattice sites can be substituted by the Pu, which is consistent with the immobilization behavior of uranium in Gd2Zr2O7 observed experimentally. The site preference of Pu in Gd2Zr2O7 is found to be dependent on the chemical environment, i.e., Pu prefers to substitute for Gd-site under Gd-rich and O2-rich conditions and for Zr-site under Zr-rich and O2-rich conditions.
Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films.
Pantel, Daniel; Goetze, Silvana; Hesse, Dietrich; Alexe, Marin
2011-07-26
Spontaneous polarization of ferroelectric materials has been for a long time proposed as binary information support, but it suffers so far from destructive readout. A nondestructive resistive readout of the ferroelectric polarization state in a metal-ferroelectric-metal capacitor would thus be advantageous for data storage applications. Combing conducting force microscopy and piezoelectric force microscopy, we unambiguously show that ferroelectric polarization direction and resistance state are correlated for epitaxial ferroelectric Pb(Zr(0.2)Ti(0.8))O(3) nanoscale capacitors prepared by self-assembly methods. For intermediate ferroelectric layer thickness (∼9 nm) sandwiched between copper and La(0.7)Sr(0.3)MnO(3) electrodes we achieved giant electroresistance with a resistance ratio of >1500 and high switching current densities (>10 A/cm(2)) necessary for effective resistive readout. The present approach uses metal-ferroelectric-metal devices at room temperature and, therefore, significantly advances the use of ferroelectric-based resistive switching.
Feenstra, Roeland; Christen, David; Paranthaman, Mariappan
1999-01-01
A method is disclosed for fabricating YBa.sub.2 Cu.sub.3 O.sub.7 superconductor layers with the capability of carrying large superconducting currents on a metallic tape (substrate) supplied with a biaxially textured oxide buffer layer. The method represents a simplification of previously established techniques and provides processing requirements compatible with scale-up to long wire (tape) lengths and high processing speeds. This simplification has been realized by employing the BaF.sub.2 method to grow a YBa.sub.2 Cu.sub.3 O.sub.7 film on a metallic substrate having a biaxially textured oxide buffer layer.
NASA Technical Reports Server (NTRS)
Stecura, S.
1980-01-01
A promising two-layer thermal barrier coating system (TBS), Ni-16.4Cr-5.1A1-0.15Y/ZrO2-6.1Y2O3 (all in weight percent), was identified for directionally solidified Ni-Al-Mo (gamma/gamma' alpha). In cyclic furnace tests at 1095 C this system on gamma/gamma' alpha was better than Ni-16. 4Cr-5.1Al-0.15Y/ZrO2-7.8Y2O3 by about 50 percent. In natural gas - oxygen torch rig tests at 1250 C the ZrO2-6.1Y2O3 coating was better than the ZrO2-7.8Y2O3 coating by 95 percent, on MAR-M509 substrates and by 60 percent on gamma/gamma' alpha substrates. Decreasing the coefficient of thermal expansion of the substrate material from 17-18x10 to the -6 power/C (MAR-M200 + Hf and MAR-M509) to 11x10 to the -6 power/C (gamma/gamma' alpha) also resulted in improved TBS life. For example, in natural gas - oxygen torch rig tests at 1250 C, the life of Ni-16.4Cr-5.1Al-0.15Y/ZrO26.1Y2O3 was about 30 percent better on gamma/gamma' alpha than on MAR-M509 substrates. Thus compositional changes in the bond and thermal barrier coatings were shown to have a greater effect on TBS life than does the coefficient of thermal expansion.
Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus
2016-11-16
Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng
Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less
NASA Astrophysics Data System (ADS)
Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi
2014-09-01
Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.
NASA Astrophysics Data System (ADS)
Punugupati, Sandhyarani
Spintronics that utilizes both the spin and charge degrees of freedom of an electron is emerged as an alternate memory technology to conventional CMOS electronics. Many proposed spintronic devices require multifunctional properties in a single material. The oxides Cr2O3 and La0.7Sr0.3MnO3 are such materials which exhibit unique physical properties at room temperature. The Cr2O3 is an antiferromagnetic and magnetoelectric material below its Neel temperature 307K. The La0.7Sr0.3MnO3 is a ferromagnetic half metal with a Curie temperature of 360K and exhibits colossal magnetoresistance. However, the reach of this spintronic technology into more device applications is possible only when these materials in epitaxial thin film form are integrated with Si(001) which is the mainstay substrate in semiconductor industry. The primary objective of this dissertation was to integrate epitaxial Cr2O3, La0.7Sr0.3MnO3 and Cr2O3/La0.7Sr0.3MnO3 thin film heterostructure on Si(001) and, study their physical properties to investigate structure-processing-property relationship in these heterostructures. The epitaxial integration of Cr2O3 thin films on Si(001) was done using epitaxial cubic yttria stabilized zirconia (c-YSZ) buffer layer by pulsed laser deposition. Detailed structural characterizations XRD (2theta and phi) and TEM confirm the epitaxial nature of the films. Though bulk Cr2O3 is antiferromagnetic along the c-axis, the in-plane magnetization measurements on Cr2O3(0001) thin films showed ferromagnetic behavior up to 400K. The thickness dependent magnetization together with oxygen annealing results suggested that the in-plane ferromagnetism in Cr2O3 was due to the oxygen related defects whose concentration is controlled by strain in the films. The out-of-plane magnetic measurements on Cr2O3(0001) films showed magnetic behavior indicative of antiferromagnetic nature. To verify whether ferromagnetism can be induced by strain in Cr 2O3 thin films with orientation other than (0001), epitaxial thin films were prepared on r-Al2O3 substrate and their magnetic properties were studied. The XRD (2theta and phi) and TEM confirm that the films were grown epitaxially. The epitaxial relations were given as: [011¯2]Cr2O3 || [011¯2]Al2O 3 and [1¯1¯20]Cr2O3 || [1¯1¯20]Al 2O3. The as-deposited films showed ferromagnetic behavior up to 400K but it almost vanished with oxygen annealing. The Raman spectroscopy data together with strain measurements using XRD indicated that ferromagnetism in r-Cr2O3 thin films was due to the strain caused by defects such as oxygen vacancies. Bi-epitaxial La0.7Sr0.3MnO3(110) thin films were integrated on Si(100) with c-YSZ/SrTiO3(STO) buffer layers by pulsed laser deposition. The La0.7Sr0.3MnO 3 and STO thin films had a single [110] out-of-plane orientation but with two in-plane domain variants as confirmed from XRD and TEM study. The growth of STO on c-YSZ was explained by the domain matching epitaxy paradigm. The epitaxial relationship between STO and c-YSZ were written as [110](001)c-YSZ || [1¯11¯](110)STO (or) [110](001)c-YSZ || [1¯12¯](110)STO. The La0.7Sr0.3MnO3 thin films were ferromagnetic with Curie temperature 324K. They also exhibited hysteresis in magnetoresistance under both in-plane and out-of-plane magnetic fields. The highest magnetoresistance in this study was -32% at 50K and 50 kOe for in-plane configuration. Lastly, the epitaxial La0.7Sr0.3MnO3-delta -d(LSMO)/Cr2O3 bilayer structure was integrated with Si(001) using c-YSZ by pulsed laser deposition. The XRD (2theta and phi) and TEM characterizations confirm that the films were grown epitaxially. The epitaxial relations were written as [0001]Cr2O3 || [111]LSMO and [112¯0]Cr2O3 || [101¯]LSMO. Interestingly, when the LSMO thickness was increased from 66 to 528 nm (Cr2O 3=55nm), the magnetization increased by 2-fold and the magnetic nature changed from ferromagnetic to super paramagnetic. In addition, LSMO/Cr 2O3 showed in-plane exchange bias. We believe that the change in the magnetic anisotropy as a function of LSMO layer thickness could cause the change in magnetization and magnetic nature. The magnetic phase separation in oxygen deficient LSMO layer could lead to in-plane exchange bias as Cr 2O3 is not expected to show in-plane exchange.
Functionalized inorganic membranes for gas separation
Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Molaison, Jennifer Lynn [Marietta, GA; Schick, Louis Andrew ,; Ramaswamy, Vidya [Niskayuna, NY
2008-07-08
A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.
NASA Astrophysics Data System (ADS)
Takada, Yoko; Tamano, Rika; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira
2017-07-01
A Sn-doped In2O3 (ITO) electrode was deposited on Al2O3(0001) using pulsed laser deposition at different oxygen pressures to create the bottom electrode of a (Pb,La)(Zr,Ti)O3 (PLZT) capacitor. The crystallographic orientation of the ITO films was controlled via the oxygen pressure. At 600 °C the (111) peak became dominant when the O2 pressure was increased, and when the pressure reached 2.0 Pa the ITO films became preferentially (111) oriented. The remnant polarization was 58.8-90.7 and 46.0-47.5 µC/cm2 for the Pt/PLZT/ITO and ITO/PLZT/ITO capacitors, respectively; the ferroelectric properties of these capacitors were also determined.
Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings
NASA Astrophysics Data System (ADS)
Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.
2017-08-01
This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.
NASA Astrophysics Data System (ADS)
Qiao, Q.; Gulec, A.; Paulauskas, T.; Kolesnik, S.; Dabrowski, B.; Ozdemir, M.; Boyraz, C.; Mazumdar, D.; Gupta, A.; Klie, R. F.
2011-08-01
The incommensurately layered cobalt oxide Ca3Co4O9 exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca3Co4O9 thin films grown on cubic perovskite SrTiO3, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 substrates and on hexagonal Al2O3 (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO2 layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca2CoO3 buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO2 stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca3Co4O9 films due to additional phonon scattering sites, necessary for improved thermoelectric properties.
Improvement of perpendicular anisotropy of columnar FePt-ZrO2-C films with FePt insert layer
NASA Astrophysics Data System (ADS)
Dong, Kaifeng; Mo, Wenqin; Jin, Fang; Song, Junlei; Cheng, Weimin; Wang, Haiwei
2018-05-01
The effects of various thicknesses of FePt insert layer on the microstructure and magnetic properties of FePt-ZrO2-C thin films have been investigated. It is found that with inserting 0.4 nm FePt films between the TiON intermediate layer and FePt-ZrO2-C layer, the perpendicular anisotropy indicated by Hc⊥/Hc//ratio would increase from 4 to 13.1, suggesting the perpendicular anisotropy could be improved a lot with using FePt insert layer. Simultaneously, the FePt grains of FePt-ZrO2-C thin films maintained columnar structure and the grain isolation could also be improved in a certain degree. With further increase of the FePt insert layer thickness, although the perpendicular anisotropy was still larger than that without FePt insert layer, the grain size of the FePt-ZrO2-C films would increase and the isolation would be deteriorated.
NASA Astrophysics Data System (ADS)
Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui
2017-10-01
We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.
NASA Astrophysics Data System (ADS)
Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars
2008-09-01
The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.
NASA Astrophysics Data System (ADS)
Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo
2014-11-01
In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.
Askari, E; Mehrali, M; Metselaar, I H S C; Kadri, N A; Rahman, Md M
2012-08-01
This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Method Using Water-Based Solvent to Prepare Li7La3Zr2O12 Solid Electrolytes.
Huang, Xiao; Lu, Yang; Jin, Jun; Gu, Sui; Xiu, Tongping; Song, Zhen; Badding, Michael E; Wen, Zhaoyin
2018-05-09
Li-garnet Li 7 La 3 Zr 2 O 12 (LLZO) is a promising candidate of solid electrolytes for high-safety solid-state Li + ion batteries. However, because of its high reactivity to water, the preparation of LLZO powders and ceramics is not easy for large-scale amounts. Herein, a method applying water-based solvent is proposed to demonstrate a possible solution. Ta-doped LLZO, that is, Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO), and its LLZTO/MgO composite ceramics are made by attrition milling, followed by a spray-drying process using water-based slurries. The impacts of parameters of the method on the structure and properties of green and sintered pellets are studied. A relative density of ∼95%, a Li-ion conductivity of ∼3.5 × 10 -4 S/cm, and uniform grain size LLZTO/MgO garnet composite ceramics are obtained with an attrition-milled LLZTO/MgO slurry that contains 40 wt % solids and 2 wt % polyvinyl alcohol binder. Li-sulfur batteries based on these ceramics are fabricated and work under 25 °C for 20 cycles with a Coulombic efficiency of 100%. This research demonstrates a promising mass production method for the preparation of Li-garnet ceramics.
Theoretical investigation of the SAW properties of ferroelectric film composite structures.
Shih, W C; Wu, M S
1998-01-01
The characteristics of surface acoustic waves (SAW) propagating on a three-layered structure consisting of a perovskite-type ferroelectric film, a buffer layer and a semiconductor substrate have been studied theoretically. Large coupling coefficients (K(2)) can be obtained when the interdigital transducer (IDT) is on top of the perovskite-type ferroelectric film, with (type 4) and without (type 3) the floating-plane electrode at the perovskite-type ferroelectric film-buffer layer interface. In the above cases, the peak values of K (2) Of the Pb(Zr,Ti)O(3) (PZT) films (3.2%-3.8%) are higher than those of the BaTiO(3) (BT) and PbTiO(3) (PT) films. In the IDT configuration of type 4, there exists a minor peak of the coupling coefficients for the PZT and BT films, but not for the PT films when the normalized thickness (hK) of the perovskite-type ferroelectric film is about 0.3. The minor peak values of the coupling coefficients (0.62%-0.93%) for different layered structures (PZT/STO/Si, PZT/MgO/Si, and PZT/MgO/GaAs) all decrease when we increase hK value from 0 to 0.25. The results could be useful in the integration of ferroelectric devices, semiconductor devices, and SAW devices on the same substrate.
Qiao, Q; Gulec, A; Paulauskas, T; Kolesnik, S; Dabrowski, B; Ozdemir, M; Boyraz, C; Mazumdar, D; Gupta, A; Klie, R F
2011-08-03
The incommensurately layered cobalt oxide Ca(3)Co(4)O(9) exhibits an unusually high Seebeck coefficient as a polycrystalline bulk material, making it ideally suited for many high temperature thermoelectric applications. In this paper, we investigate properties of Ca(3)Co(4)O(9) thin films grown on cubic perovskite SrTiO(3), LaAlO(3), and (La(0.3)Sr(0.7))(Al(0.65)Ta(0.35))O(3) substrates and on hexagonal Al(2)O(3) (sapphire) substrates using the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy analysis indicate strain-free growth of films, irrespective of the substrate. However, depending on the lattice and symmetry mismatch, defect-free growth of the hexagonal CoO(2) layer is stabilized only after a critical thickness and, in general, we observe the formation of a stable Ca(2)CoO(3) buffer layer near the substrate-film interface. Beyond this critical thickness, a large concentration of CoO(2) stacking faults is observed, possibly due to weak interlayer interaction in this layered material. We propose that these stacking faults have a significant impact on the Seebeck coefficient and we report higher values in thinner Ca(3)Co(4)O(9) films due to additional phonon scattering sites, necessary for improved thermoelectric properties.
Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.
Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph
2015-07-01
Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, H. D.; Roh, Y.; Lee, J. E.; Kang, H.-B.; Yang, C.-W.; Lee, N.-E.
2004-07-01
We have investigated the effects of high temperature annealing on the physical and electrical properties of multilayered high-k gate oxide [HfSixOy/HfO2/intermixed-layer(IL)/ZrO2/intermixed-layer(IL)/HfO2] in metal-oxide-semiconductor device. The multilayered high-k films were formed after oxidizing the Hf/Zr/Hf films deposited directly on the Si substrate. The subsequent N2 annealing at high temperature (>= 700 °C) not only results in the polycrystallization of the multilayered high-k films, but also causes the diffusion of Zr. The latter transforms the HfSixOy/HfO2/IL/ZrO2/IL/HfO2 film into the Zr-doped HfO2 film, and improves electrical properties in general. However, the thin SiOx interfacial layer starts to form if annealing temperature increases over 700 °C, deteriorating the equivalent oxide thickness. .
Chlorine mobility during annealing in N2 in ZrO2 and HfO2 films grown by atomic layer deposition
NASA Astrophysics Data System (ADS)
Ferrari, S.; Scarel, G.; Wiemer, C.; Fanciulli, M.
2002-12-01
Atomic layer deposition (ALD) growth of high-κ dielectric films (ZrO2 and HfO2) was performed using ZrCl4, HfCl4, and H2O as precursors. In this work, we use time of flight secondary ion mass spectrometry to investigate the chlorine distribution in ALD grown ZrO2 and HfO2 films, and its evolution during rapid thermal processes in nitrogen atmosphere. Chlorine outdiffusion is found to depend strongly upon annealing temperature and weakly upon the annealing time. While in ZrO2 chlorine concentration is significantly decreased already at 900 °C, in HfO2 it is extremely stable, even at temperatures as high as 1050 °C.
Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun
2017-01-01
Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.
Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun
2017-01-01
Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chen-Shuo; Liu, Po-Tsun
2011-08-22
This investigation demonstrates the effect of high-pressure H{sub 2}O treatment on the elimination of the interfacial germanium suboxide (GeO{sub X}) layer between ZrO{sub 2} and Ge. The formation of GeO{sub X} interlayer increases the gate-leakage current and worsen the controllability of the gate during deposition or thermal cycles. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy reveal that high-pressure H{sub 2}O treatment eliminates the interfacial GeO{sub X} layer. The physical mechanism involves the oxidation of non-oxidized Zr with H{sub 2}O and the reduction of GeO{sub X} by H{sub 2}. Treatment with H{sub 2}O reduces the gate-leakage current of a ZrO{submore » 2}/Ge capacitor by a factor of 1000.« less
Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo
2017-10-25
Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.
Miscibility of amorphous ZrO2-Al2O3 binary alloy
NASA Astrophysics Data System (ADS)
Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.
2002-04-01
Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.
NASA Astrophysics Data System (ADS)
Kim, H.; McIntyre, P. C.
2002-11-01
Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.
NASA Astrophysics Data System (ADS)
Lee, Juhyun; Lee, Jeongsu; Ham, Giyul; Shin, Seokyoon; Park, Joohyun; Choi, Hyeongsu; Lee, Seungjin; Kim, Juyoung; Sul, Onejae; Lee, Seungbeck; Jeon, Hyeongtag
2017-02-01
We report the effect of zirconium oxide (ZrO2) layers on the electrical characteristics of multilayered tin disulfide (SnS2) formed by atomic layer deposition (ALD) at low temperatures. SnS2 is a two-dimensional (2D) layered material which exhibits a promising electrical characteristics as a channel material for field-effect transistors (FETs) because of its high mobility, good on/off ratio and low temperature processability. In order to apply these 2D materials to large-scale and flexible electronics, it is essential to develop processes that are compatible with current electronic device manufacturing technology which should be conducted at low temperatures. Here, we deposited a crystalline SnS2 at 150 °C using ALD, and we then annealed at 300 °C. X-ray diffraction (XRD) and Raman spectroscopy measurements before and after the annealing showed that SnS2 had a hexagonal (001) peak at 14.9° and A1g mode at 313 cm-1. The annealed SnS2 exhibited clearly a layered structure confirmed by the high resolution transmission electron microscope (HRTEM) images. Back-gate FETs with SnS2 channel sandwiched by top and bottom ZrO2 on p++Si/SiO2 substrate were suggested to improve electrical characteristics. We used a bottom ZrO2 layer to increase adhesion between the channel and the substrate and a top ZrO2 layer to improve contact property, passivate surface, and protect from process-induced damages to the channel. ZTZ (ZrO2/SnS2/ZrO2) FETs showed improved electrical characteristics with an on/off ratio of from 0.39×103 to 6.39×103 and a mobility of from 0.0076 cm2/Vs to 0.06 cm2/Vs.
Peng, Zhikun; Liu, Xu; Li, Shuaihui; Li, Zhongjun; Li, Baojun; Liu, Zhongyi; Liu, Shouchang
2017-01-01
ZrO2 heterophase structure nanocrystals (HSNCs) were synthesized with tunable ratios of monoclinic ZrO2 (m-ZrO2) to tetragonal ZrO2 (t-ZrO2). The phase mole ratio of m-ZrO2 versus t-ZrO2 in ZrO2 HSNCs was tuned from 40% to 100%. The concentration of the surface hydroxyl groups on m-ZrO2 is higher than that on t-ZrO2. ZrO2 HSNCs have different surface hydroxyl groups on two crystalline phases. This creates more intimate synergistic effects than their single-phase counterparts. The ZrO2 HSNCs were used as effective supports to fabricate heterophase-structured Ru/ZrO2 catalysts for benzene-selective hydrogenation. The excellent catalytic performance including high activity and selectivity is attributed to the heterogeneous strong/weak hydrophilic interface and water layer formed at the m-ZrO2/t-ZrO2 catalyst junction. PMID:28057914
Thermal conductivity of ZrO2-4mol%Y2O3 thin coatings by pulsed thermal imaging method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Byung-Koog; Sun, Jiangang; Kim, Seongwon
Thin ZrO2-4mol% Y2O3 coatings were deposited onto ZrO2 substrates by electron beam-physical vapor deposition. The coated samples revealed a feather-like columnar microstructure. The main phase of the ZrO2-4mol% Y2O3 coatings was the tetragonal phase. To evaluate the influence of the coating’s thickness on the thermal conductivity of thin ZrO2-4mol% Y2O3 coatings, the pulsed thermal imaging method was employed to obtain the thermal conductivity of the coating layer in the two-layer (coating and substrate) samples with thickness between 56 and 337 micrometers. The thermal conductivity of the coating layer was successfully evaluated and compared well with those obtained by the lasermore » flash method for similar coatings. The thermal conductivity of coatings shows an increasing tendency with an increase in the coating’s thickness.« less
Low energy ion-solid interactions and chemistry effects in a series of pyrochlores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liyuan; Li, Yuhong; Devanathan, Ram
The effect of chemistry on low energy recoil events was investigated at 10 K for each type of atom in pyrochlores using molecular dynamics simulation. Contour plots of the threshold displacement energy (Ed) in Gd2Zr2O7 have been produced along more than 80 directions for each individual species. The Ed surface for each type of atom in Gd2Zr2O7 is highly anisotropic; Ed of Zr exhibits the largest degree of anisotropy, while that of O8b exhibits the smallest. The recommended values of Ed in Gd2Zr2O7 based on the observed minima are 56, 94 and 25 eV, respectively for Gd, Zr and O.more » The influence of cation radius on Ed in pyrochlores A2B2O7 (with A-site ranging from Lu3+ to La3+ and B-site ranging from Ti4+ to Ce4+) was also investigated along three directions [100], [110] and [111]. The Ed in pyrochlores strongly depended on the atom type, atom mass, knock-on direction, and lattice position. The defects produced after low energy displacement events included cation antisite defects, cation Frenkel pairs, anion Frenkel pairs, various vacancies and interstitials. Ce doping in pyrochlores may affect the radiation response, because it resulted in drastic changes in cation and anion displacement energies and formation of an unusual type of anti-site defect. This work demonstrates links between Ed and amorphization resistance.« less
NASA Astrophysics Data System (ADS)
Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong
2011-01-01
High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.
Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces
Li, Meijun; Tumuluri, Uma; Wu, Zili; ...
2015-09-25
Here, high-surface-area nanosized CeO 2 and M-doped CeO 2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO 2 adsorption. Cu, La, and Zr are doped into the lattice of CeO 2, whereas Mg is dispersed on the CeO 2 surface. The doping of Cu and La into CeO 2 leads to an increase of the CO 2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO 2 adsorption capacity at a low Mg content and a gradual increase at a highermore » content. The CO 2 adsorption capacity follows the sequence Cu-CeO 2>La-CeO 2>Zr-CeO 2≈CeO 2>Mg-CeO 2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO 2, modified by the dopants that play the vital role in CO 2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO 2 adsorption on the doped CeO 2.« less
Atomic layer deposition and properties of ZrO2/Fe2O3 thin films
Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor
2018-01-01
Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257
NASA Astrophysics Data System (ADS)
Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan
2018-05-01
Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO2. The ALD ZrO2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.
Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan
2018-05-11
Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO 2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO 2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO 2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO 2 . The ALD ZrO 2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.
NASA Astrophysics Data System (ADS)
Middlemiss, Derek S.; Blanc, Frédéric; Pickard, Chris J.; Grey, Clare P.
2010-05-01
The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for 17O- and 69/71Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO 3, BaZrO 3, BaSnO 3, BaTiO 3, LaAlO 3, LaGaO 3, SrZrO 3, MgSiO 3 and Ba 2In 2O 5), and gallate (α- and β-Ga 2O 3, LiGaO 2, NaGaO 2, GaPO 4 and LaGaO 3) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO 5 site occurring in LaGaGe 2O 7 is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar ηQ-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases.
Carbon monoxide formation in UO2 kerneled HTR fuel particles containing oxygen getters
NASA Astrophysics Data System (ADS)
Proksch, E.; Strigl, A.; Nabielek, H.
1986-01-01
Mass spectrometric measurements of CO in irradiated UO2 fuel particles containing oxygen getters are summarized. Uranium carbide addition in the 3% to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, ambiguous results are obtained; ZrC probably results in CO reduction by a factor of 40; Ce2O3 and La2O3 seem less effective than the carbides; for Ce2O3, reduction factors between 3 and 15 are found. However, the results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO2 + Al2O3 has no influence on CO release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Kim, H.J.; Kim, J.W.
2013-11-15
Graphical abstract: - Highlights: • Chemical solution deposition of (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}–NiFe{sub 2}O{sub 4} double layered thin film. • Studies on structural, electrical and multiferroic properties. • NiFe{sub 2}O{sub 4} acts as both resistive buffer layer and magnetic source. - Abstract: (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film was prepared on a Pt(111)/Ti/SiO{sub 2}/Si(100) substrate by a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies confirmed the formation of the distorted rhombohedral perovskite and the inverse spinel cubic structures for the (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4}more » double layered thin film. The (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film exhibited well saturated ferromagnetic (2 M{sub r} of 18.1 emu/cm{sup 3} and 2H{sub c} of 0.32 kOe at 20 kOe) and ferroelectric (2P{sub r} of 60 μC/cm{sup 2} and 2E{sub c} of 813 kV/cm at 866 kV/cm) hysteresis loops with low order of leakage current density (4.5 × 10{sup −6} A/cm{sup 2} at an applied electric field of 100 kV/cm), which suggest the ferroelectric and ferromagnetic multi-layers applications in real devices.« less
NASA Astrophysics Data System (ADS)
Yu, Zhi-nong; Zhao, Jian-jian; Xia, Fan; Lin, Ze-jiang; Zhang, Dong-pu; Leng, Jian; Xue, Wei
2011-03-01
The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO 2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO 2 buffer layer under bending have better electrical stability than those with flat SiO 2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO 2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO 2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO 2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO 2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliq, Jibran; Chen, Kan; Li, Chunchun
2015-02-21
The effect of substitution and oxidation-reduction on the thermal conductivity of perovskite-like layered structure (PLS) ceramics was investigated in relation to mass contrast and non-stoichiometry. Sr (acceptor) was substituted on the A site, while Ta (donor) was substituted on the B site of La{sub 2}Ti{sub 2}O{sub 7}. Substitution in PLS materials creates atomic scale disorders to accommodate the non-stoichiometry. High resolution transmission electron microscopy and X ray diffraction revealed that acceptor substitution in La{sub 2}Ti{sub 2}O{sub 7} produced nanoscale intergrowths of n = 5 layered phase, while donor substitution produced nanoscale intergrowths of n = 3 layered phase. As a result of these nanoscalemore » intergrowths, the thermal conductivity value reduced by as much as ∼20%. Pure La{sub 2}Ti{sub 2}O{sub 7} has a thermal conductivity value of ∼1.3 W/m K which dropped to a value of ∼1.12 W/m K for Sr doped La{sub 2}Ti{sub 2}O{sub 7} and ∼0.93 W/m K for Ta doped La{sub 2}Ti{sub 2}O{sub 7} at 573 K.« less
Thermochemical Assessment of Oxygen Gettering by SiC or ZrC in PuO2-x TRISO Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, Theodore M
2010-01-01
Particulate nuclear fuel in a modular helium reactor is being considered for the consumption of excess plutonium and related transuranics. In particular, efforts to largely consume transuranics in a single-pass will require the fuel to undergo very high burnup. This deep burn concept will thus make the proposed plutonia TRISO fuel particularly likely to suffer kernel migration where carbon in the buffer layer and inner pyrolytic carbon layer is transported from the high temperature side of the particle to the low temperature side. This phenomenon is oberved to cause particle failure and therefore must be mitigated. The addition of SiCmore » or ZrC in the oxide kernel or in a layer in communication with the kernel will lower the oxygen potential and therefore prevent kernel migration, and this has been demonstrated with SiC. In this work a thermochemical analysis was performed to predict oxygen potential behavior in the plutonia TRISO fuel to burnups of 50% FIMA with and without the presence of oxygen gettering SiC and ZrC. Kernel migration is believed to be controlled by CO gas transporting carbon from the hot side to the cool side, and CO pressure is governed by the oxygen potential in the presence of carbon. The gettering phases significantly reduce the oxygen potential and thus CO pressure in an otherwise PuO2-x kernel, and prevent kernel migration by limiting CO gas diffusion through the buffer layer. The reduction in CO pressure can also reduce the peak pressure within the particles by ~50%, thus reducing the likelihood of pressure-induced particle failure. A model for kernel migration was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and did demonstrated the dramatic effect of the addition of these phases on carbon transport.« less
Reactive sputter deposition of metal oxide nanolaminates
NASA Astrophysics Data System (ADS)
Rubin Aita, Carolyn
2008-07-01
We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.
NASA Astrophysics Data System (ADS)
Chou, Bang-Yen; Chang, Edward
2003-06-01
Hydroxyapatite coatings were plasma sprayed on the Ti6A14V substrate with and without an intermediate ZrO2 layer; meanwhile the temperatures of substrates were varied at 90, 140, and 200 °C. The coatings were subjected to the standard adhesion test per ASTM C633-79. The purpose of the investigation was to study the effects of those processing variables on the bonding strength and failure behavior of the system. It is found that the bonding strengths of HA/ZrO2 and HA coatings generally decrease with increasing substrate temperature, except for the HA/ZrO2 coating deposited at 200 °C. The rationale of the results is attributed to the residual stress reported in the literature. Introducing ZrO2 bond coat is found to significantly promote the bonding strength of HA coating. The possible strengthening mechanism is the rougher surface of ZrO2 bond coat and the higher toughness of ZrO2, which provide the mechanical strengthening effects. The slightly denser HA in 200 °C deposited HA coating cannot explain the high bonding strength of the HA/ZrO2 coating, nor the mechanical strengthening effect of ZrO2 intermediate layer should apply. It is believed that a stronger diffusion bonding is formed at the interface of HA and ZrO2, which increases the bonding between them chemically. The bonding strengths of HA/ZrO2 and HA coatings are correlated with the area fraction of adhesive failure of the coatings. The correlation explains the findings in this study.
A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ling; Chang, Hsiang-Yu; Lou, Jesse Jen-Chung; Tseng, Tseung-Yuen
2016-04-01
In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO2)/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO2/ITO single layer device, the ITO/ZrO2/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by forming an asymmetrical conductive filament with the weakest part at the ZrO2/AlON interface. Therefore, in the ITO/ZrO2/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.
Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.
Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin
2011-08-01
ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.
Chen, Yun; Gerdes, Kirk; Song, Xueyan
2016-01-01
Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1−xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650–800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5–1.7 operated at 0.8 V at 750 °C. PMID:27605121
PZT Films Fabricated by Metal Organic Decomposition Method
NASA Astrophysics Data System (ADS)
Sobolev, Vladimir; Ishchuk, Valeriy
2014-03-01
High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.
NASA Astrophysics Data System (ADS)
Prasad, M. Shiva; Kumar, K. K. Phani; Atchuta, S. R.; Sobha, B.; Sakthivel, S.
2018-05-01
A novel tandem absorber system (Mn-Cu-Co-Ox-ZrO2/SiO2) developed on an austenitic stainless steel (SS-304) substrate to show an excellent optical performance (αsol: 0.96; ɛ: 0.23@500 °C). In order to achieve this durable tandem, we experimented with two antireflective layers such as ZrO2-SiO2 and nano SiO2 layer on top of Mn-Cu-Co-Ox-ZrO2 layer. We optimized the thickness of antireflective layers to get good tandem system in terms of solar absorptance and emittance. Field emission scanning electron microscopy (FESEM), UV-Vis-NIR and Fourier transform infrared spectroscopy (FTIR) were used to characterize the developed coatings. Finally, the Mn-Cu-Co-Ox-ZrO2/SiO2 exhibits high temperature resistance up to 800 °C, thus allow an increase in the operating temperature of CSP which may lead to high efficiency. We successfully developed a high temperature resistant tandem layer with easy manufacturability at low cost which is an attractive candidate for concentrated solar power generation (CSP).
Interaction Studies of Ceramic Vacuum Plasma Spraying for the Melting Crucible Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong Hwan Kim; Hyung Tae Kim; Yoon Myung Woo
2013-10-01
Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasmasprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relativelymore » weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600 degrees C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.« less
NASA Astrophysics Data System (ADS)
Spiga, S.; Rao, R.; Lamagna, L.; Wiemer, C.; Congedo, G.; Lamperti, A.; Molle, A.; Fanciulli, M.; Palma, F.; Irrera, F.
2012-07-01
Al-doped ZrO2 (Al-ZrO2) films deposited by atomic layer deposition onto silicon substrates and the interface with the TaN metal gate are investigated. In particular, structural properties of as-grown and annealed films in the 6-26 nm thickness range, as well as leakage and capacitive behavior of metal-oxide-semiconductor stacks are characterized. As-deposited Al-ZrO2 films in the mentioned thickness range are amorphous and crystallize in the ZrO2 cubic phase after thermal treatment at 900 °C. Correspondingly, the dielectric constant (k) value increases from 20 ± 1 to 27 ± 2. The Al-ZrO2 layers exhibit uniform composition through the film thickness and are thermally stable on Si, whereas chemical reactions take place at the TaN/Al-ZrO2 interface. A transient capacitance technique is adopted for monitoring charge trapping and flat band instability at short and long time scales. The role of traps nearby the TaN/Al-ZrO2 interface is discussed and compared with other metal/high-k oxide films. Further, analytical modeling of the flat band voltage shift with a power-law dependence on time allows extracting features of bulk traps close to the silicon/oxide interface, which exhibit energy levels in the 1.4-1.9 eV range above the valence band of the Al-ZrO2.
NASA Astrophysics Data System (ADS)
Li, Zhi-Xin; Cao, Jin-Jin; Gou, Xiao-Fan; Wang, Tian-Ge; Xue, Feng
2018-01-01
We report a discovery of the quasi-two-dimensional (quasi-2D) CuO2 plane between the superconductor YBa2Cu3O7 (YBCO) and CeO2 buffer layer (mostly used in the fabrication) of coated conductors through the atomistic computer simulations with the molecular dynamics (MD) and first-principle calculations. For an YBCO coated conductor with multilayer structures, the buffer layers deposited onto a substrate are mainly considered to transfer a strong biaxial texture from the substrate to the YBCO layer. To deeply understand the tuning mechanism of the texture transfer, exploring the complete atomic-level picture of the structure between the YBa2Cu3O7/CeO2 interfaces is firstly required. However, the related observation data have not been available due to some big challenges of experimental techniques. With the MD simulations, having tested the accuracy of the potential functions for the YBa2Cu3O7/CeO2 interface, we constructed a total of 54 possible atom stacking models of the interface and identified its most appropriate and stable structure according to the criterion of the interface adhesion energy and the coherent characterization. To further verify the stability of the identified structure, we performed the first-principle calculations to obtain the adhesion energy and developed the general knowledge of the interface structure. Finally, a coherent interface formed with a new built quasi-2D CuO2 plane that is structurally similar to the CuO2 plane inside bulk YBCO was determined.
Park, Jee Ho; Oh, Jin Young; Han, Sun Woong; Lee, Tae Il; Baik, Hong Koo
2015-03-04
A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (Jleak) of 4.38 × 10(-8) A/cm(2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (Ion/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices.
Electrical characteristics of SiO2/ZrO2 hybrid tunnel barrier for charge trap flash memory
NASA Astrophysics Data System (ADS)
Choi, Jaeho; Bae, Juhyun; Ahn, Jaeyoung; Hwang, Kihyun; Chung, Ilsub
2017-08-01
In this paper, we investigate the electrical characteristics of SiO2/ZrO2 hybrid tunnel oxide in metal-Al2O3-SiO2-Si3N4-SiO2-silicon (MAONOS) structure in an effort to improve program and erase speed as well as retention characteristics. Inserting ZrO2 into the conventional MAONOS structure increased the programmed V th variation to 6.8 V, and increased the erased V th variation to -3.7 V at 17 MV/cm. The results can be understood in terms of reducing the Fowler-Nordheim (F/N) tunneling barrier due to high-k ZrO2 in the tunneling oxide. In addition, Zr diffusion in SiO2 caused the formation of Zr x Si1- x O2 at the interface region, which reduced the energy band gap of SiO2. The retention property of the hybrid tunnel oxide varied depending on the thickness of SiO2. For thin SiO2 less than 30 Å, the retention properties of the tunneling oxides were poor compared with those of the SiO2 only tunneling oxides. However, the hybrid tunneling oxides with SiO2 thickness thicker than 40 Å yielded improved retention behavior compared with those of the SiO2-only tunneling oxides. The detailed analysis in charge density of ZrO2 was carried out by ISPP test. The obtained charge density was quite small compared to that of the total charge density, which indicates that the inserted ZrO2 layer serves as a tunneling material rather than charge storage dielectric.
Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H
2017-02-01
The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie
2013-09-01
ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.
Ab initio study of ceria films for resistive switching memory applications
NASA Astrophysics Data System (ADS)
Firdos, Mehreen; Hussain, Fayyaz; Imran, Muhammad; Ismail, Muhammad; Rana, A. M.; Arshad Javid, M.; Majid, Abdul; Arif Khalil, R. M.; Ullah, Hafeez
2017-10-01
The aim of this study is to investigate the charge distribution/relocation activities in relation to resistive switching (RS) memory behavior in the metal/insulator/metal (MIM) structure of Zr/CeO2/Pt hybrid layers. The Zr layer is truly expected to act not only as an oxygen ion extraction layer but also as an ion barrier by forming a ZrO2 interfacial layer. Such behavior of the Zr not only introduces a high concentration of oxygen vacancies to the active CeO2 layer but also enhances the resistance change capability. Such Zr contributions have been explored by determining the work function, charge distribution and electronic properties with the help of density functional theory (DFT) based on the generalized gradient approximation (GGA). In doped CeO2, the dopant (Zr) plays a significant role in the formation of defect states, such as oxygen vacancies, which are necessary for generating conducting filaments. The total density of state (DOS) analyses reveal that the existence of impurity states in the hybrid system considerably upgrade the performance of charge transfer/accumulation, consequently leading to enhanced RS behavior, as noticed in our earlier experimental results on Zr/CeO2/Pt devices. Hence it can be concluded that the present DFT studies can be implemented on CeO2-based RRAM devices, which have skyscraping potential for future nonvolatile memory (NVM) applications.
Photo-induced wettability of TiO{sub 2} film with Au buffer layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam
2014-04-24
The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.
Thermal barrier coatings for turbine components
Subramanian, Ramesh; Sabol, Stephen M.; Goedjen, John G.; Sloan, Kelly M.; Vance, Steven J.
2002-01-01
A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO.sub.3, NdAlO.sub.3, La.sub.2 Hf.sub.2 O.sub.7, Dy.sub.3 Al.sub.5 O.sub.12, HO.sub.3 Al.sub.3 O.sub.12, ErAlO.sub.3, GdAlO.sub.3, Yb.sub.2 Ti.sub.2 O.sub.7, LaYbO.sub.3, Gd.sub.2 Hf.sub.2 O.sub.7 or Y.sub.3 Al.sub.5 O.sub.12.
NASA Astrophysics Data System (ADS)
Lim, Kwan-Yong; Park, Dae-Gyu; Cho, Heung-Jae; Kim, Joong-Jung; Yang, Jun-Mo; Ii, Choi-Sang; Yeo, In-Seok; Park, Jin Won
2002-01-01
We have investigated the thermal stability of n+ polycrystalline-Si(poly-Si)/ZrO2(50-140 Å)/SiO2(7 Å)/p-Si metal-oxide-semiconductor (MOS) capacitors via electrical and material characterization. The ZrO2 gate dielectric was prepared by atomic layer chemical vapor deposition using ZrCl4 and H2O vapor. Capacitance-voltage hysteresis as small as ˜12 mV with the flatband voltage of -0.5 V and the interface trap density of ˜5×1010cm-2 eV-1 were attained with activation anneal at 750 °C. A high level of gate leakage current was observed at the activation temperatures over 750 °C and attributed to the interfacial reaction of poly-Si and ZrO2 during the poly-Si deposition and the following high temperature anneal. Because of this, the ZrO2 gate dielectric is incompatible with the conventional poly-Si gate process. In the MOS capacitors having a smaller active area (<50×50 μm2), fortunately, the electrical degradation by further severe silicidation does not occur up to an 800 °C anneal in N2 for 30 min.
Eudialyte-group minerals in rocks of Lovozero layered complex at Mt. Karnasurt and Mt. Kedykvyrpakhk
NASA Astrophysics Data System (ADS)
Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Yakovenchuk, V. N.
2015-12-01
Eudialyte-bearing interbeds within layers I-4 (Mt. Karnasurt) and II-4 (Mt. Kedykvyrpakhk) in the layered complex of the Lovozero Pluton are localized symmetrically relative to the loparite-bearing ijolite-malignite layer; the content of eudialyte decreases from underlying nepheline syenite to overlying foidolite. Eudialyte-group minerals fill the interstices between nepheline, sodalite, and microcline-perthite crystals in all rock types and are partially replaced with georgechaoite and minerals of the lovozerite group as a result of hydrothermal alteration. Variations in the chemical composition of the eudialyte-group minerals are mainly controlled by block substitution NaFeZrCl ↔ LnMn(Nb,Ti)S producing eudialyte proper, manganoeudialyte (sharply predominant), kentbrooksite, alluaivite, and a phase intermediate between manganoeudialyte and alluaivite. As the total Ln2O3 content increases, the relative amounts of Ce and La oxides increases linearly in the proportion Ce2O3: La2O3 = 2.5: 1. In the phases containing lower than 3 wt % La2O3, Nd becomes the next REE after Ce. It is very likely that (mangano)eudialyte was mostly formed after parakeldyshite and other anhydrous zirconium-silicate under effect of residual fluids enriched in Ca and Mn, which took part in fenitization of basalt, tuff, and tuffite of the Lovozero Formation.
High Performance Crystalline Organic Transistors and Circuit
2011-08-02
pentacene -based OFETs, low voltage operation is possible. 3 Figure 1: Device structure for a low voltage pentacene OFET using a ZrO2 gate...first SiO Z OPentacene Au Pentacene ZrO2 AuPd SiO2 4 film. Bilayer dielectrics exhibit lower defect-related leakage effects, as pinholes or...other defects in one layer may be isolated by the other layer. 350 Å of pentacene was thermally evaporated on the ZrO2 dielectric at a rate of 0.1 Å
Middlemiss, Derek S; Blanc, Frédéric; Pickard, Chris J; Grey, Clare P
2010-05-01
The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for (17)O- and (69/71)Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO(3), BaZrO(3), BaSnO(3), BaTiO(3), LaAlO(3), LaGaO(3), SrZrO(3), MgSiO(3) and Ba(2)In(2)O(5)), and gallate (alpha- and beta-Ga(2)O(3), LiGaO(2), NaGaO(2), GaPO(4) and LaGaO(3)) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO(5) site occurring in LaGaGe(2)O(7) is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar eta(Q)-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases. Copyright 2010 Elsevier Inc. All rights reserved.
2013-01-01
with Al [16,20]. In KrogereVink notation, the relationships for Ta and Nb substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb ...garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super-valent cation substitution likely stabilizes the...Introduction Li-ion batteries have played a vital role in the development of current generation mobile devices, microelectronics and electric vehicles [1]. Due
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Christopher
2011-08-11
We demonstrate the strain release of LaAlO{sub 3} epitaxial film on SrTiO{sub 3} (001) by inserting ultra-thin 'SrAlO{sub x}' buffer layers. Although SrAlO{sub x} is not a perovskite, nor stable as a single phase in bulk, epitaxy stabilizes the perovskite structure up to a thickness of 2 unit cells (uc). At a critical thickness of 3 uc of SrAlO{sub x}, the interlayer acts as a sliding buffer layer, and abruptly relieves the lattice mismatch between the LaAlO{sub 3} filmand the SrTiO{sub 3} substrate, while maintaining crystallinity. This technique may provide a general approach for strain relaxation of perovskite film farmore » below the thermodynamic critical thickness. A central issue in heteroepitaxial filmgrowth is the inevitable difference in lattice constants between the filmand substrate. Due to this lattice mismatch, thin film are subjected to microstructural strain, which can have a significan effect on the filmproperties. This challenge is especially prominent in the rapidly developing fiel of oxide electronics, where much interest is focused on incorporating the emergent physical properties of oxides in devices. Although strain can be used to great effect to engineer unusual ground states, it is often deleterious for bulk first-orde phase transitions, which are suppressed by the strain and symmetry constraints of the substrate. While there are some reports discussing the control of the lattice mismatch in oxides using thick buffer layers, the materials choice, lattice-tunable range, and control of misfit dislocations are still limited. In this Letter, we report the fabrication of strain-relaxed LaAlO{sub 3} (LAO) thin film on SrTiO{sub 3} (STO) (001) using very thin 'SrAlO{sub x}' (SAO) buffer layers. Whereas for 1 or 2 pseudo-perovskite unit cells (uc) of SAO, the subsequent LAO filmis strained to the substrate, at a critical thickness of 3 uc the SAO interlayer abruptly relieves the lattice mismatch between the LAO and the STO, although maintaining the relative crystalline orientation between the filmand the substrate. For 4 uc or greater, the perovskite epitaxial template is lost and the LAO filmis amorphous. These results suggest that metastable interlayers can be used for strain release on the nanometer scale.« less
Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho
In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less
NASA Astrophysics Data System (ADS)
Watanabe, Yukio
1999-05-01
Current through (Pb,La)(Zr,Ti)O3 ferroelectrics on perovskite semiconductors is found to exhibit diode characteristics of which polarity is universally determined by the carrier conduction-type semiconductors. A persisting highly reproducible resistance modulation by a dc voltage, which has a short retention, is observed and is ascribed to a band bending of the ferroelectric by the formation of charged traps. This interpretation is consistent with a large relaxation current observed at a low voltage. On the other hand, a reproducible resistance modulation by a pulse voltage, which has a long retention, is observed in metal/(Pb,La)(Zr,Ti)O3/SrTiO3:Nb but not in metal/(Pb,La)(Zr,Ti)O3/(La,Sr)2CuO4 and is attributed to a possible band bending due to the spontaneous polarization (P) switching. The observed current voltage (IV) characteristics, the polarity dependence, the relaxation, and the modulation are explicable, if we assume a p-n or a p-p junction at the ferroelectric semiconductor interface (p: hole conduction type, n: electron conduction type). The analysis suggests that an intrinsically inhomogeneous P (∇P) near the ferroelectric/metal interface is likely very weak or existing in a very thin layer, when a reaction of the metal with the ferroelectric is eliminated. Additionally, the various aspects of transport through ferroelectrics are explained as a transport in the carrier depleted region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Tsung-Ling; Chang, Hsiang-Yu; Tseng, Tseung-Yuen, E-mail: tseng@cc.nctu.edu.tw
2016-04-11
In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO{sub 2})/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO{sub 2}/ITO single layer device, the ITO/ZrO{sub 2}/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by formingmore » an asymmetrical conductive filament with the weakest part at the ZrO{sub 2}/AlON interface. Therefore, in the ITO/ZrO{sub 2}/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qinqin, E-mail: liu_qin_qin@126.com; Yang, Juan; Rong, Xiaoqing
2014-10-15
Novel ZrV{sub 2}O{sub 7} microfibers with diameters about 1–3 μm were synthesized using a sol–gel technique. For comparison, ZrV{sub 2}O{sub 7} powders were prepared by the same method. The resultant structures were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The results indicated that both the pure ZrV{sub 2}O{sub 7} microfibers and powders could be synthesized by the sol–gel technique. The thermal expansion property of the as-prepared ZrV{sub 2}O{sub 7} microfibers and powders was characterized by a thermal mechanical analyzer, both the fibers with cylindrical morphology and irregular powders with average size between 100 and 200more » nm showed negative thermal expansion between 150 °C and 600 °C. The photocatalytic activity of the microfibers was compared to that of powders under UV radiations. The band gap of ZrV{sub 2}O{sub 7} microfibers decreased and its absorption edge exhibited red shift. The microfibers also had a higher surface area compared with the powders, resulting in considerably higher photocatalytic characteristics. The large surface area and the enhanced photocatalytic activity of the ZrV{sub 2}O{sub 7} microfibers also offer potential applications in sensors and inorganic ion exchangers. - Graphical abstract: (a and c) SEM photos of ZrV{sub 2}O{sub 7} powders and fibers. (b and d) TEM images of ZrV{sub 2}O{sub 7} powders and fibers. (e) Thermal expansion curves of ZrV{sub 2}O{sub 7} powders and fibers. (f) Degradation curves of ZrV{sub 2}O{sub 7} powders and ZrV{sub 2}O{sub 7} fibers. - Highlights: • Novel ZrV{sub 2}O{sub 7} fibers could be synthesized using sol–gel technique. • ZrV{sub 2}O{sub 7} powders with irregular shape are also prepared for comparison. • Both ZrV{sub 2}O{sub 7} microfibers and powders exhibit negative thermal expansion property. • ZrV{sub 2}O{sub 7} microfibers show outstanding photocatalytic activity under UV irradiation. • This synthesis technique can be easily extended to many other functional fibers.« less
Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Naoto; Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; Mizoguchi, Takuma
2014-02-15
In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that themore » Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.« less
NASA Astrophysics Data System (ADS)
Cassir, Michel; Goubin, Fabrice; Bernay, Cécile; Vernoux, Philippe; Lincot, Daniel
2002-06-01
Ultra thin films of ZrO 2 were synthesized on soda lime glass and SnO 2-coated glass, using ZrCl 4 and H 2O precursors by atomic layer deposition (ALD), a sequential CVD technique allowing the formation of dense and homogeneous films. The effect of temperature on the film growth kinetics shows a first temperature window for ALD processing between 280 and 350 °C and a second regime or "pseudo-window" between 380 and 400 °C, with a growth speed of about one monolayer per cycle. The structure and morphology of films of less than 1 μm were characterized by XRD and SEM. From 275 °C, the ZrO 2 film is crystallized in a tetragonal form while a mixture of tetragonal and monoclinic phases appears at 375 °C. Impedance spectroscopy measurements confirmed the electrical properties of ZrO 2 and the very low porosity of the deposited layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogai, Junichi, E-mail: junichi.shiogai@imr.tohoku.ac.jp; Nishihara, Kazuki; Sato, Kazuhisa
One perovskite oxide, ASnO{sub 3} (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO{sub 3} substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO{sub 3} / (Sr,Ba)SnO{sub 3} for buffering this large lattice mismatch between La:BaSnO{sub 3} and SrTiO{sub 3} substrate. The insertion of 200-nm-thick BaSnO{sub 3} on (Sr,Ba)SnO{sub 3} bilayer buffer structures reduces the number of dislocationsmore » and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO{sub 3} buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO{sub 3} shows that the highest obtained value of mobility is 78 cm{sup 2}V{sup −1}s{sup −1} because of its fewer dislocations. High electron mobility films based on perovskite BaSnO{sub 3} can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.« less
Impact of air exposure and surface chemistry on Li-Li 7La 3Zr 2O 12 interfacial resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharafi, Asma; Yu, Seungho; Naguib, Michael
Li 7La 3Zr 2O 12 (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts withmore » humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of air contamination can be reversed.« less
NASA Astrophysics Data System (ADS)
Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu; Song, Rak-Hyun; Shin, Dong-Ryul
La 0.8Sr 0.2Ga 0.8Mg 0.2O 2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce 0.55La 0.45O 1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm 2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm -2 at 750 and 800 °C, respectively.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.
2016-07-01
The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.
Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann
2018-01-01
The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C. G.; Li, Y. R.; Zhu, J.
2009-02-15
(100)-Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} (BST) films were deposited on Pt/Ti/SiO{sub 2}/Si substrates using a low-temperature self-buffered layer. X-ray diffraction and atomic force microscope investigations show that the microstructure of BST films strongly depends on surface morphology of annealed self-buffered layer. The mechanism of nucleus formation and the growth initiation of BST films on self-buffered layers were proposed. It was found that the pyroelectric properties of BST films can be greatly enhanced. The pyroelectric coefficient and material merit figure of (100)-BST films are 1.16x10{sup 4} {mu}C m{sup -2} K{sup -1} and 2.18x10{sup -4} Pa{sup -1/2}, respectively. The detectivity of 9.4x10{sup 7}more » cm Hz{sup 1/2} W{sup -1} was obtained in the (100)-BST film capacitors thermally isolated by 500 nm SiO{sub 2} films.« less
Deng, Wenzhuo; Fergus, Jeffrey W.
2017-07-06
The resistance of synthesized pyrochlore-type Gd 2Zr 2O 7 bulk specimens to four calcium-magnesium aluminosilicate (CMAS) compositions at different temperatures was investigated. The reaction products were identified by x-ray diffraction and penetration depths were examined using scanning electron microscopy. A dense reaction layer is comprised mainly of Ca 2Gd 8(SiO 4) 6O 2 and a cubic fluorite phase formed during the CMAS attack, and some unreacted CMAS was found in a transition layer below the reaction layer. The overall infiltration depth changed slightly with temperature, however, the thickness of the reaction layer and the morphology of the transition layer variedmore » distinctly with temperature. The sintered sample underwent the most severe degradation by the CaO-lean CMAS, whereas the effect of CaSO 4 and CaCO 3 was not significant. Furthermore, the Gd content of the ZrO 2-based cubic fluorite phase depends on the temperature and the molar ratio of Ca:Si in the CMAS.« less
NASA Astrophysics Data System (ADS)
Zhou, Xiaolan
Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a well suited electrode material that is both conducting, and full strained on the MgAl2O4 substrate is quite rare. We will supply some answers to this unique problem. XRD results show that Ni1-xAlxO1+delta (x=0.3, 0.4 & 0.5) film, although highly mixed with Al2O3, still takes rock-salt structure and is grown very well on the spinel MgAl 2O4 substrate, with perfect crystallization and a smooth surface. Ni0.7Al0.3O1+ delta and Ni 0.6Al0.4O1+ delta are good buffer layers for perovskite film on spinel MgAl2O4 substrate. Ni 0.5Al0.5O1+ delta could also be a good buffer layer. The structural transition from rock-salt to spinel was found at x=0.67. Tensile strain effects from thermal expansion difference of BiFeO3 films were found. Thermal expansion difference caused strain does not change the ferroelectric property greatly, due to film relaxation. BiFeO3 film with NAO buffer exhibit much larger strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelsayed, Victor; Shekhawat, Dushyant; Poston, James A.
2013-05-01
Two lanthanum zirconate pyrochlores (La{sub 2}Zr{sub 2}O{sub 7}; LZ) were prepared by Pechini method and tested for higher alcohols selectivity. In one, Rh was substituted into the pyrochlore lattice (LRZ, 1.7 wt%) while for the second, Rh was supported on an unsubstituted La{sub 2}Zr{sub 2}O{sub 7} (R/LZ, 1.8 wt%). X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) results show that the surface reducibility depends on whether the Rh is in (or supported on) the LZ pyrochlore. Rhodium in the LRZ is more reducible than rhodium supported on the R/LZ pyrochlore, likely due to the presence of a perovskite phasemore » (LaRhO{sub 3}; identified by XRD), in which rhodium is more reducible. The formation of the perovskite accompanies that of the pyrochlore. CO hydrogenation results show higher ethanol selectivity for R/LZ than LRZ, possibly due to the strong interaction between Rh and LZ on the R/LZ, forming atomically close Rh{sup +}/Rh{sup 0} sites, which have been suggested to favor ethanol production.« less
Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application
NASA Astrophysics Data System (ADS)
Kondaiah, P.; Mohan Rao, G.; Uthanna, S.
2012-11-01
Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.
NASA Astrophysics Data System (ADS)
Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong
2017-08-01
We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.
Matching characteristics of different buffer layers with VO2 thin films
NASA Astrophysics Data System (ADS)
Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong
2016-10-01
VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.
The Preparation and Microstructure of Nanocrystal 3C-SiC/ZrO2 Bilayer Films
Ye, Chao; Ran, Guang; Zhou, Wei; Qu, Yazhou; Yan, Xin; Cheng, Qijin; Li, Ning
2017-01-01
The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of nanocrystal films was analyzed by grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The 3C-SiC film with less than 30 nm crystal size was synthesized by Plasma Enhanced Chemical Vapor Deposition (PECVD) and annealing. The corresponding formation mechanism of some impurities in SiC film was analyzed and discussed. An amorphous Zr layer about 600 nm in width was first deposited by magnetron sputtering and then oxidized to form a nanocrystal ZrO2 layer during the annealing process. The interface characteristics of 3C-SiC/ZrO2 bilayer films prepared by two different processes were obviously different. SiZr and SiO2 compounds were formed at the interface of 3C-SiC/ZrO2 bilayer films. A corrosion test of 3C-SiC/ZrO2 bilayer films was conducted to qualitatively analyze the surface corrosion resistance and the binding force of the interface. PMID:29168782
High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.
2015-03-01
Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less
NASA Astrophysics Data System (ADS)
Li, Hao
In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.
Method of depositing buffer layers on biaxially textured metal substrates
Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit
2002-08-27
A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0
Carbon monoxide formation in UO 2 kerneled HTR fuel particles containing oxygen getters
NASA Astrophysics Data System (ADS)
Proksch, E.; Strigl, A.; Nabielek, H.
1986-06-01
Mass spectrometric measurements of CO in irradiated UO 2 kerneled HTR fuel particles containing various oxygen getters are summarized and evaluated. Uranium carbide addition in the 3 to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, only somewhat ambiguous results have been obtained; most likely, ZrC results in CO reduction by a factor of about 40. Ce 2O 3 and La 2O 3 seem to be somewhat less effective than the three carbides; for Ce 2O 3, reduction factors between 3 and 15 have been found. However, these results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO 2 + Al 2O 3 has no influence on CO release at all.
Long, Dan; Niu, Meng; Tan, Longfei; Fu, Changhui; Ren, Xiangling; Xu, Ke; Zhong, Hongshan; Wang, Jingzhuo; Li, Laifeng; Meng, Xianwei
2017-06-29
Combined thermo-chemotherapy displays outstanding synergically therapeutic efficiency when compared with standalone thermotherapy and chemotherapy. Herein, we developed a smart tri-stimuli-responsive drug delivery system involving X@BB-ZrO 2 NPs (X represents loaded IL, DOX, keratin and tetradecanol) based on novel ball-in-ball-structured ZrO 2 nanoparticles (BB-ZrO 2 NPs). The microwave energy conversion efficiency of BB-ZrO 2 NPs was 41.2% higher than that of traditional single-layer NPs due to the cooperative action of self-reflection and spatial confinement effect of the special two-layer hollow nanostructure. The tri-stimuli-responsive controlled release strategy indicate that integrated pH, redox and microwaves in single NPs based on keratin and tetradecanol could effectively enhance the specific controlled release of DOX. The release of DOX was only 8.1% in PBS with pH = 7.2 and GSH = 20 μM. However, the release could reach about 50% at the tumor site (pH = 5.5, GSH = 13 mM) under microwave ablation. The as-made X@BB-ZrO 2 NPs exhibited perfect synergic therapy effect of chemotherapy and microwave ablation both in subcutaneous tumors (H22 tumor-bearing mice) and deep tumors (liver transplantation VX2 tumor-bearing rabbit model). There was no recurrence and death in the X@BB-ZrO 2 + MW group during the therapy of subcutaneous tumors even on the 42 nd day. The growth rates in the deep tumor of the control, MW and X@BB-ZrO 2 + MW groups were 290.1%, 14.1% and -42% 6 days after ablation, respectively. Dual-source CT was used to monitor the metabolism behavior of the as-made BB-ZrO 2 NPs and traditional CT was utilized to monitor the tumor growth in rabbits. Frozen section examination and ICP results indicated the precise control of drug delivery and enhanced cytotoxicity by the tri-stimuli-responsive controlled release strategy. The ball-in-ball ZrO 2 NPs with high microwave energy conversion efficiency were first developed for synergic microwave ablation and tri-stimuli-responsive chemotherapy, which may have potential applications in clinic.
NASA Astrophysics Data System (ADS)
Ma, Yan; Chen, Zhaohui
2013-09-01
A way to improve the ablation properties of the C/SiC composites in an oxyacetylene torch environment was investigated by the precursor infiltration and pyrolysis route using three organic precursors (zirconium butoxide, polycarbosilane, and divinylbenzene). The ceramic matrix derived from the precursors at 1200 °C was mainly a mixture of SiC, ZrO2, and C. After annealing at 1600 °C for 1 h, ZrO2 partly transformed to ZrC because of the carbothermic reductions and completely transformed to ZrC at 1800 °C in 1 h. The mechanical properties of the composites decreased with increasing temperature, while the ablation resistance increased due to the increasing content of ZrC. Compared with C/SiC composites, the ablation resistance of the C/Zr-O-Si-C composites overwhelms because of the oxide films which formed on the ablation surfaces. And, the films were composed of two layers: the porous surface layer (the mixture of ZrO2 and SiO2) and the dense underlayer (SiO2).
Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi
2016-07-20
We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability.
Stabilization of cubic Li7La3Hf2O12 by Al-doping
NASA Astrophysics Data System (ADS)
Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.
2018-07-01
In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.
Doped Y.sub.2O.sub.3 buffer layers for laminated conductors
Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA
2007-08-21
A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.
Fernandes, Arantxa; Moran, Robert F; Sneddon, Scott; Dawson, Daniel M; McKay, David; Bignami, Giulia P M; Blanc, Frédéric; Whittle, Karl R; Ashbrook, Sharon E
2018-02-13
The potential of 17 O NMR spectroscopy for the investigation of A 2 B 2 O 7 ceramic oxides important in the encapsulation of radioactive waste is demonstrated, with post-synthetic enrichment by exchange with 17 O 2 gas. For Y 2 Sn 2 O 7 , Y 2 Ti 2 O 7 and La 2 Sn 2 O 7 pyrochlores, enrichment of the two distinct O species is clearly non quantitative at lower temperatures (∼700 °C and below) and at shorter times, despite these being used in prior work, with preferential enrichment of OA 2 B 2 favoured over that of OA 4 . At higher temperatures, the 17 O NMR spectra suggest that quantitative enrichment has been achieved, but the integrated signal intensities do not reflect the crystallographic 1 : 6 (O1 : O2) ratio until corrected for differences in T 1 relaxation rates and, more importantly, the contribution of the satellite transitions. 17 O NMR spectra of Y 2 Zr 2 O 7 and Y 2 Hf 2 O 7 defect fluorites showed little difference with any variation in enrichment temperature or time, although an increase in the absolute level of enrichment (up to ∼7.5%) was observed at higher temperature. DFT calculations show that the six distinct resonances observed cannot be assigned unambiguously, as each has contributions from more than one of the five possible next nearest neighbour environments. For La 2 Ti 2 O 7 , which adopts a layered perovskite-like structure, little difference in the spectral intensities is observed with enrichment time or temperature, although the highest absolute levels of enrichment (∼13%) were obtained at higher temperature. This work demonstrates that 17 O NMR has the potential to be a powerful probe of local structure and disorder in oxides, but that considerable care must be taken both in choosing the conditions for 17 O enrichment and the experimental acquisition parameters if the necessary quantitative measurements are to be obtained for more complex systems.
NASA Astrophysics Data System (ADS)
Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong
Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.
NASA Astrophysics Data System (ADS)
Jodłowski, Przemysław J.; Chlebda, Damian K.; Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej
2018-01-01
The aim of this study was to obtain thin zirconium dioxide coatings on structured reactors using the sonochemical sol-gel method. The preparation method of metal oxide layers on metallic structures was based on the synergistic combination of three approaches: the application of ultrasonic irradiation during the synthesis of Zr sol-gel based on a precursor solution containing zirconium(IV) n-propoxide, the addition of stabilszing agents, and the deposition of ZrO2 on the metallic structures using the dip-coating method. As a result, dense, uniform zirconium dioxide films were obtained on the FeCrAlloy supports. The structured reactors were characterised by various physicochemical methods, such as BET, AFM, EDX, XRF, XRD, XPS and in situ Raman spectroscopy. The results of the structural analysis by Raman and XPS spectroscopy confirmed that the metallic surface was covered by a ZrO2 layer without any impurities. SEM/EDX mapping revealed that the deposited ZrO2 covered the metallic support uniformly. The mechanical and high temperature tests showed that the developed ultrasound assisted sol-gel method is an efficient way to obtain thin, well-adhered zirconium dioxide layers on the structured reactors. The prepared metallic supports covered with thin ZrO2 layers may be a good alternative to layered structured reactors in several dynamics flow processes, for example for gas exhaust abatement.
Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K
2015-11-16
The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.
A First-Principles Study on the Vibrational and Electronic Properties of Zr-C MXenes
NASA Astrophysics Data System (ADS)
Wang, Chang-Ying; Guo, Yong-Liang; Zhao, Yuan-Yuan; Zeng, Guang-Li; Zhang, Wei; Ren, Cui-Lan; Han, Han; Huai, Ping
2018-03-01
Within the framework of density functional theory calculations, the structural, vibrational, and electronic properties of Zr n C n - 1 (n = 2, 3, and 4) and their functionalized MXenes have been investigated. We find that the most stable configurations for Zr-C MXene are the ones that the terminal groups F, O, and OH locate on the common hollow site of the superficial Zr layer and its adjacent C layer. F and OH-terminated Zr 3 C 2 and Zr 4 C 3 have small imaginary acoustic phonon branches around Γ point while the others have no negative phonon modes. The pristine MXenes (Zr 2 C, Zr 3 C 2 and Zr 4 C 3 ) are all metallic with large DOS contributed by the Zr atom at the Fermi energy. When functionalized by F, O and OH, new hybridization states appear and the DOS at the Fermi level are reduced. Moreover, we find that their metallic characteristic increases with an increase in n. For (Zr n C n - 1 )O 2, Zr 2 CO 2 is a semiconductor, Zr 3C2O2 is a semimetal, and Zr 4 C 3O2 becomes a metal. Supported by the National Natural Science Foundation of China under Grant Nos. 11605273, 21571185, U1404111, 11504089, 21501189, 21676291, the Shanghai Municipal Science and Technology Commission 16ZR1443100, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02040104)
Deuterium transport in Cu, CuCrZr, and Cu/Be
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.
This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.
Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.
2005-05-01
We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.
A new approach to preparing Bi2Zr2O7 photocatalysts for dye degradation
NASA Astrophysics Data System (ADS)
Luo, Yijia; Cao, Liyun; Huang, Jianfeng; Feng, Liangliang; Yao, Chunyan
2018-01-01
A new synthetic route is presented to prepared pure Bi2Zr2O7 material, in which a NaNO3/KNO3 molten salt is used to obtain the resulting Bi2Zr2O7 at a relatively low temperature of 400 °C under atmospheric pressure. Powder x-ray diffraction confirmed the structure type and purity of the as-prepared sample, and further revealed that a single-source Bi(OH)3 · Zr(OH)4 · nH2O complex precursor plays a crucial role to synthesize Bi2Zr2O7 nanocrystals. Scanning electron microscope and transmission electron microscope show the morphologies and sizes of Bi2Zr2O7 crystal in detail, and UV-vis diffuse reflectance measurements evidenced the wide light absorption range. Furthermore, the as-synthesized Bi2Zr2O7 with smaller particle size and larger specific surface area exhibit superior photocatalytic activities compared with the sample obtained without adding molten salts.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemonidou, Angeliki A.; Vagia, Ekaterini C.; Lercher, Johannes A.
Reforming of acetic acid was investigated on Rh supported on CeO2-ZrO2 modified with 3 wt % La. The active catalyst converted acetic acid to H-2-rich gas and hardly formed coke. The low rate of coke formation is concluded to be related to the presence of redox-active oxygen limiting the concentration of coke precursors. Temperature-programmed O-18(2)) isotope exchange measurements showed that the La2O3 and Rh enhanced the mobility of lattice oxygen compared with that of the parent CeO2-ZrO2. Ketonization and decarboxylation of acetic acid are the dominating reactions over the latter up to 600 degrees C, whereas above 600 degrees C,more » steam reforming and water gas shift also contribute. Over 0.5 wt % Rh on La2O3/CeO2-ZrO2, reforming and water gas shift reactions dominate, even below 300 degrees C, producing mostly H-2 and CO2. Using isotope labeling, it is shown that acetic acid adsorbs dissociatively on Rh, forming acetates, which sequentially decarboxylate and form surface methyl groups. The latter are in turn converted to CO, CO2, and H-2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, J., E-mail: cao_jian@hit.edu.cn; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Song, X.G., E-mail: song_xiaoguohit@yahoo.com.cn
Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and β-Ti were formed in brazedmore » joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + β-Ti + Ti{sub 5}Si{sub 3}/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + β + Ti{sub 5}Si{sub 3}/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.« less
Ion irradiation of ternary pyrochlore oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, G. R.; Smith, K. L.; Blackford, M. G.
2009-05-01
Polycrystalline synthetic samples of Y{sub 2}Ti{sub 2-x}Sn{sub x}O{sub 7} with x = 0.4, 0.8, 1.2, and 1.6, together with Nd{sub 2}Zr{sub 2}O{sub 7}, Nd{sub 2}Zr{sub 1.2}Ti{sub 0.8}O{sub 7}, and La{sub 1.6}Y{sub 0.4}Hf{sub 2}O{sub 7}, were irradiated in situ in the intermediate voltage electron microscope (IVEM)-Tandem Facility at Argonne National Laboratory using 1.0 MeV Kr ions at temperatures of 50 to 650 K. Determination of the critical amorphization fluence (F{sub c}) as a function of temperature has revealed a dramatic increase in radiation tolerance with increasing Sn content on the pyrochlore B site. Nonlinear least-squares analysis of the fluence-temperature curves gavemore » critical temperatures (T{sub c}) of 666 {+-} 4, 335 {+-} 12, and 251 {+-} 51 K for the Y{sub 2}Ti{sub 2-x}Sn{sub x}O{sub 7} samples with x = 0.4, 0.8, and 1.2, respectively. The sample with x = 1.6 appears to disorder to a defect fluorite structure at a fluence below 1.25 x 10{sup 15} ions cm{sup -2} and remains crystalline to 5 x 10{sup 15} ions cm{sup -2} at 50 K. Additionally, the critical fluence-temperature response curves were determined for Nd{sub 2}Zr{sub 1.2}Ti{sub 0.8}O{sub 7} and La{sub 1.6}Y{sub 0.4}Hf{sub 2}O{sub 7}, and we obtained T{sub c} values of 685 {+-} 53 K and 473 {+-} 52 K, respectively, for these pyrochlores. Nd{sub 2}Zr{sub 2}O{sub 7} did not become amorphous after a fluence of 2.5 x 10{sup 15} ions cm{sup -2} at 50 K, but there is evidence that it may amorphize at a higher fluence, with an estimated T{sub c} of 135 K. The observed T{sub c} results are discussed with respect to the predicted T{sub c} values based upon a previously published empirical model (Lumpkin, G. R.; Pruneda, M.; Rios, S.; Smith, K. L.; Trachenko, K.; Whittle, K. R.; Zaluzec, N. J. J. Solid State Chem. 2007, 180, 1512). In the Y{sub 2}Ti{sub 2-x}Sn{sub x}O{sub 7} pyrochlores, T{sub c} appears to be linear with respect to composition, and is linear with respect to r{sub A}/r{sub B} and x(48f) for all samples investigated herein.« less
Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon
NASA Technical Reports Server (NTRS)
Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.
1991-01-01
SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.
NASA Astrophysics Data System (ADS)
Miao, J.; Yuan, J.; Wu, H.; Yang, S. B.; Xu, B.; Cao, L. X.; Zhao, B. R.
2007-01-01
Epitaxial Ba0.15Zr0.85TiO3 (BZT) ferroelectric thin films with (001), (011), and (111) orientations were, respectively, grown on La0.67Sr0.33MnO3 (LSMO) buffered LaAlO3 substrates by pulsed laser deposition method. The dc electric-field dependence of permittivity and dielectric loss of (001)-, (011)-, and (111)-oriented BZT/LSMO heterostructures obeys the Johnson formula, and the ac electric-field dependence of that obeys the Rayleigh law under the subswitching field region. The anisotropic dielectric properties are attributed to the higher mobility of the charge carriers, the concentration of mobile interfacial domain walls, and boundaries in the (111)-oriental films than in the (110)- and (100)-oriented films.
Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates
NASA Astrophysics Data System (ADS)
Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.
2014-09-01
Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
Nazir, Safdar; Cheng, Jianli; Yang, Kesong
2016-01-13
We studied strain-induced polarization and resulting conductivity in the nonpolar/nonpolar CaZrO3/SrTiO3 (CZO/STO) heterostructure (HS) system by means of first-principles electronic structure calculations. By modeling four types of CZO/STO HS-based slab systems, i.e., TiO2/CaO and SrO/ZrO2 interface models with CaO and ZrO2 surface terminations in each model separately, we found that the lattice-mismatch-induced compressive strain leads to a strong polarization in the CZO film and that as the CZO film thickness increases there exists an insulator-to-metal transition. The polarization direction and critical thickness of the CZO film for forming interfacial metallic states depend on the surface termination of CZO film in both types of interface models. In the TiO2/CaO and SrO/ZrO2 interface models with CaO surface termination, the strong polarization drives the charge transfer from the CZO film to the first few TiO2 layers in the STO substrate, leading to the formation of two-dimensional electron gas (2DEG) at the interface. In the HS models with ZrO2 surface termination, two polarization domains with opposite directions are in the CZO film, which results in the charge transfer from the middle CZO layer to the interface and surface, respectively, leading to the coexistence of the 2DEG on the interface and the two-dimensional hole gas (2DHG) at the middle CZO layer. These findings open a new avenue to achieve 2DEG (2DHG) in perovskite-based HS systems via polarization discontinuity.
Controlling the Mechanical Properties of Bulk Metallic Glasses by Superficial Dealloyed Layer
Wang, Chaoyang; Li, Man; Zhu, Mo; Wang, Han; Qin, Chunling; Zhao, Weimin
2017-01-01
Cu50Zr45Al5 bulk metallic glass (BMG) presents high fracture strength. For improving its plasticity and controlling its mechanical properties, superficial dealloying of the BMG was performed. A composite structure containing an inner rod-shaped Cu-Zr-Al amorphous core with high strength and an outer dealloyed nanoporous layer with high energy absorption capacity was obtained. The microstructures and mechanical properties of the composites were studied in detail. It was found, for the first time, that the mechanical properties of Cu50Zr45Al5 BMG can be controlled by adjusting the width of the buffer deformation zone in the dealloyed layer, which can be easily manipulated with different dealloying times. As a result, the compressive strength, compressive strain, and energy absorption capacity of the BMGs can be effectively modulated from 0.9 to 1.5 GPa, from 2.9% to 4.7%, and from 29.1 to 40.2 MJ/m3, respectively. The paper may open a door for developing important engineering materials with regulable and comprehensive performances. PMID:29077072
Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin
2018-05-01
Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.
NASA Astrophysics Data System (ADS)
Zhang, L. C.; Yang, J. F.; Gao, Y. X.; Wang, X. P.; Fang, Q. F.; Chen, C. H.
2017-07-01
The cubic Ca/Ta-substituted Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 (LLCZTO) electrolytes were synthesized at 800 °C with Li3BO3 as additives. The optimal amount of Li3BO3 and its influences on the microstructure, crystal structures, Li+ conductivity and the stability of the Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 were studied by SEM, XRD and EIS. Among all the samples, when the molar ratio of Li3BO3 to the Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 is 4:5, the highest Li+ conductivity of 1.33 × 10-4 S cm-1 at 30 °C is obtained. When the LLCZTO samples are exposed in air, the Li+ conductivity is deteriorated possibly owing to the side reactions between the LLCZTO and the H2O or CO2 in the air. The Li3BO3 addition can alleviate such deterioration of the Li+ conductivity.
Origin of Permian OIB-like basalts in NW Thailand and implication on the Paleotethyan Ocean
NASA Astrophysics Data System (ADS)
Wang, Yuejun; He, Huiying; Zhang, Yuzhi; Srithai, Boontarika; Feng, Qinglai; Cawood, Peter A.; Fan, Weiming
2017-03-01
The basaltic rocks in NW Thailand belong to part of giant Southeast Asian igneous zone that delineates the extension of the Paleotethyan Ocean from SW China into NW Thailand. The Chiang Mai basaltic samples from the Chiang Dao, Fang, Lamphun and Ban Sahakorn sections are divisible into two groups of high-iron basalt. Group 1 has SiO2 of 38.30-49.18 wt.%, FeOt of 13.09-25.37 wt.%, MgO of 8.38-1.60 wt.%, TiO2 of 3.92-6.30 wt.%, which is rarely observed in nature. Group 2 shows SiO2 = 44.71-49.21 wt.%, FeOt = 10.88-14.34 wt.%, MgO = 5.24-16.11 wt.%, TiO2 = 2.22-3.07 wt.% and mg# = 44-70. Olivine and pyroxene are responsible for the fractionation of the Group 2 magma whereas low oxygen fugacity during the late-stage differentiation of the Group 1 magma prolonged fractionation of ilmenite and magnetite. The onset of ilmenite and magnetite fractionations controls the distinct differentiation commencing at MgO = 7 wt.%. Both groups show similar REE and primitive mantle-normalized patterns with insignificant Eu, Nb-Ta and Zr-Hf anomalies. They have similar Nd isotopic compositions with εNd (t) values ranging from + 2.8 to + 3.7 and similar Nb/La, Nb/U, Th/La, Zr/Nb, Th/Ta, La/Yb, Nb/Th, Nb/Y and Zr/Y, resembling those of OIB-like rocks. The representative basaltic sample yields the argon plateau age of 282.3 ± 1.4 Ma, suggestive of Early Permian origin. Our data argue for Group 1 and Group 2 are coeval in the intra-oceanic seamount setting within the Paleotethyan Ocean, which at least continued till 283 Ma. These data, along with other observations, suggest that the Inthanon zone defines the main Paleotethyan suture zone, which northerly links with the Changning-Menglian suture zone in SW China.
NASA Astrophysics Data System (ADS)
Loiseau, P.; Caurant, D.
2010-07-01
Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.
NASA Astrophysics Data System (ADS)
Okamoto, Shoji; Sankara Rama Krishnan, P. S.; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi
2017-10-01
In-plane orientation-controlled Pb(Zr x ,Ti1- x )O3 (PZT) films with a thickness of approximately 2 µm and a Zr/(Zr + Ti) ratio of 0.39-0.65 were grown on (100) Si substrates by pulsed metal-organic chemical vapor deposition (MOCVD). In-plane-oriented epitaxial PZT films and in-plane random fiber-textured PZT films with {100} out-of-plane orientation were grown on (100)c SrRuO3//(100)c LaNiO3//(100) CeO2//(100) YSZ//(100) Si and (100)c SrRuO3/(100)c LaNiO3/(111) Pt/TiO2/SiO2/(100) Si substrates, respectively. The effects of Zr/(Zr + Ti) ratio and in-plane orientation on the crystal structure, dielectric, ferroelectric, and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that the epitaxial PZT films had a higher volume fraction of (100) orientation than the fiber-textured PZT films in the tetragonal Zr/(Zr + Ti) ratio region. A large difference was not detected between the epitaxial films and the fiber-textured films for Zr/(Zr + Ti) ratio dependence of the dielectric constant, and remanent polarization. However, in the rhombohedral phase region [Zr/(Zr + Ti) = 0.65], coercive field was found to be 1.5-fold different between the epitaxial and fiber-textured PZT films. The maximum field-induced strains measured at 0-100 kV/cm by scanning atomic force microscopy were obtained at approximately Zr/(Zr + Ti) = 0.50 and were about 0.5 and 0.3% for the epitaxial and fiber-textured PZT films, respectively.
NASA Astrophysics Data System (ADS)
Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit
2018-04-01
Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.
Present status and strategy of reel-to-reel TFA-MOD process for coated conductors
NASA Astrophysics Data System (ADS)
Izumi, T.; Yoshizumi, M.; Miura, M.; Nakaoka, K.; Ichikawa, Y.; Sutoh, Y.; Miyata, S.; Fukushima, H.; Yamada, Y.; Shiohara, Y.
2009-10-01
On the research and development of a reel-to-reel TFA-MOD (Metal Organic Deposition using Trifluoro-acetates) process, a present status is reviewed and its future strategy is addressed. As a base of the study, the 90 m long tape with uniform I c distribution of the 300 A/cm-width level was obtained on the CeO 2 buffered IBAD-Gd 2Zr 2O 7/Hastelloy C276 substrate. The tape has the 56 m region with the end-to-end I c value of 250 A, which corresponds to maximum product of I c × L of 14,000 Am. Based on the results, several directions on R&D have been studied such as “higher I c”, “higher I c- B”, “higher production rate both in coating/calcinations and crystallization steps” and lower cost buffer/substrate”. Then, an extremely high I c value of 735 A/cm-width was achieved in a short tape by the compositional control (e.g. Ba-deficient), in the starting solutions. On the efforts for achieving higher I c- B properties, high I c values of 115 and 35 A/cm-width under the magnetic fields of 1 and 3 T were obtained by the RE mixture of Y and Gd in REBCO, addition of Zr and a growth rate control process. On the other hand, the production rate for the coating/calcinations process was improved by development of new starting solutions, which uses F-free Y salt instead of TFA salt of Y. The high J c value of 1.9 MA/cm 2 was confirmed using the precursor films fabricated at a high traveling rate of 10 m/h. Concerning a higher rate in the crystallization step, the multi-turning system with a vertical gas flow system was developed. The validity of the concept was confirmed using 2-turn parts of the furnace. The high I c value of 250 A/cm-width was realized in the 5 m tape crystallized with a traveling rate of 3 m/h, which is equivalent to 15 m/h for usage of entire area of the furnace of 10-turns. Furthermore, in order to achieve the lower cost, the architecture of the coated conductor with a low cost buffer/substrate system has been developed. An IBAD buffered substrate using IBAD-MgO layer (CeO 2/LMO/IBAD-MgO/Hastelloy C276) was developed and a high production rate of 24 m/h was realized for IBAD-MgO layer using a small ion gun system with the area of 6 × 22 cm 2. The grain texturing of the substrate was reached the Δ ϕ value of 4° in the CeO 2 layer. This substrate was applied to the above mentioned multi-turning crystallization furnace for TFA-MOD process. Then, a 5 m long tape with 260 A/cm-width (@77 K. s.f.) was achieved. According to the TFA-MOD process in the above achievements, the prospects of each issue for the future stage were independently confirmed. Consequently, R&D combining the above-mentioned achievements for longer tapes are expected in the next stage.
Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I
2018-03-28
Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 2 ∙2H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 2 ∙2H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 2 ∙2H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8 → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8 → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8 → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6 - -4.5∙10 -6 K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6 K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 2 ∙2H 2 O within 500-800 K.
Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission
NASA Astrophysics Data System (ADS)
Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder
2015-04-01
This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.
NASA Astrophysics Data System (ADS)
Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min
2007-11-01
Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.
Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping
2017-03-09
Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laminate articles on biaxially textured metal substrates
Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit
2003-12-16
A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0
Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications
NASA Astrophysics Data System (ADS)
Fuierer, Paul Anton
The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the ferroelectric "easy" direction, indicating that the polar axis lies in the plane of the plate-like grains. Hot-forged samples were poled at 40 to 50 KV/cm at 200^circC. Several compounds in the La_2Ti_2O _7-Sr_2Nb _2O_7-Sr _2Ta_2O_7 ternary system were shown to be piezoelectric. From appropriately oriented cuts, the dielectric, elastic, and piezoelectric coefficients were determined by the resonance method. Relative to commercial piezoelectric ceramics such as Pb(ZrTi)O_3, hot-forged PLS ceramics were found to have high frequency constants, low compliance, low electromechanical coupling, low piezoelectric coefficients, and high mechanical quality factors. For Sr_2(Nb_{0.5 }Ta_{0.5})_2 O_7, N_{32 } = 2216 Hz-m, s_{32} = 8.37 times 10^ {-12} m^2/N, k _{32} = 3.60%, d _{32} = 2.40 pC/N, and Q _{rm m} = 5290. This material was also shown to resist depoling when exposed to temperatures as high as 650^circC. Hot-forged PLS compounds offer a new family of ferroelectric ceramics that may prove to be useful as high temperature materials for electronic transducers or filters.
Hybrid ZnO/phthalocyanine photovoltaic device with highly resistive ZnO intermediate layer.
Izaki, Masanobu; Chizaki, Ryo; Saito, Takamasa; Murata, Kazufumi; Sasano, Junji; Shinagawa, Tsutomu
2013-10-09
We report a hybrid photovoltaic device composed of a 3.3 eV bandgap zinc oxide (ZnO) semiconductor and metal-free phthalocyanine layers and the effects of the insertion of the highly resistive ZnO buffer layer on the electrical characteristics of the rectification feature and photovoltaic performance. The hybrid photovoltaic devices have been constructed by electrodeposition of the 300 nm thick ZnO layer in a simple zinc nitrate aqueous solution followed by vacuum evaporation of 50-400 nm thick-phthalocyanine layers. The ZnO layers with the resistivity of 1.8 × 10(3) and 1 × 10(8) Ω cm were prepared by adjusting the cathodic current density and were installed into the hybrid photovoltaic devices as the n-type and buffer layer, respectively. The phthalocyanine layers with the characteristic monoclinic lattice showed a characteristic optical absorption feature regardless of the thickness, but the preferred orientation changed depending on the thickness. The ZnO buffer-free hybrid 50 nm thick phthalocyanine/n-ZnO photovoltaic device showed a rectification feature but possessed a poor photovoltaic performance with a conversion efficiency of 7.5 × 10(-7) %, open circuit voltage of 0.041 V, and short circuit current density of 8.0 × 10(-5) mA cm(-2). The insertion of the ZnO buffer layer between the n-ZnO and phthalocyanine layers induced improvements in both the rectification feature and photovoltaic performance. The excellent rectification feature with a rectification ratio of 3188 and ideally factor of 1.29 was obtained for the hybrid 200 nm thick phthalocyanine/ZnO buffer/n-ZnO photovoltaic device, and the hybrid photovoltaic device possessed an improved photovoltaic performance with the conversion efficiency of 0.0016%, open circuit voltage of 0.31 V, and short circuit current density of 0.015 mA cm(-2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, G., E-mail: manuel.herrera@enp.unam.mx; Departamento de Química Inorgánica, Universidad de Valencia, 46100 Burjasot, Valencia; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D. F.
2014-03-01
The layered-structural ceramics, such as lanthanum titanate (La{sub 2}Ti{sub 2}O{sub 7}), have been known for their good temperature and low dielectric loss at microwave frequencies that make them good candidate materials for high frequency applications. However, few studies have been conducted on the synthesis optimization by sol gel reaction, in particular by acrylamide polymerization route. The interest in La{sub 2}Ti{sub 2}O{sub 7} ceramic has been greatly increased recently due to the effect of oriented grains. This anisotropy of the microstructure leads to anisotropy in dielectric, electrical and mechanical properties. In this study, grain oriented lanthanum titanate was produced by themore » sol–gel acrylamide polymerization route. The characterizations of the samples were achieved by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). X-ray diffraction indicates that the formation of monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} nanocrystals is a necessary first step to obtain orthorhombic LaTiO{sub 3} nanocomposites (with space group Pbnm). In this work we identified that the monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} with space group P2{sub 1} transforms its structure into one with the orthorhombic space group Cmc2{sub 1} at approximately 1073 K. The microstructure associated consisted of flaky monoclinic La{sub 2}Ti{sub 2}O{sub 7} nanocomposites in comparison with round-shaped LaTiO{sub 3} nanocomposites. - Highlights: • The flaky-like La{sub 2}Ti{sub 2}O{sub 7} compound was synthesized by sol–gel acrylamide route. • Simultaneous monitoring of the DTA and XRD with temperature was performed. • Phase transformation characterization of La{sub 2}Ti{sub 2}O{sub 7} has been carried out. • The variation of the La{sub 2}Ti{sub 2}O{sub 7} and LaTiO{sub 3} grain morphology has been compared.« less
Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...
2015-09-21
Ruddlesden-Popper structured oxides, general form A n+1B nO 3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2), and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO 2 of 10 -1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, andmore » were found to have increased total oxygen vacancy concentration in the order La 0.3Sr 2.7CoFeO 7-δ > LaSr 3Co 1.5Fe 1.5O 10-δ > LaSrCo 0.5Fe 0.5O 4-δ, following the trend predicted for charge compensation upon increasing Sr 2+/La 3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less
Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi
2012-07-28
The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).
2017-01-01
Nanosheet Ca2Nb3O10 (CNOns) layers were deposited on ultralow expansion glass substrates by the Langmuir–Blodgett method to obtain preferential (001)-oriented growth of Pb(Zr0.52Ti0.48)O3 (PZT) thin films using pulsed laser deposition (PLD) to enhance the ferroelectric and piezoelectric properties of the films. The PLD deposition temperature and repetition frequency used for the deposition of the PZT films were found to play a key role in the precise control of the microstructure and therefore of the ferroelectric and piezoelectric properties. A film deposited at a high repetition frequency has a columnar grain structure, which helps to increase the longitudinal piezoelectric coefficient (d33f). An enhanced d33f value of 356 pm V–1 was obtained for 2-μm-thick PZT films on CNOns/glass substrates. This high value is ascribed to the preferential alignment of the crystalline [001] axis normal to the substrate surface and the open columnar structure. Large displacement actuators based on such PZT films grown on CNOns/glass substrates should be useful in smart X-ray optics applications. PMID:28952313
NASA Astrophysics Data System (ADS)
Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa
2015-08-01
Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.
Effect of Homo-buffer Layers on the Properties of Sputtering Deposited Ga2O3 Films
NASA Astrophysics Data System (ADS)
Huang, Jian; Li, Bing; Ma, Yuncheng; Tang, Ke; Huang, Haofei; Hu, Yan; Zou, Tianyu; Wang, Linjun
2018-05-01
β- Ga2O3 films were grown by radio-frequency magnetron sputtering method. The influence of Ga2O3 buffer layers and annealing treatment on the structural, optical, morphological and electrical properties of Ga2O3 films was studied. The results revealed an improvement of crystalline quality and transmittance of annealed β- Ga2O3 films prepared with homo-buffer layers. Ga2O3 film UV photodetectors were fabricated with a new B and Ga co-doped ZnO films (BGZO)/Au interdigitated electrode. A good ohmic contact was formed between the film and the electrode. For the detector based on Ga2O3 films with buffer layers, a higher value of photo response and faster response times was obtained.
Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira; Shishido, Rie
2016-10-01
Ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) capacitors were fabricated with Pt, Al:ZnO (AZO), or Sn:In 2 O 3 (ITO) top electrodes. Hydrogen- or deuterium-induced degradation was investigated for the three capacitors by annealing in a 3% H 2 /balance N 2 or 3% D 2 /balance N 2 ambient environment at 200 °C and 1 torr. The remnant polarization of all capacitors decreased after annealing in both H 2 and D 2 ambient after 45 min, and the remnant polarization of the Pt/PLZT/Pt capacitor significantly decreased after 45-min annealing compared with that of the AZO/PLZT/Pt and ITO/PLZT/Pt capacitors, even though the initial remnant polarization for the Pt/PLZT/Pt capacitor was larger. Time-of-flight secondary ion mass spectrometry showed slight differences in hydrogen content for the three different capacitors after H 2 annealing. In contrast, the deuterium content of the Pt/PLZT/Pt and AZO/PLZT/Pt or ITO/PLZT/PT capacitors was significantly different after deuterium annealing. Deuterium depth profiles for the Pt/PLZT/Pt capacitor after annealing showed that deuterium conformally exists in the PLZT layer of the Pt/PLZT/Pt capacitor, and deuterium accumulation under the Pt bottom electrode was also observed. This result suggests that diffusion of deuterium in Pt was much higher than that in PLZT. AZO and ITO top electrodes could act as a hydrogen barrier layer for ferroelectric films.
NASA Astrophysics Data System (ADS)
Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.
2018-05-01
Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.
2016-01-01
Li-oxide garnets such as Li7La3Zr2O12 (LLZO) are among the most promising candidates for solid-state electrolytes to be used in next-generation Li-ion batteries. The garnet-structured cubic modification of LLZO, showing space group Ia-3d, has to be stabilized with supervalent cations. LLZO stabilized with Ga3+ shows superior properties compared to LLZO stabilized with similar cations; however, the reason for this behavior is still unknown. In this study, a comprehensive structural characterization of Ga-stabilized LLZO is performed by means of single-crystal X-ray diffraction. Coarse-grained samples with crystal sizes of several hundred micrometers are obtained by solid-state reaction. Single-crystal X-ray diffraction results show that Li7–3xGaxLa3Zr2O12 with x > 0.07 crystallizes in the acentric cubic space group I-43d. This is the first definite record of this cubic modification for LLZO materials and might explain the superior electrochemical performance of Ga-stabilized LLZO compared to its Al-stabilized counterpart. The phase transition seems to be caused by the site preference of Ga3+. 7Li NMR spectroscopy indicates an additional Li-ion diffusion process for LLZO with space group I-43d compared to space group Ia-3d. Despite all efforts undertaken to reveal structure–property relationships for this class of materials, this study highlights the potential for new discoveries. PMID:27019548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Han Joon; Park, Min Hyuk; Kim, Yu Jin
2014-11-10
The degradation of ferroelectric (FE) properties of atomic layer deposited Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films with increasing thickness was mitigated by inserting 1 nm-thick Al{sub 2}O{sub 3} interlayer at middle position of the thickness of the FE film. The large P{sub r} of 10 μC/cm{sup 2}, which is 11 times larger than that of single layer Hf{sub 0.5}Zr{sub 0.5}O{sub 2} film with equivalent thickness, was achieved from the films as thick as 40 nm. The Al{sub 2}O{sub 3} interlayer could interrupt the continual growth of Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films, and the resulting decrease of grain size prevented the formation of non-ferroelectricmore » monoclinic phase. The Al{sub 2}O{sub 3} interlayer also largely decreased the leakage current of the Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ki Hwan Kim; Chong Tak Lee; R. S. Fielding
2011-08-01
Candidate coating materials for re-usable metallic nuclear fuel crucibles, HfN, TiC, ZrC, and Y2O3, were plasma-sprayed onto niobium substrates. The coating microstructure and the thermal cycling behavior were characterized, and U-Zr melt interaction studies carried out. The Y2O3 coating layer had a uniform thickness and was well consolidated with a few small pores scattered throughout. While the HfN coating was not well consolidated with a considerable amount of porosity, but showed somewhat uniform thickness. Thermal cycling tests on the HfN, TiC, ZrC, and Y2O3 coatings showed good cycling characteristics with no interconnected cracks forming even after 20 cycles. Interaction studiesmore » done on the coated samples by dipping into a U-20wt.%Zr melt indicated that HfN and Y2O3 did not form significant reaction layers between the melt and the coating while the TiC and the ZrC coatings were significantly degraded. Y2O3 exhibited the most promising performance among HfN, TiC, ZrC, and Y2O3 coatings.« less
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
NASA Astrophysics Data System (ADS)
Meng, Jian-ping; Guo, Rui-rui; Li, Hu; Zhao, Lu-ming; Liu, Xiao-peng; Li, Zhou
2018-05-01
Solar selective absorbing coatings play a valuable role in photo-thermal conversion for high efficiency concentrating solar power systems (CSP). In this paper, a novel Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coating was successfully deposited by ion beam assisted deposition. The optical properties, microstructure and element distribution in depth were investigated by spectroscopic ellipsometry, UV-vis-NIR spectrophotometer, transmission electron microscope (TEM) and Auger electron spectroscopy (AES), respectively. A high absorptance of 0.953 and a low thermal emittance of 0.079 at 400 °C are obtained by the integral computation according to the whole reflectance from 300 nm to 28,800 nm. After annealing treatment at 400 °C (in vacuum) for 192 h, the deposited coating exhibits the high thermal stability. Whereas, the photothermal conversion efficiency decreases from 12.10 to 6.86 due to the emittance increase after annealing at 600 °C for 192 h. Meanwhile, the nitrogen atom in the Zr0.3Al0.7N sub-layer diffuses toward the adjacent sub-layer due to the spinodal decomposition of metastable c-ZrAlN and the phase transition from c-AlN to h-AlN, which leads to the composition of the Zr0.3Al0.7N sub-layer deviates the initial design. This phenomenon has a guide effect for the thermal-stability improvement of cermet coatings. Additionally, a serious diffusion between copper and silicon substrate also contributes to the emittance increase.
Investigation of Ce(3+) Dopant in Appropriate Hosts for Blue Green Lasers.
1986-11-25
crystal of La(A10 .8Sc 0 .2 )0 3 doped with 0.01% Ce. During one experiment a small amount of the charge was fused in an iridium crucible. The...from ordering was not observed. Similar results were achieved in Experiment #47 with (LaAlO3 ) 0 .5 (SrZrO 3 )0 5 composition. Small additions of...compositions evaluated, enlarged cubic cells could not be formed by ordering. Small additions of less than 5% of BaZrO 3 or SrZrO 3 to LaAIO 3 produced
NASA Astrophysics Data System (ADS)
Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.
2018-04-01
Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite nanoparticles are therefore very promising elements to further advance the colloidal solution approach in the implementation of low cost and high performance coated conductors for high magnetic field applications.
Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt
NASA Astrophysics Data System (ADS)
Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake
2005-04-01
A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.
NASA Astrophysics Data System (ADS)
Belenchuk, A.; Shapoval, O.; Roddatis, V.; Bruchmann-Bamberg, V.; Samwer, K.; Moshnyaga, V.
2016-12-01
We report on the interface engineering in correlated manganite heterostructures by octahedral decoupling using embedded stacks of atomic layers that form the Ruddlesden-Popper structure. A room temperature magnetic decoupling was achieved through deposition of a (SrO)2-TiO2-(SrO)2 sequence of atomic layers at the interface between La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.9Ru0.1O3 films. Moreover, the narrowing of the interfacial dead layer in ultrathin La0.7Sr0.3MnO3 films was demonstrated by insertion of a single (SrO)2 rock-salt layer at the interface with the SrTiO3(100) substrate. The obtained results are discussed based on the symmetry breaking and disconnection of the MnO6 octahedra network at the interface that may lead to the improved performance of all-oxide magnetic tunnel junctions. We suggest that octahedral decoupling realized by formation of Ruddlesden-Popper interfaces is an effective structural mechanism to control functionalities of correlated perovskite heterostructures.
Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 • 3H2O, a New Mineral of the Eudialyte Group
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.
2017-12-01
A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.
Electronic structure of layered ferroelectric high-k titanate La2Ti2O7
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.
2009-02-01
The electronic structure of binary titanate La2Ti2O7 has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La2Ti2O7 are determined as αTi = 872.4 and αO = 1042.3 eV. Chemical bonding effects have been discussed with binding energy (BE) differences ΔTi = (BE O 1s - BE Ti 2p3/2) = 71.6 eV and ΔLa = (BE La 3d5/2 - BE O 1s) = 304.7 eV as key parameters in comparison with those in several titanium- and lanthanum-bearing oxides.
Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets.
Nakazawa, Hikaru; Seta, Yasuko; Hirose, Tatsuya; Masuda, Yoshitake; Umetsu, Mitsuo
2018-01-01
Nanosheets of SnO2 which an n-type semiconductor with a rutile-type crystalline structure are predominantly used as gas sensors. SnO2 nanosheets have a tetragonal crystal structure where growth along the c-axis is suppressed to form a sheet. The major exposed facets of SnO2 nanosheets have {110}, {101} and {211} crystal planes along the a-axis, with the reduced {110} surface having a particularly high surface energy. Identifying peptides that bind to specific crystal planes by using peptide phage-display approach will increase the potential applications of metal oxide nanomaterials by fusing proteins with desirable active sites to peptides that adsorb at high density on the major exposed crystal plane of nanosheets. It may be possible to construct highly sensitive biosensors. The main objective of the present study is to identify peptides that adsorb preferentially to a SnO2 nanosheet by using peptide-phage display approach. Four milligrams of SnO2 nanosheet were mixed with 1011 plaque-forming units of Ph.D.-12 Phage Display Peptide Library. Phage-bound nanosheet particles were washed 10 times with 1 mL of phosphatebuffered saline containing 0.5% Tween 20. Phages bound to the nanosheet were eluted with three different buffers: (1) high-salt buffer containing 2 M NaCl (pH 7.5); (2) acidic buffer containing 200 mM Gly-HCl (pH 2.2); and (3) high-phosphate-ion buffer containing 500 mM NaH2PO4 (pH 7.5). The eluted phages were subjected to four or five rounds of biopanning. At each round, individual plaques were picked from the plates, and the amino acid sequences of the peptides were identified by DNA sequencing. The identified SnO2-binding peptides labeled with fluorescein isothiocyanate were synthesized. Adsorption isotherms were constructed at peptide concentrations ranging from 0.25 to 2.0 µM with 4mg of nanomaterials. We were determined the sequences of 11 clones with the high-salt buffer, 7 with the high-phosphateion buffers, and 6 with the acidic buffer and three peptides (SnO2BPn1, 2, and 3), two peptides (SnO2BPa1 and SnO2BPa2), and one peptide (SnO2BPp1) concentrated under each condition were selected respectively. All six selected peptides contained at least one histidine residue. In addition, the His-Asn-Leu (HNL) sequence was found in two of the peptides (SnO2BPa1 and SnO2BPa2). We constructed adsorption isotherms for the six selected peptides using 4mg of nanosheets. All six peptides were well adsorbed on the SnO2 nanosheet. The adsorption isotherms for SnO2 material with different structure revealed that SnO2BPn1, -2, and -3, and SnO2BPp1, preferentially bound to the spherical SnO2 nanoparticles. SnO2BPa2 preferentially bound to the SnO2 nanosheet, and SnO2BPa1 bound equally to both materials. This result suggested that SnO2BPa2 bound to a specific crystal plane of the nanosheet. The major exposed facet of the SnO2 crystal was the {110} plane, suggesting that SnO2BPa2 likely adsorbed on the {110} plane. SnO2BPn1, SnO2BPn2, SnO2BPn3, SnO2BPa1, and SnO2BPp1 also bound to the other metal oxides, in particular to ZrO2. At pH 7.5, peptides with a negative charge at pH 7.5 (pI 8.5-12) can bind to ZrO2 and SnO2, if the binding is mediated by electrostatic interactions. Thus, it is likely that these five peptides bind to metal oxides via electrostatic interactions. In contrast, SnO2BPa2 had a structurally specific affinity, binding more with the SnO2 nanosheet than with the spherical SnO2 nanoparticles or other metal oxides. We identified six peptides that adsorbed on a SnO2 nanosheet. Five of the selected peptides bound preferentially to spherical SnO2 nanoparticles rather than to the SnO2 nanosheet. Whereas, SnO2BPa2 exhibited specifically binding to the SnO2 nanosheet. Our results suggest that crystal plane recognition and material recognition by these peptides are mediated via different, independent mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Santosh K.; Misra, D.
2011-01-31
Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less
Oxygen Effect on the Properties of Epitaxial (110) La0.7Sr0.3MnO3 by Defect Engineering.
Rasic, Daniel; Sachan, Ritesh; Temizer, Namik K; Prater, John; Narayan, Jagdish
2018-06-20
The multiferroic properties of mixed valence perovskites such as lanthanum strontium manganese oxide (La 0.7 Sr 0.3 MnO 3 ) (LSMO) demonstrate a unique dependence on oxygen concentration, thickness, strain, and orientation. To better understand the role of each variable, a systematic study has been performed. In this study, epitaxial growth of LSMO (110) thin films with thicknesses ∼15 nm are reported on epitaxial magnesium oxide (111) buffered Al 2 O 3 (0001) substrates. Four LSMO films with changing oxygen concentration have been investigated. The oxygen content in the films was controlled by varying the oxygen partial pressure from 1 × 10 -4 to 1 × 10 -1 Torr during deposition and subsequent cooldown. X-ray diffraction established the out-of-plane and in-plane plane matching to be (111) MgO ∥ (0001) Al 2 O 3 and ⟨11̅0⟩ MgO ∥ ⟨101̅0⟩ Al 2 O 3 for the buffer layer with the substrate, and an out-of-plane lattice matching of (110) LSMO ∥ (111) MgO for the LSMO layer. For the case of the LSMO growth on MgO, a novel growth mode has been demonstrated, showing that three in-plane matching variants are present: (i) ⟨11̅0⟩ LSMO ∥ ⟨11̅0⟩ MgO , (ii) ⟨11̅0⟩ LSMO ∥ ⟨101̅⟩ MgO , and (iii) ⟨11̅0⟩ LSMO ∥ ⟨01̅1⟩ MgO . The atomic resolution scanning transmission electron microscopy (STEM) images were taken of the interfaces that showed a thin, ∼2 monolayer intermixed phase while high-angle annular dark field (HAADF) cross-section images revealed 4/5 plane matching between the film and the buffer and similar domain sizes between different samples. Magnetic properties were measured for all films and the gradual decrease in saturation magnetization is reported with decreasing oxygen partial pressure during growth. A systematic increase in the interplanar spacing was observed by X-ray diffraction of the films with lower oxygen concentration, indicating the decrease in the lattice constant in the plane due to the point defects. Samples demonstrated an insulating behavior for samples grown under low oxygen partial pressure and semiconducting behavior for the highest oxygen partial pressures. Magnetotransport measurements showed ∼36.2% decrease in electrical resistivity with an applied magnetic field of 10 T at 50 K and ∼1.3% at room temperature for the highly oxygenated sample.
Thermophysical properties of plasma sprayed coatings
NASA Technical Reports Server (NTRS)
Wilkes, K. E.; Lagedrost, J. F.
1973-01-01
Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Seokki; Choi, Moonseok; Kim, Dohyung
2015-01-12
We deposited a metal oxide buffer layer before atomic layer deposition (ALD) of Al{sub 2}O{sub 3} onto exfoliated molybdenum disulfide (MoS{sub 2}) in order to accomplish enhanced integration. We demonstrate that even at a high temperature, functionalization of MoS{sub 2} by means of a metal oxide buffer layer can effectively provide nucleation sites for ALD precursors, enabling much better surface coverage of Al{sub 2}O{sub 3}. It is shown that using a metal oxide buffer layer not only allows high temperature ALD process, resulting in highly improved quality of Al{sub 2}O{sub 3}/MoS{sub 2} interface, but also leaves MoS{sub 2} intact.
Uranium luminescence in La2 Zr2 O7 : effect of concentration and annealing temperature.
Mohapatra, M; Rajeswari, B; Hon, N S; Kadam, R M
2016-12-01
The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La 2 Zr 2 O 7 = LZO), prepared by a low-temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO 2 2+ ) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO 6 6- ). The uranate ions thus formed replace the six-coordinated 'Zr' atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)
NASA Technical Reports Server (NTRS)
Copland, Evan
2004-01-01
In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.
Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; ...
2015-09-30
In this study, titanium, tantalum-substituted Li 7La 3Z r2-xA xO 12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La (2/3)-xLi 3xTi 1-yCr yO 3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phasemore » with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li 7La 3Zr 1.4Ti 0.6O 12), Ta-LLZO (Li 6.03La 3Zr 1.533Ta 0.46O 12), and Cr-LLTO (La (2/3)-xLi 3xTi 0.9Cr 0.1O 3) at room temperature were found to be 5.21 × 10 –6, 1.01 ×10 –6, and 1.2 × 10 –4 S cm –1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti 0.6-LLZO), 0.54 eV (Ta 0.5-LLZO), and 0.20 eV (Cr 0.1-LLTO).« less
NASA Astrophysics Data System (ADS)
Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.
2015-12-01
Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.
NASA Astrophysics Data System (ADS)
Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.
2017-04-01
Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.
Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells
Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...
2015-11-03
The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less
Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers
NASA Astrophysics Data System (ADS)
Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang
2017-04-01
GaN-based metal-oxide-semiconductor capacitors with ZrO2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10-9 A/cm2 at 1 V was obtained when O3 was used for the growth of ZrO2. Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.
Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly
Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin
2012-01-01
To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551
Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.
Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin
2012-01-01
To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Bao; Liu, Wen-Jun; Wei, Lei
Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2}more » stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.« less
NASA Astrophysics Data System (ADS)
Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano
2017-06-01
The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.
High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.
2008-01-01
Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.
NASA Astrophysics Data System (ADS)
Kalgin, A. V.; Gridnev, S. A.; Gribe, Z. H.
2014-07-01
The two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 magnetoelectric composites have been prepared by the deposition of ferromagnetic layers of different thicknesses from a thoroughly mixed Tb0.12Dy0.2Fe0.68 ferromagnetic powder and an epoxy glue on preliminarily polarized PbZr0.53Ti0.47O3 piezoelectric layers. The dependences of the inverse magnetoelectric effect on the frequency and strength of an electric field, the strength of a constant magnetic field, the thickness of a ferromagnetic layer, the average size of Tb0.12Dy0.2Fe0.68 grains in the ferromagnetic layer, and the temperature have been determined. Conditions for the maximum magnetoelectric response have been established.
Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun
2014-05-28
We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.
Cation Valence Control in La0.7Sr0.3Co0.5Mn0.5O3 Thin Films and Bilayers
NASA Astrophysics Data System (ADS)
Kane, Alex; Chopdekar, Rajesh; Arenholz, Elke; Mehta, Apurva; Takamura, Yayoi
The unique interplay between spin, orbital, charge, and lattice degrees of freedom at interfaces in perovskite oxides makes them model systems to probe and exert magnetic control at the nanoscale. Previous work revealed exchange coupling in bilayers composed of a hard ferromagnetic (FM) La0.7Sr0.3CoO3 (LSCO) layer and a soft FM La0.7Sr0.3MnO3 (LSMO) layer, coincident with charge transfer across the LSCO/LSMO interface. An interfacial Co2+-rich LSCO layer produced a FM superexchange interaction with Mn4+ ions in the adjacent LSMO layer, mimicking the behavior of ordered Co2+/Mn4 + ions in the double perovskite La2CoMnO6. In an attempt to manipulate the extent of charge transfer in this system, La0.7Sr0.3Co0.5Mn0.5O3 (LSCMO)/LSMO and LSCMO/LSCO bilayers were deposited by pulsed laser deposition. Bulk magnetometry and soft x-ray magnetic spectroscopy were used to investigate the Mn/Co magnetic and electronic structures, comparing the surface/interface dominant effects vs. the film average. The LSCMO/LSMO bilayer enhanced the magnetically soft Co2+ population at the interface, while the LSCMO/LSCO bilayers strongly suppressed the Co2+ state in the LSCMO layer.
Nishiyama, T; Kaneko, K; Yamada, K; Teranishi, R; Kato, T; Hirayama, T; Tobita, H; Izumi, T; Shiohara, Y
2014-11-01
IntroductionSince the discovery of REBa2Cu3O7-y (RE: Rare Earth element, REBCO) superconductors, they have been expected as the best candidates for the power cable application due to its high critical temperature (Tc) and critical current density (Jc). Among those REBCO superconductors, GdBa2Cu3O7-y (GdBCO) have been receiving great interest because they have higher Tc and Jc than YBa2Cu3O7-y [1].GdBCO with various types of precipitates as artificial pinning centers (APCs) have been proposed to minimize the anisotropy of Jc characteristics under the magnetic field. Among those precipitates, BaHfO3 (BHO) was found most effective precipitates as APCs in GdBCO film prepared by pulsed laser deposition (PLD) method [2]. It is therefore necessary to investigate not only the morphologies but also the dispersion of BHO precipitates within the GdBCO, to understand the role of BHO for the superconducting characteristics. In this study, morphologies and dispersions of BHO precipitates were characterized three-dimensional by scanning transmission electron tomography ExperimentalBHO dispersed GdBCO films were fabricated on Hastelloy C-276TM substrates with buffer layers of CeO2/LaMnO3/MgO/ Gd2ZrO7 by PLD method.To observe microstructure of GdBCO film with BHO precipitates, cross-section TEM specimens were prepared by FIB method using Quanta 3D-200 (FEI, USA) with acceleration voltage from 2 to 30 kV. Three-dimensional information such as morphology and dispersion, of BHO precipitates were characterized by electron tomography using STEM-HAADF. Result and discussionFigure 1 shows three-dimensional reconstructed volume of BHO precipitates in GdBCO, which revealed that fine BHO precipitates have rod- and plate-like morphologies with homogeneous dispersion in GdBCO. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBCO. Anisotropy of Jc in the magnetic fields was probably enhanced by various growth directions and homogeneous dispersion of nanosized BHO within GdBCO.jmicro;63/suppl_1/i26/DFU080F1F1DFU080F1Fig. 1.Three-dimensional reconstructed volume of BHO. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.
Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E
2008-02-01
We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.
Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells
NASA Astrophysics Data System (ADS)
Xin, Peipei
Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options - CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.
NASA Astrophysics Data System (ADS)
Warner, J. D.; Meola, J. E.; Jenkins, K. A.; Bhasin, K. B.
1990-04-01
The development of high temperature superconducting YBa2Cu3O(7-x) thin films on substrates suitable for microwave applications is of great interest for evaluating their applications for space radar, communication, and sensor systems. Thin films of YBa2Cu3O(7-x) were formed on SrTiO3, ZrO2, MgO, and LaAlO3 substrates by laser ablation. The wavelength used was 248 nm from a KrF excimer laser. During deposition the films were heated to 600 C in a flowing oxygen environment, and required no post annealing. The low substrate temperature during deposition with no post annealing gave films which were smooth, which had their c-axis aligned to the substrates, and which had grains ranging from 0.2 to 0.5 microns in size. The films being c-axis aligned gave excellent surface resistance at 35 GHz which was lower than that of copper at 77 K. At present, LaAlO3 substrates with a dielectric constant of 22, appears suitable as a substrate for microwave and electronic applications. The films were characterized by resistance-temperature measurements, scanning electron microscopy, and x ray diffraction. The highest critical transition temperatures (T sub c) are above 89 K for films on SrTiO3 and LaAlO3, above 88 K for ZrO2, and above 86 K for MgO. The critical current density (J sub c) of the films on SrTiO3 is above 2 x 10(exp 6) amperes/sq cm at 77 K. The T(sub c) and J(sub c) are reported as a function of laser power, composition of the substrate, and temperature of the substrate during deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silyukov, Oleg I., E-mail: olegsilyukov@yandex.ru; Abdulaeva, Liliia D.; Burovikhina, Alena A.
2015-03-15
Layered HLnTiO{sub 4} (Ln=La, Nd) compounds belonging to Ruddlesden–Popper phases were found to form partially hydrated compounds Ln{sub 2}Ti{sub 2}O{sub 7}·xH{sub 2}O during thermal dehydration as well as defect oxides Ln{sub 2}□Ti{sub 2}O{sub 7} as final products. Further heating of metastable defect Ln{sub 2}□Ti{sub 2}O{sub 7} substances leads to the formation of pyrochlore-type oxides Ln{sub 2}Ti{sub 2}O{sub 7} {sub (p)}, with subsequent transformation under higher temperatures to stable layered 110-type perovskites Ln{sub 2}Ti{sub 2}O{sub 7}. The occurring structure transformations lead to an increase of photocatalytic activity in the order of HLnTiO{sub 4}
Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3
NASA Astrophysics Data System (ADS)
Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.
2012-05-01
The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changli; Delaunay, Jean-Jacques, E-mail: jean@mech.t.u-tokyo.ac.jp; Hisatomi, Takashi
2016-07-18
Coating n-type buffer and protective layers on Cu{sub 2}O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu{sub 2}O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu{sub 2}O are examined. It is found that a Ga{sub 2}O{sub 3} buffer layer can form a buried junction with Cu{sub 2}O, which inhibits Cu{sub 2}O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO{sub 2} thin protective layer not only improves the stability of the photocathode but alsomore » enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.« less
Site-selective doping and superconductivity in (La1-yPry)(Ba2-xLax)Cu3O7+δ
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Feffer, P. T.; Newsam, J. M.; Webb, D. J.; Klavins, P.; Jacobson, A. J.; Kapitulnik, A.
1988-10-01
Samples in the quaternary system (La1-yPry)(Ba2-xLax)Cu3O7+δ have been prepared and characterized using x-ray and neutron diffraction, thermogravimetric analysis, and transport and magnetic measurements. Pr substitutes on the oxygen-depleted La layers for y>0.0, while La substitutes on the Ba sites for x>0.0. The effect of doping on each site is inferred to be primarily local, affecting immediately adjacent Cu-O layers. The similar suppression of superconductivity that accompanies doping on each of the two distinct sites apparently correlates with the degree of oxidation of the Cu-O sheets (and not the chains), indicating that the sheets support the high temperature superconductivity. Comparison of orthorhombic and tetragonal samples with similar Ba:La ratios (and y=0) demonstrates that the orthorhombic phase yields the largest Meissner signals and highest transition temperatures in the La(Ba2-xLax)Cu3O7+δ system. The effect on superconductivity of oxygen-vacancy configuration in the Cu-O chain layers is proposed to derive, indirectly, from their influence on the Cu-O sheets. In addition, optimally superconducting La(Ba2-xLax)Cu3O7+δ samples exhibit interesting normal-state magnetic properties, with a paramagnetic susceptibility that decreases steadily with temperature between 350 K and Tc.
Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria
NASA Astrophysics Data System (ADS)
Ali, Sh.; Ntaflos, Th.
2009-04-01
Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria Sh. Ali and Th. Ntaflos Dept. of Lithospheric Research, University of Vienna, Austria Neogene volcanism in the Alpine Pannonian Transition Zone occurred in a complex geodynamic setting. It can be subdivided into a syn-extentional phase that comprises Middle Miocene dominantly potassic, intermediate to acidic volcanism and a post-extensional phase, which is characterized by eruption of alkaline basaltic magmas during the Pliocene to Quartenary in the Styrian Basin. These alkaline basaltic magmas occur as small eruptive centers dominating the geomorphology of the southeastern part of the Styrian Basin. The eruptive centers along the SE Styrian Basin from North to South are: Oberpullendorf, Pauliberg, Steinberg, Strandenerkogel, Waltrafelsen and Klöch. The suite collected volcanic rocks comprise alkali basalts, basanites and nephelinites. Pauliberg: consists of alkali basalts that exhibit a narrow range of SiO2 (44.66-47.70 wt %) and wide range of MgO (8.52-13.19-wt %), are enriched in TiO2 (3.74-4.18 wt %). They are enriched in incompatible trace elements such as Zr (317-483 ppm), Nb (72.4-138 ppm) and Y (30.7-42 ppm). They have Nb/La ratio of 1.89 (average) and Cen/Ybn=15.22-23.11. Oberpullendorf: it also consists of alkali basalts with higher SiO2 (50.39 wt %) and lower TiO2 (2.80 wt %) if compared with the Pauliberg suite. Incompatible trace elements are lower than in Pauliberg; Zr =217 ppm, Nb=49.8 ppm, Y=23.6 ppm and Nb/La=1.93. The Oberpullendorf alkalibasalts are relative to Pauliberg lavas more depleted in LREE (Cen/Ybn=12.78). Steinberg: it consists of basanites with SiO2=44.49-46.85 wt %, MgO=6.30-9.13-wt %, and TiO2 =2.09-2.26 wt %. They are enriched in incompatible trace elements such as Zr (250-333 ppm), Nb (94-130 ppm), Y (24.7-31.9 ppm) and Nb/La=1.59 (average). The Cen/Ybn ratio varies between 18.17 and 22.83 indicating relative steep REE chondrite normalized patterns. Strandenerkogel: it consists of nephelinites with narrow compositional ranges; SiO2 =40.99-42.44 wt %, MgO=6.63-6.92 wt % and TiO2=2.03-2.07 wt %. They are enriched in incompatible trace elements such as Zr (362-382 ppm), Nb (139-153 ppm) and Y (39.5-40.7 ppm). They have Nb/La ratio of 1.20 and are strongly enriched in LREE (Cen/Ybn=25.04-28.11). Waltrafelsen: there are like in Strandenerkogel and have SiO2=42.42 wt %, MgO=6.55 wt %, and TiO2=2.01 wt %. The incompatible trace elements such as Zr (362 ppm), Nb (145 ppm) and Y (38.3 ppm) are similar to that of Stranerkogel. They have Nb/La ratio of 1.27 and are strongly enriched in LREE (Cen/Ybn=24.92). Klöch: it consists of basanites with similar to Steinberg composition (SiO2=45.34-46.60 wt %, MgO=8.98-10.11 wt %, and TiO2= 2.28-2.37 wt %. Incompatible trace elements such as Zr (252-273 ppm), Nb (94.2-101 ppm) and Y (24.4-27.2 ppm) are high. They have Nb/La ratio of 1.71 (average). Their REE abundances compared to Steinberg are slightly lower (Cen/Ybn=18.19-20.17). The Nb/La ratio of all the studied rock varieties is greater than one indicates an OIB-like asthenospheric mantle source for the basaltic magma. All the studied rock varieties except alkali basalts of Pauliberg have Tbn/Ybn ratios which are comparable to those of the alkali basalts of Hawaii ((Tbn/Ybn range from 1.89 to 2.45); the Hawaiian basalts are considered to have been derived from a garnet-lherzolite mantle source (Frey et al. 1991; McKenzie & O'Nions, 1991). The chondrite normalized HREE abundances indicate the presence of garnet as a residual phase in the melt source region as can be inferred from the Dy/Yb ratio (average 2.93) which is greater than that of chondritic Dy/Yb ratio (1.57) All the studied rock varieties display alkaline affinity and negative K-anomaly. The negative K-anomaly suggests either a source character, (e.g. frozen HIMU-like veins or pockets in the depleted lherzolite)? or it is consistent with the presence of a K-bearing hydrous phase in the residual mantle. References FREY, F. A., GARCIA, M. O., WISE, W. S., KENNEDY, A., GURRIET, P. & ALBAREDE, F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkali basalts. Journal of Geophysical Research 96, 14347-75. MCKENZIE, D. P. & O'NIONS, R. K. 1991. Partial melting distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021-91.
Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Zhu, Huiqun; Li, Lekang; Li, Chunbo
2016-03-01
VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.
NASA Astrophysics Data System (ADS)
Schottenfeld, Joshua A.; Benesi, Alan J.; Stephens, Peter W.; Chen, Gugang; Eklund, Peter C.; Mallouk, Thomas E.
2005-07-01
A three-layer oxynitride Ruddlesden-Popper phase Rb 1+xCa 2Nb 3O 10-xN x· yH 2O ( x=0.7-0.8, y=0.4-0.6) was synthesized by ammonialysis at 800 °C from the Dion-Jacobson phase RbCa 2Nb 3O 10 in the presence of Rb 2CO 3. Incorporation of nitrogen into the layer perovskite structure was confirmed by XPS, combustion analysis, and MAS NMR. The water content was determined by thermal gravimetric analysis and the rubidium content by ICP-MS. A similar layered perovskite interconversion occurred in the two-layer Dion-Jacobson oxide RbLaNb 2O 7 to yield Rb 1+xLaNb 2O 7-xN x· yH 2O ( x=0.7-0.8, y=0.5-1.0). Both compounds were air- and moisture-sensitive, with rapid loss of nitrogen by oxidation and hydrolysis reactions. The structure of the three-layer oxynitride Rb 1.7Ca 2Nb 3O 9.3N 0.7·0.5H 2O was solved in space group P4 /mmm with a=3.887(3) and c=18.65(1) Å, by Rietveld refinement of X-ray powder diffraction data. The two-layer oxynitride structure Rb 1.8LaNb 2O 6.3N 0.7·1.0H 2O was also determined in space group P4 /mmm with a=3.934(2) and c=14.697(2) Å. GSAS refinement of synchrotron X-ray powder diffraction data showed that the water molecules were intercalated between a double layer of Rb+ ions in both the two- and three-layer Ruddlesden-Popper structures. Optical band gaps were measured by diffuse reflectance UV-vis for both materials. An indirect band gap of 2.51 eV and a direct band gap of 2.99 eV were found for the three-layer compound, while an indirect band gap of 2.29 eV and a direct band gap of 2.84 eV were measured for the two-layer compound. Photocatalytic activity tests of the three-layer compound under 380 nm pass filtered light with AgNO 3 as a sacrificial electron acceptor gave a quantum yield of 0.025% for oxygen evolution.
NASA Astrophysics Data System (ADS)
Norga, G. J.; Fè, Laura; Wouters, D. J.; Maes, H. E.
2000-03-01
We present a promising method for obtaining Pb(Zr, Ti)O3(PZT) layers with excellent endurance and pulse-switching properties on RuO2 electrodes using the sol-gel method. As the substrate temperature during reactive sputtering of the RuO2 bottom electrode layer is reduced, the (111) PZT texture component becomes more pronounced, an effect attributed to the change from columnar to granular RuO2 film morphology. Reducing the residual PZT (100) and (101) texture components was found to be a necessary condition for obtaining optimal pulse switching and endurance properties of the layers. Highly (111)-oriented PZT layers, obtained on RuO2 grown at 150 °C exhibit a net switched charge of >60 μC/cm2 during pulse measurement and <10% degradation after 1011 fatigue cycles.
NASA Astrophysics Data System (ADS)
Brengman, Latisha A.; Fedo, Christopher M.
2018-04-01
We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7-2.96, EuSN/EuSN∗ = 0.84-1.72, Y/Ho = 25.20-27.41, LaSN/LaSN∗ = 0.97-1.29, and Zr/Hf = 38.38-42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33-2.89, EuSN/EuSN∗ 1.33-2.5, Y/Ho = 23.94-30, LaSN/LaSN∗ 0.93-1.34, and Zr/Hf = 40-70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62-2.88, EuSN/EuSN∗ 1.30-7.15, LaSN/LaSN∗ 1.02-1.86, Y/Ho = 25.56-55, and Zr/Hf = 35-50). We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown.
Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory
NASA Astrophysics Data System (ADS)
He, Pin; Ye, Cong; Wu, Jiaji; Wei, Wei; Wei, Xiaodi; Wang, Hao; Zhang, Rulin; Zhang, Li; Xia, Qing; Wang, Hanbin
2017-05-01
A ZrOx switching layer with different oxygen content for TiN/ZrOx/Pt resistive switching (RS) memory was prepared by magnetron sputtering in different atmospheres such as N2/Ar mixture, O2/Ar mixture as well as pure Ar. The morphology, structure and RS characteristics were systemically investigated and it was found that the RS performance is highly dependent on the sputtering atmosphere. For the memory device sputtered in N2/Ar mixture, with 8.06% nitrogen content in the ZrOx switching layer, the highest uniformity with smallest distribution of V set and high resistance states (HRS)/low resistance states (LRS) values were achieved. By analyzing the current conduction mechanisms combined with possible RS mechanisms for three devices, we deduce that for the device with a ZrOx layer sputtered in N2/Ar mixture, oxygen ions (O2-), which are decisive to the disruption/formation of the conductive filament, will gather around the tip of the filament due to the existence of doping nitrogen, and lead to the reduction of O2- migration randomness in the operation process, so that the uniformity of the N-doped ZrOx device can be improved.
NASA Astrophysics Data System (ADS)
Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing
2018-03-01
Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.
Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufay, T.; Guiffard, B.; Seveno, R.
Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beammore » displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.« less
NASA Astrophysics Data System (ADS)
Nursam, N. M.; Hidayat, J.; Shobih; Rosa, E. S.; Pranoto, L. M.
2018-04-01
The photoanode of dye-sensitized solar cells (DSSC) is typically composed of nanocrystalline titania (TiO2) layer that has been sensitized with light-absorbing dye molecules. Large portion of the light, however, could not be efficiently absorbed due to some physical reasons, such as TiO2 crystal size (typically 10-25 nm) that makes the photoanode remains partially transparent to the visible region in the solar spectrum. One of the ways to improve the light harvesting efficiency in DSSC could be achieved by employing an additional scattering layer over the TiO2 electron transport material. In this contribution, we evaluate the effect of light scattering properties on the performance of DSSC. Specifically, the light scattering properties provided from two different scattering materials, i.e. additional TiO2 scattering layer and zirconia (ZrO2) scattering layer, were compared. Both layers were deposited using screen printing technique under the same condition on top of 8 µm thick TiO2 photoanode layer. All samples subsequently received the same thermal annealing treatment at 500 °C and sensitized with ruthenium-based synthetic dyes. Our results revealed that the thickness of the scattering layer for both TiO2 and ZrO2 had a significant effect on the solar cell performance. The best photoconversion efficiency was achieved by samples that were coated with one screen-printing cycle, giving an overall efficiency of 3.50 % and 4.02% for TiO2 and ZrO2, respectively.
Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers.
Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang
2017-12-01
GaN-based metal-oxide-semiconductor capacitors with ZrO 2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10 -9 A/cm 2 at 1 V was obtained when O 3 was used for the growth of ZrO 2 . Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.
NASA Astrophysics Data System (ADS)
Ishii, Masatoshi; Baniecki, John; Schafranek, Robert; Kerman, Kian; Kurihara, Kazuaki
2013-03-01
Thermoelectric power generators will be required for future sensor network systems. SrTiO3 (STO) is one candidate thermoelectric material due to its non-toxicity and comparable power factor to Bismuth telluride. The energy conversion efficiency of SrTiO3-based thermoelectric energy conversion elements has been reported to be enhanced by quantum size effects, such as the two dimensional (2D) electron gas in SrTiO3/SrTi0.8Nb0.2O3/SrTiO3. Nevertheless, a complete understanding of the mechanisms for the reported increase in efficiency are missing owing to a lack of understanding of the thickness dependence of the transport properties. In the talk, we will present a study of the thickness dependence of the transport properties of SrTiO3/SrLaTiO3 and SrZrO3/SrLaTiO3 heterostructures. The SrZrO3/SrLaTiO3 interface has a large conduction band off-set of 1.9 eV which can be utilized to confine electrons in a 2D quantum well. Characterization of the thermopower, conductivity, and Hall effect will be presented as a function of the SrLaTiO3 thickness down to a few unit cells and the implications of the thickness dependence of the transport properties on carrier confinement and increasing the efficiency STO-based 2DEG quantum well structures will be discussed.
NASA Astrophysics Data System (ADS)
Gifford, Kenneth Douglas
Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to ~2times10^ {10} switching cycles), low dc leakage current, and excellent retention are observed in capacitor structures containing polycrystalline PZT (exhibiting dominant (001) and (100) XRD reflections), a Pt-RuO_2 hybrid bottom electrode (Type IA), and an RuO _2 top electrode. These results, and electrical characterization results on capacitors containing co-deposited Pt-RuO_2 hybrid electrodes (Type II), show potential for application of these capacitor structures in NVRAM and DRAM memory devices.
NASA Astrophysics Data System (ADS)
Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi
2013-09-01
Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.
Morphology-dependent photo-induced polarization recovery in ferroelectric thin films
NASA Astrophysics Data System (ADS)
Wang, J. Y.; Liu, G.; Sando, D.; Nagarajan, V.; Seidel, J.
2017-08-01
We investigate photo-induced ferroelectric domain switching in a series of Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 (PZT/LSMO) bilayer thin films with varying surface morphologies by piezoresponse force microscopy under light illumination. We demonstrate that reverse poled ferroelectric regions can be almost fully recovered under laser irradiation of the PZT layer and that the recovery process is dependent on the surface morphology on the nanometer scale. The recovery process is well described by the Kolmogorov-Avrami-Ishibashi model, and the evolution speed is controlled by light intensity, sample thickness, and initial write voltage. Our findings shed light on optical control of the domain structure in ferroelectric thin films with different surface morphologies.
High Performance Crystalline Organic Transistors and Circuit
2009-10-14
this material into pentacene -based OFETs, low voltage operation is possible. 3 Figure 1: Device structure for a low voltage pentacene OFET...issues with the first SiO Z OPentacene Au Pentacene ZrO2 AuPd SiO2 4 film. Bilayer dielectrics exhibit lower defect-related leakage...effects, as pinholes or other defects in one layer may be isolated by the other layer. 350 Å of pentacene was thermally evaporated on the ZrO2 dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye
2014-02-15
Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less
Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite
NASA Astrophysics Data System (ADS)
Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh
2017-02-01
Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.
NASA Astrophysics Data System (ADS)
Fan, J.; Kerrich, R.
1997-11-01
A compositionally diverse suite of komatiites, komatiitic basalts, and basalts coexist in the Tisdale volcanic assemblage of the late-Archean (˜2.7 Ga) Abitibi greenstone belt. The komatiites are characterized by a spectrum of REE patterns, from low total REE contents (9 ppm) and pronounced convex-up patterns to greater total REE (18 ppm) and approximately flat-distributions. Thorium and niobium are codepleted with LREE. Komatiites with the most convex-up patterns have low Al 2O 3 (4.7 wt%) contents and Al 2O 3/TiO 2(12) ratios; they are interpreted to be the Al-depleted variety of komatiite derived from a depleted mantle source. Those komatiites and komatiitic basalts with flatter REE patterns are characterized by greater Al 2O 3 (7.0 wt%) and near chondritic Al 2O 3/TiO 2 (20) ratios; they are interpreted to be Al-undepleted komatiites generated from trace element undepleted mantle. For the komatiites and komatiitic basalts collectively, Gd/Ybn ratios are negatively correlated with La/Smn, but positively with MgO and Ni. The spectrum of patterns is interpreted as mixing between Al, HREE, Y-depleted, and Sc-depleted komatiites and Al-undepleted komatiites in a heterogeneous mantle plume. Auminum-depleted komatiites are characterized by negative Zr and Hf anomalies, consistent with majorite garnet-liquid D's for HFSE and REEs, signifying melt segregation at depths of >400 km. Tisdale Al-undepleted komatiites and komatiitic basalts have small negative to zero Zr(Hf)/MREE fractionation, signifying melt segregation in or above the garnet stability field. Collectively, the komatiites have correlations of Zr/Zr∗ and Hf/Hf ∗ with Gd/Ybn, and hence the Zr(Hf)/MREE fractionations are unlikely to have stemmed from alteration or crustal contamination. Two types of basalts are present. Type I basalts are Mg-tholeiites with near flat REE and primitive mantle normalized patterns, compositionally similar to abundant Mg-tholeiites associated with both Al-undepleted and Al-depleted komatiites in the Abitibi belt. They have absolute concentrations and ratios of most moderately and highly compatible elements comparable to N- MORB (Zr ˜79 vs. 74, Y ˜30 vs. 28, and Zr/Y = 2.4-2.9 vs. 2.6 ), but are relatively less depleted in highly incompatible elements and lack positive Nb or P anomalies. Type II basalts are relatively aluminous (Al 2O 3 ˜ 16 wt%), with high Al 2O 3/TiO 2 (24-28) ratios. They are characterized by low Th, Nb, and LREE contents at eight to ten times chondrite, with slightly convex-up LREE patterns ( La/Smn = 0.86-0.99 ), but strongly fractionated and enriched HREEs, Y, and Sc, where Gd/Ybn = 0.50-0.55 and consistently positive Zr(Hf)/MREEs anomalies. These basalts are tentatively interpreted as low-Ti tholeiites formed in a convergent margin setting with second stage melting, induced by fluids and melts enriched in incompatible elements and Zr(Hf) relative to MREEs, of a mantle source depleted during first stage melting. They are analogous to the Phanerozoic low-Ti tholeiite - boninite association. Accordingly the Tisdale volcanic sequence records a plume-convergent margin interaction. New analyses of Al-undepleted komatiites from the classical locality at Pyke Hill in Munro Township confirm the presence of small positive anomalies of P, Zr, and Hf, with Zr/Hf ratios generally < 36. These signatures are similar in spinifex and cumulate zones signifying that they are unlikely to have resulted from alteration. The data were generated by INAA and ICP-MS using both HFHNO 3 dissolution and Na 2O 2 sinter. The lack of LREE enrichment with negative Nb, Ta, P, and Ti anomalies in any of the Tisdale or Munro komatiites confirms an intraoceanic setting for the volcanic stage of the Western Abitibi greenstone belt.
NASA Astrophysics Data System (ADS)
Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.
2002-08-01
Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.
NASA Astrophysics Data System (ADS)
Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.
1988-03-01
High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.
High mobility La-doped BaSnO3 on non-perovskite MgO substrate
NASA Astrophysics Data System (ADS)
Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin
(Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.
Polarization Rotation in Ferroelectric Tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 Superlattices.
Lemée, Nathalie; Infante, Ingrid C; Hubault, Cécile; Boulle, Alexandre; Blanc, Nils; Boudet, Nathalie; Demange, Valérie; Karkut, Michael G
2015-09-16
In ferroelectric thin films, controlling the orientation of the polarization is a key element to controlling their physical properties. We use laboratory and synchrotron X-ray diffraction to investigate ferroelectric bicolor PbTiO3/PbZr0.2Ti0.8O3 and tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 superlattices and to study the role of the SrTiO3 layers on the domain structure. In the tricolor superlattices, we demonstrate the existence of 180° ferroelectric stripe nanodomains, induced by the depolarization field produced by the SrTiO3 layers. Each ultrathin SrTiO3 layer modifies the electrostatic boundary conditions between the ferroelectric layers compared to the corresponding bicolor structures, leading to the suppression of the a/c polydomain states. Combined with the electrostatic effect, the tensile strain induced by PbZr0.2Ti0.8O3 in the PbTiO3 layers leads to polarization rotation in the system as evidenced by grazing incidence X-ray measurements. This polarization rotation is associated with the monoclinic Mc phase as revealed by the splitting of the (HHL) and (H0L) reciprocal lattice points. This work demonstrates that the tricolor paraelectric/ferroelectric superlattices constitute a tunable system to investigate the concomitant effects of strains and depolarizing fields. Our studies provide a pathway to stabilize a monoclinic symmetry in ferroelectric layers, which is of particular interest for the enhancement of the piezoelectric properties.
Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.
Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N
2017-02-01
Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.
Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, AX; Khatri, N; Liu, YH
BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 Kmore » to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.« less
Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12
2012-01-30
xTax012). Conductivity data was not included in their report. Similarly to Ta, Nb substitution for Zr should also lower the Li content of the LLZO and a...high Li ion conductivity (0.8 mS cm−1 at 298 K) cubic garnet sample has been reported with Nb substitution for Zr by Ohta et al. [15]. However, Ta is...substitution for Zr follows this approach and it is desirable for a couple rea- sons. First, Ta is stable relative to Li [13]. Second, Ta substitution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mer, A.; Obbade, S.; Rivenet, M.
2012-01-15
The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -}more » and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.« less
pH-sensitive ion-selective field-effect transistor with zirconium dioxide film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.
1988-09-20
Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.
Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering
NASA Astrophysics Data System (ADS)
Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W.; Lippert, Thomas; Traversa, Enrico; Kilner, John A.
2015-02-01
Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.
Sankara Narayanan, T S N; Lee, Min Ho
2016-02-15
The objectives of the present study are to ascertain, particle incorporation during the initial stages of microarc oxidation (MAO), feasibility of increasing the level of particle incorporation through manipulation of process variables and, the use of MgO-ZrO2 composite coatings either as a pre-treatment or as a post-treatment for MAO coated Mg. Anodic oxide coatings were prepared using 0.3M NaOH+15g/l ZrO2 and 3M NaOH+15g/l ZrO2 at 10V under direct current, pulsed current (PC) unipolar and PC bipolar modes. MAO coatings were prepared using 5g/l NaOH+15g/l Na2SiO3 at 250V under direct current mode for 2min. The study reveals that it is possible to incorporate ZrO2 particles in the anodic oxide layer, suggesting such a possibility during the initial stages of MAO. When the MgO-ZrO2 composite coating is used as a pre-treatment, it helps to reduce the size and density of the pores of the MAO coatings and increased the corrosion resistance. When it is used as a post-treatment, lamellar shaped Mg(OH)2 with a very high surface area is formed on the surface, which would be beneficial to impart a better bioactivity and to facilitate immobilization of biomolecules. Copyright © 2015. Published by Elsevier Inc.
C60 and U ion irradiation of Gd 2Ti xZr 2-xO 7 pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik
2015-08-01
Gd 2Ti xZr 2-xO 7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C 60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd 2Ti 2O 7 and Gd 2TiZrO 7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.
Pulsed-Laser Crystallization of Ferroelectric/Piezoelectric Oxide Thin Films
NASA Astrophysics Data System (ADS)
Rajashekhar, Adarsh
Integration of ferroelectric/piezoelectric thin films, such as those of lead zirconate titanate (PZT), with temperature sensitive substrates (complementary metal oxide semiconductors (CMOS), or polymers) would benefit from growth at substrate temperatures below 400°C. However, high temperatures are usually required for obtaining good quality PZT films via conventional routes like rapid thermal processing (>550°C). Those conditions are not compatible either with polymer substrates or completed CMOS circuits and dictate exploration of alternative methods to realize integration with such substrates. In part of this work, factors influencing KrF excimer laser induced crystallization of amorphous sputtered Pb(Zr0.30Ti0.70)O3 thin films at substrate temperatures < 215°C were investigated. (111) Pt/Si substrates were utilized to understand the process window. Laser energy densities studied were in the range 35 - 85 mJ/cm2. The Pb content in the films was varied via the Ar gas pressure (in the range 5 mTorr - 9 mTorr) during sputtering of amorphous films. It was seen that a higher Pb content in the asdeposited films aided nucleation of the perovskite phase. Ozone-containing ambients (10% O3/90% O2) during the annealing promoted the formation of the metastable Pb-rich pyrochlore/fluorite phase, while annealing in pure oxygen produced the perovskite phase at relatively lower annealing laser energy densities. Heterogeneous nucleation from the substrate is favored on utilizing a layer-by-layer growth and crystallization process. Films were also grown on polymers using this method. Ferroelectric switching was demonstrated, but extensive process optimization would be needed to reduce leakage and porosity. Real time laser annealing during growth allows for scaling of the layer-by-layer growth process. A pulsed laser deposition system with in situ laser annealing was thus designed, built, and utilized to grow Pb(Zr 0.52Ti0.48)O3 thin films on a laser crystallized Pb(Zr0.20Ti0.80)O3 seed layer, at a temperature of 370°C. Polycrystalline 1.1 microm thick films exhibited columnar grains with small grain sizes ( 30 nm). The films showed well-saturated hysteresis loops (with a remanent polarization of 25 microC/cm2, and a coercive field of 50 kV/cm) and exhibited loss tangents <2.5% with a permittivity of 730. Film orientation could be controlled via the substrate choice; {111} Pb(Zr0.52Ti0.48)O3 films were grown on oriented (111) Pb(Zr0.30Ti0.70)O3 sol-gel seed layers, while epitaxial {001} films were prepared on (100) SrTiO 3 single crystals. In order to study the microstructure evolution in these films, in situ pulsed-laser annealing was used to grow crystalline lead zirconate titanate (PbZr0.52Ti0.48O3) thin films at a substrate temperature of 370°C on PbZr0.30Ti 0.70O3-buffered platinized silicon substrates. Transmission electron microscopy (TEM) analysis indicated that the films were well crystallized into columnar grains, but with pores segregated at the grain boundaries. Lateral densification of the grain columns was significantly improved by reducing the partial pressure of oxygen from 120 mTorr to 50 mTorr, presumably due to enhanced adatom mobility at the surface accompanying increased bombardment. It was found that varying the fractional annealing duration with respect to the deposition duration produced little effect on lateral grain growth. However, increasing the fractional annealing duration led to shift of 111 PZT X-ray diffraction peaks to higher 2theta values, suggesting residual in-plane tensile stresses in the films. Thermal simulations were used to understand the annealing process. Evolution of the film microstructure is described in terms of transient heating from the pulsed laser determining the nucleation events, while the energy of the arriving species dictates grain growth/coarsening.
NASA Astrophysics Data System (ADS)
Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang
2018-04-01
For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.
Kinetics and equilibria of redox systems at temperatures as low as 300°C
NASA Astrophysics Data System (ADS)
Burkhard, Dorothee J. M.; Ulmer, Gene C.
1995-05-01
ZrO 2 oxygen sensors, gas mixtures, and conventional solid buffers have been used for decades to either control or measure oxygen fugacity (ƒ O 2) at high temperatures. In dry systems below ca. 700°C these techniques were used cautiously, if at all, due to doubt that there was any equilibration at lower temperatures. We have re-investigated these three types of redox systems in a study where each system (two different Y 2O 3ZrO 2 cells, four different gas mixtures, and four different dry solid buffers) was simultaneously cross-checked with the other to temperatures below 300°C and compared to JANAF data, extrapolated down to low temperatures. Steady and reproducible readings were observed down to T ≤ 300°C, from which we infer fast kinetics for all three systems. Specifically, we find equilibration of various CO 2H 2 gas mixtures over the entire temperature range and to much lower temperature than previously predicted. We assign the reactivity (decomposition) of CO 2 at low T to the catalytic action of Pt, whereby chemisorption of H 2 on the platinum surface enhances the reactivity with CO 2. This catalytic reactivity is diminished over time due to a long-term irreversible reaction of Pt with H 2. Subsequent embrittling and aging after prolonged exposure to H 2 explains erroneously high emf readings. Oxygen sensing of ZrO 2 cells is linear in 1/ T-log ƒ O 2 space and Nernstian at high temperatures. However, for cells with a specific and complex trace element chemistry, one may observe a non-Nernstian behavior in the low T range, i.e., below 470° or lower, probably caused by partially blocked O 2- migration, dependent on the H 2 content in the gas mixture. Linearity and reproducibility of this deviation still allows, however, a useable calibration. Solid buffers of the metal-metal oxide type are known to alloy with noble metals and we therefore used AgPd electrodes, for consistency in all studies, including (IW), (IM), (FMQ), and (NNO). Whereas (IW) and (IM) can be used in the temperature range of consideration, (FMQ) and (NNO) react sluggishly. Complex defect structure of (FMQ) and age alteration of Ni surfaces by chemisorption of oxygen and/or AgNi alloying of (NNO) may be the reason. Fast kinetics and successful redox sensing of CO 2H 2 gas mixtures, of ZrO 2 cells and of at least some solid buffers are therefore promising for future research on low- T redox equilibria.
NASA Astrophysics Data System (ADS)
Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.
2003-07-01
The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).
NASA Astrophysics Data System (ADS)
Novikov, A. S.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Gorshkov, O. N.
2018-03-01
We report on the experimental observation of the effect of optical excitation on resistive switching in ultrathin ZrO2(Y) films with single-layered arrays of Au nanoparticles. The samples were prepared by depositing nanometer-thick Au films sandwiched between two ZrO2(Y) layers by magnetron sputtering followed by annealing. Resistive switching was studied by conductive atomic force microscopy by measuring cyclic current-voltage curves of a probe-to-sample contact. The contact area was illuminated by radiation of a semiconductor laser diode with the wavelength corresponding to the plasmon resonance in an Au nanoparticle array. The enhancement of the hysteresis in cyclic current-voltage curves due to bipolar resistive switching under illumination was observed. The effect was attributed to heating of Au nanoparticles due to plasmonic optical absorption and a plasmon resonance, which enhances internal photoemission of electrons from the Fermi level in Au nanoparticles into the conduction band of ZrO2(Y). Both factors promote resistive switching in a ZrO2(Y) matrix.
NASA Astrophysics Data System (ADS)
Tang, X. G.; Tian, H. Y.; Wang, J.; Wong, K. H.; Chan, H. L. W.
2006-10-01
Ba(Zr0.2Ti0.8)O3 (BZT) thin films on Pt(111)/Ti /SiO2/Si(100) substrates without and with CaRuO3 (CRO) buffer layer were fabricated at 650°C in situ by pulsed laser deposition. The BZT thin films showed a dense morphology, many clusters are found on the surface images of BZT/Pt films, which are composed by nanosized grains of 25-35nm; the average grain size of BZT/CRO films is about 80nm, which lager than that of BZT/Pt thin film. The dielectric constants and dissipation factors of BZT/Pt and BZT/CRO thin films were 392 and 0.019 and 479 and 0.021 at 1MHz, respectively. The dielectric constant of BZT/Pt and BZT/CRO thin films changes significantly with applied dc bias field and has high tunabilities and figures of merit of ˜70% and 37 and 75% and 36, respectively, under an applied field of 400kV /cm. The possible microstructural background responsible for the high dielectric constant and tunability was discussed.
Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3
NASA Astrophysics Data System (ADS)
Klein, Andreas; Lohaus, Christian; Reiser, Patrick; Dimesso, Lucangelo; Wang, Xiucai; Yang, Tongqing
2017-06-01
The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 is studied with photoelectron spectroscopy using interfaces with high work function RuO2 and low work function Sn-doped In2O3 (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O3 is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO3. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O3 should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.
Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan
2016-01-01
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO2, 3Y-TZP). The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO4)2O (TTCP), CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2), together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase. PMID:28773503
NASA Astrophysics Data System (ADS)
Ding, Hanping; Xue, Xingjian
A new anode-supported SOFC material system Ni-BZCYYb|BZCYYb|PBFO is investigated, in which a cobalt-free layered perovskite oxide, PrBaFe 2O 5+ δ (PBFO), is synthesized and employed as a novel cathode while the synthesized BZCYYb is used as an electrolyte. The cell is fabricated by a simple dry-pressing/co-sintering process. The cell is tested and characterized under intermediate temperature range from 600 to 700 °C with humified H 2 (∼3% H 2O) as fuel, ambient air as oxidant. The results show that the open-circuit potential of 1.006 V and maximal power density of 452 mW cm -2 are achieved at 700 °C. The polarization resistance of the electrodes is 0.18 Ω cm 2 at 700 °C. Compared to BaZr 0.1Ce 0.7Y 0.1O 3- δ, the conductivity of co-doped barium zirconate-cerate BZCYYb is significantly improved. The ohmic resistance of single cell is 0.37 Ω cm 2 at 700 °C. The results indicate that the developed Ni-BZCYYb|BZCYYb|PBFO cell is a promising functional material system for SOFCs.
High power density solid oxide fuel cells
Pham, Ai Quoc; Glass, Robert S.
2004-10-12
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
NASA Astrophysics Data System (ADS)
Esmaeilzadeh, Pouriya; Bahramian, Alireza; Fakhroueian, Zahra
The adsorption of surfactants at the solid-water interface is important for the control of wetting, lubrication, detergency and in mineral flotation.We have studied the adsorptions of different types of surfactants, cationic (Dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS) and non-anionic (lauryl alcohol-7 mole ethoxylate, LA7) on carbonate rock in presence of zirconium oxide spherical nanoparticles (17-19 nm). ZrO2 nanoparticles with tetrahedral structure have significant effect on adsorption of surfactants on the carbonate rock. We have used the measured conductivities to determine the rate of adsorption of surfactants at rock-water interfaces. The conductivity of DTAB in aqueous solutions containing calcite powder decreases more than the other surfactants in contact with ZrO2 nanoparticles. We have also investigated the adsorption of surfactants at the air-water interface. The presence of nanoparticles, as demonstrated by our experiments, enhances the surface activity and surface adsorption of the surfactants through electrostatic forces or formation of nanostructures. Dynamic light structuring data shows similar aggregation number of nanoparticles in presence of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jia, E-mail: 2013113205@xmut.edu.cn; Huang, Yu; Zhang, Houan
2014-09-15
Two different ZrB{sub 2}-based ultra-high temperature ceramics were produced by hot pressing: ZrB{sub 2} + 20 vol.% SiC particle + 15 vol.% ZrO{sub 2} fiber and ZrB{sub 2} + 20 vol.% SiC whisker + 15 vol.% ZrO{sub 2} fiber. The microstructures were analyzed by using transmission electron microscopy and high-resolution transmission electron microscopy. It was shown that a clean interface without any impurities was identified in ZrB{sub 2}-based hybrid ceramics with SiC whiskers and ZrO{sub 2} fibers, which would significantly improve the toughening mechanism. The results of high-resolution transmission electron microscopy showed that stacking faults in SiC whiskers resulted frommore » an insertion of a (111) layer, which would be one of the main reasons for material anisotropy. However, the interface between the SiC particle and ZrO{sub 2} fiber was found to be ambiguous in ZrB{sub 2}-based hybrid ceramics with SiC particles and ZrO{sub 2} fibers due to the slight reaction. The orientation relationship between t-ZrO{sub 2} and m-ZrO{sub 2} phases obeyed the classical correspondence: (100){sub m}//(100){sub t} and [001]{sub m}//〈001〉{sub t}, which further verified the feasibility of phase transformation toughening mechanism. - Highlights: • ZrB{sub 2}-based ceramics toughened by short ZrO{sub 2} fiber are characterized by TEM and HRTEM. • The orientation relationship of t- and m-ZrO{sub 2} are (100){sub m}//(100){sub t}, [001]{sub m}//〈001〉{sub t} • The clean interface without any impurities leads to improve the toughening mechanism.« less
Chen, Cheng; Li, Quan; Li, Yiqiu; Cui, Zhonghui; Guo, Xiangxin; Li, Hong
2018-01-17
Solid-state batteries (SSBs) have seen a resurgence of research interests in recent years for their potential to offer high energy density and excellent safety far beyond current commercialized lithium-ion batteries. The compatibility of Si anodes and Ta-doped Li 7 La 3 Zr 2 O 12 (Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) solid electrolytes and the stability of the Si anode have been investigated. It is found that Si layer anodes thinner than 180 nm can maintain good contact with the LLZTO plate electrolytes, leading the Li/LLZTO/Si cells to exhibit excellent cycling performance with a capacity retention over 85% after 100 cycles. As the Si layer thickness is increased to larger than 300 nm, the capacity retention of Li/LLZTO/Si cells becomes 77% after 100 cycles. When the thickness is close to 900 nm, the cells can cycle only for a limited number of times because of the destructive volume change at the interfaces. Because of the sustainable Si/LLZTO interfaces with the Si layer anodes with a thickness of 180 nm, full cells with the LiFePO 4 cathodes show discharge capacities of 120 mA h g -1 for LiFePO 4 and 2200 mA h g -1 for the Si anodes at room temperature. They cycle 100 times with a capacity retention of 72%. These results indicate that the combination between the Si anodes and the garnet electrolytes is a promising strategy for constructing high-performance SSBs.
Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang
2014-01-01
Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
NASA Astrophysics Data System (ADS)
Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping
2018-02-01
La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
Superconductivity at 43K in SmFeAsO1-xFx
NASA Astrophysics Data System (ADS)
Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.
2008-06-01
Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26K in the iron-based LaO1-xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43K. This provides a new material base for studying the origin of high-temperature superconductivity.
Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films
NASA Astrophysics Data System (ADS)
Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.
2002-12-01
We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.
Formation and reduction behaviors of zirconium oxide compounds in LiCl-Li2O melt at 923 K
NASA Astrophysics Data System (ADS)
Sakamura, Yoshiharu; Iizuka, Masatoshi; Kitawaki, Shinichi; Nakayoshi, Akira; Kofuji, Hirohide
2015-11-01
The reduction behaviors of ZrO2, Li2ZrO3 and (U,Pu,Zr)O2 in a LiCl-Li2O salt bath at 923 K were investigated. This study was conducted as part of a feasibility study on the pyrochemical treatment of damaged fuel debris generated by severe accidents at light water reactors. It was demonstrated in electrolytic reduction tests that the uranium in synthetic corium specimens of (U,Pu,Zr)O2 with various ZrO2 contents could be reduced to the metallic form and that part of the zirconium was converted to Li2ZrO3. Zirconium metal and Li2ZrO3 were obtained by the reduction of ZrO2. The reduction of Li2ZrO3 did not proceed even in LiCl containing no Li2O. Moreover, the stable chemical forms of the ZrO2-Li2O complex oxide were investigated as a function of the Li2O concentration in LiCl. ZrO2 was converted to Li2ZrO3 at a Li2O concentration of 0.018 wt%. As the Li2O concentration was increased, Li2ZrO3 was converted to Li6Zr2O7 and then to Li8ZrO6. It is suggested that the removal of Li2ZrO3 from the reduction product is a key point in the pyrochemical treatment of corium.
NASA Astrophysics Data System (ADS)
Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie
2018-05-01
Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.
NASA Astrophysics Data System (ADS)
Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.
2016-11-01
The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.
Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S
2016-07-14
We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.
NASA Astrophysics Data System (ADS)
Rozana, Monna; Izza Soaid, Nurul; Kian, Tan Wai; Kawamura, Go; Matsuda, Atsunori; Lockman, Zainovia
2017-04-01
ZrO2 nanotubes (ZrNTs) were produced by anodisation of zirconium foil in H2O2/NH4F/ethylene glycol electrolyte. The as-anodised foils were then soaked in the anodising electrolyte for 12 h. Soaking weakens the adherence of the anodic layer from the substrate resulting in freestanding ZrNTs (FS-ZrNTs). Moreover, the presence of H2O2 in the electrolyte also aids in weakening the adhesion of the film from the foil, as foil anodised in electrolyte without H2O2 has good film adherence. The as-anodised FS-ZrNTs film was amorphous and crystallised to predominantly tetragonal phase upon annealing at >300 °C. Annealing must, however, be done at <500 °C to avoid monoclinic ZrO2 formation and nanotubes disintegration. FS-ZrNTs annealed at 450 °C exhibited the highest photocatalytic ability to degrade methyl orange (MO), whereby 82% MO degradation was observed after 5 h, whereas FS-ZrNTs with a mixture of monoclinic and tetragonal degraded 70% of MO after 5 h.
Nanostructure multilayer dielectric materials for capacitors and insulators
Barbee, Jr., Troy W.; Johnson, Gary W.
1998-04-21
A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.
Nanostructure multilayer dielectric materials for capacitors and insulators
Barbee, T.W. Jr.; Johnson, G.W.
1998-04-21
A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.
NASA Astrophysics Data System (ADS)
Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin
2018-06-01
Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abd El-Lateef, Hany M., E-mail: Hany_shubra@yahoo.co.uk; Khalaf, Mai M., E-mail: Mai_kha1@yahoo.com
This work reports the achievement of preparing of x% zirconia (ZrO{sub 2})–titania (TiO{sub 2}) composite coatings with different ZrO{sub 2} percent on the carbon steel by dipping substrates in sol–gel solutions. The prepared coated samples were investigated by various surface techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDAX). Open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) methods were employed to investigate the corrosion resistance of the coated carbon steel substrates in 1.0 M HCl solution at 50 °C. The data showed that, the corrosion protection property ismore » not always proportional to the percent of ZrO{sub 2}. It can be inferred that there is an optimum percent (10%ZrO{sub 2}) for beneficial effects of loading ZrO{sub 2} on the protection efficiency (98.70%), while higher loading percent of ZrO{sub 2} in the sol–gel coating leads to the formation of a fragile film with poor barrier properties. EDAX/SEM suggests that the metal surface was protected through coating with ZrO{sub 2}–TiO{sub 2} composite films. - Highlights: • Sol–gel TiO{sub 2} doped with ZrO{sub 2} films deposited on carbon steel substrate • XRD measurements of x wt.% ZrO{sub 2}–TiO{sub 2} showed the (101) peaks broader than that of TiO{sub 2}. • SEM results proved that, the cracking decreases with the number of layers. • The prepared films can improve the corrosion resistance of the carbon steel substrate. • 10%ZrO{sub 2} loading is the optimal percent for useful effects on the corrosion resistance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyushin, G. D., E-mail: ilyushin@ns.crys.ras.ru
The basic concepts that are used to describe crystallization as a phenomenon of the hierarchical (cluster) self-organization of a chemical system are considered. The templation of theoretically possible nan-ocluster precursors composed of M octahedra and T tetrahedra by atoms of (A) alkaline and (B) alkaline earth metals is considered for the first time. A relationship between the A/B,M,T composition of templated nanocluster precursors with the composition of A/B,M silicates is established. The model that is developed is used to search for nanocluster precursors in framework MT structures of A/B,Zr silicates. Computer methods (TOPOS 4.0 program package) were used to performmore » complete 3D reconstruction of the self-assembly of all (four) structural types of A/B,Zr silicates (A = Na, K; B = Ca, Sr) with frameworks of the MT{sub 2}O{sub 7} type: nan-ocluster precursor S{sub 3}{sup 0}-primary chain S{sub 3}{sup 1}-microlayer S{sub 3}{sup 2}-microframework S{sub 3}{sup 3}. The invariant type of mono-cyclic nanocluster precursor M{sub 2}T{sub 4} (with the point symmetries 1-bar and 2), stabilized by one or two template cations (A and B), is determined. Bifurcations of the paths of evolution at the S{sub 3}{sup 1} level (structural branching point) are established for the self-assembly of the following frameworks: MT-1 in CaZrSi{sub 2}O{sub 7} (gittinsite, C2), MT-2 in SrZrSi{sub 2}O{sub 7} (P2{sub 1}/c); MT-3 in Na{sub 2}ZrSi{sub 2}O{sub 7} (parakeldyshite,), K{sub 2}ZrSi{sub 2}O{sub 7} (khibinskite, P2{sub 1}/b), and K{sub 2}ZrGe{sub 2}O{sub 7} (C2/c); and MT-4 in Na{sub 2}ZrSi{sub 2}O{sub 7} (H{sub 2}O)(C2/c), Na{sub 3}ScSi{sub 2}O{sub 7} (Pbnm), and K{sub 3}ScSi{sub 2}O{sub 7} (P6{sub 3}/mmc).« less
NASA Astrophysics Data System (ADS)
Kim, Hyoungsub
With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.
Superconductivity and strong intrinsic defects in LaPd1-xBi2
NASA Astrophysics Data System (ADS)
Han, Fei; Malliakas, Christos D.; Stoumpos, Constantinos C.; Sturza, Mihai; Claus, Helmut; Chung, Duck Young; Kanatzidis, Mercouri G.
2013-10-01
Two new phases LaPd1-xBi2 and CePd1-xBi2 were obtained by growing single crystals in Bi flux. They adopt the tetragonal ZrCuSi2-type structure and feature Bi-square nets and PbO-type PdBi layers with significant partial Pd occupancy. Bulk superconductivity at 2.1 K and metallic behavior above Tc are observed in LaPd1-xBi2. A small residual resistance ratio (RRR) indicates a strong scattering effect induced by the Pd vacancies, which implies an s-wave pairing symmetry in LaPd1-xBi2. The broadening of the resistivity transition was measured under different magnetic fields demonstrating a high upper critical field of 3 T. Hall effect measurements reveal dominantly electron-like charge carriers and single-band transport behavior in LaPd1-xBi2. The paramagnetic CePd1-xBi2 is nonsuperconducting but shows antiferromagnetic ordering below 6 K.
Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers
NASA Astrophysics Data System (ADS)
Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto
2017-10-01
Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.
Large anisotropic thermoelectricity in perovskite related layered structure: SrnNbnO3n+2 (n=4,5)
NASA Astrophysics Data System (ADS)
Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Yamada, Yuka; Adachi, Hideaki
2010-11-01
We measured the thermal and charge transport properties of perovskite-related layered structures. Strontium-Niobates, which were expressed as SrnNbnO3n+2 (n =4: Sr1.8La0.2Nb2O7, n =5: Sr5Nb5O17), to explore their thermoelectricities and thermal anisotropies. The behaviors of the thermoelectric parameters (thermal conductivity, Seebeck coefficient, resistivity) were strongly anisotropic in all crystallographic axes (a, b, and c) and large anisotropy exists even in the in-plane direction of the layered structure. Especially, along the a-axis in which corner-sharing NbO6 octahedra aligned straightly, contrastive properties were observed between Sr1.8La0.2Nb2O7 and Sr5Nb5O17. For Sr1.8La0.2Nb2O7, a thermally activated charge conduction is pronounced in the temperature dependence of Seebeck coefficient and resistivity, on the other hand, it was a metallic nature for Sr5Nb5O17. In both compounds, ZT results in anisotropic due to the anisotropic properties of thermoelectric parameters, the best performance is commonly observed in the a-axis. The respective ZT values at room temperature are 3.5×10-2 and 3.6×10-3.
Development and fabrication of insulator seals for thermionic diodes
NASA Technical Reports Server (NTRS)
Poirier, V. L.
1972-01-01
Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.
ZrO2 film interfaces with Si and SiO2
NASA Astrophysics Data System (ADS)
Lopez, C. M.; Suvorova, N. A.; Irene, E. A.; Suvorova, A. A.; Saunders, M.
2005-08-01
The interface formed by the thermal oxidation of sputter-deposited Zr metal onto Si(100)- and SiO2-coated Si(100) wafers was studied in situ and in real time using spectroscopic ellipsometry (SE) in the 1.5-4.5 photon energy range and mass spectrometry of recoiled ions (MSRI). SE yielded optical properties for the film and interface and MSRI yielded film and interface composition. An optical model was developed and verified using transmission electron microscopy. Interfacial reaction of the ZrO2 was observed for both substrates, with more interaction for Si substrates. Equivalent oxide thicknesses and interface trap levels were determined on capacitors with lower trap levels found on samples with a thicker SiO2 underlayer. In addition to the optical properties for the intermixed interface layer, the optical properties for Zr metal and unreacted ZrO2 are also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin
2015-03-28
Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less
Investigation of magnetic and structural properties of Ni-Zr co-doped M-type Sr-La hexaferrites
NASA Astrophysics Data System (ADS)
Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Huang, Duohui; Tang, Jin; Rehman, Khalid Mehmood Ur
2018-02-01
In this research, Ni2+ and Zr4+ co-doped Sr-La hexaferrites Sr0.7La0.3Fe12.0-2 x (NiZr) x O19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters ( c and a) increased with increasing NiZr content ( x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization ( M s), remanent magnetization ( M r) and coercivity ( H c) were calculated from magnetic hysteresis ( M- H) loops. M s and H c decreased with increasing NiZr content ( x) from 0.0 to 0.5. M r and M r/ M s ratio first increased with increasing NiZr content ( x) from 0.0 to 0.1, and then decreased when NiZr content ( x) ≥ 0.1.
Phase Composition and Disorder in La2(Sn,Ti)2O7 Ceramics: New Insights from NMR Crystallography.
Fernandes, Arantxa; McKay, David; Sneddon, Scott; Dawson, Daniel M; Lawson, Sebastian; Veazey, Richard; Whittle, Karl R; Ashbrook, Sharon E
2016-09-15
An NMR crystallographic approach, involving the combination of 119 Sn NMR spectroscopy, XRD, and DFT calculations, is demonstrated for the characterization of La 2 Sn 2- x Ti x O 7 ceramics. A phase change from pyrochlore (La 2 Sn 2 O 7 ) to a layered perovskite phase (La 2 Ti 2 O 7 ) is predicted (by radius ratio rules) to occur when x ≈ 0.95. However, the sensitivity of NMR spectroscopy to the local environment is able to reveal a significant two-phase region is present, extending from x = 1.8 to ∼0.2, with limited solid solution at the two extremes, in broad agreement with powder XRD measurements. DFT calculations reveal that there is preferential site substitution of Sn in La 2 Ti 2 O 7 , with calculated shifts for Sn substitution onto Ti1 and Ti2 sites (in the "bulk" perovskite layers) in better agreement with experiment than those for Ti3 and Ti4 ("edge" sites). Substitution onto these two sites also produces structural models with lower relative enthalpy. As the Sn content decreases, there is a further preference for substitution onto Sn2. In contrast, the relative intensities of the spectral resonances suggest that Ti substitution into the pyrochlore phase is random, although only a limited solid solution is observed (up to ∼7% Ti). DFT calculations predict very similar 119 Sn shifts for Sn substitution into the two proposed models of La 2 Ti 2 O 7 (monoclinic ( P 2 1 ) and orthorhombic ( Pna 2 1 )), indicating it is not possible to distinguish between them. However, the relative energy of the Sn-substituted orthorhombic phase was higher than that of substituted monoclinic cells, suggesting that the latter is the more likely structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutzer, B.; Simsek, S.; Zimmermann, C.
In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO{sub 2} insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V{sup 2} is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm{sup 2} and a leakage current of less than 1.2 × 10{sup −8} A/cm{sup 2} at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing themore » formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dan, E-mail: danzhou@is.mpg.de; Sigle, Wilfried; Wang, Yi
We studied ZrO{sub 2} − La{sub 2/3}Sr{sub 1/3}MnO{sub 3} pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.
NASA Astrophysics Data System (ADS)
Hu, Penghao; Jia, Zhuye; Shen, Zhonghui; Wang, Peng; Liu, Xiaoru
2018-05-01
To realize application in high-capacity capacitors and portable electric devices, large energy density is eagerly desired for polymer-based nanocomposite. The core-shell structured nanofillers with inorganic buffer layer are recently supposed to be promising in improving the dielectric property of polymer nanocomposite. In this work, core-shell structured TO@BT nanoparticles with crystalline TiO2 buffer layer coated on BaTiO3 nanoparticle were fabricated via solution method and heat treatment. The thickness of the TO buffer layer can be tailored by modulating the additive amount of the titanate coupling agent in preparation process, and the apparent dielectric properties of nanocomposite are much related to the thickness of the TO layer. The relatively thin TO layer prefer to generate high polarization to increase dielectric constant while the relatively thick TO layer would rather to homogenize field to maintain breakdown strength. Simulation of electric field distribution in the interfacial region reveals the improving effect of the TO buffer layer on the dielectric properties of nanocomposite which accords with the experimental results well. The optimized nanoparticle TO@BT-2 with a mean thickness of 3-5 nm buffer layer of TO is effective in increasing both the ε and Eb in the PVDF composite film. The maximal discharged energy density of 8.78 J/cm3 with high energy efficiency above 0.6 is obtained in TO@BT-2/PVDF nanocomposite with 2.5 vol% loading close to the breakdown strength of 380 kV/mm. The present study demonstrates the approach to optimize the structure of core-shell nanoparticles by modulating buffer layer and provides a new way to further enlarge energy density in polymer nanocomposite.
Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong
2017-07-01
In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance such as high chemical stability, good wear resistance performance and low elastic modulus, moderate strength, it is considered an alternative material as dental implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of sputtered techniques for thrust chambers
NASA Technical Reports Server (NTRS)
Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.
1975-01-01
Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.
Alkali-resistant low-temperature atomic-layer-deposited oxides for optical fiber sensor overlays
NASA Astrophysics Data System (ADS)
Kosiel, K.; Dominik, M.; Ściślewska, I.; Kalisz, M.; Guziewicz, M.; Gołaszewska, K.; Niedziółka-Jonsson, J.; Bock, W. J.; Śmietana, M.
2018-04-01
This paper presents an investigation of properties of selected metallic oxides deposited at a low temperature (100 °C) by atomic layer deposition (ALD) technique, relating to their applicability as thin overlays for optical fiber sensors resistant in alkaline environments. Hafnium oxide (Hf x O y with y/x approx. 2.70), tantalum oxide (Ta x O y with y/x approx. 2.75) and zirconium oxide (Zr x O y with y/x approx. 2.07), which deposition was based, respectively, on tetrakis(ethylmethyl)hafnium, tantalum pentachloride and tetrakis(ethylmethyl)zirconium with deionized water, were tested as thin layers on planar Si (100) and glass substrates. Growth per cycle (GPC) in the ALD processes was 0.133-0.150 nm/cycle. Run-to-run GPC reproducibility of the ALD processes was best for Hf x O y (0.145 ± 0.001 nm/cycle) and the poorest for Ta x O y (0.133 ± 0.003 nm/cycle). Refractive indices n of the layers were 2.00-2.10 (at the wavelength λ = 632 nm), with negligible k value (at λ for 240-930 nm). The oxides examined by x-ray diffractometry proved to be amorphous, with only small addition of crystalline phases for the Zr x O y . The surfaces of the oxides had grainy but smooth topographies with root-mean square roughness ˜0.5 nm (at 10 × 10 μm2 area) according to atomic force microscopy. Ellipsometric measurements, by contrast, suggest rougher surfaces for the Zr x O y layers. The surfaces were also slightly rougher on the glass-based samples than on the Si-based ones. Nanohardness and Young modules were 4.90-8.64 GPa and 83.7-104.4 GPa, respectively. The tests of scratch resistance revealed better tribological properties for the Hf x O y and the Ta x O y than for the Zr x O y . The surfaces were hydrophilic, with wetting angles of 52.5°-62.9°. The planar oxides on Si, being resistive even to concentrated alkali (pH 14), proved to be significantly more alkali-resistive than Al2O3. The Ta x O y overlay was deposited on long-period grating sensor induced in optical fiber. Thanks to such an overlay the sensor proved to be long-lasting resistant when exposed to alkaline environment with a pH 9. Thereby, it also proved that it has a potential to be repeatedly reused as a regenerable optical fiber biosensor.
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-06
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO 2 , NO, H 2 O, as well as the related fragments during the O 2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO 2 during the complex surface chemical reaction of the ligand and O 2 plasma were monitored using the QCM. The remote PEALD ZrO 2 /zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10 -5 g/m 2 /day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10-5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
NASA Astrophysics Data System (ADS)
Ozawa, Masakuni; Matsumoto, Masashi; Hattori, Masatomo
2018-01-01
Photoluminescent Eu-doped ZrO2 and Zr1- x Ce x O2 (x = 0-0.2) nanoparticles were prepared by a hydrothermal method. X-ray diffraction and Raman spectra indicated the formation of tetragonal crystals of ZrO2 and its solid solutions with a grain size of less than 10 nm diameter after heat treatment at 400 °C. The photoemission spectra of Zr1- x Ce x O2:Eu3+ nanocrystalline samples showed the typical emission of Eu3+ ions assigned to 5D0 → 7F1 (590 nm) and 5D0 → 7F2 (610 nm) transitions and additional emissions of 5D0 → 7F J with higher J of 3-5. Increasing the CeO2 concentration reduced the emission intensity, and the emission peak shift was affected by a local lattice distortion, i.e., CeO2 concentration. The present study provided fundamental knowledge that is expected to enable the fabrication of ZrO2-based nanocrystal phosphor materials and a measure for controlling the emission peak shift and intensity in oxide fluorite-based phosphor.
Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y.
2015-01-01
An improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10−8–10−7 mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr+1, Zr+2 and Zr+3) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage. The sole suboxide layer has been observed for the first time at very early states of the oxidation (oxygen exposure ≤4 L). The Ne+ FIM observations are in accord with a two stage process of Zr oxide formation. PMID:25766998
A novel cobalt-free layered GdBaFe 2O 5+ δ cathode for proton conducting solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Ding, Hanping; Xue, Xingjian
While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO 2 and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe 2O 5+ δ (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7). The button cells of Ni-BZCY7|BZCY7|GBF were fabricated and characterized using complex impedance technique from 600 to 700 °C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm -2, and a low electrode polarization resistance of 0.18 Ω cm 2 were achieved at 700 °C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7|BZCY7|GBF cell is a promising functional material system for solid oxide fuel cells.
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
2016-09-23
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure
NASA Astrophysics Data System (ADS)
Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.
2003-10-01
We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.
Defect formation energy in pyrochlore: the effect of crystal size
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Ewing, Rodney C.; Becker, Udo
2014-09-01
Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.
Method of Fabrication of High Power Density Solid Oxide Fuel Cells
Pham, Ai Quoc; Glass, Robert S.
2008-09-09
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
NASA Astrophysics Data System (ADS)
Hussain, Fayyaz; Imran, Muhammad; Rana, Anwar Manzoor; Khalil, R. M. Arif; Khera, Ejaz Ahmad; Kiran, Saira; Javid, M. Arshad; Sattar, M. Atif; Ismail, Muhammad
2018-03-01
The aim of this study is to figure out better metal dopants for CeO2 for designing highly efficient non-volatile memory (NVM) devices. The present DFT work involves four different metals doped interstitially and substitutionally in CeO2 thin films. First principle calculations involve electron density of states (DOS) and partial density of states (PDOS), and isosurface charge densities are carried out within the plane-wave density functional theory using GGA and GGA + U approach by employing the Vienna ab initio simulation package VASP. Isosurface charge density plots confirmed that interstitial doping of Zr and Ti metals truly assists in generating conduction filaments (CFs), while substitutional doping of these metals cannot do so. Substitutional doping of W may contribute in generating CFs in CeO2 directly, but its interstitial doping improves conductivity of CeO2. However, Ni-dopant is capable of directly generating CFs both as substitutional and interstitial dopants in ceria. Such a capability of Ni appears acting as top electrode in Ni/CeO2/Pt memory devices, but its RS behavior is not so good. On inserting Zr layer to make Ni/Zr:CeO2/Pt memory stacks, Ni does not contribute in RS characteristics, but Zr plays a vital role in forming CFs by creating oxygen vacancies and forming ZrO2 interfacial layer. Therefore, Zr-doped devices exhibit high-resistance ratio of 104 and good endurance as compared to undoped devices suitable for RRAM applications.
Composite oxygen transport membrane
Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.
2016-11-08
A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
NASA Astrophysics Data System (ADS)
Lee, Jinil
In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO 2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. The feasibility of the CVD-ZrO2 coating as a useful interphase for SiC/SiC composites was investigated with emphasis on developing critical processing-microstructure relationships. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. The pre-delamination occurred as a result of (i) continuous formation of t-ZrO2 nuclei on the deposition surface; (ii) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (iii) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. We also discovered that low oxygen partial pressure in the CVD reactor was required for the nucleation of t-ZrO2 and was ultimately responsible for the delamination behavior. The effects of oxygen partial pressure on the nucleation behavior of the CVD-ZrO2 coating was systematically studied by intentionally adding the controlled amount of O2 into the CVD chamber. Characterization results suggested that the number density of t-ZrO2 nuclei apparently decreased with increasing the oxygen partial pressure from 0.004 to 1.6 Pa. Also, the coating layer became more columnar and contained larger m-ZrO2 grains. The observed relationships between the oxygen partial pressure and the morphological characteristics of the ZrO 2 coating were explained in the context of the grain size and oxygen deficiency effects which have been previously reported to cause the stabilization of the t-ZrO2 phase in bulk ZrO2 specimens.
Lu, Biao; Li, Peilian; Tang, Zhenhua; Yao, Yingbang; Gao, Xingsen; Kleemann, Wolfgang; Lu, Sheng-Guo
2017-01-01
Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we report on a system, in which the structure can readily change from antiferroelectric into relaxor ferroelectric and vice versa. To this end relaxor ferroelectric Pb0.89La0.11(Zr0.7Ti0.3)0.9725O3 and antiferroelectric Pb0.93La0.07(Zr0.82Ti0.18)0.9825O3 ceramics were designed near the antiferroelectric-ferroelectric phase boundary line in the La2O3-PbZrO3-PbTiO3 phase diagram. Conventional solid state reaction processing was used to prepare the two compositions. The ECE properties were deduced from Maxwell relations and Landau-Ginzburg-Devonshire (LGD) phenomenological theory, respectively, and also directly controlled by a computer and measured by thermometry. Large electrocaloric efficiencies were obtained and comparable with the results calculated via the phenomenological theory. Results show great potential in achieving large cooling power as refrigerants. PMID:28345655
Crystal structures of the new ternary stannides La3Mg4-xSn2+x and LaMg3-xSn2
NASA Astrophysics Data System (ADS)
Solokha, P.; De Negri, S.; Minetti, R.; Proserpio, D. M.; Saccone, A.
2016-01-01
Synthesis and structural characterization of the two new lanthanum-magnesium-stannides La3Mg4-xSn2+x (0.12≤x≤0.40) and LaMg3-xSn2 (0.33≤x≤0.78) are reported. The crystal structures of these intermetallics were determined by single crystal X-ray diffraction analysis and confirmed by Rietveld refinement of powder X-ray diffraction patterns of the corresponding samples. The La3Mg4-xSn2+x phase crystallizes in the hexagonal Zr3Cu4Si2 structure type (P6bar2m, hP9, Z=3, x=0.12(1), a=7.7974(7), c=4.8384(4) Å), which represents an ordered derivative of the hP9-ZrNiAl prototype, ubiquitous among equiatomic intermetallics. The LaMg3-xSn2 phase is the second representative of the trigonal LaMg3-xGe2 type, which is a superstructure of the LaLi3Sb2 structure type (P3bar1c, hP34-0.12, Z=6, x=0.35(1), a=8.3222(9), c=14.9546(16) Å). The scheme describing the symmetry reduction/coloring with respect to the parent type is reported here with the purpose to discuss the LaMg3-xSn2 off-stoichiometry from the geometrical point of view. Structural relationships between the La-Mg-Sn ternary phases, including the already known equiatomic LaMgSn compound (oP12-TiNiSi), are presented in the framework of the AlB2-related compounds family and discussed with the aid of group-subgroup relations in the Bärnighausen formalism.
Forming mechanism of Te-based conductive-bridge memories
NASA Astrophysics Data System (ADS)
Mendes, M. Kazar; Martinez, E.; Marty, A.; Veillerot, M.; Yamashita, Y.; Gassilloud, R.; Bernard, M.; Renault, O.; Barrett, N.
2018-02-01
We investigated origins of the resistivity change during the forming of ZrTe/Al2O3 based conductive-bridge resistive random access memories. Non-destructive hard X-ray photoelectron spectroscopy was used to investigate redox processes with sufficient depth sensitivity. Results highlighted the reduction of alumina correlated to the oxidation of zirconium at the interface between the solid electrolyte and the active electrode. In addition the resistance switching caused a decrease of Zr-Te bonds and an increase of elemental Te showing an enrichment of tellurium at the ZrTe/Al2O3 interface. XPS depth profiling using argon clusters ion beam confirmed the oxygen diffusion towards the top electrode. A four-layer capacitor model showed an increase of both the ZrO2 and AlOx interfacial layers, confirming the redox process located at the ZrTe/Al2O3 interface. Oxygen vacancies created in the alumina help the filament formation by acting as preferential conductive paths. This study provides a first direct evidence of the physico-chemical phenomena involved in resistive switching of such devices.
NASA Astrophysics Data System (ADS)
Kukli, Kaupo; Ritala, Mikko; Aarik, Jaan; Uustare, Teet; Leskela, Markku
2002-08-01
ZrO2 films were grown by atomic layer deposition from ZrCl4 and H2O or a mixture of H2O and H2O2 on Si(100) substrates in the temperature range of 180-600 degC. The films were evaluated in the as-deposited state, in order to follow the effect of deposition temperature on the film quality. The rate of crystal growth increased and the content of residual impurities decreased with increasing temperature. The zirconium-to-oxygen atomic ratio, determined by ion-beam analysis, corresponded to the stoichiometric dioxide regardless of the growth temperature. The effective permittivity of ZrO2 in Al/ZrO2/Si capacitor structures increased from 13-15 in the films grown at 180 degC to 19 in the films grown at 300-600 degC, measured at 100 kHz. The permittivity was relatively high in the crystallized films, compared to the amorphous ones, but rather insensitive to the crystal structure. The permittivity was higher in the films grown using water. The leakage current density tended to be lower and the breakdown field higher in the films grown using hydrogen peroxide.
NASA Astrophysics Data System (ADS)
Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen
2018-01-01
In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.
Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon
2016-09-06
Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.
NASA Astrophysics Data System (ADS)
Anwar, M. A.; Kurniawan, T.; Asmara, Y. P.; Harun, W. S. W.; Oumar, A. N.; Nandyanto, A. B. D.
2017-10-01
In this work, the morphology of ZrO2 thin film from dip coating process on mild steel has been investigated. Mild steel was dip-coated on solution made of zirconium butoxide as a precursor, ethanol as solvent, acetylacetone as chelating agent and water for hydrolysis. Number of dipping was adjusted at 3, 5 and 7 times. The dipped sample then annealed at 350°C for two hours by adjusting the heating rate at 1°C/min respectively. The optical microscope showed that micro-cracks were observed on the surface of the coating with its concentration reduced as dipping sequence increased. The XRD result showed that annealing process can produce polycrystalline tetragonal-ZrO2. Meanwhile, SEM image showed that the thicknesses of the ZrO2 coatings were in between 400-600 nm. The corrosion resistance of uncoated and coated substrates was studied by polarization test through potentio-dynamic polarization curve at 1mV/s immersed in with 3.5% NaCl. The coating efficiency was improved as the number of layer dip coated increased, which showed improvement in corrosion protection.
NASA Astrophysics Data System (ADS)
Zalnezhad, E.
2016-05-01
Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.
Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings
NASA Astrophysics Data System (ADS)
Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin
2010-12-01
In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.
Creep Resistance of ZrO2 Ceramic Improved by the Addition of a Small Amount of Er2O3
NASA Technical Reports Server (NTRS)
Martinez-Fernandez, Julian; Sayir, Ali; Farmer, Serene C.
2003-01-01
Zirconia (ZrO2) has great technological importance in structural, electrical, and chemical applications. It is the crucial component for state-of-the art thermal barrier coatings and an enabling component as a solid electrolyte for solid-oxide fuel cell systems. Pure ZrO2 is of limited use for industrial applications because of the phase transformations that occur. Upon the addition of stabilizers, cubic (c-ZrO2) and tetragonal (t-ZrO2) forms can be preserved. It is the stabilized and partially stabilized forms of zirconia that function as thermal barrier coatings, solid electrolytes, and oxygen sensors and that have numerous applications in the electrochemical industry. The cubic form of ZrO2 is typically stabilized through Y2O3 additions. However, Y2O3-stabilized zirconia is susceptible to deformation at high temperatures (greater than 900 C) because of the large number of slip systems and the high oxygen diffusion rates, which result in high creep rates at high temperatures. Successful use of ZrO2 at high temperatures requires that new dopant additives be found that will retain or enhance the desirable properties of cubic ZrO2 and yet produce a material with lower creep rates. At the NASA Glenn Research Center, erbium oxide (Er2O3) was identified as a promising dopant for improving the creep resistance of. ZrO2. The selection of Er2O3 was based on the strong interactions of point defects and dislocations. Single crystals of 5 mol% Er2O3- doped ZrO2 rods (4 mm in diameter) and monofilaments (200 to 300 mm in diameter and 30 cm long) were grown using the laser-heated float zone technique, and their creep behavior was measured as a function of temperature. The addition of 5 mol% Er2O3 to single-crystal ZrO2 improved its creep resistance at high temperatures by 2 to 3 orders of magnitude over state-of-the-art Y2O3-doped crystals. Detailed microstructural characterization of ZrO2-Er2O3 single crystals has identified new mechanisms for improving the creep resistance of this class of materials. Adding Er2O3 to ZrO2 results in microstructure of stable and metastable tetragonal precipitates that with thermal treatment evolve to a tweed structure of nanosize tetragonal lamellae. The superior high-temperature creep resistance of Er2O3-doped ZrO2 is attributed to nanoscale precipitation hardening. Doping with Er2O3 will significantly increase the upper-use temperature limit of ZrO2. Potential applications include using Er2O3-doped ZrO2 as a high-temperature fiber for structural applications and adding Er2O3 to reduce the sintering rates of ZrO2 thermal barrier coatings. This work was conducted at Dpto. de F sica de la Materia Condensada, Universidad de Sevilla, Spain, and at NASA Glenn.
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.; Valco, G. J.
1989-01-01
Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c.
NASA Astrophysics Data System (ADS)
Naghavi, Negar; Hildebrandt, Thibaud; Bouttemy, Muriel; Etcheberry, Arnaud; Lincot, Daniel
2016-02-01
The highest and most reproducible (Cu(In,Ga)Se2 (CIGSe) based solar-cell efficiencies are obtained by use of a very thin n-type CdS layer deposited by chemical bath deposition (CBD). However because of both Cadmium's adverse environmental impact and the narrow bandgap of CdS (2.4-2.5 eV) one of the major objectives in the field of CIGSe technology remains the development and implementation in the production line of Cd-free buffer layers. The CBDZn( S,O) remains one the most studied buffer layer for replacing the CdS in Cu(In,Ga)Se2-based solar cells and has already demonstrated its potential to lead to high-efficiency solar cells up to 22.3%. However one of the key issue to implement a CBD-Zn(S,O) process in a CIGSe production line is the cells stability, which depends both on the deposition conditions of CBD-Zn(S,O) and on a good band alignment between CIGSe/Zn(S,O)/windows layers. The most common window layers applied in CIGSe solar cells consist of two layers : a thin (50-100 nm) and highly resistive i-ZnO layer deposited by magnetron sputtering and a transparent conducting 300-500 nm ZnO:Al layer. In the case of CBD-Zn(S,O) buffer layer, the nature and deposition conditions of both Zn(S,O) and the undoped window layer can strongly influence the performance and stability of cells. The present contribution will be specially focused on the effect of condition growth of CBD-Zn(S,O) buffer layers and the impact of the composition and deposition conditions of the undoped window layers such as ZnxMgyO or ZnxSnyO on the stability and performance of these solar cells.
NASA Astrophysics Data System (ADS)
Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi
2011-06-01
We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).
Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings
NASA Astrophysics Data System (ADS)
Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.
2010-01-01
Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.
Impact of lysozyme on stability mechanism of nanozirconia aqueous suspension
NASA Astrophysics Data System (ADS)
Szewczuk-Karpisz, Katarzyna; Wiśniewska, Małgorzata
2016-08-01
The effect of lysozyme (LSZ) presence on the zirconium(IV) oxide (ZrO2) aqueous suspension stability was examined. The applied zirconia contains mesopores (with a diameter about 30 nm) and its mean particle size is about 100 nm. To determine the stability mechanism of ZrO2 suspension in the biopolymer presence, the adsorption and electrokinetic (surface charge density and zeta potential) measurements were performed in the pH range 3-10. The lysozyme adsorption on the nanozirconia surface proceeds mainly through electrostatic forces. Under solid-polymer repulsion conditions, there is no adsorption of lysozyme (pH < 6, CNaCl 0.01 mol/dm3). The increase of solution ionic strength to 0.2 mol/dm3 causes screening of unfavourable forces and biopolymer adsorption becomes possible. The LSZ addition to the ZrO2 suspension influences its stability. At pH 3, 4.6 and 7.6, slight improvement of the system stability was obtained. In turn, at pH 9 considerable destabilization of nanozirconia particles covered by polymeric layers occurs.
NASA Astrophysics Data System (ADS)
Lin, You-Sheng
ZrO2 and HfO2 were investigated in this study to replace SiO2 as the potential gate dielectric materials in metal-oxide-semiconductor field effect transistors. ZrO2 and HfO2 films were deposited on p-type Si (100) wafers by an atomic layer chemical vapor deposition (ALCVD) process using zirconium (IV) t-butoxide and hafnium (IV) t-butoxide as the metal precursors, respectively. Oxygen was used alternatively with these metal alkoxide precursors into the reactor with purging and evacuation in between. The as-deposited ZrO2 and HfO2 films were stoichiometric and uniform based on X-ray photoemission spectroscopy and ellipsometry measurements. X-ray diffraction analysis indicated that the deposited films were amorphous, however, the high-resolution transmission electron microscopy showed an interfacial layer formation on the silicon substrate. Time-of-flight secondary ion mass spectrometry and medium energy ion scattering analysis showed significant intermixing between metal oxides and Si, indicating the formation of metal silicates, which were confirmed by their chemical etching resistance in HF solutions. The thermal stability of ZrO2 and HfO2 thin films on silicon was examined by monitoring their decomposition temperatures in ultra-high vacuum, using in-situ synchrotron radiation ultra-violet photoemission spectroscopy. The as-deposited ZrO2 and HfO2 thin films were thermally stable up to 880°C and 950°C in vacuum, respectively. The highest achieveable dielectric constants of as-deposited ZrO 2 and HfO2 were 21 and 24, respectively, which were slightly lower than the reported dielectric constants of bulk ZrO2 and HfO 2. These slight reductions in dielectric constants were attributed to the formation of the interfacial metal silicate layers. Very small hysteresis and interface state density were observed for both metal oxide films. Their leakage currents were a few orders of magnitude lower than that of SiO 2 at the same equivalent oxide thickness. NMOSFETs were also fabricated with the as-deposited metal oxide films, and reasonable ID-V D and IG-VG results were obtained. The electron mobilities were high from devices built using a plasma etching process to pattern the metal oxide films. However, they can be degraded if an HF wet etching process was used due to the large contact resistences. Upon oxygen annealing, the formation of SiOx at the interface improved the thermal stability of the as-deposited metal oxide films, however, lower overall dielectric constant and higher leakage current were observed. Upon ammonia annealing, the formation of SiOxNy improved not only the thermal stability but also reduced the leakage current. However, the overall dielectric constant of the film was still reduced due to the formation of the additional interfacial layer.
Investigation of thermodynamic properties of metal-oxide catalysts
NASA Astrophysics Data System (ADS)
Shah, Parag Rasiklal
An apparatus for Coulometric Titration was developed and used to measure the redox isotherms (i.e. oxygen fugacity P(O2) vs oxygen stoichiometry) of ceria-zirconia solid solutions, mixed oxides of vanadia, and vanadia supported on ZrO2. This data was used to correlate the redox thermodynamics of these oxides to their structure and catalytic properties. From the redox isotherms measured between 873 K and 973 K, the differential enthalpies of oxidation (DeltaH) for Ce0.81Zr0.19O 2.0 and Ce0.25Zr0.75O2.0 were determined, and they were found to be independent of extent of reduction or composition of the solid solution. They were also lower than DeltaH for ceria, which explains the better redox properties of ceria-zirconia solid solutions. The oxidation was driven by entropy in the low reduction region, and a structural model was proposed to explain the observed entropy effects. Redox isotherms were also measured for a number of bulk vanadates between 823 K and 973 K. DeltaG, DeltaH and DeltaS were reported for V 2O5, Mg3(VO4)2, CeVO 4 and ZrV2O7 along with DeltaG values for AlVO 4, LaVO4, CrVO4. V2O5 and ZrV2O7, which were the only oxides having V-O-V bonds, showed a two-step transition of vanadium for V+3↔V +4 and V+4↔V+5 equilibrium in the redox isotherms. The other oxides, all of which have only M-O-V (M=cation other than V), showed a direct one-step transition, V+3↔V +5. The nature of the M-atom also influenced the P(O2) at which the V+3↔V+5 transition occurs. Redox isotherms at 748 K were measured for vanadia supported on ZrO 2; with two different vanadia loadings corresponding to isolated vanadyls and polymeric vanadyls. The isotherm for the sample with isolated vanadyls showed a single-step transition, similar to the one seen in bulk vanadates with M-O-V linkages, while no such one-step transition was observed in the isotherm of the other sample. To study the affect of the varying redox properties of the vanadium-based catalysts on oxidation rates, kinetic studies were performed for methanol and propane oxidation reactions on some of these catalysts. The results suggested that there was no effect of thermodynamic properties of these catalysts on the rates of these oxidation reactions.
Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.H. Kim; C.T. Lee; C.B. Lee
2013-10-01
Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less
NASA Astrophysics Data System (ADS)
Martineau, Charlotte; Legein, Christophe; Body, Monique; Péron, Olivier; Boulard, Brigitte; Fayon, Franck
2013-03-01
α-LaZr2F11 has been synthesized by solid state reaction. Its crystal structure has been refined from X-ray powder diffraction data (space group no. 72 Ibam, a=7.785(1) Å, b=10.086(1) Å and c=11.102(1) Å). α-LaZr2F11 contains one La, one Zr and four F inequivalent crystallographic sites. F3 and F4 are shared between one ZrF73- polyhedron and one LaF85- polyhedron, while F1 and F2 bridge two ZrF73- polyhedra. 19F 1D MAS NMR spectra of α-LaZr2F11 are in agreement with the proposed structural model. Assignment of the 19F resonances to the corresponding crystallographic sites has been performed on the basis of both their relative intensities and their correlation patterns in a 19F 2D dipolar-based double-quantum recoupling MAS NMR spectrum. DFT calculations of the 19F chemical shielding tensors have been performed using the GIPAW method implemented in the NMR-CASTEP code, for the experimental structure and two PBE-DFT geometry optimized structures of α-LaZr2F11 (atomic position optimization and full geometry optimization with rescaling of the unit cell volume to the experimental value). Computations were done with and without using a modified La pseudopotential allowing the treatment of the 4f localized empty orbitals of La3+. A relatively nice agreement between the experimental 19F isotropic and anisotropic chemical shifts and the values calculated for the proposed structural model is obtained.
Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Yanyan; Zhao, Li; Wei, Shoubin; Xiao, Meng; Dong, Binghai; Wan, Li; Wang, Shimin
2018-05-01
In this work, perovskite solar cells (PSCs) were fabricated in the ambient air, with a scaffold layer composed of TiO2/ZrO2 double layer as the mesoscopic layer and carbon as the counter electrode. The effect of ZrO2 thin film thickness on the photovoltaic performances of PSCs was also studied in detail. Results showed that the photoelectric properties of as-prepared PSCs largely depend on the thin film thickness due to a series of factors, including surface roughness, charge transport resistance, and electron-hole recombination rate. The power conversion efficiency of PSCs increased from 8.37% to 11.33% by varying the thin film thickness from 75 nm to 305 nm, and the optimal power conversion efficiency was realized up to the 11.33% with a thin film thickness of 167 nm. This research demonstrates a promising route for the high-efficiency and low-cost photovoltaic technology.
Spin Wave Resonances in La_0.67Ba_0.33MnO_3
NASA Astrophysics Data System (ADS)
Lofland, S. E.; Dominguez, M.; Tyagi, S. D.; Bhagat, S. M.; Kwon, C.; Robson, M. C.; Sharma, R. P.; Ramesh, R.; Venkatesan, T.
1996-03-01
Thin ( ~ 110 nm thick) films of La_0.67Ba_0.33MnO3 (LBMO) were prepared by pulsed laser deposition on LaAlO3 substrates. Some films were grown directly onto LaAlO3 while other films were made by first creating a ~ 80 nm thick buffer layer of SrTiO3 (STO) and then capped with a 20 nm thick layer of STO. X-ray and RBS measurements showed the films to be of high crystalline quality. Film thickness was determined by RBS. Spin wave resonance (SWR) measurements were performed at both 10 and 36 GHz. In both types of films Portis (equally spaced) modes were observed. This indicated a non-uniform magnetization which has a parabolic spatial distribution. However, certain tri-layer films showed Kittel modes which follow the n^2 dependence of the mode number n on the resonance field. From the mode separation and the thickness, we calculate the spin stiffness D(0) to be 47 ± 10 meVÅWith this value of D and the magnetization M, we estimate a spatial variation of the magnetization of ~ 20% for those films which showed Portis modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solokha, P., E-mail: pavlo.solokha@unige.it; De Negri, S.; Minetti, R.
2016-01-15
Synthesis and structural characterization of the two new lanthanum–magnesium–stannides La{sub 3}Mg{sub 4−x}Sn{sub 2+x} (0.12≤x≤0.40) and LaMg{sub 3−x}Sn{sub 2} (0.33≤x≤0.78) are reported. The crystal structures of these intermetallics were determined by single crystal X-ray diffraction analysis and confirmed by Rietveld refinement of powder X-ray diffraction patterns of the corresponding samples. The La{sub 3}Mg{sub 4−x}Sn{sub 2+x} phase crystallizes in the hexagonal Zr{sub 3}Cu{sub 4}Si{sub 2} structure type (P6¯2m, hP9, Z=3, x=0.12(1), a=7.7974(7), c=4.8384(4) Å), which represents an ordered derivative of the hP9-ZrNiAl prototype, ubiquitous among equiatomic intermetallics. The LaMg{sub 3–x}Sn{sub 2} phase is the second representative of the trigonal LaMg{sub 3−x}Ge{sub 2}more » type, which is a superstructure of the LaLi{sub 3}Sb{sub 2} structure type (P3¯1c, hP34-0.12, Z=6, x=0.35(1), a=8.3222(9), c=14.9546(16) Å). The scheme describing the symmetry reduction/coloring with respect to the parent type is reported here with the purpose to discuss the LaMg{sub 3−x}Sn{sub 2} off-stoichiometry from the geometrical point of view. Structural relationships between the La–Mg–Sn ternary phases, including the already known equiatomic LaMgSn compound (oP12-TiNiSi), are presented in the framework of the AlB{sub 2}-related compounds family and discussed with the aid of group-subgroup relations in the Bärnighausen formalism. - Graphical abstract: Crystal structure of LaMg{sub 3−x}Sn{sub 2} viewed along the (001) direction together with the puckered layer of Mg and Sn atoms hosting Mg2, Mg3 and vacancy □. - Highlights: • Crystal structures of the new La{sub 3}Mg{sub 4−x}Sn{sub 2+x} and LaMg{sub 3−x}Sn{sub 2} phases were determined. • The off-stoichiometry of LaMg{sub 3−x}Sn{sub 2} was discussed from geometrical point of view. • Structural relations between the known La–Mg–Sn phases were established. • The studied compounds are related to the AlB{sub 2} type by symmetry reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weimer, Alan
2012-11-26
This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3},more » and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:« less
NASA Astrophysics Data System (ADS)
Poddar, A.; Mandal, P.; Choudhury, P.; Das, A. N.; Ghosh, B.
1988-06-01
The electrical resistance has been measured for the titled compounds. All the compounds show superconductivity at about 90 K except La-system whose superconducting behavior depends much on the preparation procedure. Magnetization measurements has been made at 77 K and the Hmax (field at which negative magnetization is maximum) values for the above systems are in the range 170 - 320 Oe.
The formation of crystals in glasses containing rare earth oxides
NASA Astrophysics Data System (ADS)
Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt
2014-02-01
Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800°C, 959°C and 986°C, respectively; while TL was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.
In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.
Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A
2014-06-01
The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.
Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus
2016-01-01
Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857
Hsu, Chih-Hung; Chen, Lung-Chien; Lin, Yi-Feng
2013-01-01
This study reports the optoelectronic characteristics of ZnO/GaP buffer/CuO-Cu2O complex (COC) inverse heterostructure for solar cell applications. The GaP and COC layers were used as buffer and absorber in the cell structure, respectively. An energy gap widening effect and CuO whiskers were observed as the copper (Cu) layer was exerted under heat treatment for oxidation at 500 °C for 10 min, and arose from the center of the Cu2O rods. For preparation of the 30 nm-thick GaP buffer by sputtering from GaP target, as the nitrogen gas flow rate increased from 0 to 2 sccm, the transmittance edge of the spectra demonstrated a blueshift form 2.24 to 3.25 eV. Therefore, the layer can be either GaP, GaNP, or GaN by changing the flow rate of nitrogen gas. PMID:28788341
Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.
Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K
2006-07-01
Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.
NASA Astrophysics Data System (ADS)
Sun, Li
Aerodynamic heating generated by the friction between the atmosphere and the space vehicle's surface at reentry can enhance the temperature on the surface as high as 1700°C. A Thermal Protection System (TPS) is needed to inhibit the heat entering into the vehicle. Presently, the completely passive thermal protection is used for TPS. The thermal ablation/erosion and oxidization reaction of the current TPS is the major threat to the safety of the space vehicle. Therefore, a new design for TPS with actively self-cooling capability was proposed by bio-mimicking the perspiration of the human body, henceforth called Perspirable skin. The design of Perspirable Skin consists of core material shrink-fitted into a skin panel such as Reinforced Carbon-Carbon (RCC) Composite. The core material contains a very small Coefficient of Thermal Expansion (CTE) compared to the panel material. As temperature increases, the gap between the core and the skin are produced due to the CTE difference. Compressed gas on board the space vehicle will blow out from the gap once the surface temperature reaches a critical value. The cold gas flows over the surface and mixes with the atmospheric air to compensate for the frictional heat. With Perspirable Skin, the highest temperature on the surface is expected to decrease, and we assumed it to be around half of the present temperature. This dissertation focuses on the selection of the core materials and their manufacturing by powder processing. Based on a series of experiments, several results were obtained: (1) the effect of powder mixing on the compaction capability and sintering capability was determined; (2) a flat 3-layered Al 2O3/ZrO2 Functionally Graded Material (FGM) without cracks was fabricated; (3) the factors contributing to the cracks in the multi-layered materials were investigated; (4) an isotropic negative thermal expansion material, ZrW2O8, as well as its composites with ZrO2 were processed by in-situ reaction of WO3 and ZrO2; (5) several CTE prediction models on composites containing ZrW2O 8 were studied and proposed as a better scheme for applying the contiguity of phase; (6) a novel processing technique to produce ZrW2O 8-ZrO2 continuous FGMs was developed; and (7) the thermal and mechanical properties of the various materials were measured. Finally, using finite element analysis (FEA), the complete design of Perspirable Skin has been accomplished.
Effect of buffer layer on photoresponse of MoS2 phototransistor
NASA Astrophysics Data System (ADS)
Miyamoto, Yuga; Yoshikawa, Daiki; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji
2018-06-01
An atomically thin MoS2 field-effect transistor (FET) is expected as an ultrathin photosensor with high sensitivity. However, a persistent photoconductivity phenomenon prevents high-speed photoresponse. Here, we investigate the photoresponse of a MoS2 FET with a thin Al2O3 buffer layer on a SiO2 gate insulator. The application of a 2-nm-thick Al2O3 buffer layer greatly improves not only the steady state properties but also the response speed from 1700 to 0.2 s. These experimental results are well explained by the random localized potential fluctuation model combined with the model based on the recombination of the bounded electrons around the trapped hole.
Glory of piezoelectric perovskites.
Uchino, Kenji
2015-08-01
This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino's discoveries such as the Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 electrostrictor, Pb(Zn 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystal, (Pb, La)(Zr, Ti)O 3 photostriction, and Pb(Zr, Ti)O 3 -Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to reliability, hard to soft, macro to nano, homo to hetero, and single to multi-functional.
NASA Astrophysics Data System (ADS)
Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.
2018-03-01
The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafał Siuda (b. 1975).
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10−5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime. PMID:28059160
Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles
NASA Astrophysics Data System (ADS)
Widjaja, Yuniarto; Musgrave, Charles B.
2002-08-01
Atomic layer deposition (ALD) of hafnium oxide (HfO2) using HfCl4 and H2O as precursors is studied using density functional theory. The mechanism consists of two deposition half-reactions: (1) HfCl4 with Hf-OH sites, and (2) H2O with Hf-Cl sites. Both half-reactions exhibit stable intermediates with energies lower than those of the final products. We show that increasing the temperature reduces the stability of the complex. However, increasing temperature also increases the dissociation free-energy barrier, which in turn results in increased desorption of adsorbed precursors. Both half-reactions are qualitatively similar to the corresponding reactions of ZrO2 ALD using ZrCl4 and H2O.
Minagar, Sepideh; Berndt, Christopher C.; Wen, Cuie
2015-01-01
Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants. PMID:25837724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less
Magnetoresistivity of thin YBa2Cu3O7-δ films on sapphire substrate
NASA Astrophysics Data System (ADS)
Probst, Petra; Il'in, Konstantin; Engel, Andreas; Semenov, Alexei; Hübers, Heinz-Wilhelm; Hänisch, Jens; Holzapfel, Bernhardt; Siegel, Michael
2012-09-01
Magnetoresistivity of YBa2Cu3O7-δ films with thicknesses between 7 and 100 nm deposited on CeO2 and PrBa2Cu3O7-δ buffer layers on sapphire substrate has been measured to analyze the temperature dependence of the second critical magnetic field Bc2. To define Bc2, the mean-field transition temperature Tc was evaluated by fitting the resistive transition in zero magnetic field with the fluctuation conductivity theory of Aslamazov and Larkin. At T → Tc the Bc2(T) dependence shows a crossover from downturn to upturn curvature with the increase in film thickness.
Zr-doped SnO2 thin films synthesized by spray pyrolysis technique for barrier layers in solar cells
NASA Astrophysics Data System (ADS)
Reddy, N. Nanda Kumar; Akkera, Harish Sharma; Sekhar, M. Chandra; Park, Si-Hyun
2017-12-01
In the present work, we investigated the effect of Zr doping (0-6 at%) on the structural, electrical, and optical properties of tin oxide (SnO2) thin films deposited onto glass substrates using a spray pyrolysis technique. The room-temperature X-ray diffraction pattern shows that all deposited films exhibit polycrystalline tetragonal structure. The pure SnO2 film is grown along a preferred (200) direction, whereas Zr-doped SnO2 (Zr:SnO2) films started growing along the (220) orientation along with a high intensity peak of (200). Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the grains of the films are spherical in structure, and the grain size decreased with increasing of Zr concentration. The optical transmission spectra of deposited films as a function of wavelength confirm that the average optical transmittance is > 85% for Zr:SnO2 films. The value of the optical bandgap is significantly decreased from 3.94 to 3.68 eV with increasing Zr concentration. Furthermore, the electrical measurements found that the sheet resistance ( R sh) and resistivity ( ρ) values are decreased with increasing of Zr doping. The lowest values of R sh = 6.82 Ω and ρ = 0.4 × 10- 3 Ω cm are found in 6-at% Zr-doped SnO2 film. In addition, a good efficiency value of the figure of merit ( ɸ = 3.35 × 10- 3 Ω-1) is observed in 6-at% Zr-doped SnO2 film. These outstanding properties of Zr-doped SnO2 films make them useful for several optoelectronic device applications.
NASA Astrophysics Data System (ADS)
Lee, Sung Kyun; Hesse, Dietrich; Gösele, Ulrich; Lee, Ho Nyung
2006-09-01
We have investigated the influence of both miscut angle and miscut direction of Y2O3-stabilized ZrO2 (YSZ) (100) single crystal substrates on the azimuthal domain structure of SrRuO3 electrode layers as well as of La-substituted Bi4Ti3O12 (BLT) ferroelectric thin films, both grown on these substrates by pulsed laser deposition. X-ray diffraction ϕ scan and pole figure characterizations revealed that the YSZ[011] miscut direction is more effective to uniformly reduce the number of azimuthal domain variants in the films than the YSZ[001] miscut direction. The BLT films on YSZ(100) substrates with miscut angle of 5° and [011] miscut direction involve only half the number of azimuthal domains, compared to the BLT films on exactly cut YSZ(100) substrates. Atomic force microscopy and plan-view transmission electron microscopy also confirmed that almost all BLT grains on these miscut YSZ(100) substrates are arranged along only two (out of four) specific azimuthal directions. The BLT films on YSZ(100) substrates with 5° miscut towards YSZ[011] showed an about 1.3 times higher remanent polarization (Pr=12.5μC /cm2) than the BLT films on exactly cut YSZ(100) substrates (Pr=9.5μC/cm2), due most probably to a lower areal density of azimuthal domain boundaries. It thus appears that reducing the structural domains can be an effective way to further enhance the ferroelectric properties of multiply twinned, epitaxial ferroelectric films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ro, Insoo; Liu, Yifei; Ball, Madelyn R.
Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less
Ro, Insoo; Liu, Yifei; Ball, Madelyn R.; ...
2016-09-06
Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less
PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.
The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.
Silva, J P B; Wang, J; Koster, G; Rijnders, G; Negrea, R F; Ghica, C; Sekhar, K C; Moreira, J Agostinho; Gomes, M J M
2018-05-02
In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO 3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.
The thermal stability and catalytic application of manganese oxide-zirconium oxide powders
NASA Astrophysics Data System (ADS)
Zhao, Qiang
MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a close relationship between the enhanced thermal stability and better catalytic performance.
Yang, Jing; Zhao, Liang; Liu, Chunze; Wang, Yuanyuan; Dai, Liyi
2016-10-01
Efficient catalytic ethanolysis and gasification of kraft lignin were conducted over a versatile supported catalyst Rh/La2O3/CeO2-ZrO2 to give high-value aromatic alcohols and H2-rich gas. The removal of phenolic hydroxyl group was the most prevalent reaction, and importantly, almost no phenols, undesired char and saturating the aromatic ring were detected. Meanwhile, the feedstock and solvent both played key roles in H2 generation that contributed to the hydrodeoxygenation of liquid components and made the whole catalytic process out of H2 supply. Reusability tests of catalyst indicated that the crystalline phase transition and agglomeration of support, the loss of noble metal Rh and carbon deposition were the possible reasons for its deactivation in supercritical ethanol. Comparing with water, methanol and isopropanol system, ethanol was the only effective solvent for the depolymerization process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buffer layers on metal surfaces having biaxial texture as superconductor substrates
Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2000-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.
NASA Astrophysics Data System (ADS)
Kim, Yang-Hee; Lee, Byong-Taek
2011-06-01
In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material.
Kim, Yang-Hee; Lee, Byong-Taek
2011-01-01
In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material. PMID:27877406
Formation of freestanding ZrO{sub 2} nanotubes for Cr(VI) removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashirom, Nurulhuda, E-mail: nurulhuda.usm2014@gmail.com; Ye, Beh Chin, E-mail: cyebeh@gmail.com; Razak, Khairunisak Abdul, E-mail: khairunisak@usm.my
2016-07-06
Freestanding ZrO{sub 2} nanotubes (ZNTs) were produced using a simple anodization method in fluorinated ethylene glycol electrolyte containing 1 ml 1 M K{sub 2}CO{sub 3}. The pH of the bath was kept constant at 8. The potassium carbonate (K{sub 2}CO{sub 3}) was added into electrolyte to promote the detachment of anodic ZrO{sub 2} film from the underlying zirconium (Zr) substrate. The poor adherence of ZNTs layer was due to generation of CO{sub 2} gas that was thought to occur between metal|oxide interfaces. The effect of anodization voltages towards the detachment of ZNTs layer was systematically studied at 20 V, 40more » V, 50 V and 60 V for 1 hour. The formation of CO{sub 2} gas is a function of anodization voltage, in which at 60 V, a good anodic film separation seen due to higher formation of CO{sub 2} gas. A preliminary study shown the capability of ZNTs in removing 5 ppm of Cr(VI) aqueous solution under illumination of UV light.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindler, Michael; Hochella, Michael F.
2016-05-20
Nanomineralogy is a new dimension in understanding chemical processes in soils. These processes are revealed at the nanoscale within the structures and compositions of phases that heretofore were not even known to exist in the soils in which they are found. The discovery and understanding of soil chemistry in this way is best accessible via a combination of focused ion beam technology (for sample preparation) and high resolution, analytical transmission electron microscopy (for phase identification). We have used this scientific framework and these techniques to decipher past and present chemical processes in a soil in Sudbury, Ontario, Canada that hasmore » been impacted by both smelter contamination (acidification) and subsequent remediation within the past century. In this study, we use these methods to investigate mobilization and sequestration of the relatively immobile elements Al, Ti and Zr. In a micrometer-thick alteration layer on an albite grain, a first generation of clay minerals represents weathering of the underlying mineral prior to the acidification of the soils. Complex assemblages of Ti- and Zr-bearing nanophases occur on the surfaces of Fe-(hydr)oxide crystals and are the result of the dissolution of silicates and oxides and the mobilization of Ti- and Zr-bearing colloids under acidic conditions. These phases include anatase (TiO2), kleberite (Fe3+Ti6O11(OH)5) Ti4O7, baddelyite (ZrO2), a structural analogue to kelyshite (NaZr[Si2O6(OH)]) and authigenic zircon (ZrSiO4). Subsequent remediation of the acidic soils has resulted in the sequestration of Al and in the neoformation of the clay minerals kaolinite, smectite and illite. These complex mineral assemblages form a porous layer that controls the interaction of the underlying mineral with the environment.« less
2015-01-01
Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121
Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata
2006-07-01
Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.
Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers
NASA Astrophysics Data System (ADS)
Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.
2016-09-01
In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
The affects of doping Eu 3+ on structures and morphology of ZrO 2 nanocrystals
NASA Astrophysics Data System (ADS)
Yu, Lixin; Liu, Hai; Nogami, Masayuki
2010-07-01
The ZrO 2 and ZrO 2:Eu 3+ nanocrystals (NCs) were prepared by a hydrothermal method. The samples were sintered at different temperatures (500, 800 and 1100 °C). The results indicate that the Eu 3+ ions affect not only the structures of hosts (ZrO 2), but also the morphology of hosts. The shape of ZrO 2:Eu 3+ NCs heated at 1100 °C is the one-dimensional nanorod, while is the zero-dimensional nanoparticle for pure ZrO 2 samples sintered at the same temperature. The excitation and emission spectra of ZrO 2:Eu 3+ NCs were studied. In excitation spectra, the charge transfer band of Eu 3+ in ZrO 2 NCs heated at 1100 °C evidently blue-shifts in comparison with the NCs calcined at 500 and 800 °C. The relative intensity of 5D-7F transitions of Eu 3+ ions and color chromaticity for nanorods are increased in comparison with the nanoparticles.
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.
2017-04-01
Doping of mesoporous ZnO-ZrO2 nanoparticles with transition metal and lanthanides (Cr, Nd, Dy) were used as a catalyst to develop an ultrasensitive fluorometric method for the conversion of non fluorescent coumarin to highly fluorescent 7-hydroxycoumarin using H2O2 or light. It was found that doped- ZnO-ZrO2 mixed oxide can catalyze the decomposition of H2O2 to produce •OH radicals, which in turn convert coumarin to 7-hydroxycoumarin. At contrast, the doping has deleterious effect on conversion of coumarin by light due to high band gap and high concentrations of doping increase the recombination rate of electron and holes. Doped mixed oxides prepared by impregnation method and characterized by studying their structural, surface and optical properties. Chromium doped ZnO-ZrO2 had the highest rate of formation of hydroxyl radical due to decomposition of H2O2 and therefore 7-hydroxycoumarin due to surface area, small crystal size and high redox potential.
Solomon, Jonathan M; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark
2016-12-12
Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2 Zr 2 O 7 . In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2 Th 2 O 7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.
NASA Astrophysics Data System (ADS)
Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark
2016-12-01
Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.
NASA Astrophysics Data System (ADS)
Tao, S. X.; Notten, P. H. L.; van Santen, R. A.; Jansen, A. P. J.
2010-09-01
The structural changes in MgH2 induced by contact with fluorite transition metal hydrides ( TMH2 , TM=Sc , Ti, V, Cr, Y, Zr, Nb, La, Hf) have been studied using density-functional theory calculations. Models of MgH2(rutile)/TiH2(fluorite) and MgH2(fluorite)/TiH2(fluorite) multilayers with different Mg:TM ratios have been designed. With a fixed thickness of the TMH2 layer, structure transformation of MgH2 from rutile to fluorite occurs with a decrease in thickness of the MgH2 layer. The hydrogen desorption energy from the fluorite MgH2 layer in the multilayers is significantly lower than that of the bulk rutile MgH2 . The structural deformation of the MgH2 layer due to the strain induced by TMH2 is found to be responsible for the destabilization of the Mg-H bond: the more structural deformation, the more destabilization of the Mg-H. Our results provide an important insight for the development of new hydrogen-storage materials with desirable thermodynamic properties.
NASA Astrophysics Data System (ADS)
Usov, I. O.; Arendt, P. N.; Foltyn, S. R.; Stan, L.; DePaula, R. F.; Holesinger, T. G.
2010-06-01
One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer-layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and intermediate layer providing a suitable lattice match to the superconducting Y 1Ba 2Cu 3O 7 (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA and ERD) was employed for analysis of each buffer layer and the YBCO film. These results assisted in understanding of a variety of physical processes occurring during the buffer layer fabrication and helped to optimize the buffer-layer architecture as a whole.
Oxidation of ZrB2 SiC TaSi2 Materials at Ultra High Temperatures
NASA Technical Reports Server (NTRS)
Opila, E.; Smith, J.; Levine, S.; Lorincz, J.; Reigel, M.
2008-01-01
ZrB2 - 20v% SiC - 20v% TaSi2 was oxidized in stagnant air for ten minute cycles for times up to 100 minutes at 1627 C and 1927 C. The sample oxidized at 1627 C showed oxidation resistance better than that of the standard ZrB2 - 20v% SiC. The sample oxidized at 1927 C, however, showed evidence of liquid phase formation and complex oxidation products. The sample exposed at 1927 C was analyzed in detail by scanning electron microprobe and wavelength dispersive spectroscopy to understand the complex oxidation and melting reactions occurring during exposure. The as hot-pressed material shows the formation of a Zr(Ta)B2 phase in addition to the three phases in the nominal composition already noted. After oxidation, the TaSi2 in the matrix was completely reacted to form Ta(Zr)C. The layered oxidation products included SiO2, ZrO2, Ta2O5, and a complex oxide containing both Zr and Ta. Likely reactions are proposed based on thermodynamic phase stability and phase morphology.
NASA Astrophysics Data System (ADS)
Shchukina, Elena; Alexei, Agashev; Nikolai, Pokhilenko
2015-04-01
150 garnet xenocrysts from V. Grib kimberlite pipe were analyzed for major and trace elements compositions. 70 % of garnet belong to lherzolite field; 14 % - megacrysts and pyroxenites; 11 % - eclogites; 4 % - harzburgite; 1 % (1- wehrlite defined by Sobolev (1973). Harzburgite garnets: sinusoidal REE patterns Smn/Ern > 5 (5.2 - 19.8). low Y (0.5 - 3.9 ppm), Zr (1.1 - 44.6 ppm), Ti (54 - 1322 ppm). Wehrlite garnetd: close to sinusoidal REE patterns, Smn/Ern - 1.8. Megacrysts and pyroxenites garnets: normal REE patterns Smn/Ern < 1 (0.2 - 0.6), high TiO2 (0.9 - 1.3 wt %). Lherzolite garnets 70 % show four groups of REE patterns similar to peridotite xenoliths (Shchukina et al., 2013, 2015). 1-st contains MREE at С1 level, Sm/Ern - 0.03, La/Ybn - 0.002. increasing La -Yb range, low Y, Zr, Ti indicating residual nature. 2-nd: MREE at 2 - 13 chondrite units, Smn/Ern (0.16 - 0.98), La/Ybn - 0.001 - 0.040 and flat pattern from MREE to HREE. 3-rd -MREE at 5 - 14 chondrite units, Sm/Ern > 1 (1.05 - 4.81) La/Ybn - 0.010-0.051 increasing an hump at MREE decreasing to HREE. 4-th: sinusoidal REE, Sm/Ern 4.2 - 27.2. and harzburgite Y, Zr, Ti . Average Cr2O3 content increases from 2-nd to the 3-rd group (3.3 to 5.7 wt%) and 4th (7.9 wt %). Average Y/Zr decreases from 2-nd (0.6) to 3rd (0.2) and 4th group (0.08). REE and Y, Zr, Ti indicate the metasomatic origin of garnets of 2, 3. 4 groups. Modeling of TREfor equilibrated melts and fractional crystallization 2nd group close to Turyino field basalts and 3-rd - to Izmozero field picrites of Arkhangelsk diamondiferous province (ADP). Basing on geochemical data of garnet xenocrysts and garnets and clinopyroxenes in peridotites (Shchukina et al., 2013, 2015) we suppose at least 3 stage of high-temperature metasomatic enrichment. 1st stage - is enrichment of residual garnets (found only in peridotite garnets) in LREE by the influence of carbonatite melt close to the Mela field carbonatites of ADP. REE patterns in clinopyroxenes from these peridotite samples and the geochemical modeling results show that clinopyroxenes are also in equilibrium with carbonatite melt. Formation of garnet with the sinusoidal REE pattern could also occurs during carbonatite stage of mantle metasomatism. The 2- nd stage - is formation of garnets of group 3 from the melt of composition close to Izhmozero field picrites. Garnets of group 3 are of lherzolite paragenesis on the content of CaO and Cr2O3, but their REE patterns are close to sinusoidal patterns. The final stage of mantle metasomatism is the formation of garnets of group 2 exposed to the melt of composition close to Turyino field basalts. Garnets of group 2 have low Cr2O3 that indicate the significant amounts of basaltic component in the resulting melt composition or direct crystallization from the melt in case of most low-chromium garnets and megacrysts garnets. Modeling results show that the formation of the garnets of group 2 in peridotites associated with crystallization of the clinopyroxenes. At this stage of mantle metasomatism garnets have typical major and trace element lherzolite composition.
A novel method for preparation of high dense tetragonal Li7La3Zr2O12
NASA Astrophysics Data System (ADS)
Zhao, Pengcheng; Wen, Yuehua; Cheng, Jie; Cao, Gaoping; Jin, Zhaoqing; Ming, Hai; Xu, Yan; Zhu, Xiayu
2017-03-01
For conventional preparation methods of Li7La3Zr2O12 (LLZO) solid state electrolytes, there is a stereotype that higher density always comes from higher pressure enforced upon the LLZO pellets. In this paper, a different way with an auto-consolidation mechanism is provided and discussed. No pressing operations are employed during the whole preparation process. Due to the surface tension of liquid melted Li2O at sintering temperature, LLZO particles could aggregate together freely and automatically. The preparation process for dense LLZO is greatly simplified. A dense tetragonal LLZO with high relative density about 93% has been prepared successfully by this auto-consolidation method. And there are no voids observed in the SEM images. At 30 °C, the total conductivity is about 5.67 × 10-5 S cm-1, which is the highest one for tetragonal LLZO in the reported issues, even two times higher than that prepared by hot-pressing method. The activation energy for total conductivity is ∼0.35 eV atom-1 at 30-120 °C, slightly lower than the previous reported values. This work sheds light on the understanding of the consolidation mechanism for solid electrolytes and suggests a reliable route to syhthesize cemanic solid electrolytes.
NASA Astrophysics Data System (ADS)
Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.
2018-02-01
To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures <700 °C; and (7) occurrence of accessory zircon, rutile and phosphates in the coldest regions. In terms of element redistribution, the peridotite becomes strongly enriched in SiO2 compared to the starting composition, and the sediment gains MgO, FeO and Cr2O3. Potassium is fully extracted into the melt, while Na and Ca are largely retained in the coldest part of the metasediment layer in clinopyroxene, Ca-rich garnet and aragonite. The melt is a product of interaction between partial melt or fluid from the sediment and peridotite. It has a silico-carbonatite composition with variable SiO2, MgO, FeO and CaO contents and low Al2O3. The addition of Cl has almost no effect on element distribution, whereas the addition of F results in the appearance of humite-group minerals containing significant amounts of Ti. Trace-element distribution is controlled by pressure, temperature and mineral assemblages. At low temperatures in the sediment layer (<700 °C) Ba, Rb, Sr and Li are much more mobile than REE and HFSE, which results in high Ba/La, Ba/Nb, Sr/Nb etc. (fluid metasomatism). At higher temperatures in the sediment layer, the melt is markedly enriched in Ba, Rb, Sr, LREE and U relative to Ti, MREE and HREE. Negative Nb-Ta and Zr-Hf anomalies in melts are caused by the retention of rutile, zircon and humite-group minerals in the solid residue. Thermodiffusion may affect the ratios of some highly incompatible elements (e.g., Ta/La). Possible applications of the results to natural deep subduction are discussed in view of variations in mineral assemblages and trace element ratios.
Raman spectroscopy and electron-phonon coupling in Eu3+ doped Gd2Zr2O7 nanopowders
NASA Astrophysics Data System (ADS)
Krizan, G.; Gilic, M.; Ristic-Djurovic, J. L.; Trajic, J.; Romcevic, M.; Krizan, J.; Hadzic, B.; Vasic, B.; Romcevic, N.
2017-11-01
The Raman spectra of Eu3+ doped Gd2Zr2O7 nanopowders were measured. We registered three phonons at 177 cm-1, 268 cm-1, and 592 cm-1, as well as their overtones at 354 cm-1, 445 cm-1, 708 cm-1, 1062 cm-1, 1184 cm-1, ∼1530 cm-1, and ∼1720 cm-1. The phonon at 592 cm-1 is known to be characteristic for Gd2Zr2O7 fluorite-type structure; however, the other two have not been registered so far. We found that the position of the newly detected phonons agrees well with the observed electron-phonon interaction. On the other hand, the registered multiphonon processes were a consequence of miniaturization that further induced changes in electronic structure of Eu3+ doped Gd2Zr2O7 nanopowders.
NASA Astrophysics Data System (ADS)
Xu, Jing; Jiang, Shu-Ye; Zhang, Min; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei
2018-03-01
A negative capacitance field-effect transistor (NCFET) built with hafnium-based oxide is one of the most promising candidates for low power-density devices due to the extremely steep subthreshold swing (SS) and high on-state current induced by incorporating the ferroelectric material in the gate stack. Here, we demonstrated a two-dimensional (2D) back-gate NCFET with the integration of ferroelectric HfZrOx in the gate stack and few-layer MoS2 as the channel. Instead of using the conventional TiN capping metal to form ferroelectricity in HfZrOx, the NCFET was fabricated on a thickness-optimized Al2O3/indium tin oxide (ITO)/HfZrOx/ITO/SiO2/Si stack, in which the two ITO layers sandwiching the HfZrOx film acted as the control back gate and ferroelectric gate, respectively. The thickness of each layer in the stack was engineered for distinguishable optical identification of the exfoliated 2D flakes on the surface. The NCFET exhibited small off-state current and steep switching behavior with minimum SS as low as 47 mV/dec. Such a steep-slope transistor is compatible with the standard CMOS fabrication process and is very attractive for 2D logic and sensor applications and future energy-efficient nanoelectronic devices with scaling power supply.
Development of Long REBCO with BMO Coated Conductors by PLD Method with High Production Rate
NASA Astrophysics Data System (ADS)
Ibi, A.; Yoshida, T.; Taneda, T.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.
We have been developing long REBa2Cu3O7-δ (RE: Y, Gd and Eu etc.) with BaMO3 (M: Zr, Sn and Hf etc.) coated conductors by the combination of the ion-beam assisted deposition (IBAD) and the pulsed laser deposition (PLD) methods. REBa2Cu3O7-δ with BaMO3 coated conductors showed high in-field performance, therefore, these coated conductors could be expected for the industrial and commercial applications at high temperatures in magnetic fields. However, to realize the low production cost for long REBa2Cu3O7-δ with BaMO3 coated conductors, improvement of the production rate of the REBa2Cu3O7-δ layers containing BaMO3 rods with maintaining high superconducting properties is required. To solve these problems, we have tried deposition of the REBa2Cu3O7-δ layers with high superconducting properties by the PLD method with high production rate. As a result, we have successfully fabricated EuBa2Cu3O7-δ layers containing BaHfO3 rods with high in-field Jc and Ic by the PLD method with high production rate. This EuBa2Cu3O7-δ with BaHfO3 coated conductor exhibit a high Ic value of 412 and 48.7 A/cm-width at 77 K in self-field and 3 T, respectively at the deposition rate of about 40 μm/h and the production rate of 10 m/h for a 1.35 μm EuBCO layer thick.
Inorganic Substrates and Encapsulation Layers for Transient Electronics
2014-07-01
surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for
NASA Astrophysics Data System (ADS)
Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar
2018-04-01
For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.
NASA Astrophysics Data System (ADS)
Gavilan, Elisabeth; Audebrand, Nathalie; Jeanneau, Erwann
2007-11-01
A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) has been prepared. The crystal structures have been solved from single-crystal and powder diffraction data. The isotypical compounds crystallise with space group P2 1/ c (No. 14). The structures consist of honeycomb layers formed by eight-fold coordinated metals, in a distorted square-based antiprismatic conformation, connected together via oxalates which act as bidentate ligands and also as monodentate in a less-common μ3-bridging mode. Sheets are built from two shifted honeycomb layers and linked to each other through a hydrogen network. The resulting frameworks of the series display a compact two-dimensional arrangement of polyhedra MO 8 and M'O 8. Weakly-bonded water molecules are located between and within the sheets. Comparisons with the 3D open-framework structures of related metal oxalates are made. The dehydration processes occur in three or four steps. The final products are MO, M'O 2 and PbZrO 3 resulting from the sublimation of PbO in air. The size of PbZrO 3 crystallites, which are on average isotropic, has been evaluated to be 1055 Å from line-broadening analysis.
NASA Astrophysics Data System (ADS)
Sali, S. K.; Kulkarni, N. K.; Krishnan, K.; Achary, S. N.; Tyagi, A. K.
2008-08-01
In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO 2 in UO 2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr 0.33U 0.67O 2.33 (ZrU 2O 7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å 3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U 4+ and U 6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU 2O 7 are also studied using thermogravimetry.
Transport performance of a HTS current lead prepared by the TFA-MOD processed YBCO tapes
NASA Astrophysics Data System (ADS)
Shiohara, K.; Sakai, S.; Ohki, S.; Yamada, Y.; Tachikawa, K.; Koizumi, T.; Aoki, Y.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.
2009-10-01
A superconducting current lead has been prepared using 12 tapes of the trifluoroacetates - metal organic deposition (TFA-MOD) processed Y 1Ba 2Cu 3O 7-δ (YBCO) coated conductors with critical current ( I c) of about 100 A at 77 K in self-field. The tapes are 4.5 mm in width, 220 mm in length and about 120 μm in overall thickness. The 1 μm thick superconducting YBCO layer was formed through the TFA-MOD process on Hastelloy TM substrate tapes with two buffer oxide layers of Gd 2Zr 2O 7 (GZO) and CeO 2. The 12 YBCO tapes were arrayed on the both sides (six tapes on each side) of a stainless steel board with 3 mm in thickness for a board type shape. They were similarly soldered to copper caps at the both ends. The transport current of 1000 A was stably applied for 10 min in the liquid nitrogen temperature without any voltage generation in all tapes. Although some voltage in some YBCO tapes generated at the applied currents of about 1100 A, the transport current of 1200 A was successfully applied without quenching. The voltage between both copper caps linearly increased with increasing the transport current, and it was about 300 μV at an applied current of 1000 A. A low joint resistance between the YBCO tapes and the copper caps resulted in small amounts of the Joule heating at the joints when 1000 A was applied. The overall (effective) thermal conductivity of the current leads composed of YBCO tapes and the stainless steel board was much lower than that of Non-superconducting current leads. Therefore, the present current leads with small heat leakage seemed to be practically promising for superconducting magnets.
NASA Astrophysics Data System (ADS)
Filatova, E. O.; Baraban, A. P.; Konashuk, A. S.; Konyushenko, M. A.; Selivanov, A. A.; Sokolov, A. A.; Schaefers, F.; Drozd, V. E.
2014-11-01
The effect of a transparent conductive oxide (TCO) buffer layer on the insulator matrix and on the resistive switching process in the metal/TiO2/TCO/metal assembly was studied depending on the material of the TCO (ITO-(In2O3)0.9(SnO2)0.1 or SnO2 or ZnO). For the first time electro-physical studies and near edge x-ray absorption fine structure (NEXAFS) studies were carried out jointly and at the same point of the sample, providing direct experimental evidence that the switching process strongly influences the lowest unoccupied bands and the local atomic structure of the TiO2 layers. It was established that a TCO layer in a metal/TiO2/TCO/metal assembly is an additional source of oxygen vacancies for the TiO2 film. The RL (RH) states are achieved presumably with the formation (rupture) of the electrically conductive path of oxygen vacancies. Inserting an Al2O3 thin layer between the TiO2 and TCO layers to some extent restricts the processes of migration of the oxygen ions and vacancies, and does not allow the anti-clockwise bipolar resistive switching in a Au/TiO2/Al2O3/ITO/Au assembly. The greatest value of the ratio RH/RL is observed for the assembly with a SnO2 buffer layer that will provide the maximum set of intermediate states (recording analog data) and increase the density of information recording in this case.
Phase separation of metal-added corium and its effect on a steam explosion
NASA Astrophysics Data System (ADS)
Min, B. T.; Kim, J. H.; Hong, S. W.; Hong, S. H.; Park, I. K.; Song, J. H.; Kim, H. D.
2008-07-01
To simulate a relocation of molten core material and its interaction phenomenon with water during a severe accident in a nuclear reactor, a typical corium of UO 2/ZrO 2/Zr/Stainless steel mixed at a 62 wt%, 15 wt%, 12 wt% and 11 wt%, respectively, was melted and then cooled down to become a solidified ingot. It was shown that the molten corium was separated into two layers, of which the upper layer was oxide mixtures and the lower layer was metal alloys. The upper layer was UO 2 and ZrO 2 and the lower layer mostly consisted of metal mixtures such as uranium, zirconium and stainless steel. Iron content varied with the positions and about a half of it existed as an alloy such as Fe 2U. Uranium metal was produced by reduction of UO 2 by zirconium metal. The average densities of the upper oxide layer and the lower metal layer were 8.802 and 9.411 g/cm 3, respectively. In another test, metal-added molten corium was poured into water and it showed that a steam explosion could occur by applying an external trigger.
Pham, Phuong Thi Mai; Le, Minh Thang; Nguyen, Tien The; Bruneel, Els; Van Driessche, Isabel
2014-01-01
This paper compares different coating methods (in situ solid combustion, hybrid deposition, secondary growth on seed, suspension, double deposition of wet impregnation and suspension) to deposit Ce0.2Zr0.8O2 mixed oxides on cordierite substrates, for use as a three way catalyst. Among them, the double deposition was proven to be the most efficient one. The coated sample shows a BET (Brunauer–Emmett–Teller) surface area of 25 m2/g, combined with a dense and crack free surface. The catalyst with a layer of MnO2–NiO–Co3O4 mixed oxides on top of the Ce0.2Zr0.8O2/cordierite substrate prepared by this method exhibits good activity for the treatment of CO, NO and C3H6 in exhaust gases (CO conversion of 100% at 250 °C, C3H6 conversion of 100% at 400 °C and NO conversion of 40% at 400 °C). PMID:28788189
NASA Astrophysics Data System (ADS)
Ai, Na; He, Shuai; Li, Na; Zhang, Qi; Rickard, William D. A.; Chen, Kongfa; Zhang, Teng; Jiang, San Ping
2018-04-01
Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite oxides directly assembled on barrier-layer-free yttria-stabilized zirconia (YSZ) electrolyte as highly active and stable oxygen electrodes of SOECs. Electrolysis polarization effectively induces the formation of electrode/electrolyte interface, similar to that observed under solid oxide fuel cell (SOFC) operation conditions. However, in contrast to the significant performance decay under SOFC operation conditions, the cell with directly assembled LSCF oxygen electrodes shows excellent stability, tested for 300 h at 0.5 A cm-2 and 750 °C under SOEC operation conditions. Detailed microstructure and phase analysis reveal that Sr segregation is inevitable for LSCF electrode, but anodic polarization substantially suppresses Sr segregation and migration to the electrode/electrolyte interface, leading to the formation of stable and efficient electrode/electrolyte interface for water and CO2 electrolysis under SOECs operation conditions. The present study demonstrates the feasibility of using directly assembled MIEC cobaltite based oxygen electrodes on barrier-layer-free YSZ electrolyte of SOECs.
NASA Astrophysics Data System (ADS)
Fujisawa, Hironori; Kuwamoto, Kei; Nakashima, Seiji; Shimizu, Masaru
2016-02-01
HfO2-based thin films are one of the key dielectric and ferroelectric materials in Si-CMOS LSIs as well as in oxide electronic nanodevices. In this study, we demonstrated the fabrication of a ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire (NW) capacitor structure solely by metalorganic chemical vapor deposition (MOCVD). 15-nm-thick dielectric (Hf,Zr)O2 and 40-nm-thick top ZnO electrode layers were uniformly grown by MOCVD on a ZnO NW template with average diameter, length, and aspect ratio of 110 nm, 10 µm, and ˜90, respectively. The diameter and aspect ratio of the resultant trilayerd NWs are 200-300 nm and above 30, respectively. The crystalline phase of HfO2 and stacked the structure are also discussed.
Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O3 film via in situ misfit strain
NASA Astrophysics Data System (ADS)
Lee, Hyeon Jun; Guo, Er-Jia; Kwak, Jeong Hun; Hwang, Seung Hyun; Dörr, Kathrin; Lee, Jun Hee; Young Jo, Ji
2017-01-01
The tetragonality (c/a) of a PbZr0.2Ti0.8O3 (PZT) thin film on La0.7Sr0.3MnO3/ 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Our results demonstrate that the tetragonality of the PZT thin film plays a critical role in determining d33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.
Ion beam irradiation of lanthanum and thorium-doped yttrium titanates
NASA Astrophysics Data System (ADS)
Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.
2007-05-01
Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.
Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films
NASA Astrophysics Data System (ADS)
Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.
Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.
NASA Astrophysics Data System (ADS)
Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin
2018-03-01
In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.
Interfacial varactor characteristics of ferroelectric thin films on high-resistivity Si substrate
NASA Astrophysics Data System (ADS)
Lan, Wen-An; Wang, Tsan-Chun; Huang, Ling-Hui; Wu, Tai-Bor
2006-07-01
Ferroelectric Ba(Zr0.25Ti0.75)O3 (BZT) thin films were deposited on high-resistivity Si substrate without or with inserting a high-k buffer layer of Ta2O5. The varactor characteristics of the BZT capacitors in metal-oxide-semiconductor structure were studied. At low frequency (1MHz ), the capacitors exhibit a negatively tunable characteristic, i.e., [C(V)-C(0)]/C(0)<0, against dc bias V, but opposite tunable characteristics were found at microwave frequencies (>1GHz). The change of voltage-dependent characteristic is attributed to the effect of low-resistivity interface induced by charged defects formed from interfacial oxidation of Si in screening the microwave from penetrating into the bulk of Si.
BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates
NASA Astrophysics Data System (ADS)
Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.
Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.
High temperature solid electrolyte fuel cell with ceramic electrodes
Marchant, David D.; Bates, J. Lambert
1984-01-01
A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.
High temperature solid electrolyte fuel cell with ceramic electrodes
Bates, J.L.; Marchant, D.D.
A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In/sub 2/O/sub 3/. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.
Buffer layers on rolled nickel or copper as superconductor substrates
Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2000-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vexler, M. I., E-mail: shulekin@mail.ioffe.ru; Grekhov, I. V.
The features of electron tunneling from or into the silicon valence band in a metal–insulator–semiconductor system with the HfO{sub 2}(ZrO{sub 2})/SiO{sub 2} double-layer insulator are theoretically analyzed for different modes. It is demonstrated that the valence-band current plays a less important role in structures with HfO{sub 2}(ZrO{sub 2})/SiO{sub 2} than in structures containing only silicon dioxide. In the case of a very wide-gap high-K oxide ZrO{sub 2}, nonmonotonic behavior related to tunneling through the upper barrier is predicted for the valence-band–metal current component. The use of an insulator stack can offer certain advantages for some devices, including diodes, bipolar tunnel-emittermore » transistors, and resonant-tunneling diodes, along with the traditional use of high-K insulators in a field-effect transistor.« less
Rivas-Murias, Beatriz; Lucas, Irene; Jiménez-Cavero, Pilar; Magén, César; Morellón, Luis; Rivadulla, Francisco
2016-03-09
We report the effect of interface symmetry-mismatch on the magnetic properties of LaCoO3 (LCO) thin films. Growing epitaxial LCO under tensile strain on top of cubic SrTiO3 (STO) produces a contraction along the c axis and a characteristic ferromagnetic response. However, we report here that ferromagnetism in LCO is completely suppressed when grown on top of a buffer layer of rhombohedral La2/3Sr1/3MnO3 (LSMO), in spite of identical in-plane and out-of-plane lattice deformation. This confirms that it is the lattice symmetry mismatch and not just the total strain, which determines the magnetism of LCO. On the basis of this control over the magnetic properties of LCO, we designed a multilayered structure to achieve independent rotation of the magnetization in ferromagnetic insulating LCO and half-metallic ferromagnet LSMO. This is an important step forward for the design of spin-filtering tunnel barriers based on LCO.
High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics
Li, Bi; Liu, Qiuxiang; Tang, Xingui; Zhang, Tianfu; Jiang, Yanping; Li, Wenhua; Luo, Jie
2017-01-01
(Pb0.97La0.02)(Zr0.95Ti0.05)O3 (PLZT2/95/5) ceramics were successfully prepared via a solid-state reaction route. The dielectric properties were investigated in the temperature region of 26–650 °C. The dielectric diffuse anomaly in the dielectric relaxation was found in the high temperature region of 600–650 °C with increasing the measuring frequency, which was related to the dynamic thermal process of ionized oxygen vacancies generated in the high temperature. Two phase transition points were detected during heating, which were found to coexist from 150 to 200 °C. Electric field induced ferroelectric to antiferroelectric phase transition behavior of the (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics was investigated in this work with an emphasis on energy storage properties. A recoverable energy-storage density of 0.83 J/cm3 and efficiency of 70% was obtained in (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics at 55 kV/cm. Based on these results, (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large recoverable energy-storage density could be a potential candidate for the applications in high energy-storage density ceramic capacitors. PMID:28772503
High pressure hydriding of sponge-Zr in steam-hydrogen mixtures
NASA Astrophysics Data System (ADS)
Soo Kim, Yeon; Wang, Wei-E.; Olander, D. R.; Yagnik, S. K.
1997-07-01
Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400°C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2/H 2O above which massive hydriding occurs at 400°C is ˜ 200. The critical H 2/H 20 ratio is shifted to ˜2.5 × 103 at 350°C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ˜5 h at a hydriding rate of ˜10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale.
You, Longzhen; Liu, Bin; Liu, Tao; Fan, Bingbing; Cai, Yunhao; Guo, Lin; Sun, Yanming
2017-04-12
Tungsten oxide as an alternative to conventional acidic PEDOT:PSS has attracted much attention in organic solar cells (OSCs). However, the vacuum-processed WO 3 layer and high-temperature sol-gel hydrolyzed WO X are incompatible with large-scale manufacturing of OSCs. Here, we report for the first time that a specific tungsten oxide WO 2.72 (W 18 O 49 ) nanowire can function well as the anode buffer layer. The nw-WO 2.72 film exhibits a high optical transparency. The power conversion efficiency (PCE) of OSCs based on three typical polymer active layers PTB7:PC 71 BM, PTB7-Th:PC 71 BM, and PDBT-T1:PC 71 BM with nw-WO 2.72 layer were improved significantly from 7.27 to 8.23%, from 8.44 to 9.30%, and from 8.45 to 9.09%, respectively compared to devices with PEDOT:PSS. Moreover, the photovoltaic performance of OSCs based on small molecule p-DTS(FBTTh 2 ) 2 :PC 71 BM active layer was also enhanced with the incorporation of nw-WO 2.72 . The enhanced performance is mainly attributed to the improved short-circuit current density (J sc ), which benefits from the oxygen vacancies and the surface apophyses for better charge extraction. Furthermore, OSCs based on nw-WO 2.72 show obviously improved ambient stability compared to devices with PEDOT:PSS layer. The results suggest that nw-WO 2.72 is a promising candidate for the anode buffer layer materials in organic solar cells.
NASA Astrophysics Data System (ADS)
Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki
2018-05-01
Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.
Glory of piezoelectric perovskites
Uchino, Kenji
2015-01-01
This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino’s discoveries such as the Pb(Mg1/3Nb2/3)O3–PbTiO3 electrostrictor, Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystal, (Pb, La)(Zr, Ti)O3 photostriction, and Pb(Zr, Ti)O3–Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to reliability, hard to soft, macro to nano, homo to hetero, and single to multi-functional. PMID:27877827
Improved production and processing of ⁸⁹Zr using a solution target.
Pandey, Mukesh K; Bansal, Aditya; Engelbrecht, Hendrik P; Byrne, John F; Packard, Alan B; DeGrado, Timothy R
2016-01-01
The objectives of the present work were to improve the cyclotron production yield of (89)Zr using a solution target, develop a practical synthesis of the hydroxamate resin used to process the target, and develop a biocompatible medium for (89)Zr elution from the hydroxamate resin. A new solution target (BMLT-2) with enhanced heat dissipation capabilities was designed by using helium-cooled dual foils (0.2 mm Al and 25 μ Havar) and an enhanced water-cooled, elongated solution cavity in the target insert. Irradiations were performed with 14 MeV protons on a 2M solution of yttrium nitrate in 1.25 M nitric acid at 40-μA beam current for 2 h in a closed system. Zirconium-89 was separated from Y by use of a hydroxamate resin. A one-pot synthesis of hydroxamate resin was accomplished by activating the carboxylate groups on a carboxymethyl cation exchange resin using methyl chloroformate followed by reaction with hydroxylamine hydrochloride. After trapping of (89)Zr on hydroxamate resin and rinsing the resin with HCl and water to release Y, (89)Zr was eluted with 1.2 M K2HPO4/KH2PO4 buffer (pH3.5). ICP-MS was used to measure metal contaminants in the final (89)Zr solution. The BMLT-2 target produced 349±49 MBq (9.4±1.2 mCi) of (89)Zr at the end of irradiation with a specific activity of 1.18±0.79 GBq/μg. The hydroxamate resin prepared using the new synthesis method showed a trapping efficiency of 93% with a 75 mg resin bed and 96-97% with a 100-120 mg resin bed. The elution efficiency of (89)Zr with 1.2M K2HPO4/KH2PO4 solution was found to be 91.7±3.7%, compared to >95% for 1 M oxalic acid. Elution with phosphate buffer gave very small levels of metal contaminants: Al=0.40-0.86 μg (n=2), Fe=1.22±0.71 μg (n=3), Y=0.29 μg (n=1). The BMLT-2 target allowed doubling of the beam current for production of (89)Zr, resulting in a greater than 2-fold increase in production yield in comparison with a conventional liquid target. The new one-pot synthesis of hydroxamate resin provides a simpler synthesis method for the (89)Zr trapping resin. Finally, phosphate buffer elutes the (89)Zrfrom the hydroxamate resin in high efficiency while at the same time providing a more biocompatible medium for subsequent use of (89)Zr. Copyright © 2015 Elsevier Inc. All rights reserved.
V2O5 thin film deposition for application in organic solar cells
NASA Astrophysics Data System (ADS)
Arbab, Elhadi A. A.; Mola, Genene Tessema
2016-04-01
Vanadium pentoxide V2O5 films were fabricated by way of electrochemical deposition technique for application as hole transport buffer layer in organic solar cell. A thin and uniform V2O5 films were successfully deposited on indium tin oxide-coated glass substrate. The characterization of surface morphology and optical properties of the deposition suggest that the films are suitable for photovoltaic application. Organic solar cell fabricated using V2O5 as hole transport buffer layer showed better devices performance and environmental stability than those devices fabricated with PEDOT:PSS. In an ambient device preparation condition, the power conversion efficiency increases by nearly 80 % compared with PEDOT:PSS-based devices. The devices lifetime using V2O5 buffer layer has improved by a factor of 10 over those devices with PEDOT:PSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Aiping; Zhou, Honghui; Zhu, Yuanyuan
2016-11-10
Growth of unexpected phases from a composite target of BiFeO 3:BiMnO 3 and/or BiFeO 3:BiCrO 3 has been explored using pulsed laser deposition. The Bi 2FeMnO 6 tetragonal phase can be grown directly on SrTiO 3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO 3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO 2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO 3:BiCrO 3 target. Puremore » X2 phase can be obtained on CeO 2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO 3 (R = Cr, Mn, Fe, Co, Ni) targets. Moreover, it also indicates that CeO 2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.« less
NASA Astrophysics Data System (ADS)
Trommler, S.; Hänisch, J.; Matias, V.; Hühne, R.; Reich, E.; Iida, K.; Haindl, S.; Schultz, L.; Holzapfel, B.
2012-08-01
Optimized, biaxially textured BaFe1.8Co0.2As2 thin films with an in-plane alignment of 1.7° have been realized on high-quality IBAD-textured MgO-coated technical substrates utilizing additional Fe buffer layers. High critical current densities (Jc) were achieved, comparable to films on single crystalline MgO (Jc ≥ 1 MA cm-2 at 4 K, self-field). Transmission electron microscopy investigations reveal a small number of c-axis correlated defects introduced by the MgO template. The effect of these defects on the Jc anisotropy was determined in angular-dependent electronic transport measurements.
Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings
NASA Astrophysics Data System (ADS)
Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan
2018-03-01
Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.
About properties of ZrO2 thermal protective coatings obtained from spherical powder mixtures
NASA Astrophysics Data System (ADS)
Berdnik, O. B.; Tsareva, I. N.; Tarasenko, Yu P.
2017-05-01
It is developed the technology of high-energy plasma spraying of the zirconium dioxide (ZrO2) thermal protective coating on the basis of ZrO2 tetragonal and cubic phases with the spheroidal grain shape and the columnar substructure, with the total porosity P = 4 %, the hardness HV = 12 GPa, the roughness parameter R a ˜ 6 μm, the thickness 0.3-3 mm. As a sublayer it is used the heat-resistant coating of “Ni-Co-Cr-Al-Y” system with an intermetallic phase composition and the layered microstructure of the grains.
Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing
2017-01-01
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Kun; Gong, Yunhui; Liu, Boyang
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less
Fu, Kun; Gong, Yunhui; Liu, Boyang; ...
2017-04-07
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less
NASA Astrophysics Data System (ADS)
Magrasó, Anna; Fontaine, Marie-Laure
In the current manufacturing process of novel LaNbO 4-based proton conducting fuel cells a thin layer of the electrolyte is deposited by wet ceramic coating on NiO-LaNbO 4 based anode and co-sintered at 1200-1300 °C. The chemical compatibility of NiO with acceptor doped LaNbO 4 material is crucial to ensure viability of the cell, so potential effects of other phases resulting from off-stoichiometry in acceptor doped LaNbO 4 should also be explored. Compatibility of NiO with Ca-doped LaNbO 4 and its typical off-set compositions (La 3NbO 7 and LaNb 3O 9) are investigated in this work. It is shown that while NiO does not react with Ca-doped LaNbO 4, fast reaction occurs with La 3NbO 7 or LaNb 3O 9. La 3NbO 7 and NiO form a mixed conducting perovskite phase LaNi 2/3Nb 1/3O 3, while LaNb 3O 9 and NiO form either NiNb 2O 6 or Ni 4Nb 2O 9 depending on the annealing temperature. This implies that manufacturing LaNbO 4-based proton conducting fuel cells requires a strict control of the stoichiometry of the electrolyte.
A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery
NASA Astrophysics Data System (ADS)
Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin
2018-04-01
A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.
Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.
2015-07-20
Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystallinemore » II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less
NASA Astrophysics Data System (ADS)
Adolph, David; Tingberg, Tobias; Ive, Tommy
2015-09-01
Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.
SANNINO, G.; GLORIA, F.; OTTRIA, L.; BARLATTANI, A.
2010-01-01
SUMMARY Porpose. The aim of this study was to evaluate, by finite element analysis (FEA), the influence of finish line on stress distribution and resistance to the loads of a ZrO2 crown and porcelain in implant-supported. Material and methods. The object of this analysis consisted of a fxture, an abutment, a passing screw, a layer of cement, a framework crown, a feldspatic porcelain veneering. The abutment’s marginal design was used in 3 different types of preparation: feather edge, slight chamfer and 50°, each of them was of 1 mm depth over the entire circumference. The ZrO2Y-TZP coping was 0.6 mm thick. Two material matching for the abutment and the framework was used for the simulations: ZrO2 framework and ZrO2 abutment, ZrO2 framework and T abutment. A 600 N axial force distributed over the entire surface of the crown was applied. The numerical simulations with finite elements were used to verify the different distribution of equivalent von Mises stress for three different geometries of abutment and framework. Results Slight chamfer on the matching ZrO2 - ZrO2 is the geometry with minimum equivalent stress of von Mises. Even for T abutment and ZrO2 framework slight chamfer is the best configuration to minimize the localized stress. Geometry that has the highest average stress is one with abutment at 50°, we see a downward trend for all three configurations using only zirconium for both components. Conclusions Finite element analysis. performed for the manifacturing of implant-supported crown, gives exact geometric guide lines about the choice of chamfer preparation, while the analysis of other marginal geometries suggests a possible improved behavior of the mating between ZrO2 abutment and ZrO2 coping. for three different geometries of the abutment and the coping. PMID:23285359
Electrochemical Stability of Li 10GeP 2S 12 and Li 7La 3Zr 2O 12 Solid Electrolytes
Han, Fudong; Zhu, Yizhou; He, Xingfeng; ...
2016-01-21
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemicalmore » stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.« less
Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther
2015-02-05
Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.
Yu, Shihui; Li, Lingxia; Zhang, Weifeng; Sun, Zheng; Dong, Helei
2015-01-01
The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tunable dielectric properties (tunability = 49.7% at 500 kV/cm) at a PZT/BZN thickness ratio of 3, while the largest figure of merit is obtained as 51.8. The thickness effect is discussed with a series connection model of bilayer capacitors, and the calculated dielectric constant and loss tangent are obtained. Furthermore, five kinds of thin–film samples comprising single bilayers, two, three, four and five PPBLs were also elaborated with the final same thickness. The four PPBLs show the largest dielectric constant of ~538 and tunability of 53.3% at a maximum applied bias field of 500 kV/cm and the lowest loss tangent of ~0.015, while the largest figure of merit is 65.6. The results indicate that four PPBLs are excellent candidates for applications of tunable devices. PMID:25960043
Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon
2014-05-28
The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.
Zhang, Fei; Vanmeensel, Kim; Batuk, Maria; Hadermann, Joke; Inokoshi, Masanao; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef
2015-04-01
Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermoluminescence (TL) of europium-doped ZrO2 obtained by sol-gel method
NASA Astrophysics Data System (ADS)
Rivera, T.; Furetta, C.; Azorín, J.; Barrera, M.; Soto, A. M.
This article reports the preparation and characterization of europium-doped zirconium oxide (ZrO2:Eu3+) formed by homogeneous precipitation from propoxyde of zirconium [Zr(OC3H7)4]. The alkoxide sol gel process is an efficient method to prepare the zirconium oxide matrix by the hydrolysis of alkoxide precursors followed by condensation to yield a polymeric oxo-bridged ZrO2 network. All compounds were characterized by thermal analysis and the X-ray diffractometry method. The thermoluminescence (TL) emission properties of ZrO2:Eu3+ under beta radiation effects are studied. The europium-doped sintered zirconia powder presents a TL glow curve with two peaks (Tmax) centered at around 204 and around 292 °C, respectively. TL response of ZrO2:Eu3+ as a function of beta-absorbed dose was linear from 2 Gy up to 90 Gy. The europium ion (Eu3+)-doped ZrO2 was found to be more sensitive to beta radiation than undoped ZrO2 obtained by the same method and presented a little fading of the TL signal compared with undoped zirconium oxide.
Zirconia coating stabilized super-iron alkaline cathodes
NASA Astrophysics Data System (ADS)
Yu, Xingwen; Licht, Stuart
A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.