Sample records for lab design performance

  1. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  2. Pratt and Whitney Overview and Advanced Health Management Program

    NASA Technical Reports Server (NTRS)

    Inabinett, Calvin

    2008-01-01

    Hardware Development Activity: Design and Test Custom Multi-layer Circuit Boards for use in the Fault Emulation Unit; Logic design performed using VHDL; Layout power system for lab hardware; Work lab issues with software developers and software testers; Interface with Engine Systems personnel with performance of Engine hardware components; Perform off nominal testing with new engine hardware.

  3. Implementation of a Parameterization Framework for Cybersecurity Laboratories

    DTIC Science & Technology

    2017-03-01

    designer of laboratory exercises with tools to parameterize labs for each student , and automate some aspects of the grading of laboratory exercises. A...is to provide the designer of laboratory exercises with tools to parameterize labs for each student , and automate some aspects of the grading of...support might assist the designer of laboratory exercises to achieve the following? 1. Verify that students performed lab exercises, with some

  4. Kinematic Labs with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  5. ASC Tri-lab Co-design Level 2 Milestone Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Rich; Jones, Holger; Keasler, Jeff

    2015-09-23

    In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \

  6. Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG.

    PubMed

    Natarajan, Annamalai; Angarita, Gustavo; Gaiser, Edward; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin M

    2016-09-01

    Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data.

  7. Integrating Human Factors into Space Vehicle Processing for Risk Management

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah; Richards, Kimberly J.

    2008-01-01

    This presentation will discuss the multiple projects performed in United Space Alliance's Human Engineering Modeling and Performance (HEMAP) Lab, improvements that resulted from analysis, and the future applications of the HEMAP Lab for risk assessment by evaluating human/machine interaction and ergonomic designs.

  8. Creative Science Teaching Labs: New Dimensions in CPD

    ERIC Educational Resources Information Center

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  9. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  10. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  11. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  12. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    NASA Astrophysics Data System (ADS)

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-12-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported laboratory will become awkward with the growth of the number of applications and use cases. In particular, using and switching between applications is likely to induce extraneous cognitive load that can easily be avoided. The manuscript describes the design of a prototype smartphone web app (LabBuddy) designed to support students in food chemistry laboratory classes. The manuscript describes a case study ( n = 26) of the use of a LabBuddy prototype in such a laboratory class. Based on the evaluation of this case study, design requirements for LabBuddy were articulated. LabBuddy should work on HTML5 capable devices, independent of screen size, by having a responsive layout. In addition, LabBuddy should enable a student using LabBuddy to switch between devices without much effort. Finally, LabBuddy should offer an integrated representation of information.

  13. Human perception testing methodology for evaluating EO/IR imaging systems

    NASA Astrophysics Data System (ADS)

    Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.

    2018-04-01

    The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.

  14. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.

  15. MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results

    NASA Technical Reports Server (NTRS)

    Ignatonis, A. J.; Mitchell, K. L.

    1974-01-01

    Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.

  16. Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul

    2000-03-01

    Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this technique are a reduction in reagents, higher sensitivity, minimal preparation of complex samples such as blood, real-time calibration, and extremely rapid analysis.

  17. Power and energy computational models for the design and simulation of hybrid-electric combat vehicles

    NASA Astrophysics Data System (ADS)

    Smith, Wilford; Nunez, Patrick

    2005-05-01

    This paper describes the work being performed under the RDECOM Power and Energy (P&E) program (formerly the Combat Hybrid Power System (CHPS) program) developing hybrid power system models and integrating them into larger simulations, such as OneSAF, that can be used to find duty cycles to feed designers of hybrid power systems. This paper also describes efforts underway to link the TARDEC P&E System Integration Lab (SIL) in San Jose CA to the TARDEC Ground Vehicle Simulation Lab (GVSL) in Warren, MI. This linkage is being performed to provide a methodology for generating detailed driver profiles for use in the development of vignettes and mission profiles for system design excursions.

  18. Validation of a Host Response Assay, Septicyte™ LAB, for Discriminating Sepsis from SIRS in the ICU.

    PubMed

    Miller Iii, Russell R; Lopansri, Bert K; Burke, John P; Levy, Mitchell; Opal, Steven; Rothman, Richard E; D'Alessio, Franco R; Sidhaye, Venkataramana K; Aggarwal, Neil R; Balk, Robert; Greenberg, Jared A; Yoder, Mark; Patel, Gourang; Gilbert, Emily; Afshar, Majid; Parada, Jorge P; Martin, Greg S; Esper, Annette M; Kempker, Jordan A; Narasimhan, Mangala; Tsegaye, Adey; Hahn, Stella; Mayo, Paul; van der Poll, Tom; Schultz, Marcus J; Scicluna, Brendon P; Klein Klouwenberg, Peter; Rapisarda, Antony; Seldon, Therese A; McHugh, Leo C; Yager, Thomas D; Cermelli, Silvia; Sampson, Dayle; Rothwell, Victoria; Newman, Richard; Bhide, Shruti; Kirk, James T; Navalkar, Krupa; Davis, Roy F; Brandon, Roslyn A; Brandon, Richard B

    2018-04-06

    A molecular test to distinguish between sepsis and systemic inflammation of non-infectious etiology could potentially have clinical utility. This study evaluated the diagnostic performance of a molecular host response assay (SeptiCyte™ LAB) designed to distinguish between sepsis and non-infectious systemic inflammation in critically ill adults. The study employed a prospective, observational, non-interventional design, and recruited a heterogeneous cohort of adult critical care patients from seven sites in the USA (N=249). An additional group of 198 patients, recruited in the large MARS consortium trial in the Netherlands (clinicaltrials.gov identifier: NCT01905033), was also tested and analyzed, making a grand total of 447 patients in our study. Performance of SeptiCyte™ LAB was compared to retrospective physician diagnosis by a panel of three experts. In receiver operating characteristic curve analysis, SeptiCyte™ LAB had an estimated area under curve of 0.82-0.89 for discriminating sepsis from non-infectious systemic inflammation. The relative likelihood of sepsis versus non-infectious systemic inflammation was found to increase with increasing test score (range 0-10). In a forward logistic regression analysis, the diagnostic performance of the assay was improved only marginally when used in combination with other clinical and laboratory variables including procalcitonin. Performance of the assay was not significantly affected by demographic variables including age, sex, or race/ethnicity. SeptiCyte™ LAB appears to be a promising diagnostic tool to complement physician assessment of infection likelihood in critically ill adult patients with systemic inflammation. Clinical trial registrations available at clinicaltrials.gov, IDs NCT02127502 and NCT01905033.

  19. Virtual lab demonstrations improve students' mastery of basic biology laboratory techniques.

    PubMed

    Maldarelli, Grace A; Hartmann, Erica M; Cummings, Patrick J; Horner, Robert D; Obom, Kristina M; Shingles, Richard; Pearlman, Rebecca S

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  20. Engineering of a miniaturized, robotic clinical laboratory

    PubMed Central

    Nourse, Marilyn B.; Engel, Kate; Anekal, Samartha G.; Bailey, Jocelyn A.; Bhatta, Pradeep; Bhave, Devayani P.; Chandrasekaran, Shekar; Chen, Yutao; Chow, Steven; Das, Ushati; Galil, Erez; Gong, Xinwei; Gessert, Steven F.; Ha, Kevin D.; Hu, Ran; Hyland, Laura; Jammalamadaka, Arvind; Jayasurya, Karthik; Kemp, Timothy M.; Kim, Andrew N.; Lee, Lucie S.; Liu, Yang Lily; Nguyen, Alphonso; O'Leary, Jared; Pangarkar, Chinmay H.; Patel, Paul J.; Quon, Ken; Ramachandran, Pradeep L.; Rappaport, Amy R.; Roy, Joy; Sapida, Jerald F.; Sergeev, Nikolay V.; Shee, Chandan; Shenoy, Renuka; Sivaraman, Sharada; Sosa‐Padilla, Bernardo; Tran, Lorraine; Trent, Amanda; Waggoner, Thomas C.; Wodziak, Dariusz; Yuan, Amy; Zhao, Peter; Holmes, Elizabeth A.

    2018-01-01

    Abstract The ability to perform laboratory testing near the patient and with smaller blood volumes would benefit patients and physicians alike. We describe our design of a miniaturized clinical laboratory system with three components: a hardware platform (ie, the miniLab) that performs preanalytical and analytical processing steps using miniaturized sample manipulation and detection modules, an assay‐configurable cartridge that provides consumable materials and assay reagents, and a server that communicates bidirectionally with the miniLab to manage assay‐specific protocols and analyze, store, and report results (i.e., the virtual analyzer). The miniLab can detect analytes in blood using multiple methods, including molecular diagnostics, immunoassays, clinical chemistry, and hematology. Analytical performance results show that our qualitative Zika virus assay has a limit of detection of 55 genomic copies/ml. For our anti‐herpes simplex virus type 2 immunoglobulin G, lipid panel, and lymphocyte subset panel assays, the miniLab has low imprecision, and method comparison results agree well with those from the United States Food and Drug Administration‐cleared devices. With its small footprint and versatility, the miniLab has the potential to provide testing of a range of analytes in decentralized locations. PMID:29376134

  1. Engineering of a miniaturized, robotic clinical laboratory.

    PubMed

    Nourse, Marilyn B; Engel, Kate; Anekal, Samartha G; Bailey, Jocelyn A; Bhatta, Pradeep; Bhave, Devayani P; Chandrasekaran, Shekar; Chen, Yutao; Chow, Steven; Das, Ushati; Galil, Erez; Gong, Xinwei; Gessert, Steven F; Ha, Kevin D; Hu, Ran; Hyland, Laura; Jammalamadaka, Arvind; Jayasurya, Karthik; Kemp, Timothy M; Kim, Andrew N; Lee, Lucie S; Liu, Yang Lily; Nguyen, Alphonso; O'Leary, Jared; Pangarkar, Chinmay H; Patel, Paul J; Quon, Ken; Ramachandran, Pradeep L; Rappaport, Amy R; Roy, Joy; Sapida, Jerald F; Sergeev, Nikolay V; Shee, Chandan; Shenoy, Renuka; Sivaraman, Sharada; Sosa-Padilla, Bernardo; Tran, Lorraine; Trent, Amanda; Waggoner, Thomas C; Wodziak, Dariusz; Yuan, Amy; Zhao, Peter; Young, Daniel L; Robertson, Channing R; Holmes, Elizabeth A

    2018-01-01

    The ability to perform laboratory testing near the patient and with smaller blood volumes would benefit patients and physicians alike. We describe our design of a miniaturized clinical laboratory system with three components: a hardware platform (ie, the miniLab) that performs preanalytical and analytical processing steps using miniaturized sample manipulation and detection modules, an assay-configurable cartridge that provides consumable materials and assay reagents, and a server that communicates bidirectionally with the miniLab to manage assay-specific protocols and analyze, store, and report results (i.e., the virtual analyzer). The miniLab can detect analytes in blood using multiple methods, including molecular diagnostics, immunoassays, clinical chemistry, and hematology. Analytical performance results show that our qualitative Zika virus assay has a limit of detection of 55 genomic copies/ml. For our anti-herpes simplex virus type 2 immunoglobulin G, lipid panel, and lymphocyte subset panel assays, the miniLab has low imprecision, and method comparison results agree well with those from the United States Food and Drug Administration-cleared devices. With its small footprint and versatility, the miniLab has the potential to provide testing of a range of analytes in decentralized locations.

  2. Evaluation of oral microbiology lab curriculum reform.

    PubMed

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to cultivate high-quality innovative medical talents.

  3. FY17 ISCR Scholar End-of-Assignment Report - Robbie Sadre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadre, R.

    2017-10-20

    Throughout this internship assignment, I did various tasks that contributed towards the starting of the SASEDS (Safe Active Scanning for Energy Delivery Systems) and CES-21 (California Energy Systems for the 21st Century) projects in the SKYFALL laboratory. The goal of the SKYFALL laboratory is to perform modeling and simulation verification of transmission power system devices, while integrating with high-performance computing. The first thing I needed to do was acquire official Online LabVIEW training from National Instruments. Through these online tutorial modules, I learned the basics of LabVIEW, gaining experience in connecting to NI devices through the DAQmx API as wellmore » as LabVIEW basic programming techniques (structures, loops, state machines, front panel GUI design etc).« less

  4. Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis of Improved Integrated Codes on Advanced Architecture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert J.; Hammond, Simon David; Richards, David

    2017-09-01

    This milestone is a tri-lab deliverable supporting ongoing Co-Design efforts impacting applications in the Integrated Codes (IC) program element Advanced Technology Development and Mitigation (ATDM) program element. In FY14, the trilabs looked at porting proxy application to technologies of interest for ATS procurements. In FY15, a milestone was completed evaluating proxy applications in multiple programming models and in FY16, a milestone was completed focusing on the migration of lessons learned back into production code development. This year, the co-design milestone focuses on extracting the knowledge gained and/or code revisions back into production applications.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain; Regnier, Cindy

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineeringmore » design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.« less

  6. An investigation of the effects of relevant samples and a comparison of verification versus discovery based lab design

    NASA Astrophysics Data System (ADS)

    Rieben, James C., Jr.

    This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the use of real world samples. In the organic chemistry experiment, results suggest that the discovery-based design improved student retention of the chain length differentiation by physical properties relative to the verification-based design.

  7. a Low-Cost Chirped-Pulse Fourier Transform Microwave Spectrometer for Undergraduate Physical Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Finneran, Ian; Blake, Geoffrey

    2014-06-01

    We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.

  8. Modification of Peyton's four-step approach for small group teaching - a descriptive study.

    PubMed

    Nikendei, Christoph; Huber, Julia; Stiepak, Jan; Huhn, Daniel; Lauter, Jan; Herzog, Wolfgang; Jünger, Jana; Krautter, Markus

    2014-04-02

    Skills-lab training as a methodological teaching approach is nowadays part of the training programs of almost all medical faculties. Specific ingredients have been shown to contribute to a successful learning experience in skills-labs. Although it is undoubted that the instructional approach used to introduce novel clinical technical skills to learners has a decisive impact on subsequent skills performance, as yet, little is known about differential effects of varying instructional methods. An instructional approach that is becoming increasingly prevalent in medical education is "Peyton's Four-Step Approach". As Peyton's Four Step Approach was designed for a 1:1 teacher : student ratio, the aim of the present study was to develop and evaluate a modified Peyton's Approach for small group teaching. The modified Peyton's Approach was applied in three skills-lab training sessions on IV catheter insertion, each with three first- or second year medical students (n = 9), delivered by three different skills-lab teachers. The presented descriptive study investigated the practicability and subjective impressions of skills-lab trainees and tutors. Skills-lab sessions were evaluated by trainees' self-assessment, expert ratings, and qualitative analysis of semi-standardized interviews conducted with trainees and tutors. The model was well accepted by trainees, and was rated as easy to realize, resulting in a good flow of teaching and success in attracting trainee's attention when observed by expert raters. Qualitative semi-standardized interviews performed with all of the trainees and tutors revealed that trainees valued repeated observation, instruction of trainees and the opportunity for independent performance, while tutors stressed that trainees were highly concentrated throughout the training and that they perceived repeated observation to be a valuable preparation for their own performance. The modified Peyton's Approach to instruct small groups of students in skills-lab training sessions has revealed to be practicable, well accepted by trainees, and easy for tutors to realize. Further research should address the realization of the model in larger skills-lab training groups.

  9. Experiences with Lab-on-a-chip Technology in Support of NASA Supported Research

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2003-01-01

    Under the auspices of the Microgravity Sciences and Application Department at Marshall Space Flight Center, we have custom designed and fabricated a lab-on-a-chip (LOC) device, along with Caliper Technologies, for macromolecular crystal growth. The chip has been designed to deliver specified proportions of up-to five various constituents to one of two growth wells (on-chip) for crystal growth. To date, we have grown crystals of thaumatin, glucose isomerase and appoferitin on the chip. The LOC approach offered many advantages that rendered it highly suitable for space based hardware to perform crystal growth on the International Space Station. The same hardware that was utilized for the crystal growth investigations, has also been used by researchers at Glenn Research Center to investigate aspects of microfluidic phenomenon associated with two-phase flow. Additionally, our LOCAD (Lab-on-a-chip Application Development) team has lent its support to Johnson Space Center s Modular Assay for Solar System Exploration project. At present, the LOCAD team is working on the design and build of a unique lab-on-a-chip breadboard control unit whose function is not commercially available. The breadboard can be used as a test bed for the development of chip size labs for environmental monitoring, crew health monitoring assays, extended flight pharmacological preparations, and many more areas. This unique control unit will be configured for local use and/or remote operation, via the Internet, by other NASA centers. The lab-on-a-chip control unit is being developed with the primary goal of meeting Agency level strategic goals.

  10. Student Self-Efficacy in Introductory Project-Based Learning Courses

    NASA Astrophysics Data System (ADS)

    Pleiss, Geoffrey; Zastavker, Yevgeniya V.

    2012-02-01

    This study investigates first-year engineering students' self-efficacy in two introductory Project-Based Learning (PjBL) courses -- Physics (Mechanics) Laboratory and Engineering Design -- taught at a small technical institution. Twelve students participated in semi-structured open-ended interviews about their experiences in both courses. Analysis was performed using grounded theory. Results indicate that students had lower self-efficacy in Physics Lab than in Engineering Design. In Physics Lab, students reported high levels of faculty-supported scaffolding related to final project deliverables, which in turn established perceptions of an outcome-based course emphasis. Conversely, in Engineering Design, students observed high levels of scaffolding related to the intermediate project deliverables, highlighting process-centered aspects of the course. Our analyses indicate that this difference in student perceptions of course emphases -- resulting from the differences in scaffolding -- is a primary factor for the discrepancy in self-efficacy between Physics Lab and Engineering Design. Future work will examine how other variables (e.g., academic background, perception of community, gender) affect students' self-efficacy and perception of scaffolding in these PjBL courses.

  11. Reducing unnecessary lab testing in the ICU with artificial intelligence

    PubMed Central

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future lab testing for eight common GI related lab tests. Future work will explore applications of this approach to a range of underlying medical conditions and laboratory tests. PMID:23273628

  12. Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes

    ERIC Educational Resources Information Center

    Baseya, J. M.; Francis, C. D.

    2011-01-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…

  13. Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)

    ScienceCinema

    Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric

    2018-06-28

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.

  14. The Influence of Collaborative Learning on Student Attitudes and Performance in an Introductory Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Shibley, Ivan A., Jr.; Zimmaro, Dawn M.

    2002-06-01

    This study was designed to determine the effect of collaborative learning on student attitudes and performance in an introductory chemistry laboratory. Two sections per semester for three semesters were randomly designated as either a control section or an experimental section. Students in the control section performed most labs individually, while those in the experimental section performed all labs in groups of four. Both quantitative and qualitative measures were used to evaluate the impact of collaborative learning on student achievement and attitudes. Grades did not differ between the two sections, indicating that collaborative learning did not affect short-term student achievement. Students seemed to develop a more positive attitude about the laboratory and about chemistry in the collaborative learning sections as judged from their classroom evaluations of the teacher, the course, and the collaborative learning experience. The use of collaborative learning in the laboratory as described in this paper therefore may provide a means of improving student attitudes toward chemistry.

  15. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  16. Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy.

    PubMed

    Hannemann, Jan; Poorter, Hendrik; Usadel, Björn; Bläsing, Oliver E; Finck, Alex; Tardieu, Francois; Atkin, Owen K; Pons, Thijs; Stitt, Mark; Gibon, Yves

    2009-09-01

    Data mining depends on the ability to access machine-readable metadata that describe genotypes, environmental conditions, and sampling times and strategy. This article presents Xeml Lab. The Xeml Interactive Designer provides an interactive graphical interface at which complex experiments can be designed, and concomitantly generates machine-readable metadata files. It uses a new eXtensible Mark-up Language (XML)-derived dialect termed XEML. Xeml Lab includes a new ontology for environmental conditions, called Xeml Environment Ontology. However, to provide versatility, it is designed to be generic and also accepts other commonly used ontology formats, including OBO and OWL. A review summarizing important environmental conditions that need to be controlled, monitored and captured as metadata is posted in a Wiki (http://www.codeplex.com/XeO) to promote community discussion. The usefulness of Xeml Lab is illustrated by two meta-analyses of a large set of experiments that were performed with Arabidopsis thaliana during 5 years. The first reveals sources of noise that affect measurements of metabolite levels and enzyme activities. The second shows that Arabidopsis maintains remarkably stable levels of sugars and amino acids across a wide range of photoperiod treatments, and that adjustment of starch turnover and the leaf protein content contribute to this metabolic homeostasis.

  17. The design and implementation of a broadband digital low-level RF control system for the cyclotron accelerators at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Duckitt, W. D.; Conradie, J. L.; van Niekerk, M. J.; Abraham, J. K.; Niesler, T. R.

    2018-07-01

    iThemba LABS has successfully designed a new broadband digital low-level RF control system for cyclotrons, that operates over the wide frequency range of 2-100 MHz and can achieve peak-peak amplitude and phase stabilities of 0.01% and 0.01°, respectively. The presented system performs direct digital synthesis (DDS) to directly convert the digital RF signals to analog RF and local-oscillator (LO) signals with 16-bit amplitude accuracy, programmable in steps of 1 μHz and 0.0001°. Down-conversion of the RF pick-up signals to an optimal intermediate frequency (IF) of 1 MHz and sampling of the IF channels by 16-bit, single sample-latency 10 MHz ADCs was implemented to allow digital high-speed low-latency in-phase/quadrature (I/Q) demodulation of the IF channels within the FPGA. This in turn allows efficient real-time digital closed-loop control of the amplitude and phase of the RF drive-signal to be achieved. The systems have been successfully integrated at iThemba LABS into the K = 8 and K = 10 injector cyclotrons (SPC1, and SPC2), the K = 200 separated sector cyclotron (SSC), the SSC flat-topping system, the pulse-selector system and the AX , J, and K-line RF bunchers. The systems have led to a substantial improvement in the beam quality of the SSC at iThemba LABS with a reduction in beam losses by more than 90%. The design, implementation and performance is discussed.

  18. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    PubMed

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  19. Design and Analysis of a Preconcentrator for the ChemLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WONG,CHUNGNIN C.; FLEMMING,JEB H.; MANGINELL,RONALD P.

    2000-07-17

    Preconcentration is a critical analytical procedure when designing a microsystem for trace chemical detection, because it can purify a sample mixture and boost the small analyte concentration to a much higher level allowing a better analysis. This paper describes the development of a micro-fabricated planar preconcentrator for the {mu}ChemLab{trademark} at Sandia. To guide the design, an analytical model to predict the analyte transport, adsorption and resorption process in the preconcentrator has been developed. Experiments have also been conducted to analyze the adsorption and resorption process and to validate the model. This combined effort of modeling, simulation, and testing has ledmore » us to build a reliable, efficient preconcentrator with good performance.« less

  20. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their experience in the residency. This talk will describe the program, the inaugural year's outcomes, and plans to expand the program to other research labs.

  1. Bringing research into a first semester organic chemistry laboratory with the multistep synthesis of carbohydrate-based HIV inhibitor mimics.

    PubMed

    Pontrello, Jason K

    2015-01-01

    Benefits of incorporating research experiences into laboratory courses have been well documented, yet examples of research projects designed for the first semester introductory organic chemistry lab course are extremely rare. To address this deficiency, a Carbohydrate-Based human immunodeficiency virus (HIV) Inhibitor project consisting of a synthetic scheme of four reactions was developed for and implemented in the first semester organic lab. Students carried out the synthetic reactions during the last 6 of 10 total labs in the course, generating carbohydrate-based dimeric target molecules modeled after published dimers with application in HIV therapy. The project was designed to provide a research experience through use of literature procedures for reactions performed, exploration of variation in linker length in the target structure, and synthesis of compounds not previously reported in the scientific literature. Project assessment revealed strong student support, indicating enhanced engagement and interest in the course as a direct result of the use of scientific literature and the applications of the synthesized carbohydrate-based molecules. Regardless of discussed challenges in designing a research project for the first semester lab course, the finding from data analysis that a project implemented in the first semester lab had significantly greater student impact than a second semester project should provide motivation for development of additional research projects for a first semester organic course. © 2015 The International Union of Biochemistry and Molecular Biology.

  2. SacLab: A toolbox for saccade analysis to increase usability of eye tracking systems in clinical ophthalmology practice.

    PubMed

    Cercenelli, Laura; Tiberi, Guido; Corazza, Ivan; Giannaccare, Giuseppe; Fresina, Michela; Marcelli, Emanuela

    2017-01-01

    Many open source software packages have been recently developed to expand the usability of eye tracking systems to study oculomotor behavior, but none of these is specifically designed to encompass all the main functions required for creating eye tracking tests and for providing the automatic analysis of saccadic eye movements. The aim of this study is to introduce SacLab, an intuitive, freely-available MATLAB toolbox based on Graphical User Interfaces (GUIs) that we have developed to increase the usability of the ViewPoint EyeTracker (Arrington Research, Scottsdale, AZ, USA) in clinical ophthalmology practice. SacLab consists of four processing modules that enable the user to easily create visual stimuli tests (Test Designer), record saccadic eye movements (Data Recorder), analyze the recorded data to automatically extract saccadic parameters of clinical interest (Data Analyzer) and provide an aggregate analysis from multiple eye movements recordings (Saccade Analyzer), without requiring any programming effort by the user. A demo application of SacLab to carry out eye tracking tests for the analysis of horizontal saccades was reported. We tested the usability of SacLab toolbox with three ophthalmologists who had no programming experience; the ophthalmologists were briefly trained in the use of SacLab GUIs and were asked to perform the demo application. The toolbox gained an enthusiastic feedback from all the clinicians in terms of intuitiveness, ease of use and flexibility. Test creation and data processing were accomplished in 52±21s and 46±19s, respectively, using the SacLab GUIs. SacLab may represent a useful tool to ease the application of the ViewPoint EyeTracker system in clinical routine in ophthalmology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.pymore » (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.« less

  4. Development of an economical, thin, quiet, long-lasting, high friction surface layer, volume 1 : mix design and lab performance testing.

    DOT National Transportation Integrated Search

    2013-03-01

    This project developed and evaluated four new asphalt concrete (AC) mixtures that use locally available : aggregates whenever possible with the ultimate goal of a cost-effective mixture that also improves pavement : performance. Although numerous tac...

  5. Alternation of Generations and Experimental Design: A Guided-Inquiry Lab Exploring the Nature of the "her1" Developmental Mutant of "Ceratopteris richardii" (C-Fern)

    ERIC Educational Resources Information Center

    Spiro, Mark D.; Knisely, Karin I.

    2008-01-01

    Inquiry-based labs have been shown to greatly increase student participation and learning within the biological sciences. One challenge is to develop effective lab exercises within the constraints of large introductory labs. We have designed a lab for first-year biology majors to address two primary goals: to provide effective learning of the…

  6. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    NASA Astrophysics Data System (ADS)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p < .001; Home Chemicals lab t(114) = 8.585, p < .001; Water Use lab, t(116) = 6.657, p < .001; Trees and Carbon lab, t(113) = 9.921, p < .001; Stratospheric Ozone lab, t(112) =12.974, p < .001; Renewable Energy lab, t(115) = 7.369, p < .001. The end of the course Scientific Skills quiz revealed statistically significant improvements, t(112) = 8.221, p < .001. The results of the two surveys showed a statistically significant improvement on student Scientific Self-Confidence because of lab completion, t(114) = 3.015, p < .05. Because age and gender were available, regression models were developed. The results indicated weak multiple correlation coefficients and were not statistically significant at alpha = .05. Evidence suggests that labs play a positive role in a student's academic success. It is recommended that lab experiences be included in all online Environmental Science programs, with emphasis on open-ended inquiries, and adoption of online tools to enhance hands-on experiences, such as virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  7. Evaluation of Inter-Mountain Labs infrasound sensors : July 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Darren M.

    2007-10-01

    Sandia National Laboratories has tested and evaluated three Inter Mountain Labs infrasound sensors. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of the Inter Mountain Labs (IML) infrasound sensor model SS. The results of this evaluation were only comparedmore » to relevant noise models; due to a lack of manufactures documentation notes on the sensors under test prior to testing. The tests selected for this system were chosen to demonstrate different performance aspects of the components under test.« less

  8. Fabrication of Lab-on-Paper Using Porous Au-Paper Electrode: Application to Tumor Marker Electrochemical Immunoassays.

    PubMed

    Ge, Shenguang; Zhang, Yan; Yan, Mei; Huang, Jiadong; Yu, Jinghua

    2017-01-01

    A simple, low-cost, and sensitive electrochemical lab-on-paper assay is developed based on a novel gold nanoparticle modified porous paper working electrode for use in point-of-care testing (POCT). Electrochemical methods are introduced for lab-on-paper based on screen-printed paper electrodes. To further improve specificity, performance, and sensitivity for point-of-care testing, a novel porous Au-paper working electrode (Au-PWE) is designed for lab-on-paper using growth of an interconnected Au nanoparticle (NP) layer on the surface of cellulose fibers in order to enhance the conductivity of the paper sample zone and immobilize the primary antibodies (Ab1). With a sandwich-type immunoassay format, Pd-Au bimetallic nanoparticles possessing peroxidase-like activity are used as a matrix to immobilize secondary antibodies (Ab2) for rapid detection of targets. This lab-on-paper based immunodevice is applied to the diagnosis of a cancer biomarker in clinical serum samples.

  9. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  10. An Intelligent Automation Platform for Rapid Bioprocess Design.

    PubMed

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  11. An Intelligent Automation Platform for Rapid Bioprocess Design

    PubMed Central

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes.The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductlessmore » mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.« less

  13. Computational simulations of frictional losses in pipe networks confirmed in experimental apparatusses designed by honors students

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas A.; Hynes, Eric; Kutz, April

    2015-11-01

    Lectures in introductory fluid mechanics at NIU are a combination of students with standard enrollment and students seeking honors credit for an enriching experience. Most honors students dread the additional homework problems or an extra paper assigned by the instructor. During the past three years, honors students of my class have instead collaborated to design wet-lab experiments for their peers to predict variable volume flow rates of open reservoirs driven by gravity. Rather than learn extra, the honors students learn the Bernoulli head-loss equation earlier to design appropriate systems for an experimental wet lab. Prior designs incorporated minor loss features such as sudden contraction or multiple unions and valves. The honors students from Spring 2015 expanded the repertoire of available options by developing large scale set-ups with multiple pipe networks that could be combined together to test the flexibility of the student team's computational programs. The engagement of bridging the theory with practice was appreciated by all of the students such that multiple teams were able to predict performance within 4% accuracy. The challenges, schedules, and cost estimates of incorporating the experimental lab into an introductory fluid mechanics course will be reported.

  14. Physiological Demands of Simulated Off-Road Cycling Competition

    PubMed Central

    Smekal, Gerhard; von Duvillard, Serge P.; Hörmandinger, Maximilian; Moll, Roland; Heller, Mario; Pokan, Rochus; Bacharach, David W.; LeMura, Linda M.; Arciero, Paul

    2015-01-01

    The purpose of the study was to measure the demands of off-road cycling via portable spirometry, leg-power output (PO), heart rate (HR) and blood lactate (BLa) concentration. Twenty-four male competitive cyclists (age: 29±7.2 yrs, height: 1.79 ± 0.05 m, body mass: 70.0 ± 4.9 kg, VO2peak: 64.9 ± 7.5 ml·kg-1·min-1) performed simulated mountain bike competitions (COMP) and laboratory tests (LabT). From LabT, we determined maximal workload and first and second ventilatory thresholds (VT1, VT2). A high-performance athlete (HPA) was used for comparison with three groups of subjects with different sport-specific performance levels. Load profiles of COMP were also investigated during uphill, flat and downhill cycling. During the COMP, athletes achieved a mean oxygen uptake (VO2COMP) of 57.0 ± 6.8 ml·kg-1·min-1 vs. 71.1 ml·kg-1·min-1 for the HPA. The POCOMP was 2.66±0.43 W·kg-1 and 3.52 W·kg-1 for the HPA. POCOMP, VO2COMP and HRCOMP were compared to corresponding variables at the VT2 of LabT. LabT variables correlated with racing time (RTCOMP) and POCOMP (p < 0.01 to <0.001; r-0.59 to -0.80). The VO2peak (LabT) accounted for 65% of variance of a single COMP test. VO2COMP, POCOMP and also endurance variables measured from LabTs were found as important determinants for cross-country performance. The high average VO2COMP indicates that a high aerobic capacity is a prerequisite for successful COMP. Findings derived from respiratory gas measures during COMPs might be useful when designing mountain bike specific training. Key points Cross- country cycling is characterized by high oxygen costs due to the high muscle mass simultaneously working to fulfill the demands of this kind of sports. Heart rate and blood lactate concentration measures are not sensitive enough to assess the energy requirements of COMP. Therefore, respiratory gas and power output measures are helpful to provide new information to physiological profile of cross- country cycling. An excellent cycling-specific capacity is a prerequisite for successful off-road cycling. Data determined from LabT might be utilized to describe semi-specific abilities of MB- athletes on a cycle ergometer, while data originating from COMP might be useful when designing a mountain bike specific training. PMID:26664277

  15. Integration of MSFC Usability Lab with Usability Testing

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.

  16. Governing Methods: Policy Innovation Labs, Design and Data Science in the Digital Governance of Education

    ERIC Educational Resources Information Center

    Williamson, Ben

    2015-01-01

    Policy innovation labs are emerging knowledge actors and technical experts in the governing of education. The article offers a historical and conceptual account of the organisational form of the policy innovation lab. Policy innovation labs are characterised by specific methods and techniques of design, data science, and digitisation in public…

  17. A Case Study of a High School Fab Lab

    NASA Astrophysics Data System (ADS)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  18. Pre-bent instruments used in single-port laparoscopic surgery versus conventional laparoscopic surgery: comparative study of performance in a dry lab.

    PubMed

    Miernik, Arkadiusz; Schoenthaler, Martin; Lilienthal, Kerstin; Frankenschmidt, Alexander; Karcz, Wojciech Konrad; Kuesters, Simon

    2012-07-01

    Different types of single-incision laparoscopic surgery (SILS) have become increasingly popular. Although SILS is technically even more challenging than conventional laparoscopy, published data of first clinical series seem to demonstrate the feasibility of these approaches. Various attempts have been made to overcome restrictions due to loss of triangulation in SILS by specially designed SILS-specific instruments. This study involving novices in a dry lab compared task performances between conventional laparoscopic surgery (CLS) and single-port laparoscopic surgery (SPLS) using newly designed pre-bent instruments. In this study, 90 medical students without previous experience in laparoscopic techniques were randomly assigned to undergo one of three procedures: CLS, SPLS using two pre-bent instruments (SPLS-pp), or SPLS using one pre-bent and one straight laparoscopic instrument (SPLS-ps). In the dry lab, the participants performed four typical laparoscopic tasks of increasing difficulty. Evaluation included performance times or number of completed tasks within a given time frame. All performances were videotaped and evaluated for unsuccessful attempts and unwanted interactions of instruments. Using subjective questionnaires, the participants rated difficulties with two-dimensional vision and coordination of instruments. Task performances were significantly better in the CLS group than in either SPLS group. The SPLS-ps group showed a tendency toward better performances than the SPLS-pp group, but the difference was not significant. Video sequences and participants` questionnaires showed instrument interaction as the major problem in the single-incision surgery groups. Although SILS is feasible, as shown in clinical series published by laparoscopically experienced experts, SILS techniques are demanding due to restrictions that come with the loss of triangulation. These can be compensated only partially by currently available SILS-designed instruments. The future of SILS depends on further improvements in the available equipment or the development of new approaches such as needlescopically assisted or robotically assisted procedures.

  19. Microtechnology in Space: NASA's Lab-on-a-Chip Applications Development Program

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa; Spearing, Scott; Jenkins, Andy; Symonds, Wes; Mayer, Derek; Gouldie, Edd; Wainwright, Norm; Fries, Marc; Maule, Jake; Toporski, Jan

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) Lab on a Chip Application Development LOCAD) team has worked with microfluidic technology for the past few years in an effort to support NASA's Mission. In that time, such microfluidic based Lab-on-a-Chip (LOC) systems have become common technology in clinical and diagnostic laboratories. The approach is most attractive due to its highly miniaturized platform and ability to perform reagent handling (i-e., dilution, mixing, separation) and diagnostics for multiple reactions in an integrated fashion. LOCAD, along with Caliper Life Sciences has successfully developed the first LOC device for macromolecular crystallization using a workstation acquired specifically for designing custom chips, the Caliper 42. LOCAD uses this, along with a novel MSFC-designed and built workstation for microfluidic development. The team has a cadre of LOC devices that can be used to perform initial feasibility testing to determine the efficacy of the LOC approach for a specific application. Once applicability has been established, the LOCAD team, along with the Army's Aviation and Missile Command microfabrication facility, can then begin to custom design and fabricate a device per the user's specifications. This presentation will highlight the LOCAD team's proven and unique expertise that has been utilized to provide end to end capabilities associated with applying microfluidics for applications that include robotic life detection instrumentation, crew health monitoring and microbial and environmental monitoring for human Exploration.

  20. Optimum Design of Anti-Siphon Device used to Prevent Cerebrospinal Fluid from Overdraining

    NASA Astrophysics Data System (ADS)

    Jang, Jong Yun; Lee, Chong Sun; Suh, Chang Min

    The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.

  1. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  2. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.

    PubMed

    Li, Lin; Yin, Heyu; Mason, Andrew J

    2018-04-01

    The integration of biosensors, microfluidics, and CMOS instrumentation provides a compact lab-on-CMOS microsystem well suited for high throughput measurement. This paper describes a new epoxy chip-in-carrier integration process and two planar metalization techniques for lab-on-CMOS that enable on-CMOS electrochemical measurement with multichannel microfluidics. Several design approaches with different fabrication steps and materials were experimentally analyzed to identify an ideal process that can achieve desired capability with high yield and low material and tool cost. On-chip electrochemical measurements of the integrated assembly were performed to verify the functionality of the chip-in-carrier packaging and its capability for microfluidic integration. The newly developed CMOS-compatible epoxy chip-in-carrier process paves the way for full implementation of many lab-on-CMOS applications with CMOS ICs as core electronic instruments.

  3. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  4. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  5. Introduction to Computing: Lab Manual. Faculty Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Frasca, Joseph W.

    This lab manual is designed to accompany a college course introducing students to computing. The exercises are designed to be completed by the average student in a supervised 2-hour block of time at a computer lab over 15 weeks. The intent of each lab session is to introduce a topic and have the student feel comfortable with the use of the machine…

  6. Novel In Vitro/Ex Vivo Animal Modeling for Filovirus Aerosol Infection

    DTIC Science & Technology

    2013-09-01

    CONTRACTING ORGANIZATION: Sanofi Pasteur VaxDesign Corporation Orlando, Florida, 32826...Ayesha.Mahmood@sanofi.com 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sanofi Pasteur VaxDesign Corporation...between the military USAMRIID labs and Sanofi Pasteur, to investigate the application of the Mucosal Tissue Equivalent (MTE) module of the MIMIC

  7. GeoLab 2011: New Instruments and Operations Tested at Desert RATS

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Calaway, M. J.; Bell, M. S.

    2012-01-01

    GeoLab is a geological laboratory and testbed designed for supporting geoscience activities during NASA's analog demonstrations. Scientists at NASA's Johnson Space Center built GeoLab as part of a technology project to aid the development of science operational concepts for future planetary surface missions [1, 2, 3]. It is integrated into NASA's Habitat Demonstration Unit, a first generation exploration habitat test article. As a prototype workstation, GeoLab provides a high fidelity working space for analog mission crewmembers to perform in-situ characterization of geologic samples and communicate their findings with supporting scientists. GeoLab analog operations can provide valuable data for assessing the operational and scientific considerations of surface-based geologic analyses such as preliminary examination of samples collected by astronaut crews [4, 5]. Our analog tests also feed into sample handling and advanced curation operational concepts and procedures that will, ultimately, help ensure that the most critical samples are collected during future exploration on a planetary surface, and aid decisions about sample prioritization, sample handling and return. Data from GeoLab operations also supports science planning during a mission by providing additional detailed geologic information to supporting scientists, helping them make informed decisions about strategies for subsequent sample collection opportunities.

  8. Utilizing Commercial Real Estate Owner and Investor Data to Analyze the Financial Performance of Energy Efficient, High-Performance Office Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cloutier, Deborah; Hosseini, Farshid; White, Andrew

    Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study tomore » test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.« less

  9. A study on the effect of varying sequence of lab performance skills on lab performance of high school physics students

    NASA Astrophysics Data System (ADS)

    Bournia-Petrou, Ethel A.

    The main goal of this investigation was to study how student rank in class, student gender and skill sequence affect high school students' performance on the lab skills involved in a laboratory-based inquiry task in physics. The focus of the investigation was the effect of skill sequence as determined by the particular task. The skills considered were: Hypothesis, Procedure, Planning, Data, Graph, Calculations and Conclusion. Three physics lab tasks based on the simple pendulum concept were administered to 282 Regents physics high school students. The reliability of the designed tasks was high. Student performance was evaluated on individual student written responses and a scoring rubric. The tasks had high discrimination power and were of moderate difficulty (65%). It was found that, student performance was weak on Conclusion (42%), Hypothesis (48%), and Procedure (51%), where the numbers in parentheses represent the mean as a percentage of the maximum possible score. Student performance was strong on Calculations (91%), Data (82%), Graph (74%) and Plan (68%). Out of all seven skills, Procedure had the strongest correlation (.73) with the overall task performance. Correlation analysis revealed some strong relationships among the seven skills which were grouped in two distinct clusters: Hypothesis, Procedure and Plan belong to one, and Data, Graph, Calculations, and Conclusion belong to the other. This distinction may indicate different mental processes at play within each skill cluster. The effect of student rank was not statistically significant according to the MANOVA results due to the large variation of rank levels among the participating schools. The effect of gender was significant on the entire test because of performance differences on Calculations and Graph, where male students performed better than female students. Skill sequence had a significant effect on the skills of Procedure, Plan, Data and Conclusion. Students are rather weak in proposing a sensible, detailed procedure for the inquiry task which involves the "novel" concept. However they perform better on Procedure and Plan, if the "novel" task is not preceded by another, which explicitly offers step-by-step procedure instructions. It was concluded that the format of detailed, structured instructions often adopted by many commercial and school-developed lab books and conventional lab practices, fails to prepare students to propose a successful, detailed procedure when faced with a slightly "novel", lab-based inquiry task. Student performance on Data collection was higher in the tasks that involved the more familiar experimental arrangement than in the tasks using the slightly "novel" equipment. Student performance on Conclusion was better in tasks where they had to collect the Data themselves than in tasks, where all relevant Data information was given to them.

  10. On Laboratory Work

    NASA Astrophysics Data System (ADS)

    Olney, Dave

    1997-11-01

    This paper offers some suggestions on making lab work for high school chemistry students more productive, with students taking an active role. They include (1) rewriting labs from manuals to better suit one's purpose, (2) the questionable use of canned data tables, (3) designing microscale labs that utilize its unique features, such as safety and ease of repetition, (4) having students actually carry out experimental design on occasion, using a model from PRACTICE IN THINKING, and (5) using comuters/calculators in the lab in meaningful ways. Many examples feature discovery-type labs the author has developed over the years.

  11. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    NASA Astrophysics Data System (ADS)

    Holmes, N. G.; Bonn, D. A.

    2015-09-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation. In addition to teaching students how to use these skills, it is important for students to know when to use them so that they can use them autonomously. This requires, especially in the case of analytical skills, high levels of inquiry behaviors to reflect on data and iterate measurements, which students rarely do in lab experiments. Often, they perform lab experiments in a plug-and-chug frame, procedurally completing each activity with little to no sensemaking. An emphasis on obtaining true theoretical values or agreement on individual measurements also reinforces inauthentic behaviors such as retroactively inflating measurement uncertainties. This paper aims to offer a relatively simple pedagogical framework for engaging students authentically in experimentation and inquiry in physics labs.

  12. Energy Systems Integration Facility Named Lab of the Year | News | NREL

    Science.gov Websites

    series of LEED Platinum high-performance buildings at NREL. Constructed by the design-build team of medium voltage outdoor testing areas. The total cost to build and equip ESIF was $135 million. "To

  13. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria.

    PubMed

    Nievas, Fiorela L; Bogino, Pablo C; Giordano, Walter

    2016-05-06

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Alcohol Fuel By-Product Utilization and Production.

    ERIC Educational Resources Information Center

    Boerboom, Jim

    Ten lessons comprise this curriculum intended to assist vocational teachers in establishing and conducting an alcohol fuels workshop on engine modification and plant design. A glossary is provided first. The 10 lessons cover these topics: the alcohol fuel plant, feedstock preparation lab, distillation lab, fuel plant processes, plant design lab,…

  15. Strategic Design of an Interactive Video Learning Lab (IVL).

    ERIC Educational Resources Information Center

    Switzer, Ralph V., Jr.; Switzer, Jamie S.

    1993-01-01

    Describes a study that researched elements necessary for the design of an interactive video learning (IVL) lab for business courses. Highlights include a review of pertinent literature; guidelines for the use of an IVL lab; IVL systems integration; system specifications; hardware costs; and system software. (five references) (LRW)

  16. Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials

    PubMed Central

    Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.

    2008-01-01

    Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598

  17. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(R) (MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many cou ntries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its re al strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbo x. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using s ymbolic operations. MatLab in its interpreter programming language fo rm (command interface) is similar with well known programming languag es such as C/C++, support data structures and cell arrays to define c lasses in object oriented programming. As such, MatLab is equipped with most ofthe essential constructs of a higher programming language. M atLab is packaged with an editor and debugging functionality useful t o perform analysis of large MatLab programs and find errors. We belie ve there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and ana lysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applicati ons. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientifi c problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabu lar format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed. The presentation will emphasize creating practIcal scripts (pro grams) that extend the basic features of MatLab TOPICS mclude (1) Ma trix and vector analysis and manipulations (2) Mathematical functions (3) Symbolic calculations & functions (4) Import/export data files (5) Program lOgic and flow control (6) Writing function and passing parameters (7) Test application programs

  18. Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR).

    PubMed

    Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A

    2017-11-01

    Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Physical-level synthesis for digital lab-on-a-chip considering variation, contamination, and defect.

    PubMed

    Liao, Chen; Hu, Shiyan

    2014-03-01

    Microfluidic lab-on-a-chips have been widely utilized in biochemical analysis and human health studies due to high detection accuracy, high timing efficiency, and low cost. The increasing design complexity of lab-on-a-chips necessitates the computer-aided design (CAD) methodology in contrast to the classical manual design methodology. A key part in lab-on-a-chip CAD is physical-level synthesis. It includes the lab-on-a-chip placement and routing, where placement is to determine the physical location and the starting time of each operation and routing is to transport each droplet from the source to the destination. In the lab-on-a-chip design, variation, contamination, and defect need to be considered. This work designs a physical-level synthesis flow which simultaneously considers variation, contamination, and defect of the lab-on-a-chip design. It proposes a maze routing based, variation, contamination, and defect aware droplet routing technique, which is seamlessly integrated into an existing placement technique. The proposed technique improves the placement solution for routing and achieves the placement and routing co-optimization to handle variation, contamination, and defect. The simulation results demonstrate that our technique does not use any defective/contaminated grids, while the technique without considering contamination and defect uses 17.0% of the defective/contaminated grids on average. In addition, our routing variation aware technique significantly improves the average routing yield by 51.2% with only 3.5% increase in completion time compared to a routing variation unaware technique.

  20. RANS Simulation (Rotating Reference Frame Model [RRF]) of Single Lab-Scaled DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph

    2014-04-15

    Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study taking advantage of the symmetry of lab-scaled DOE RM1 geometry, only half of the geometry is models using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in the near and far wake of the device at the desired operating conditions. The results of these simulations were validated against in-house experimental data. Please see the attached paper.

  1. A General Chemistry Laboratory Course Designed for Student Discussion

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  2. The Participatory Design of a (Today and) Future Digital Entomology Lab

    ERIC Educational Resources Information Center

    Hai-Jew, Shalin

    2011-01-01

    This article showcases a virtual interactive participatory design activity for building a digital entomology lab. Conceptualized as a virtual complement to a general entomology course at Kansas State University, the lab would allow learners to explore morphological aspects of insects--their various forms and functions--in order to understand…

  3. Enhancing pre-service physics teachers' creative thinking skills through HOT lab design

    NASA Astrophysics Data System (ADS)

    Malik, Adam; Setiawan, Agus; Suhandi, Andi; Permanasari, Anna

    2017-08-01

    A research on the implementation of HOT (Higher Order Thinking) Laboratory has been carried out. This research is aimed to compare increasing of creative thinking skills of pre-service physics teachers who receive physics lesson with HOT Lab and with verification lab for the topic of electric circuit. This research used a quasi-experiment methods with control group pretest-posttest design. The subject of the research is 40 Physics Education pre-service physics teachers of UIN Sunan Gunung Djati Bandung. Research samples were selected by class random sampling technique. Data on pre-service physics teachers' creative thinking skills were collected using test of creative thinking skills in the form of essay. The results of the research reveal that average of N-gain of creative thinking skills are <0,69> for pre-service physics teachers who received lesson with HOT Lab design and <0,39> for pre-service physics teachers who received lesson with verification lab, respectively. Therefore, we conclude that application of HOT Lab design is more effective to increase creative thinking skills in the lesson of electric circuit.

  4. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  5. Design of a Low-Cost Air Levitation System for Teaching Control Engineering.

    PubMed

    Chacon, Jesus; Saenz, Jacobo; Torre, Luis de la; Diaz, Jose Manuel; Esquembre, Francisco

    2017-10-12

    Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system's nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab.

  6. Current status and challenges for automotive battery production technologies

    NASA Astrophysics Data System (ADS)

    Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus

    2018-04-01

    Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.

  7. Institutional transparency improves public perception of lab animal technicians and support for animal research

    PubMed Central

    Mills, Katelyn E.; Han, Zetta; Robbins, Jesse

    2018-01-01

    The use of animals in research is controversial and often takes place under a veil of secrecy. Lab animal technicians responsible for the care of animals at research institutions are sometimes described as performing ‘dirty work’ (i.e. professions that are viewed as morally tainted), and may be stigmatized by negative perceptions of their job. This study assessed if transparency affects public perceptions of lab animal technicians and support for animal research. Participants (n = 550) were randomly assigned to one of six scenarios (using a 3x2 design) that described identical research varying only the transparency of the facility (low, high) and the species used (mice, dogs, cows). Participants provided Likert-type and open-ended responses to questions about the personal characteristics (warmth, competence) of a hypothetical lab technician ‘Cathy’ and their support for the described research. Quantitative analysis showed participants in the low-transparency condition perceived Cathy to be less warm and were less supportive of the research regardless of animal species. Qualitative responses varied greatly, with some participants expressing support for both Cathy and the research. These results suggest that increasing transparency in lab animal institutions could result in a more positive perception of lab animal researchers and the work that they do. PMID:29466425

  8. Institutional transparency improves public perception of lab animal technicians and support for animal research.

    PubMed

    Mills, Katelyn E; Han, Zetta; Robbins, Jesse; Weary, Daniel M

    2018-01-01

    The use of animals in research is controversial and often takes place under a veil of secrecy. Lab animal technicians responsible for the care of animals at research institutions are sometimes described as performing 'dirty work' (i.e. professions that are viewed as morally tainted), and may be stigmatized by negative perceptions of their job. This study assessed if transparency affects public perceptions of lab animal technicians and support for animal research. Participants (n = 550) were randomly assigned to one of six scenarios (using a 3x2 design) that described identical research varying only the transparency of the facility (low, high) and the species used (mice, dogs, cows). Participants provided Likert-type and open-ended responses to questions about the personal characteristics (warmth, competence) of a hypothetical lab technician 'Cathy' and their support for the described research. Quantitative analysis showed participants in the low-transparency condition perceived Cathy to be less warm and were less supportive of the research regardless of animal species. Qualitative responses varied greatly, with some participants expressing support for both Cathy and the research. These results suggest that increasing transparency in lab animal institutions could result in a more positive perception of lab animal researchers and the work that they do.

  9. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  10. LIVING LAB: User-Driven Innovation for Sustainability

    ERIC Educational Resources Information Center

    Liedtke, Christa; Welfens, Maria Jolanta; Rohn, Holger; Nordmann, Julia

    2012-01-01

    Purpose: The purpose of this paper is to summarize and discuss the results from the LIVING LAB design study, a project within the 7th Framework Programme of the European Union. The aim of this project was to develop the conceptual design of the LIVING LAB Research Infrastructure that will be used to research human interaction with, and stimulate…

  11. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE).

    PubMed

    Taylor, Sean C; Mrkusich, Eli M

    2014-01-01

    In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR. © 2013 S. Karger AG, Basel.

  12. Art, Science, and the Choreography of Creative Process

    NASA Astrophysics Data System (ADS)

    Lomask, Jodi

    2010-03-01

    Through my performance company, Capacitor, I have designed a novel conceptual space - ``the Capacitor Lab'' - where artists and scientists exchange ideas and information about a concept that underlies my next performance piece. In 2000, I invited astronomers to advise my company on Earth's relationship to outer space. In 2003, we invited geophysicists into the dance studio to advise us about the layers of the Earth. In 2006, we invited an ecologist to the Monteverde Cloud forest to advise us on the on the quiet interactions among animals and plants in the forest. Currently we are working on a piece about ocean exploration, marine ecology, and the physics of sound underwater. Each of these Capacitor Labs results in a conceptually-rich dance piece which we perform in cities nationally and internationally. In my talk, I take a deeper look at the creative process that scientists and artists share. In the Capacitor labs, the process serves not only our creative team, but also our participating scientists by giving them an opportunity to view their own work in a new light. These collaborations are part of my ongoing research into creative problem solving and my belief that it is essentially the same process regardless of its application.

  13. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    NASA Astrophysics Data System (ADS)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-06-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.

  14. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    PubMed Central

    Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813

  15. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  16. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    ScienceCinema

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2018-06-08

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.

  17. Design of a Low-Cost Air Levitation System for Teaching Control Engineering

    PubMed Central

    Chacon, Jesus; Saenz, Jacobo; de la Torre, Luis; Diaz, Jose Manuel; Esquembre, Francisco

    2017-01-01

    Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system’s nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab. PMID:29023381

  18. Situated peer coaching and unfolding cases in the fundamentals skills laboratory.

    PubMed

    Himes, Deborah O; Ravert, Patricia K

    2012-09-03

    Using unfolding case studies and situated peer coaching for the Fundamentals Skills Laboratory provides students with individualized feedback and creates a realistic clinical learning experience. A quasi-experimental design with pre- and post-intervention data was used to evaluate changes in student ratings of the course. An instrument was used to examine students' self-ratings and student comments about each lab. We found that students' ratings of the lab remained high with the new method and self-evaluations of their performance were higher as the semester progressed. Students appreciated the personalized feedback associated with peer coaching and demonstrated strong motivation and self-regulation in learning. By participating in unfolding case studies with situated peer coaching, students focus on safety issues, practice collaborative communication, and critical thinking in addition to performing psychomotor skills.

  19. Chemistry and mineralogy of Martian dust: An explorer's primer

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1991-01-01

    A summary of chemical and mineralogical properties of Martian surface dust is offered for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface exploration. For technical details and specialized explanations, references should be made to literature cited. Four sources used for information about Martian dust composition: (1) Experiments performed on the Mars surface by the Viking Landers 1 and 2 and Earth-based lab experiments attempting to duplicate these results; (2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9; (3) Visible and infrared spectrophotometry remotely performed from Earth; and (4) Lab studies of the shergottite nakhlite chassignite (SNC) clan of meteorites, for which compelling evidence suggests origin on Mars. Source 1 is limited to fine grained sediments at the surface whereas 2 and 3 contain mixed information about surface dust (and associated rock) and atmospheric dust. Source 4 has provided surprisingly detailed information but investigations are still incomplete.

  20. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impactsmore » from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.« less

  2. Student Plagiarism and Faculty Responsibility in Undergraduate Engineering Labs

    ERIC Educational Resources Information Center

    Parameswaran, Ashvin; Devi, Poornima

    2006-01-01

    In undergraduate engineering labs, lab reports are routinely copied. By ignoring this form of plagiarism, teaching assistants and lab technicians neglect their role responsibility. By designing courses that facilitate it, however inadvertently, professors neglect their causal responsibility. Using the case of one university, we show via interviews…

  3. Experiential Learning of Digital Communication Using LabVIEW

    ERIC Educational Resources Information Center

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  4. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications.

    PubMed

    Patou, François; AlZahra'a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E

    2016-09-03

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.

  5. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications

    PubMed Central

    Patou, François; AlZahra’a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E.

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208

  6. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Teaching bioprocess engineering to undergraduates: Multidisciplinary hands-on training in a one-week practical course.

    PubMed

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related disciplines, where students are challenged with a real-life bioprocess-engineering application, the production of recombinant protein in a fed-batch process. The lab course was designed to introduce students to the subject of operating and supervising an experiment in a bioreactor, along with the analysis of collected data and a final critical evaluation of the experiment. To provide visual feedback of the experimental outcome, the organism used during class was Escherichia coli which carried a plasmid to recombinantly produce enhanced green fluorescent protein (eGFP) upon induction. This can easily be visualized in both the bioreactor and samples by using ultraviolet light. The lab course is performed with bioreactors of the simplest design, and is therefore highly flexible, robust and easy to reproduce. As part of this work the implementation and framework, the results, the evaluation and assessment of student learning combined with opinion surveys are presented, which provides a basis for instructors intending to implement a similar lab course at their respective institution. © 2015 by the International Union of Biochemistry and Molecular Biology.

  8. RANS Simulation (Virtual Blade Model [VBM]) of Array of Three Coaxial Lab Scaled DOE RM1 MHK Turbine with 5D Spacing

    DOE Data Explorer

    Javaherchi, Teymour

    2016-06-08

    Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbines in a coaxial array is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of each device and structure of their turbulent far wake. The results of these simulations were validated against the developed in-house experimental data. Simulations for other turbine configurations are available upon request.

  9. RANS Simulation (Virtual Blade Model [VBM]) of Single Lab Scaled DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph

    2014-04-15

    Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.

  10. 3D-Lab: a collaborative web-based platform for molecular modeling.

    PubMed

    Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas

    2016-09-01

    The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.

  11. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    PubMed

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  12. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy

    PubMed Central

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted. PMID:22013388

  13. Operational experience and design recommendations for teleoperated flight hardware

    NASA Technical Reports Server (NTRS)

    Burgess, T. W.; Kuban, D. P.; Hankins, W. W.; Mixon, R. W.

    1988-01-01

    Teleoperation (remote manipulation) will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also presented.

  14. Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa

    2004-02-01

    Through hardware based design and testing, the EFF-TF investigates fission power and propulsion component, subsystems, and integrated system design and performance. Through demonstration of systems concepts (designed by Sandia and Los Alamos National Laboratories) in relevant environments, previous non-nuclear tests in the EFF-TF have proven to be a highly effective method (from both cost and performance standpoint) to identify and resolve integration issues. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. This paper describes the current efforts for 2003.

  15. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2010-09-20

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less

  16. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Robert K.

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less

  17. Development of a magnetic lab-on-a-chip for point-of-care sepsis diagnosis

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Shoshi, Astrit; Brueckl, Hubert

    2009-05-01

    We present design criteria, operation principles and experimental examples of magnetic marker manipulation for our magnetic lab-on-a-chip prototype. It incorporates both magnetic sample preparation and detection by embedded GMR-type magnetoresistive sensors and is optimized for the automated point-of-care detection of four different sepsis-indicative cytokines directly from about 5 μl of whole blood. The sample volume, magnetic particle size and cytokine concentration determine the microfluidic volume, sensor size and dimensioning of the magnetic gradient field generators. By optimizing these parameters to the specific diagnostic task, best performance is expected with respect to sensitivity, analysis time and reproducibility.

  18. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  19. International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

    NASA Technical Reports Server (NTRS)

    Wieland, Paul; Miller, Lee; Ibarra, Tom

    2003-01-01

    As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.

  20. Online and Face-to-Face Anatomy Dissection Labs: A Comparison of Levels of Achievement in Learning Outcomes and Perception of Learning and Satisfaction

    ERIC Educational Resources Information Center

    Davidson, Jenna L.

    2017-01-01

    This quantitative study examined levels of achievement in learning outcomes when using a face-to-face dissection lab compared to an online dissection lab. Constructivist theory and Understanding by Design learning framework were at the core of this research study design. Data was collected from 24 health science students at a private Midwestern…

  1. Student-Designed Experiments: A Pedagogical Design for Introductory Science Labs

    ERIC Educational Resources Information Center

    Coker, Jeffrey Scott

    2017-01-01

    Despite numerous calls for science education to be driven by authentic investigation, many laboratory experiences continue to consist of disconnected weekly units during which students carry out instructions that lead to some predetermined finding. This study developed and evaluated a pedagogical design for introductory biology labs where students…

  2. Fiber-Coupled Wide Field of View Optical Receiver for High Speed Space Communication

    NASA Astrophysics Data System (ADS)

    Suddath, Shannon N.

    Research groups at NASA Glenn Research Center are interested in improving data rates on the International Space Station (ISS) using a free-space optical (FSO) link. However, known flexure of the ISS structure is expected to cause misalignment of the FSO link. Passive-control designs for mitigating misalignment are under investigation, including using a fiber-bundle for improved field of view. The designs must overcome the obstacle of coupling directly to fiber, rather than a photodetector, as NASA will maintain the use of small form-factor pluggable optical transceivers (SFPs) in the ISS network. In this thesis, a bundle-based receiver capable of coupling directly to fiber is designed, simulated, and tested in lab. Two 3-lens systems were evaluated for power performance in the lab, one with a 20 mm focal length aspheric lens and the other with a 50 mm focal length aspheric lens. The maximum output power achieved was 8 muW.

  3. About Small Streams and Shiny Rocks: Macromolecular Crystal Growth in Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We are developing a novel technique with which we have grown diffraction quality protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. With this technology volumes smaller than achievable with any laboratory pipette can be dispensed with high accuracy. We have performed a feasibility study in which we crystallized several proteins with the aid of a LabChip device. The protein crystals are of excellent quality as shown by X-ray diffraction. The advantages of this new technology include improved accuracy of dispensing for small volumes, complete mixing of solution constituents without bubble formation, highly repeatable recipe and growth condition replication, and easy automation of the method. We have designed a first LabChip device specifically for protein crystallization in batch mode and can reliably dispense and mix from a range of solution constituents. We are currently testing this design. Upon completion additional crystallization techniques, such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility aboard the International Space Station.

  4. Commissioning of the pair spectrometer of the GlueX experiment

    DOE PAGES

    Somov, A.; Tolstukhin, I.; Somov, S. V.; ...

    2017-03-07

    The main goal of the pair spectrometer of the GlueX experiment at Jefferson Lab is to determine the photon beam flux and to measure beam polarization. Here, we present the design of the pair spectrometer and the performance results during the first commissioning runs of the GlueX experiment.

  5. Problem Solvers: MathLab's Design Brings Professional Learning into the Classroom

    ERIC Educational Resources Information Center

    Morales, Sara; Sainz, Terri

    2017-01-01

    Imagine teachers, administrators, and university mathematicians and staff learning together in a lab setting where students are excited about attending a week-long summer math event because they are at the forefront of the experience. Piloted in three New Mexico classrooms during summer 2014, MathLab expanded into 17 lab settings over six…

  6. RatLab: an easy to use tool for place code simulations

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2013-01-01

    In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627

  7. Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content

    NASA Astrophysics Data System (ADS)

    Holmes, N. G.; Olsen, Jack; Thomas, James L.; Wieman, Carl E.

    2017-06-01

    Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional. By comparing the performance of students who did and did not take the labs (with careful normalization for selection effects), we found universally and precisely no added value to learning course content from taking the labs as measured by course exam performance. This work should motivate institutions and departments to reexamine the goals and conduct of their lab courses, given their resource-intensive nature. We show why these results make sense when looking at the comparative mental processes of students involved in research and instructional labs, and offer alternative goals and instructional approaches that would make lab courses more educationally valuable.

  8. Design Lab. USMES "How To" Series.

    ERIC Educational Resources Information Center

    Donahoe, Charles; And Others

    The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended, long-range investigations of real problems. Since children often design and build things in USMES, 26 "Design Lab" cards provide information on the safe use and simple maintenance of tools. Each card has a large photograph of…

  9. An ammonium sulfate/ethanol aqueous two-phase system combined with ultrasonication for the separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge.

    PubMed

    Guo, Y X; Han, J; Zhang, D Y; Wang, L H; Zhou, L L

    2012-07-01

    We studied the effect of ultrasonication extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS) for the separation of lithospermic acid B (LAB) from Salvia miltiorrhiza Bunge. According to the literature and preliminary studies, ammonium sulfate concentration, ethanol concentration, pH, ultrasonication power, ultrasonication time and the ratio of solvent-to-solid were investigated using a single factor design to identify the factors affecting separation. Taking into consideration a simultaneous increase in LAB recovery (R (%)) and partition coefficient (K), the best performance of the ATPS was obtained at 25°C and pH 2 using ammonium sulfate 22% (w/w) and ethanol 30% (w/w). To keep the solvent-to-solid ratio at 10, response surface methodology was used to find the optimal ultrasonication power and ultrasonication time. Quadratic models were predicted for LAB yield in the upper phase. Optimal conditions of 572.1 W ultrasonication power and 42.2 min produced a maximum yield of LAB of 42.16 mg g(-1) sample. There was no obvious degradation of LAB with ultrasound under the applied conditions, and the experimental yield of LAB was 42.49 mg g(-1) sample and the purity was 55.28% (w/w), which was much higher than that obtained using conventional extraction. The present study demonstrated that ultrasound coupled with aqueous two-phase systems is very efficient tool for the extraction and purification of LAB from Salvia miltiorrhiza Bunge. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  11. Indicators for the use of robotic labs in basic biomedical research: a literature analysis

    PubMed Central

    2017-01-01

    Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the papers have at least one of these methods. This and our other results provide indications that robotic labs can serve as the foundation for performing many lab-based experiments. PMID:29134146

  12. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-12-01

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  13. Using collaborative technologies in remote lab delivery systems for topics in automation

    NASA Astrophysics Data System (ADS)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative communication tools for remote labs involving automation equipment, the results of this work points to making voice chat the default method of communication; but the webcam video with voice chat option should be included. Standards are only beginning to be developed for the design of remote lab systems. Research, design and innovation involving collaboration and presence should be included.

  14. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  15. A Lab for All Reasons.

    ERIC Educational Resources Information Center

    Cronin-Jones, Linda L.

    1990-01-01

    Described is a demonstration science laboratory at the University of Florida. Discussed is laboratory design, including instructional space, lab stations, sink areas, safety areas, and a storage and distribution area. The impact of this type of design is cited. Diagrams and photographs are included. (CW)

  16. Peers at work: Evidence from the lab

    PubMed Central

    Oosterbeek, Hessel; Sonnemans, Joep

    2018-01-01

    This paper reports the results of a lab experiment designed to study the role of observability for peer effects in the setting of a simple production task. In our experiment, participants in the role of workers engage in a team real-effort task. We vary whether they can observe, or be observed by, one of their co-workers. In contrast to earlier findings from the field, we find no evidence that low-productivity workers perform better when they are observed by high-productivity co-workers. Instead, our results imply that peer effects in our experiment are heterogeneous, with some workers reciprocating a high-productivity co-worker but others taking the opportunity to free ride. PMID:29408863

  17. Designing the Psychology Laboratories at Nebraska Wesleyan University.

    ERIC Educational Resources Information Center

    Fawl, Clifford L.

    This paper describes the psychology laboratory at Nebraska Wesleyan University and the efforts of the small department which participated in the design and development process. The lab consists of 26 rooms, mostly small cubicles, and covers approximately 3,800 square feet. Each area of the lab is described in terms of its design and function.…

  18. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows.

    PubMed

    Oliveira, André S; Weinberg, Zwi G; Ogunade, Ibukun M; Cervantes, Andres A P; Arriola, Kathy G; Jiang, Yun; Kim, Donghyeon; Li, Xujiao; Gonçalves, Mariana C M; Vyas, Diwakar; Adesogan, Adegbola T

    2017-06-01

    Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥10 5 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥10 5 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  19. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  20. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  1. Cognitive Task Analysis: Implications for the Theory and Practice of Instructional Design.

    ERIC Educational Resources Information Center

    Dehoney, Joanne

    Cognitive task analysis grew out of efforts by cognitive psychologists to understand problem-solving in a lab setting. It has proved a useful tool for describing expert performance in complex problem solving domains. This review considers two general models of cognitive task analysis and examines the procedures and results of analyses in three…

  2. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  3. The Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) Sensor

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    The DNA Medicine Institute has produced a reusable microfluidic device that performs rapid, low-cost cell counts and measurements of electrolytes, proteins, and other biomarkers. The rHEALTH sensor is compact and portable, and it employs cutting-edge fluorescence detection optics, innovative microfluidics, and nanostrip reagents to perform a suite of hematology, chemistry, and biomarker assays from a single drop of blood. A handful of current portable POC devices provide generalized blood analysis, but they perform only a few tests at a time. These devices also rely on disposable components and depend on diverse detection technologies to complete routine tests-all ill-suited for space travelers on extended missions. In contrast, the rHEALTH sensor integrates sample introduction, processing, and detection with a compact, resource-conscious, and efficient design. Developed to monitor astronaut health on the International Space Station and during long-term space flight, this microscale lab analysis tool also has terrestrial applications that include POC diagnostics conducted at a patient's bedside, in a doctor's office, and in a hospital.

  4. Comparison of dielectric properties of additively manufactured vs. solvent cast polyimide dielectrics

    DOE PAGES

    Appelhans, Leah N.; Keicher, David M.; Lavin, Judith Maria

    2016-10-01

    The permittivity, dielectric loss, and DC dielectric breakdown strength of additively manufactured, solvent-cast, and commercial polyimide films are reported As expected, commercial films performed better than both AM and solvent-cast lab-made films. Solvent-cast films generally performed better than AM films, although performance depended on the optimization of the material for the specific deposition technique. The most significant degradation of performance in all the lab-made films was in the dispersion of both the x/Df measurements and the dielectric breakdown strength (Weibull β). Commercial films had a breakdown strength of 4891 kV/cm and β = 13.0 whereas the highest performing lab-made filmsmore » had a breakdown strength of 4072 kV/cm and β = 3.8. Furthermore, this increase in dispersion in all the lab-made samples is attributed to higher variability in the preparation, a higher defect level related to fabrication in the lab environment and, for some AM samples, to morphology/topology features resulting from the deposition technique.« less

  5. Comparison of dielectric properties of additively manufactured vs. solvent cast polyimide dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelhans, Leah N.; Keicher, David M.; Lavin, Judith Maria

    The permittivity, dielectric loss, and DC dielectric breakdown strength of additively manufactured, solvent-cast, and commercial polyimide films are reported As expected, commercial films performed better than both AM and solvent-cast lab-made films. Solvent-cast films generally performed better than AM films, although performance depended on the optimization of the material for the specific deposition technique. The most significant degradation of performance in all the lab-made films was in the dispersion of both the x/Df measurements and the dielectric breakdown strength (Weibull β). Commercial films had a breakdown strength of 4891 kV/cm and β = 13.0 whereas the highest performing lab-made filmsmore » had a breakdown strength of 4072 kV/cm and β = 3.8. Furthermore, this increase in dispersion in all the lab-made samples is attributed to higher variability in the preparation, a higher defect level related to fabrication in the lab environment and, for some AM samples, to morphology/topology features resulting from the deposition technique.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Max; Lystig, Ted; Beard, Jonathan

    Purpose. To compare the learning of endovascular interventional skills by training on pig models versus virtual reality simulators. Methods. Twelve endovascular novices participated in a study consisting of a pig laboratory (P-Lab) and a virtual reality laboratory (VR-Lab). Subjects were stratified by experience and randomized into four training groups. Following 1 hr of didactic instruction, all attempted an iliac artery stenosis (IAS) revascularization in both laboratories. Onsite proctors evaluated performances using task-specific checklists and global rating scales, yielding a Total Score. Participants completed two training sessions of 3 hr each, using their group's assigned method (P-Lab x 2, P-Lab +more » VR-Lab, VR-Lab + P-Lab, or VR-Lab x 2) and were re-evaluated in both laboratories. A panel of two highly experienced interventional radiologists performed assessments from video recordings. ANCOVA analysis of Total Score against years of surgical, interventional radiology (IR) experience and cumulative number of P-Lab or VR-Lab sessions was conducted. Inter-rater reliability (IRR) was determined by comparing proctored scores with the video assessors in only the VR-Lab. Results. VR-Lab sessions improved the VR-Lab Total Score ({beta} 3.029, p = 0.0015) and P-Lab Total Score ({beta} = 1.814, p = 0.0452). P-Lab sessions increased the P-Lab Total Score ({beta} = 4.074, p < 0.0001) but had no effect on the VR-Lab Total Score. In the general statistical model, both P-Lab sessions ({beta} = 2.552, p = 0.0010) and VR-Lab sessions ({beta} 2.435, p = 0.0032) significantly improved Total Score. Neither previous surgical experience nor IR experience predicted Total Score. VR-Lab scores were consistently higher than the P-Lab scores ({delta} = 6.659, p < 0.0001). VR-Lab IRR was substantial (r = 0.649, p < 0.0008). Conclusions. Endovascular skills learned in the virtual environment may be transferable to the real catheterization laboratory as modeled in the P-Lab.« less

  7. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  8. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Michal, Carl A.

    2010-10-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.

  9. An evaluation of two hands-on lab styles for plant biodiversity in undergraduate biology.

    PubMed

    Basey, John M; Maines, Anastasia P; Francis, Clinton D; Melbourne, Brett

    2014-01-01

    We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice exam in the concurrent lecture. Attitudes toward biology and treatments were also assessed. We used linear mixed-effect models to determine impacts of lab style on lower-order cognition (LO) and higher-order cognition (HO) based on Bloom's taxonomy. Relative to the expository treatment, the learning cycle treatment had a positive effect on HO and a negative effect on LO included in lab reports; a positive effect on transfer of LO from the lab report to the quiz; negative impacts on LO quiz performance and on attitudes toward the lab; and a higher degree of perceived difficulty. The learning cycle treatment had no influence on transfer of HO from lab report to quiz or exam; quiz performance on HO questions; exam performance on LO and HO questions; and attitudes toward biology as a science. The importance of LO as a foundation for HO relative to these lab styles is addressed. © 2014 J. M. Basey et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less

  11. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  12. Incorporating a collaborative web-based virtual laboratory in an undergraduate bioinformatics course.

    PubMed

    Weisman, David

    2010-01-01

    Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  13. Video Observation as a Tool to Analyze and Modify an Electronics Laboratory

    NASA Astrophysics Data System (ADS)

    Coppens, Pieter; Van den Bossche, Johan; De Cock, Mieke

    2016-12-01

    Laboratories are an important part of science and engineering education, especially in the field of electronics. Yet very little research into the benefits of such labs to student learning exists. In particular, it is not well known what students do and, even more importantly, think during electronics laboratories. Therefore, we conducted a study based on video observation of second year students at 3 university campuses in Belgium during a traditional lab on first order R C filters. In this laboratory, students spent the majority of their time performing measurements, while very little time was spent processing or discussing the results. This in turn resulted in hardly any time spent talking about content knowledge. Based on those observations, a new laboratory was designed that includes a preparation with a virtual oscilloscope, a black box approach during the lab session itself, and a form of quick reporting at the end of the lab. This adjusted laboratory was evaluated using the same methodology and was more successful in the sense that the students spent less time gathering measurements and more time processing and analyzing them, resulting in more content-based discussion.

  14. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  15. Dynamic high-speed acquisition system design of transmission error with USB based on LabVIEW and FPGA

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Chen, Yan

    2013-10-01

    To realize the design of dynamic acquisition system for real-time detection of transmission chain error is very important to improve the machining accuracy of machine tool. In this paper, the USB controller and FPGA is used for hardware platform design, combined with LabVIEW to design user applications, NI-VISA is taken for develop USB drivers, and ultimately achieve the dynamic acquisition system design of transmission error

  16. A "Language Lab" for Architectural Design.

    ERIC Educational Resources Information Center

    Mackenzie, Arch; And Others

    This paper discusses a "language lab" strategy in which traditional studio learning may be supplemented by language lessons using computer graphics techniques to teach architectural grammar, a body of elements and principles that govern the design of buildings belonging to a particular architectural theory or style. Two methods of…

  17. Genomics Education in Practice: Evaluation of a Mobile Lab Design

    ERIC Educational Resources Information Center

    Van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Buizer-Voskamp, Jacobine E.; Speksnijder, Annelies; Waarlo, Arend Jan

    2010-01-01

    Dutch genomics research centers have developed the "DNA labs on the road" to bridge the gap between modern genomics research practice and secondary-school curriculum in the Netherlands. These mobile DNA labs offer upper-secondary students the opportunity to experience genomics research through experiments with laboratory equipment that…

  18. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  19. A fully automated and scalable timing probe-based method for time alignment of the LabPET II scanners

    NASA Astrophysics Data System (ADS)

    Samson, Arnaud; Thibaudeau, Christian; Bouchard, Jonathan; Gaudin, Émilie; Paulin, Caroline; Lecomte, Roger; Fontaine, Réjean

    2018-05-01

    A fully automated time alignment method based on a positron timing probe was developed to correct the channel-to-channel coincidence time dispersion of the LabPET II avalanche photodiode-based positron emission tomography (PET) scanners. The timing probe was designed to directly detect positrons and generate an absolute time reference. The probe-to-channel coincidences are recorded and processed using firmware embedded in the scanner hardware to compute the time differences between detector channels. The time corrections are then applied in real-time to each event in every channel during PET data acquisition to align all coincidence time spectra, thus enhancing the scanner time resolution. When applied to the mouse version of the LabPET II scanner, the calibration of 6 144 channels was performed in less than 15 min and showed a 47% improvement on the overall time resolution of the scanner, decreasing from 7 ns to 3.7 ns full width at half maximum (FWHM).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel, Glory Ruth; Silva, Austin Ray

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460.more » Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.« less

  1. Measuring modules for the research of compensators of reactive power with voltage stabilization in MATLAB

    NASA Astrophysics Data System (ADS)

    Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir

    2017-10-01

    A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.

  2. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    ERIC Educational Resources Information Center

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  3. Using SimCPU in Cooperative Learning Laboratories.

    ERIC Educational Resources Information Center

    Lin, Janet Mei-Chuen; Wu, Cheng-Chih; Liu, Hsi-Jen

    1999-01-01

    Reports research findings of an experimental design in which cooperative-learning strategies were applied to closed-lab instruction of computing concepts. SimCPU, a software package specially designed for closed-lab usage was used by 171 high school students of four classes. Results showed that collaboration enhanced learning and that blending…

  4. A Measured Approach to Microcomputer Lab Design.

    ERIC Educational Resources Information Center

    Duggan, Brian

    1994-01-01

    Explores design considerations for a functional microcomputer lab, including ergonomics and furnishings; access for the disabled; the use of other media; hardware security; and software security, including virus protection. A summary paragraph comments on the role of planning and forecasting. A bibliography of eight titles for further reading is…

  5. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum.

    PubMed

    Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  6. Effectiveness of a Lab Manual Delivered on CD-ROM

    ERIC Educational Resources Information Center

    Brickman, Peggy; Ketter, Catherine A. Teare; Pereira, Monica

    2005-01-01

    Although electronic instructional media are becoming increasingly prevalent in science classrooms, their worth remains unproven. Here, student perceptions and performance using CD-ROM delivery of lab materials are assessed. Numerous learning barriers that produced lower lab grades for students using a CD-ROM lab manual in comparison to a print…

  7. Skylab

    NASA Image and Video Library

    1974-07-26

    In this photograph, a skylab-4 astronaut performs Extra Vehicular Activities (EVA) outside of the lab. The third crew (Skylab-4) spent 84 days in the orbiting laboratory. The solar observatory was designed for full exposure to the Sun throughout most of the Skylab mission. Solar energy was transformed into electrical power for operation of all spacecraft systems. The proper operation of these solar arrays was vital to the mission.

  8. The Effect of Nursing Faculty Presence on Students' Level of Anxiety, Self-Confidence, and Clinical Performance during a Clinical Simulation Experience

    ERIC Educational Resources Information Center

    Horsley, Trisha Leann

    2012-01-01

    Nursing schools design their clinical simulation labs based upon faculty's perception of the optimal environment to meet the students' learning needs, other programs' success with integrating high-tech clinical simulation, and the funds available. No research has been conducted on nursing faculty presence during a summative evaluation. The…

  9. Team Science: Organizing Classroom Experiments That Develop Group Skills.

    ERIC Educational Resources Information Center

    Coffin, Marilyn

    This book contains classroom experiments designed to promote group skills. Each lesson has 4 parts: a 3-minute set-up; 5-minute warm-up, 25-minute experiment, and 5-minute clean-up. During each part, each member of the group is responsible for performing a specific task. Included are 34 labs that cover a range of topics: observations, physical…

  10. Enhancement of Human Effectiveness in System Design, Training, and Operation: Annual Progress Report 1 July 1973-30 June 1974.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Savoy Aviation Research Lab.

    The report is concerned with research performance and results at the Savoy Aviation Research Lab. Research accomplishments are described according to eight tasks which are of two general types, those dealing with human resources research and those dealing with manned systems research. Specifically, four tasks deal primarily with pilot selection…

  11. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  12. Using "Saccharomyces cerevisiae" to Test the Mutagenicity of Household Compounds: An Open Ended Hypothesis-Driven Teaching Lab

    ERIC Educational Resources Information Center

    Marshall, Pamela A.

    2007-01-01

    In our Fundamentals of Genetics lab, students perform a wide variety of labs to reinforce and extend the topics covered in lecture. I developed an active-learning lab to augment the lecture topic of mutagenesis. In this lab exercise, students determine if a compound they bring from home is a mutagen. Students are required to read extensive…

  13. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  14. Formalizing the First Day in an Organic Chemistry Laboratory Using a Studio-Based Approach

    ERIC Educational Resources Information Center

    Collison, Christina G.; Cody, Jeremy; Smith, Darren; Swartzenberg, Jennifer

    2015-01-01

    A novel studio-based lab module that incorporates student-centered activities was designed and implemented to introduce second-year undergraduate students to the first-semester organic chemistry laboratory. The "First Day" studio module incorporates learning objectives for the course, lab safety, and keeping a professional lab notebook.

  15. Personal Adult Learning Lab (Pall). Implications for Practice.

    ERIC Educational Resources Information Center

    Klippel, Judith A.; And Others

    The Personal Adult Learning Lab was establsiehd at the Georgia Center for Continuing Education (GCCE) at the University of Georgia to serve self-directed adult learners and conduct research on self-directed learning. The lab allows adult learners to design, conduct, and evaluate their personal learning experiences while proceeding at their own…

  16. Identification of Minerals

    ERIC Educational Resources Information Center

    Allison, Diane

    2005-01-01

    The lab described in this article was developed to satisfy two major goals. First, the activity is designed to show students the proper techniques used to identify the seven characteristics of all minerals. Second, the lab gives students a glimpse into the life of a professional field geologist. The author has students complete this lab at the end…

  17. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  18. A Simple Inquiry-Based Lab for Teaching Osmosis

    ERIC Educational Resources Information Center

    Taylor, John R.

    2014-01-01

    This simple inquiry-based lab was designed to teach the principle of osmosis while also providing an experience for students to use the skills and practices commonly found in science. Students first design their own experiment using very basic equipment and supplies, which generally results in mixed, but mostly poor, outcomes. Classroom "talk…

  19. Experimental characterization of an adaptive aileron: lab tests and FE correlation

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Amoroso, Francesco; Pecora, Rosario

    2016-04-01

    Like any other technology, morphing has to demonstrate system level performance benefits prior to implementation onto a real aircraft. The current status of morphing structures research efforts (as the ones, sponsored by the European Union) involves the design of several subsystems which have to be individually tested in order to consolidate their general performance in view of the final integration into a flyable device. This requires a fundamental understanding of the interaction between aerodynamic, structure and control systems. Important worldwide research collaborations were born in order to exchange acquired experience and better investigate innovative technologies devoted to morphing structures. The "Adaptive Aileron" project represents a joint cooperation between Canadian and Italian research centers and leading industries. In this framework, an overview of the design, manufacturing and testing of a variable camber aileron for a regional aircraft is presented. The key enabling technology for the presented morphing aileron is the actuation structural system, integrating a suitable motor and a load-bearing architecture. The paper describes the lab test campaign of the developed device. The implementation of a distributed actuation system fulfills the actual tendency of the aeronautical research to move toward the use of electrical power to supply non-propulsive systems. The aileron design features are validated by targeted experimental tests, demonstrating both its adaptive capability and robustness under operative loads and its dynamic behavior for further aeroelastic analyses. The experimental results show a satisfactory correlation with the numerical expectations thus validating the followed design approach.

  20. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays

    PubMed Central

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516

  1. LabLessons: Effects of Electronic Prelabs on Student Engagement and Performance

    ERIC Educational Resources Information Center

    Gryczka, Patrick; Klementowicz, Edward; Sharrock, Chappel; Maxfield, MacRae; Montclare, Jin Kim

    2016-01-01

    Lab instructors, for both high school and undergraduate college level courses, face issues of constricted time within the lab period and limited student engagement with prelab materials. To address these issues, an online prelab delivery system named LabLessons is developed and tested out in a high school chemistry classroom. The system…

  2. The Portable Usability Testing Lab: A Flexible Research Tool.

    ERIC Educational Resources Information Center

    Hale, Michael E.; And Others

    A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…

  3. An analysis of high school students' perceptions and academic performance in laboratory experiences

    NASA Astrophysics Data System (ADS)

    Mirchin, Robert Douglas

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be tested for lab content acquisition. The final conclusion of the study is that students expressed a preference for working in groups and working with materials and equipment as opposed to individual, non-group work and analyzing data.

  4. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  5. Design Your Own Underwater Remotely Operated Vehicle (ROV)

    ERIC Educational Resources Information Center

    Lien, Brian

    2009-01-01

    While looking for labs for his pre-engineering class, the author came across an idea for a marine engineering project from the Future Scientists and Engineers of America website. The author thought the lab looked fun, and it was not too expensive. These were two important criteria as he chose labs for the class. Another important criteria he had…

  6. Using LEGO NXT Mobile Robots with LabVIEW for Undergraduate Courses on Mechatronics

    ERIC Educational Resources Information Center

    Gomez-de-Gabriel, J. M.; Mandow, A.; Fernandez-Lozano, J.; Garcia-Cerezo, A.

    2011-01-01

    The paper proposes lab work and student competitions based on the LEGO NXT Mindstorms kits and standard LabVIEW. The goal of this combination is to stimulate design and experimentation with real hardware and representative software in courses where mobile robotics is adopted as a motivating platform to introduce mechatronics competencies. Basic…

  7. The Computer-Networked Writing Lab: One Instructor's View. ERIC Digest.

    ERIC Educational Resources Information Center

    Puccio, P. M.

    According to an instructor of basic writing in the Writing Lab at the University of Massachusetts in Amherst, he can teach differently in a computer-networked writing lab than he did in a conventional classroom. Because the room is designed to teach writing and nothing else, it offers a congenial workspace where the teacher can interact with…

  8. ASK4Labs: A Web-Based Repository for Supporting Learning Design Driven Remote and Virtual Labs Recommendations

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Fiskilis, Stefanos; Sampson, Demetrios G.

    2014-01-01

    Over the past years, Remote and Virtual Labs (RVLs) have gained increased attention for their potential to support technology-enhanced science education by enabling science teachers to improve their day-to-day science teaching. Therefore, many educational institutions and scientific organizations have invested efforts for providing online access…

  9. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    ERIC Educational Resources Information Center

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-01-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…

  10. The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics

    ERIC Educational Resources Information Center

    White, Brian T.

    2012-01-01

    The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…

  11. Incorporating a Career Planning Lab into a Managerial Communications Course

    ERIC Educational Resources Information Center

    May, Gary L.

    2005-01-01

    This article describes how a small business school, as part of a strategic planning initiative to improve career services, added a self-directed career planning lab to an existing managerial communication course. The lab concept and the learning design are innovative because they met a student need without creating additional time demands on the…

  12. Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm

    NASA Astrophysics Data System (ADS)

    Nabeel, Hafiz Muhammad; Azher, Anum; Usman Ali, Syed M.; Wahab Mughal, Abdul

    2013-12-01

    In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface.

  13. Impression Management and Interview and Job Performance Ratings: A Meta-Analysis of Research Design with Tactics in Mind.

    PubMed

    Peck, Jessica A; Levashina, Julia

    2017-01-01

    Impression management (IM) is pervasive in interview and job performance settings. We meta-analytically examine IM by self- and other-focused tactics to establish base rates of tactic usage, to understand the impact of tactics on interview and job performance ratings, and to examine the moderating effects of research design. Our results suggest IM is used more frequently in the interview rather than job performance settings. Self-focused tactics are more effective in the interview rather than in job performance settings, and other-focused tactics are more effective in job performance settings rather than in the interview. We explore several research design moderators including research fidelity, rater, and participants. IM has a somewhat stronger impact on interview ratings in lab settings than field settings. IM also has a stronger impact on interview ratings when the target of IM is also the rater of performance than when the rater of performance is an observer. Finally, labor market participants use IM more frequently and more effectively than students in interview settings. Our research has implications for understanding how different IM tactics function in interview and job performance settings and the effects of research design on IM frequency and impact.

  14. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum†

    PubMed Central

    Shanks, Ryan A.; Robertson, Chuck L.; Haygood, Christian S.; Herdliksa, Anna M.; Herdliska, Heather R.; Lloyd, Steven A.

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads. PMID:28904647

  15. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  16. The variability of the indirect tensile stripping test.

    DOT National Transportation Integrated Search

    1990-01-01

    The purpose of this investigation was to determine the variability of the Virginia Department of Transportation's (VDOT) indirect tensile stripping test. Five contractor labs and eight VDOT labs participated in the study. Each lab performed three rep...

  17. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    ERIC Educational Resources Information Center

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  18. An Investigation of the Effects of Relevant Samples and a Comparison of Verification versus Discovery Based Lab Design

    ERIC Educational Resources Information Center

    Rieben, James C., Jr.

    2010-01-01

    This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect…

  19. Get Organized at Work! A Look inside the Game Design Process of Valve and Linden Lab

    ERIC Educational Resources Information Center

    van der Graaf, Shenja

    2012-01-01

    This article considers the configuration of modular and temporary organization designs. By drawing on two prominent developer firms, namely, Valve Inc. and Linden Lab, respectively, "cabals" and "studios" are explored. The results of interviews conducted with employees of these firms are used as evidence. The article demonstrates that, to various…

  20. [The research in a foot pressure measuring system based on LabVIEW].

    PubMed

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  1. Problem-Solving Test: Analysis of the Role of Cyclin B

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    An experiment is described in this test that was designed to study the role of the cyclin B protein in a cell-free system. The work was performed in the lab of Tim Hunt who, together with Hartwell and Nurse, received the Nobel Prize in Physiology or Medicine in 2001 "for their discoveries of key chemicals that regulate the cell division cycle." It…

  2. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  3. Design methodology and results evaluation of a heating functionality in modular lab-on-chip systems

    NASA Astrophysics Data System (ADS)

    Streit, Petra; Nestler, Joerg; Shaporin, Alexey; Graunitz, Jenny; Otto, Thomas

    2018-06-01

    Lab-on-a-chip (LoC) systems offer the opportunity of fast and customized biological analyses executed at the ‘point-of-need’ without expensive lab equipment. Some biological processes need a temperature treatment. Therefore, it is important to ensure a defined and stable temperature distribution in the biosensor area. An integrated heating functionality is realized with discrete resistive heating elements including temperature measurement. The focus of this contribution is a design methodology and evaluation technique of the temperature distribution in the biosensor area with regard to the thermal-electrical behaviour of the heat sources. Furthermore, a sophisticated control of the biosensor temperature is proposed. A finite element (FE) model with one and more integrated heat sources in a polymer-based LoC system is used to investigate the impact of the number and arrangement of heating elements on the temperature distribution around the heating elements and in the biosensor area. Based on this model, various LOC systems are designed and fabricated. Electrical characterization of the heat sources and independent temperature measurements with infrared technique are performed to verify the model parameters and prove the simulation approach. The FE model and the proposed methodology is the foundation for optimization and evaluation of new designs with regard to temperature requirements of the biosensor. Furthermore, a linear dependency of the heater temperature on the electric current is demonstrated in the targeted temperature range of 20 °C to 70 °C enabling the usage of the heating functionality for biological reactions requiring a steady-state temperature up to 70 °C. The correlation between heater and biosensor area temperature is derived for a direct control through the heating current.

  4. Estrous cycle and food availability affect feeding induced by amygdala 5-HT receptor blockade.

    PubMed

    Parker, Graham C; Bishop, Christopher; Coscina, Donald V

    2002-04-01

    We have recently reported that bilateral infusions of the 5-HT receptor antagonist metergoline (MET) into the posterior basolateral amygdala (pBLA) elicit feeding in female rats tested at mid-light cycle. The present study was performed to determine whether (1) testing at two different phases of the estrous cycle, and/or (2) the palatability of the food might modify this effect. Subjects were 18 adult females with bilateral pBLA cannulae. Following familiarization with Froot Loops cereal, a within-subjects design tested all animals for 1- and 2-h food intake under 2 Drug (0.3 nmol MET vs. Vehicle), 2 Estrous Cycle (diestrus vs. estrus) and 2 Food (lab chow vs. Froot Loops) conditions. Rats weighed more at diestrus than at proestrus (P<.05) or estrus (P<.005). Multivariate analyses of variance (MANOVAs) revealed a preference for Froot Loops over lab chow (P<.0001). MET increased feeding regardless of food type (P<.0001). Rats ate more Froot Loops (P<.01), but not lab chow, at diestrus vs. estrus. A three-way interaction (P<.05) showed rats ate more during the first hour in estrus than in diestrus to lab chow but not Froot Loops. These data suggest pBLA MET differentially affects feeding over the estrous cycle depending on the palatability of food available.

  5. Technology transfer program of Microlabsat

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Hashimoto, H.

    2004-11-01

    A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.

  6. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  7. Implementing Inclusive Design for Learning in an introductory geology laboratory

    NASA Astrophysics Data System (ADS)

    Robert, G.; Merriman, J. D.; Ceylan, G. M.

    2013-12-01

    As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D models, online resources, textbook) in lecture and lab. We will discuss the details of the design, the implementation experience, and the insights for lab improvement in future iterations. This exercise represents the initial steps toward (re)designing introductory geoscience labs to more effectively include diverse learners.

  8. Novel miniature mobile cardiac catheterization laboratory for critical cardiovascular disease following natural disasters: a feasibility study.

    PubMed

    Han, Ya-ling; Liang, Zhuo; Yao, Tian-ming; Sun, Jing-yang; Liang, Ming; Huo, Yu; Wang, Geng; Wang, Xiao-zeng; Liang, Yan-chun; Meng, Wei-hong

    2012-03-01

    Natural disasters have been frequent in recent years. Effective treatment of patients with cardiovascular disease following natural disasters is an unsolved problem. We aimed to develop a novel miniature mobile cardiac catheterization laboratory (Mini Mobile Cath Lab) to provide emergency interventional services for patients with critical cardiovascular disease following natural disasters. A feasibility study was performed by testing the Mini Mobile Cath Lab on dogs with ST-elevation myocardial infarction (STEMI) model in a hypothetical natural-disaster-stricken area. The Mini Mobile Cath Lab was transported to the hypothetical natural-disaster-stricken area by truck. Coronary angiography and primary percutaneous coronary intervention (PCI) were performed on six dogs with STEMI model. The transportation and transformation of the Mini Mobile Cath Lab were monitored and its functioning was evaluated through the results of animal experiments. The Mini Mobile Cath Lab could be transported by truck at an average speed of 80 km/h on mountain roads during daytime in the winter, under conditions of light snow (-15°C to -20°C/-68°F to -59°F). The average time required to prepare the Mini Mobile Cath Lab after transportation, in a wetland area, was 30 minutes. Coronary angiography, and primary PCI were performed successfully. This preliminary feasibility study of the use of the Mini Mobile Cath Lab for emergency interventional treatment of dogs with STEMI indicated that it may perform well in the rescue of critical cardiovascular disease following natural disasters.

  9. Aerogel mass production for the CLAS12 RICH: Novel characterization methods and optical performance

    NASA Astrophysics Data System (ADS)

    Contalbrigo, M.; Balossino, I.; Barion, L.; Barnyakov, A. Yu.; Battaglia, G.; Danilyuk, A. F.; Katcin, A. A.; Kravchenko, E. A.; Mirazita, M.; Movsisyan, A.; Orecchini, D.; Pappalardo, L. L.; Squerzanti, S.; Tomassini, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capabilities in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the Jefferson Lab upgraded 12 GeV continuous electron beam accelerator facility. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely-packed and highly-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The status of the aerogel mass-production and the assessment studies of the aerogel optical performance are here reported.

  10. Time Trials--An AP Physics Challenge Lab

    ERIC Educational Resources Information Center

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  11. A Framework for Lab Work Management in Mass Courses. Application to Low Level Input/Output without Hardware

    ERIC Educational Resources Information Center

    Rodriguez, Santiago; Zamorano, Juan; Rosales, Francisco; Dopico, Antonio Garcia; Pedraza, Jose Luis

    2007-01-01

    This paper describes a complete lab work management framework designed and developed in the authors' department to help teachers to manage the small projects that students are expected to complete as lab assignments during their graduate-level computer engineering studies. The paper focuses on an application example of the framework to a specific…

  12. Online versus in the Classroom: Student Success in a Hands-On Lab Class

    ERIC Educational Resources Information Center

    Reuter, Ron

    2009-01-01

    This study compares learning success of online and on-campus students in a general education soil science course with lab and field components. Two terms of students completed standardized pre- and postassessments designed to test knowledge and skills from the lecture and lab content of the course. There was no difference in overall grade or lab…

  13. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    ERIC Educational Resources Information Center

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  14. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    PubMed

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  15. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    PubMed Central

    Cui, Yang; Hanley, Luke

    2015-01-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  16. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  17. Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course

    NASA Astrophysics Data System (ADS)

    Borrero-Echeverry, Daniel

    2017-11-01

    We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.

  18. CERN launches high-school internship programme

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2017-07-01

    The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.

  19. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.

  20. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  1. "Miniature Aces" NASA's Dale Reed Flight Research Laboratory

    NASA Image and Video Library

    2015-02-23

    This video uncovers the workings, tools, and rationale of the scaled aircraft lab at NASA’s Armstrong Flight Research Center on Edwards Air Force Base. Watch commercial-off-the-shelf aircraft, one-of-a-kind designs, powered aircraft, and gliders take-off, fly, and land. The chief pilot and designer of the lab explains how and why they do what they do.

  2. Designing and Implementing a Faculty Internet Workshop: A Collaborative Effort of Academic Computing Services and the University Library.

    ERIC Educational Resources Information Center

    Bradford, Jane T.; And Others

    1996-01-01

    Academic Computing Services staff and University librarians at Stetson University (DeLand, Florida) designed and implemented a three-day Internet workshop for interested faculty. The workshop included both hands-on lab sessions and discussions covering e-mail, telnet, ftp, Gopher, and World Wide Web. The planning, preparation of the lab and…

  3. The leveling-off of oxygen uptake is related to blood lactate accumulation. Retrospective study of 94 elite rowers.

    PubMed

    Lacour, Jean-René; Messonnier, Laurent; Bourdin, Muriel

    2007-09-01

    To assess whether the ability to demonstrate a plateau in oxygen consumption VO2 could be related to adaptation to exercise, the data obtained over a period of 10 years on 94 elite oarsmen who had participated in annual testing were re-evaluated. The test consisted in an incremental step protocol until volitional exhaustion. VO2, heart rate (HR), blood lactate ([La]b) and respiratory exchange ratio (RER) were measured at each step. The maximal oxygen consumption (VO2max), the power corresponding to VO2maxPamax and the maximal power achieved (Ppeak) were recorded. Thirty-eight oarsmen achieved a VO2 plateau and were designated as Pla; 56 did not and were designed as N-Pla. The Pla and N-Pla VO2max, Pamax and maximal HR values were similar. In comparison with N-Pla, the Pla group displayed a rightward shift of the [La]b versus power curve, accounted for by both the increased percentage of VO2max corresponding to 4 mmol l(-1) and the decreased value of [La]b corresponding to Pamax (P<0.05). Pla oarsmen attained a higher Ppeak expressed as % of Pamax (P<0.05) and also showed better ergometer performance (P<0.05). In a sub-group of 53 oarsmen constituted on the basis of Pamax values close to 400 W, for a given power output, the Pla subjects had significantly lower HR, RER, and [La]b values at each sub-maximal stage of the test. These results suggest that achieving a [Formula: see text] plateau during completion of an incremental step protocol accounts for greater muscle ability to maintain homeostasis during exercise. These differences give the oarsmen an advantage in rowing competitions.

  4. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  5. PatternLab for proteomics 4.0: A one-stop shop for analyzing shotgun proteomic data

    PubMed Central

    Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V; Santos, Marlon D M; Fischer, Juliana S G; Aquino, Priscila F; Moresco, James J; Yates, John R; Barbosa, Valmir C

    2017-01-01

    PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for analyzing shotgun proteomic data. PatternLab contains modules for formatting sequence databases, performing peptide spectrum matching, statistically filtering and organizing shotgun proteomic data, extracting quantitative information from label-free and chemically labeled data, performing statistics for differential proteomics, displaying results in a variety of graphical formats, performing similarity-driven studies with de novo sequencing data, analyzing time-course experiments, and helping with the understanding of the biological significance of data in the light of the Gene Ontology. Here we describe PatternLab for proteomics 4.0, which closely knits together all of these modules in a self-contained environment, covering the principal aspects of proteomic data analysis as a freely available and easily installable software package. All updates to PatternLab, as well as all new features added to it, have been tested over the years on millions of mass spectra. PMID:26658470

  6. Student construction of small molecule models using Spartan Model to explore polarity

    NASA Astrophysics Data System (ADS)

    Dale, Glenn Lamar

    2006-12-01

    This study compared the attitudes and the gains of knowledge concerning Lewis structures and polarity of molecules. The students performed a lab exercise in which they drew Lewis structures, constructed models of the molecules, determined the geometry of the molecules, and determined the polarity of the molecules. The control group students constructed models using physical ball-and-stick models. The treatment group students used Spartan Model to construct models. Students from a university and a community college participated in this study. Four lab classes at each school made up the treatment group. Five lab classes at the university and three lab classes at the community college made up the control group. The treatment group classes were selected based on available computer resources. All students in the study were given the Lab Pre Test, Lab Post Test, and the Lecture Post Test to assess the student's ability to answer questions pertaining to Lewis structures and polarity of molecules. An Attitudinal Survey assessed the attitudes of the students who participated in the study. Student interviews were performed to assess the student's attitudes towards the lab exercise. The interviews investigated attitudes about the modeling exercise, Lewis structures, and polarity of molecules. There were no significant differences in the performance of the treatment group when compared to the control group on the performance assessment instruments at the university or the community college. The treatment group students at the university had a more positive attitude about the lab activity. They believed that the lab activity helped them better understand the concepts of Lewis structure and molecular polarity. At the community college, the control group students had a more positive attitude about the lab activity. The students involved in the study believed that the lab activity helped them to understand the concepts of molecular geometry and polarity. The interviews of the treatment group students indicated that they strongly believed that the lab activity helped them better understand the concept of Lewis structures and of molecular polarity. As reflected in the interviews of the treatment group and the control group, the lab activity did not help the students be able to look at a Lewis structure and build a mental image of the molecule. The students believed the electrostatic potential plots generated by Spartan Model were very insightful into the concept of polarity. It gave them a visual representation of a difficult topic.

  7. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input tomore » the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test house been better insulated (more like the house used for the savings predictions noted above) and the IHP system nominal capacity been a bit lower that the energy savings estimate would have been closer to 45% or more (similar to the analytical prediction for the cold climate location of Chicago).« less

  8. Validity and Reliability of an on-Court Fitness Test for Assessing and Monitoring Aerobic Fitness in Squash.

    PubMed

    James, Carl Alexander; Vallejo, Florencio Tenllado; Kantebeen, Melvin; Farra, Saro

    2018-02-14

    Current on-court assessments of aerobic fitness in squash are not designed to yield a wealth of physiological data. Moreover, tests may require complex computer equipment or involve simulated racket strokes, which are difficult to standardize at high intensities. This study investigated the validity and reliability of a squash-specific fitness test which can yield both a standalone performance score, as well as pertinent physiological markers such as V[Combining Dot Above]O2max, the lactate turnpoint and oxygen cost, in a sport-specific environment. Eight national squash players completed three tests in a counter-balanced order; an incremental laboratory treadmill test (LAB) and two on-court fitness tests (ST) that involved repeated shuttle runs at increasing speeds. V[Combining Dot Above]O2max during ST was agreeable with LAB (Typical error [TE]=3.3 mL.kg.min, r=0.79). The mean bias between LAB and ST was 2.5 mL.kg.min. There were no differences in maximum heart rate, post exercise blood lactate concentration or end of test RPE between LAB and ST (p>0.05). The ST was highly reliable, with 74 (10) laps completed in ST1 and 75 (12) laps in ST2 (mean bias=1 lap, TE=3 laps, r=0.97). Physiological markers were also reliable, including V[Combining Dot Above]O2max, (TE=1.5 mL.kg.min, r=0.95), the lap number at 4 mMol (TE=4 laps, r=0.77) and average VO2 across the first 4 stages (TE=0.94 mL.kg.min, r=0.95). We observed good agreement between LAB and ST for assessing V[Combining Dot Above]O2max and between both on-court trials for assessing test performance and selected physiological markers. Consequently, we recommend this test for monitoring training adaptations and prescribing individualized training in elite squash players.

  9. Can the 'Assessment Drives Learning' effect be detected in clinical skills training? - Implications for curriculum design and resource planning

    PubMed Central

    Buss, Beate; Krautter, Markus; Möltner, Andreas; Weyrich, Peter; Werner, Anne; Jünger, Jana; Nikendei, Christoph

    2012-01-01

    Purpose: The acquisition of clinical-technical skills is of particular importance for the doctors of tomorrow. Procedural skills are often trained for the first time in skills laboratories, which provide a sheltered learning environment. However, costs to implement and maintain skills laboratories are considerably high. Therefore, the purpose of the present study was to investigate students’ patterns of attendance of voluntary skills-lab training sessions and thereby answer the following question: Is it possible to measure an effect of the theoretical construct related to motivational psychology described in the literature – ‘Assessment drives learning’ – reflected in patterns of attendance at voluntary skills-lab training sessions? By answering this question, design recommendations for curriculum planning and resource management should be derived. Method: A retrospective, descriptive analysis of student skills-lab attendance related to voluntary basic and voluntary advanced skills-lab sessions was conducted. The attendance patterns of a total of 340 third-year medical students in different successive year groups from the Medical Faculty at the University of Heidelberg were assessed. Results: Students showed a preference for voluntary basic skills-lab training sessions, which were relevant to clinical skills assessment, especially at the beginning and at the end of the term. Voluntary advanced skills-lab training sessions without reference to clinical skills assessment were used especially at the beginning of the term, but declined towards the end of term. Conclusion: The results show a clear influence of assessments on students’ attendance at skills-lab training sessions. First recommendations for curriculum design and resource management will be described. Nevertheless, further prospective research studies will be necessary to gain a more comprehensive understanding of the motivational factors impacting students’ utilisation of voluntary skills-lab training in order to reach a sufficient concordance between students’ requirements and faculty offers, as well as resource management. PMID:23255965

  10. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  11. Effects of Implementing a Hybrid Wet Lab and Online Module Lab Curriculum into a General Chemistry Course: Impacts on Student Performance and Engagement with the Chemistry Triplet

    ERIC Educational Resources Information Center

    Irby, Stefan M.; Borda, Emily J.; Haupt, Justin

    2018-01-01

    Here, we describe the implementation a hybrid general chemistry teaching laboratory curriculum that replaces a portion of a course's traditional "wet lab" experiences with online virtual lab modules. These modules intentionally utilize representations on all three levels of the chemistry triplet-macroscopic, submicroscopic, and symbolic.…

  12. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  13. geneLAB: Expanding the Impact of NASA's Biological Research in Space

    NASA Technical Reports Server (NTRS)

    Rayl, Nicole; Smith, Jeffrey D.

    2014-01-01

    The geneLAB project is designed to leverage the value of large 'omics' datasets from molecular biology projects conducted on the ISS by making these datasets available, citable, discoverable, interpretable, reusable, and reproducible. geneLAB will create a collaboration space with an integrated set of tools for depositing, accessing, analyzing, and modeling these diverse datasets from spaceflight and related terrestrial studies.

  14. Community College Uses a Video-Game Lab to Lure Students to Computer Courses

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2007-01-01

    A computer lab has become one of the most popular hangouts at Northern Virginia Community College after officials decided to load its PCs with popular video games, install a PlayStation and an Xbox, and declare it "for gamers only." The goal of this lab is to entice students to take game-design and other IT courses. John Min, dean of…

  15. The Design of NetSecLab: A Small Competition-Based Network Security Lab

    ERIC Educational Resources Information Center

    Lee, C. P.; Uluagac, A. S.; Fairbanks, K. D.; Copeland, J. A.

    2011-01-01

    This paper describes a competition-style of exercise to teach system and network security and to reinforce themes taught in class. The exercise, called NetSecLab, is conducted on a closed network with student-formed teams, each with their own Linux system to defend and from which to launch attacks. Students are expected to learn how to: 1) install…

  16. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  17. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    PubMed

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  18. DARPA Agreement HR0011-06-1-0028 (Robert C. Byrd Institute for Advanced Flexible Manufacturing)

    DTIC Science & Technology

    2011-12-13

    cutting edge design software, state-of-the-art computer labs, manufacturing staff expertise, training resources, as well as video-teleconference...started its own Design Works labs in an effort to provide manufacturers, entrepreneurs, students, machinists and engineers with access to a one-stop...shop and turn their ideas and talent into new products. From a concept drawn on a napkin or the back of an envelope to a 3D design to a working

  19. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth abradable, and honeycomb lands. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stocker, H. L.; Cox, D. M.; Holle, G. F.

    1977-01-01

    Labyrinth air seal static and dynamic performance was evaluated using solid, abradable, and honeycomb lands with standard and advanced seal designs. The effects on leakage of land surface roughness, abradable land porosity, rub grooves in abradable lands, and honeycomb land cell size and depth were studied using a standard labyrinth seal. The effects of rotation on the optimum seal knife pitch were also investigated. Selected geometric and aerodynamic parameters for an advanced seal design were evaluated to derive an optimized performance configuration. The rotational energy requirements were also measured to determine the inherent friction and pumping energy absorbed by the various seal knife and land configurations tested in order to properly assess the net seal system performance level. Results indicate that: (1) seal leakage can be significantly affected with honeycomb or abradable lands; (2) rotational energy absorption does not vary significantly with the use of a solid-smooth, an abradable, or a honeycomb land; and (3) optimization of an advanced lab seal design produced a configuration that had leakage 25% below a conventional stepped seal.

  20. NEMA NU 4-2008 comparison of preclinical PET imaging systems.

    PubMed

    Goertzen, Andrew L; Bao, Qinan; Bergeron, Mélanie; Blankemeyer, Eric; Blinder, Stephan; Cañadas, Mario; Chatziioannou, Arion F; Dinelle, Katherine; Elhami, Esmat; Jans, Hans-Sonke; Lage, Eduardo; Lecomte, Roger; Sossi, Vesna; Surti, Suleman; Tai, Yuan-Chuan; Vaquero, Juan José; Vicente, Esther; Williams, Darin A; Laforest, Richard

    2012-08-01

    The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: microPET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand.

  1. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures ofmore » each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.« less

  2. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  3. Puzzle-based versus traditional lecture: comparing the effects of pedagogy on academic performance in an undergraduate human anatomy and physiology II lab.

    PubMed

    Stetzik, Lucas; Deeter, Anthony; Parker, Jamie; Yukech, Christine

    2015-06-23

    A traditional lecture-based pedagogy conveys information and content while lacking sufficient development of critical thinking skills and problem solving. A puzzle-based pedagogy creates a broader contextual framework, and fosters critical thinking as well as logical reasoning skills that can then be used to improve a student's performance on content specific assessments. This paper describes a pedagogical comparison of traditional lecture-based teaching and puzzle-based teaching in a Human Anatomy and Physiology II Lab. Using a single subject/cross-over design half of the students from seven sections of the course were taught using one type of pedagogy for the first half of the semester, and then taught with a different pedagogy for the second half of the semester. The other half of the students were taught the same material but with the order of the pedagogies reversed. Students' performance on quizzes and exams specific to the course, and in-class assignments specific to this study were assessed for: learning outcomes (the ability to form the correct conclusion or recall specific information), and authentic academic performance as described by (Am J Educ 104:280-312, 1996). Our findings suggest a significant improvement in students' performance on standard course specific assessments using a puzzle-based pedagogy versus a traditional lecture-based teaching style. Quiz and test scores for students improved by 2.1 and 0.4% respectively in the puzzle-based pedagogy, versus the traditional lecture-based teaching. Additionally, the assessments of authentic academic performance may only effectively measure a broader conceptual understanding in a limited set of contexts, and not in the context of a Human Anatomy and Physiology II Lab. In conclusion, a puzzle-based pedagogy, when compared to traditional lecture-based teaching, can effectively enhance the performance of students on standard course specific assessments, even when the assessments only test a limited conceptual understanding of the material.

  4. Performance of Different “Lab-On-Chip” Geometries for Making Double Emulsions to Form Polystyrene Shells

    DOE PAGES

    Viza, N. D.; Harding, D. R.

    2017-12-20

    Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less

  5. Performance of Different “Lab-On-Chip” Geometries for Making Double Emulsions to Form Polystyrene Shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viza, N. D.; Harding, D. R.

    Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less

  6. Lab-Scale Stimulation Results on Surrogate Fused Silica Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Fernandez

    Lab-scale stimulation work on non-porous fused silica (similar mechanical properties to igneous rock) was performed using pure water, pure CO2 and water/CO2 mixtures to compare back to back fracturing performance of these fluids with PNNL's StimuFrac.

  7. Impression Management and Interview and Job Performance Ratings: A Meta-Analysis of Research Design with Tactics in Mind

    PubMed Central

    Peck, Jessica A.; Levashina, Julia

    2017-01-01

    Impression management (IM) is pervasive in interview and job performance settings. We meta-analytically examine IM by self- and other-focused tactics to establish base rates of tactic usage, to understand the impact of tactics on interview and job performance ratings, and to examine the moderating effects of research design. Our results suggest IM is used more frequently in the interview rather than job performance settings. Self-focused tactics are more effective in the interview rather than in job performance settings, and other-focused tactics are more effective in job performance settings rather than in the interview. We explore several research design moderators including research fidelity, rater, and participants. IM has a somewhat stronger impact on interview ratings in lab settings than field settings. IM also has a stronger impact on interview ratings when the target of IM is also the rater of performance than when the rater of performance is an observer. Finally, labor market participants use IM more frequently and more effectively than students in interview settings. Our research has implications for understanding how different IM tactics function in interview and job performance settings and the effects of research design on IM frequency and impact. PMID:28261135

  8. Investigating the Use and Effectiveness of Diverse Types of Materials in the Delivery and Support of Lab Sessions for Multimedia Subjects and Students

    ERIC Educational Resources Information Center

    Tsekleves, Emmanuel; Aggoun, Amar; Cosmas, John

    2013-01-01

    This research study explores the use of different lab material, investigating which types of materials contribute the most to the delivery and support of laboratory (lab) sessions to design, skill-based and technical courses in higher education in the UK. A qualitative research methodology was employed for this investigation and included both key…

  9. Traditional Labs + New Questions = Improved Student Performance.

    ERIC Educational Resources Information Center

    Rezba, Richard J.; And Others

    1992-01-01

    Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…

  10. Using Saccharomyces cerevisiae to test the mutagenicity of household compounds: an open ended hypothesis-driven teaching lab.

    PubMed

    Marshall, Pamela A

    2007-01-01

    In our Fundamentals of Genetics lab, students perform a wide variety of labs to reinforce and extend the topics covered in lecture. I developed an active-learning lab to augment the lecture topic of mutagenesis. In this lab exercise, students determine if a compound they bring from home is a mutagen. Students are required to read extensive background material, perform research to find a potential mutagen to test, develop a hypothesis, and bring to the lab their own suspected mutagen. This lab uses a specially developed strain of Saccharomyces cerevisiae, D7, to determine if a compound is a mutagen. Mutagenesis of the D7 genome can lead to a scorable alteration in the phenotypes of this strain. Students outline and carry out a protocol for treatment of the yeast tester strain, utilizing the concept of dose/response and positive and negative controls. Students report on their results using a PowerPoint presentation to simulate giving a scientific presentation. The students' self-assessment of their knowledge indicated that, in all cases, the students felt that they knew more about the assay, mutagenesis, and the relationship between genotype and phenotype (P < 0.05) after completing the exercise.

  11. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  12. Cyberinfrastructure to Support Collaborative Research Within Small Ecology Labs

    NASA Astrophysics Data System (ADS)

    Laney, C.; Jaimes, A.; Cody, R. P.; Kassin, A.; Salayandia, L.; Tweedie, C. E.

    2011-12-01

    Increasingly, ecological research programs addressing complex challenges are driving technological innovations that allow the acquisition and analysis of data collected over larger spatial scales and finer temporal resolutions. Many research labs are shifting from deploying technicians or students into the field to setting up automated sensors. These sensors can cost less on an individual basis, provide continuous and reliable data collection, and allow researchers to spend more time analyzing data and testing hypotheses. They can provide an enormous amount of complex information about an ecosystem. However, the effort to manage, analyze, and disseminate that information can be daunting. Small labs unfamiliar with these efforts may find their capacity to publish at competitive rates hindered by information management. Such labs would be well served by an easy to manage cyberinfrastructure (CI) that is organized in a modular, plug-and-play design and is amenable to a wide variety of data types. Its functionality would permit addition of new sensors and perform automated data analysis and visualization. Such a system would conceivably enhance access to data from small labs through web services, thereby improving the representation of smaller labs in scientific syntheses and enhancing the spatial and temporal coverage of such efforts. We present a CI that is designed to meet the needs of a small but heavily instrumented research site located within the USDA ARS Jornada Experimental Range in the northern Chihuahuan Desert. This site was constructed and is operated by the Systems Ecology Lab at the University of Texas at El Paso (UTEP), a relatively small and young lab. Researchers at the site study land-atmosphere carbon, water, and energy fluxes at a mixed creosote (Larrea tridentata) - mesquite (Prosopis glandulosa) shrubland. The site includes an eddy covariance tower built to AmeriFlux and FLUXNET specifications, a robotic cart that measures hyperspectral reflectance from a fixed rail system, an 8-node network of SpecNet phenostations, phenology cameras, and transects where the phenology of key plant species are monitored. In all, this single research site has continuous data streams from >80 sensors in addition to traditional field work. Pressures to integrate and synthesize data across platforms, carry over 'corporate memory' between graduate students, and publish results in a timely fashion make automated data documentation and management systems appealing. The CI currently under collaborative development with UTEP's CyberShare Center of Excellence aids researchers with a visually appealing website featuring a dynamic mapping application, data search and display tools, and interfaces to backend databases and in-house developed provenance-tracking modules. We provide an overview of this CI with live demonstrations of the various tools that comprise it. Surveys on potential user preferences and ideas will also be circulated to conduct research on the CI and informatics needs of other small ecological research labs to aid module development and prioritization.

  13. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software.

    PubMed

    Egger, Jan; Gall, Markus; Tax, Alois; Ücal, Muammer; Zefferer, Ulrike; Li, Xing; von Campe, Gord; Schäfer, Ute; Schmalstieg, Dieter; Chen, Xiaojun

    2017-01-01

    In this publication, the interactive planning and reconstruction of cranial 3D Implants under the medical prototyping platform MeVisLab as alternative to commercial planning software is introduced. In doing so, a MeVisLab prototype consisting of a customized data-flow network and an own C++ module was set up. As a result, the Computer-Aided Design (CAD) software prototype guides a user through the whole workflow to generate an implant. Therefore, the workflow begins with loading and mirroring the patients head for an initial curvature of the implant. Then, the user can perform an additional Laplacian smoothing, followed by a Delaunay triangulation. The result is an aesthetic looking and well-fitting 3D implant, which can be stored in a CAD file format, e.g. STereoLithography (STL), for 3D printing. The 3D printed implant can finally be used for an in-depth pre-surgical evaluation or even as a real implant for the patient. In a nutshell, our research and development shows that a customized MeVisLab software prototype can be used as an alternative to complex commercial planning software, which may also not be available in every clinic. Finally, not to conform ourselves directly to available commercial software and look for other options that might improve the workflow.

  14. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software

    PubMed Central

    Egger, Jan; Gall, Markus; Tax, Alois; Ücal, Muammer; Zefferer, Ulrike; Li, Xing; von Campe, Gord; Schäfer, Ute; Schmalstieg, Dieter; Chen, Xiaojun

    2017-01-01

    In this publication, the interactive planning and reconstruction of cranial 3D Implants under the medical prototyping platform MeVisLab as alternative to commercial planning software is introduced. In doing so, a MeVisLab prototype consisting of a customized data-flow network and an own C++ module was set up. As a result, the Computer-Aided Design (CAD) software prototype guides a user through the whole workflow to generate an implant. Therefore, the workflow begins with loading and mirroring the patients head for an initial curvature of the implant. Then, the user can perform an additional Laplacian smoothing, followed by a Delaunay triangulation. The result is an aesthetic looking and well-fitting 3D implant, which can be stored in a CAD file format, e.g. STereoLithography (STL), for 3D printing. The 3D printed implant can finally be used for an in-depth pre-surgical evaluation or even as a real implant for the patient. In a nutshell, our research and development shows that a customized MeVisLab software prototype can be used as an alternative to complex commercial planning software, which may also not be available in every clinic. Finally, not to conform ourselves directly to available commercial software and look for other options that might improve the workflow. PMID:28264062

  15. Titan Submarine

    NASA Image and Video Library

    2015-06-15

    What would a submarine to explore the liquid methane seas of Saturn's Moon Titan look like? This video shows one submarine concept that would explore both the shoreline and the depths of this strange world that has methane rain, rivers and seas! The design was developed for the NASA Innovative Advanced Concepts (NIAC) Program, by NASA Glenn's COMPASS Team, and technologists and scientists from the Applied Physics Lab and submarine designers from the Applied Research Lab.

  16. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  17. Development Status of the WetLab-2 Project: New Tools for On-orbit Real-time Quantitative Gene Expression.

    NASA Technical Reports Server (NTRS)

    Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott

    2013-01-01

    The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is currently designing a module that will lyse the cells and extract RNA of sufficient quality for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. Current testing focuses on two promising commercial products and chemistries that allow for RNA extraction with minimal complexity and crew time.

  18. End-effects-regime in full scale and lab scale rocket nozzles

    NASA Astrophysics Data System (ADS)

    Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph

    2014-11-01

    Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.

  19. Impact of lean six sigma process improvement methodology on cardiac catheterization laboratory efficiency.

    PubMed

    Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R

    2016-03-01

    Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trend<0.001). Similarly, the percentage of cases with an aggregate on-time start increased from 41.7% in 2009 to 62.8% in 2012 (p-trend<0.001). In addition, the percentage of manual sheath-pulls performed in the Cath Lab decreased from 60.7% in 2009 to 22.7% in 2012 (p-trend<0.001). The current longitudinal study illustrates the impact of successful implementation of a well-known process improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A MYSQL-BASED DATA ARCHIVER: PRELIMINARY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Bickley; Christopher Slominski

    2008-01-23

    Following an evaluation of the archival requirements of the Jefferson Laboratory accelerator’s user community, a prototyping effort was executed to determine if an archiver based on MySQL had sufficient functionality to meet those requirements. This approach was chosen because an archiver based on a relational database enables the development effort to focus on data acquisition and management, letting the database take care of storage, indexing and data consistency. It was clear from the prototype effort that there were no performance impediments to successful implementation of a final system. With our performance concerns addressed, the lab undertook the design and developmentmore » of an operational system. The system is in its operational testing phase now. This paper discusses the archiver system requirements, some of the design choices and their rationale, and presents the acquisition, storage and retrieval performance.« less

  1. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  2. Optimizing physician access to surgical intensive care unit laboratory information through mobile computing.

    PubMed

    Strain, J J; Felciano, R M; Seiver, A; Acuff, R; Fagan, L

    1996-01-01

    Approximately 30 minutes of computer access time are required by surgical residents at Stanford University Medical Center (SUMC) to examine the lab values of all patients on a surgical intensive care unit (ICU) service, a task that must be performed several times a day. To reduce the time accessing this information and simultaneously increase the readability and currency of the data, we have created a mobile, pen-based user interface and software system that delivers lab results to surgeons in the ICU. The ScroungeMaster system, loaded on a portable tablet computer, retrieves lab results for a subset of patients from the central laboratory computer and stores them in a local database cache. The cache can be updated on command; this update takes approximately 2.7 minutes for all ICU patients being followed by the surgeon, and can be performed as a background task while the user continues to access selected lab results. The user interface presents lab results according to physiologic system. Which labs are displayed first is governed by a layout selection algorithm based on previous accesses to the patient's lab information, physician preferences, and the nature of the patient's medical condition. Initial evaluation of the system has shown that physicians prefer the ScroungeMaster interface to that of existing systems at SUMC and are satisfied with the system's performance. We discuss the evolution of ScroungeMaster and make observations on changes to physician work flow with the presence of mobile, pen-based computing in the ICU.

  3. Design And Commissioning Status Of New Cylindrical HiPIMS Nb Coating System for SRF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, H. Lawrence; Macha, Kurt M.; Valente-Feliciano, Anne-Marie

    2014-02-01

    For the past 19 years Jefferson Lab has sustained a program studying niobium films deposited on small samples in order to develop an understanding of the correlation between deposition parameters, film micro-structure, and RF performance. A new cavity deposition system employing a cylindrical cathode using the HiPIMS technique has been developed to apply this work to cylindrical cavities. The status of this system will be presented.

  4. Performance Improvements to the Naval Postgraduate School Turbopropulsion Labs Transonic Axially Splittered Rotor

    DTIC Science & Technology

    2013-12-01

    Implementation of current NPS TPL design procedure that uses COTS software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and...procedure that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and analysis was modified and... CFX The CFD simulation program in ANSYS Workbench. CFX -Pre CFX boundary conditions and solver settings module. CFX -Solver CFX solver program. CFX

  5. Integrating labview into a distributed computing environment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemir, K. U.; Pieck, M.; Dalesio, L. R.

    2001-01-01

    Being easy to learn and well suited for a selfcontained desktop laboratory setup, many casual programmers prefer to use the National Instruments Lab-VIEW environment to develop their logic. An ActiveX interface is presented that allows integration into a plant-wide distributed environment based on the Experimental Physics and Industrial Control System (EPICS). This paper discusses the design decisions and provides performance information, especially considering requirements for the Spallation Neutron Source (SNS) diagnostics system.

  6. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  7. Optical simulations of laser focusing for optimization of laser betatron

    NASA Astrophysics Data System (ADS)

    Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.

    2017-05-01

    This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.

  8. A comparative analysis of traditional and online lab science transfer courses in the rural community college

    NASA Astrophysics Data System (ADS)

    Scott, Andrea

    Through distance learning, the community college system has moved beyond geographical boundaries to serve all students and provide educational opportunities at a distance to individuals previously out of reach of the college community. With the inception of the Mississippi Virtual Community College (MSVCC) in January 2000, Mississippi's public community colleges have experienced unprecedented growth in online enrollments and online course offerings to include the laboratory sciences; however, transfer of online lab science courses are problematic for individuals who wish to gain admittance to Medical, Dental, and Pharmacy schools in Mississippi. Currently online lab science courses are not accepted for transfer for students seeking admission to Mississippi Medical, Dental, or Pharmacy schools. The need for this study, the statement of the problem, and the purpose of the study address transfer issues related to the transfer of online lab science courses in Mississippi and the impact of such on the student and community college. The study also addresses existing doubts regarding online course delivery as a viable method of lab science delivery. The purpose of the study was to investigate differences between online instructional delivery as compared to traditional face-to-face delivery with the following research questions to: (1) Investigate the perception of quality of online courses as compared to traditional face-to-face courses. (2) Investigate the difference in student performance in online transfer lab science courses as compared to student performance in traditional face-to-face lab science courses. The results of this 13 semester study show significant differences in both perception of quality and student performance between online instructional delivery as compared to traditional face-to-face delivery. The findings demonstrate a need for Mississippi Dental, Medical, and Pharmacy schools to reexamine the articulation agreement between IHL and Community and Junior Colleges and consider accepting online lab sciences courses taken at the community college as transfer for admission to Medical, Dental, and Pharmacy schools. Conclusions are included in the study; however, additional studies are needed to address the issue of student performance in the online lab science classroom.

  9. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  10. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration.

    PubMed

    Dryden, Michael D M; Wheeler, Aaron R

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as "black boxes," giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat's voltammetric measurements are much more sensitive than those of "CheapStat" (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial "black box" potentiostat. Likewise, in head-to-head tests, DStat's potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the "open source" movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools.

  11. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration

    PubMed Central

    Dryden, Michael D. M.; Wheeler, Aaron R.

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as “black boxes,” giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat’s voltammetric measurements are much more sensitive than those of “CheapStat” (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial “black box” potentiostat. Likewise, in head-to-head tests, DStat’s potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the “open source” movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools. PMID:26510100

  12. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput-Ghoshal, Renuka; Hogan, John P.; Fair, Ruben J.

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  13. Enhancing Communication Skills of Pre-service Physics Teacher through HOT Lab Related to Electric Circuit

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Dirgantara, Y.; Yuniarti, H.; Sapriadil, S.; Hermita, N.

    2018-01-01

    This study aimed to investigate the improvement to pre-service teacher’s communication skills through Higher Order Thinking Laboratory (HOT Lab) on electric circuit topic. This research used the quasi-experiment method with pretest-posttest control group design. Research subjects were 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The sample was chosen by random sampling technique. Students’ communication skill data collected using a communication skills test instruments-essays form and observations sheets. The results showed that pre-service teacher communication skills using HOT Lab were higher than verification lab. Student’s communication skills in groups using HOT Lab were not influenced by gender. Communication skills could increase due to HOT Lab based on problems solving that can develop communication through hands-on activities. Therefore, the conclusion of this research shows the application of HOT Lab is more effective than the verification lab to improve communication skills of pre-service teachers in electric circuit topic and gender is not related to a person’s communication skills.

  14. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  15. The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Beussman, Douglas J.

    2007-01-01

    A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…

  16. MOGO: Model-Oriented Global Optimization of Petascale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Shende, Sameer S.

    The MOGO project was initiated under in 2008 under the DOE Program Announcement for Software Development Tools for Improved Ease-of-Use on Petascale systems (LAB 08-19). The MOGO team consisted of Oak Ridge National Lab, Argonne National Lab, and the University of Oregon. The overall goal of MOGO was to attack petascale performance analysis by developing a general framework where empirical performance data could be efficiently and accurately compared with performance expectations at various levels of abstraction. This information could then be used to automatically identify and remediate performance problems. MOGO was be based on performance models derived from application knowledge,more » performance experiments, and symbolic analysis. MOGO was able to make reasonable impact on existing DOE applications and systems. New tools and techniques were developed, which, in turn, were used on important DOE applications on DOE LCF systems to show significant performance improvements.« less

  17. Using Computer Simulations to Integrate Learning.

    ERIC Educational Resources Information Center

    Liao, Thomas T.

    1983-01-01

    Describes the primary design criteria and the classroom activities involved in "The Yellow Light Problem," a minicourse on decision making in the secondary school Mathematics, Engineering and Science Achievement (MESA) program in California. Activities include lectures, discussions, science and math labs, computer labs, and development…

  18. Take a Trip Around a 3D Printing Lab (360)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing has changed the way the world thinks about manufacture and design. Scientists and researchers at Lawrence Livermore National Lab are using a number of 3D printing processes to experiment with unique combinations of plastic, metal, and ceramics.

  19. Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques

    NASA Technical Reports Server (NTRS)

    Wilder, R.

    1979-01-01

    Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.

  20. Transforming the advanced lab: Part I - Learning goals

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.

    2012-02-01

    Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).

  1. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    ERIC Educational Resources Information Center

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  2. The Role of Language Laboratory in English Language Learning Settings

    ERIC Educational Resources Information Center

    Mohammed, Abdelaziz

    2017-01-01

    This study aims at determining the relationship between language labs and the effective ways of mastering better performance of English language. The study raised two questions. They are "Is language laboratory useful in teaching English to Saudi students?" And "How do language labs help in improving students' performance?"…

  3. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).

    PubMed

    Zhu, Feng; Wigh, Adriana; Friedrich, Timo; Devaux, Alain; Bony, Sylvie; Nugegoda, Dayanthi; Kaslin, Jan; Wlodkowic, Donald

    2015-12-15

    The fish embryo toxicity (FET) biotest has gained popularity as one of the alternative approaches to acute fish toxicity tests in chemical hazard and risk assessment. Despite the importance and common acceptance of FET, it is still performed in multiwell plates and requires laborious and time-consuming manual manipulation of specimens and solutions. This work describes the design and validation of a microfluidic Lab-on-a-Chip technology for automation of the zebrafish embryo toxicity test common in aquatic ecotoxicology. The innovative device supports rapid loading and immobilization of large numbers of zebrafish embryos suspended in a continuous microfluidic perfusion as a means of toxicant delivery. Furthermore, we also present development of a customized mechatronic automation interface that includes a high-resolution USB microscope, LED cold light illumination, and miniaturized 3D printed pumping manifolds that were integrated to enable time-resolved in situ analysis of developing fish embryos. To investigate the applicability of the microfluidic FET (μFET) in toxicity testing, copper sulfate, phenol, ethanol, caffeine, nicotine, and dimethyl sulfoxide were tested as model chemical stressors. Results obtained on a chip-based system were compared with static protocols performed in microtiter plates. This work provides evidence that FET analysis performed under microperfusion opens a brand new alternative for inexpensive automation in aquatic ecotoxicology.

  4. Overcoming hurdles in translating visual search research between the lab and the field.

    PubMed

    Clark, Kait; Cain, Matthew S; Adamo, Stephen H; Mitroff, Stephen R

    2012-01-01

    Research in visual search can be vital to improving performance in careers such as radiology and airport security screening. In these applied, or "field," searches, accuracy is critical, and misses are potentially fatal; however, despite the importance of performing optimally, radiological and airport security searches are nevertheless flawed. Extensive basic research in visual search has revealed cognitive mechanisms responsible for successful visual search as well as a variety of factors that tend to inhibit or improve performance. Ideally, the knowledge gained from such laboratory-based research could be directly applied to field searches, but several obstacles stand in the way of straightforward translation; the tightly controlled visual searches performed in the lab can be drastically different from field searches. For example, they can differ in terms of the nature of the stimuli, the environment in which the search is taking place, and the experience and characteristics of the searchers themselves. The goal of this chapter is to discuss these differences and how they can present hurdles to translating lab-based research to field-based searches. Specifically, most search tasks in the lab entail searching for only one target per trial, and the targets occur relatively frequently, but field searches may contain an unknown and unlimited number of targets, and the occurrence of targets can be rare. Additionally, participants in lab-based search experiments often perform under neutral conditions and have no formal training or experience in search tasks; conversely, career searchers may be influenced by the motivation to perform well or anxiety about missing a target, and they have undergone formal training and accumulated significant experience searching. This chapter discusses recent work that has investigated the impacts of these differences to determine how each factor can influence search performance. Knowledge gained from the scientific exploration of search can be applied to field searches but only when considering and controlling for the differences between lab and field.

  5. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    PubMed

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future lab testing for eight common GI related lab tests. Future work will explore applications of this approach to a range of underlying medical conditions and laboratory tests. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, Charles E., Jr.; Spence, Rodney L.

    1988-01-01

    The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector.

  7. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  8. Tank Monitor and Control System (TMACS) Rev 11.0 Acceptance Test Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLM, M.J.

    The purpose of this document is to describe tests performed to validate Revision 11 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  9. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  10. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  11. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  12. A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance

    NASA Astrophysics Data System (ADS)

    Kustanovich, K.; Yantchev, V.; Kirejev, V.; Jeffries, G. D. M.; Lobovkina, T.; Jesorka, A.

    2017-11-01

    We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.

  13. The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams

    NASA Astrophysics Data System (ADS)

    Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.

    2015-05-01

    The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.

  14. Towards toxicity detection using a lab-on-chip based on the integration of MOEMS and whole-cell sensors.

    PubMed

    Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi

    2008-06-15

    A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.

  15. Software Comparison for Renewable Energy Deployment in a Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objective of this report is to evaluate different software options for performing robust distributed generation (DG) power system modeling. The features and capabilities of four simulation tools, OpenDSS, GridLAB-D, CYMDIST, and PowerWorld Simulator, are compared to analyze their effectiveness in analyzing distribution networks with DG. OpenDSS and GridLAB-D, two open source software, have the capability to simulate networks with fluctuating data values. These packages allow the running of a simulation each time instant by iterating only the main script file. CYMDIST, a commercial software, allows for time-series simulation to study variations on network controls. PowerWorld Simulator, another commercialmore » tool, has a batch mode simulation function through the 'Time Step Simulation' tool, which obtains solutions for a list of specified time points. PowerWorld Simulator is intended for analysis of transmission-level systems, while the other three are designed for distribution systems. CYMDIST and PowerWorld Simulator feature easy-to-use graphical user interfaces (GUIs). OpenDSS and GridLAB-D, on the other hand, are based on command-line programs, which increase the time necessary to become familiar with the software packages.« less

  16. Open source software to control Bioflo bioreactors.

    PubMed

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  17. Open Source Software to Control Bioflo Bioreactors

    PubMed Central

    Burdge, David A.; Libourel, Igor G. L.

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW. PMID:24667828

  18. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE PAGES

    Knudsen, P.; Ganni, V.; Dixon, K.; ...

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  19. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, P.; Ganni, V.; Dixon, K.

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  20. An update on Lab Rover: A hospital material transporter

    NASA Technical Reports Server (NTRS)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  1. Maximizing water use efficiency in designing microirrigation unit (IrriLab Software)

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio

    2016-04-01

    As the year 2050 approaches, the world population will reach 9 billion - so does the challenge of doubling crop yields. To meet this crop yields demand, the associated dramatic improving of water productivity (WP) must necessarily be accompanied by maximization of water use efficiency (WUE) (Ragab 2011, UNEP 2014). In this work, a recently developed software (IrriLab, https://www.facebook.com/irrilab) moving in this direction is presented. IrriLab is a very simple toll allows to design microirrigation unit optimizing WUE, pressure energy and irrigation unit costs. Irrigation software available in commerce provide microirrigation system designs, by mainly looking at the maximum flow rate uniformity criteria. Thus, each emitter installed along the laterals operates with an operating pressure head occurring in between an established range of pressure head variability (Dh < Dhadm). However, the latter condition does not always corresponds to the cheapest and to the maximizing WUE solution; in fact, it is not assured if the entire range of the admitted pressure head is profited and used by the emitters. IrriLab allows this occurrence because, for the entire Irrigation Unit Area, IUA, each design solution assures that at least two emitters rigorously operates, one with the minimum admitted pressure head, and the other one with the maximum admitted (Dh = Dhadm), (Baiamonte et al., 2015; Baiamonte, 2016). The same extreme values of pressure head are those that in the common design criteria delimit the range of pressure head, but without assuring their achievement. Compared to the common design criteria, this condition i) for fixed laterals' length and inside diameter, allows reducing the inlet required pressure head whereas, ii) for fixed pressure head at the inlet, provides an increasing in laterals and manifold lengths and in the associated IUA. Based on analytical solutions, IrriLab follows a very simple rectangular sketch, any way oriented in the space, and defined by two slope values, one for the laterals and one for the manifold. By considering the possible combinations of i) horizontal, downward or upward sloped laterals and manifold, ii) the manifold position in respect to the laterals and iii) the inlet position in respect to the manifold, which can be equal to 0%, 24% or 50%, in respect to their lengths (Baiamonte, 2016), IrriLab accounts for 25 optimal irrigation unit layouts, for each of them providing maximum WUE.

  2. Assessment Outcomes: Computerized Instruction in a Human Gross Anatomy Course.

    ERIC Educational Resources Information Center

    Bukowski, Elaine L.

    2002-01-01

    The first of three successive classes of beginning physical therapy students (n=17) completed traditional cadaver anatomy lecture/lab; the next 17 a self-study computerized anatomy lab, and the next 20 both lectures and computer lab. No differences in study times and course or licensure exam performance appeared. Computerized self-study is a…

  3. Genomics of lactic acid bacteria: Current status and potential applications.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2017-08-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.

  4. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    PubMed

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  5. Design and performance evaluations of a LO2/methane reaction control engine

    NASA Astrophysics Data System (ADS)

    Johnson, Aaron

    Liquid oxygen (LOX) and liquid methane (LCH4) are a propellant combination viewed as a potential enabling technology for spacecraft propulsion. Reasons why LOX/LCH4 is being used as an alternative propellant source include: it is less toxic than other propellants, it has the possibility to be harvested on extraterrestrial soil, LCH4 has a higher energy density than liquid hydrogen (LH2; commonly used on vehicle main engines), and LOX/LCH4 has comparable performance to other well-known propellant combinations. Through the continued partnership between the National Aeronautics and Space Administration (NASA) and the University of Texas at El Paso (UTEP) a LOX/LCH4 reaction control engine (RCE) was developed and researched. The RCE was developed for the purpose of being integrated into two UTEP LOX/LCH4 vehicles, Janus and Daedalus, and was designed based on previous engines tested both at NASA and the center for space exploration and technology research (cSETR) lab. This report details the design process and manufacturing of the engine, cold flow studies evaluating injector design, and preliminary hot fire tests to give insight into engine performance.

  6. IVA the robot: Design guidelines and lessons learned from the first space station laboratory manipulation system

    NASA Technical Reports Server (NTRS)

    Konkel, Carl R.; Powers, Allen K.; Dewitt, J. Russell

    1991-01-01

    The first interactive Space Station Freedom (SSF) lab robot exhibit was installed at the Space and Rocket Center in Huntsville, AL, and has been running daily since. IntraVehicular Activity (IVA) the robot is mounted in a full scale U.S. Lab (USL) mockup to educate the public on possible automation and robotic applications aboard the SSF. Responding to audio and video instructions at the Command Console, exhibit patrons may prompt IVA to perform a housekeeping task or give a speaking tour of the module. Other exemplary space station tasks are simulated and the public can even challenge IVA to a game of tic tac toe. In anticipation of such a system being built for the Space Station, a discussion is provided of the approach taken, along with suggestions for applicability to the Space Station Environment.

  7. Low momentum recoil detectors in CLAS12 at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Charles, Gabriel; CLAS Collaboration Collaboration

    2017-01-01

    Part of the experimental program in Hall B of the Jefferson Lab is dedicated to studying nucleon structure using DIS on nuclei and detecting low-momentum recoil particles in coincidence with the scattered electron. For this purpose, specially designed central detectors are required in place of the inner tracker of CLAS12 to detect particles with momenta below 100 MeV/c. We will present the status of the BONuS12 RTPC detector that will take data within the next 2 years. We will detail the main improvements made from the previous BONuS RTPC. In a second part, we will discuss another recoil experiment, called ALERT, that has been proposed to run in Hall B. The constraints being different, the recoil detector is based on a drift chamber and an array of scintillators. We will present the main differences between the two detectors and summarize the R&D performed to develop the ALERT detector.

  8. Constructing a LabVIEW-Controlled High-Performance Liquid Chromatography (HPLC) System: An Undergraduate Instrumental Methods Exercise

    ERIC Educational Resources Information Center

    Smith, Eugene T.; Hill, Marc

    2011-01-01

    In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…

  9. NEMA NU 4-2008 Comparison of Preclinical PET Imaging Systems

    PubMed Central

    Goertzen, Andrew L.; Bao, Qinan; Bergeron, Mélanie; Blankemeyer, Eric; Blinder, Stephan; Cañadas, Mario; Chatziioannou, Arion F.; Dinelle, Katherine; Elhami, Esmat; Jans, Hans-Sonke; Lage, Eduardo; Lecomte, Roger; Sossi, Vesna; Surti, Suleman; Tai, Yuan-Chuan; Vaquero, Juan José; Vicente, Esther; Williams, Darin A.; Laforest, Richard

    2014-01-01

    The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. Methods We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: micro- PET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. Results The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Conclusion Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand. PMID:22699999

  10. NBodyLab Simulation Experiments with GRAPE-6a AND MD-GRAPE2 Acceleration

    NASA Astrophysics Data System (ADS)

    Johnson, V.; Ates, A.

    2005-12-01

    NbodyLab is an astrophysical N-body simulation testbed for student research. It is accessible via a web interface and runs as a backend framework under Linux. NbodyLab can generate data models or perform star catalog lookups, transform input data sets, perform direct summation gravitational force calculations using a variety of integration schemes, and produce analysis and visualization output products. NEMO (Teuben 1994), a popular stellar dynamics toolbox, is used for some functions. NbodyLab integrators can optionally utilize two types of low-cost desktop supercomputer accelerators, the newly available GRAPE-6a (125 Gflops peak) and the MD-GRAPE2 (64-128 Gflops peak). The initial version of NBodyLab was presented at ADASS 2002. This paper summarizes software enhancements developed subsequently, focusing on GRAPE-6a related enhancements, and gives examples of computational experiments and astrophysical research, including star cluster and solar system studies, that can be conducted with the new testbed functionality.

  11. Partners in Learning

    ERIC Educational Resources Information Center

    Mann, Leah; Rentfro, Jody

    2017-01-01

    Using concepts such as Design Thinking to create inquiry-based, hands-on learning opportunities centered on student ideation and creation, Lewisville Independent School District (LISD) in North Texas reimagined the role of library instruction through implementation of a Mobile Transformation Lab. The purpose of this lab is to serve the more than…

  12. Disclaimers

    Science.gov Websites

    Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center different license is explicitly designated. Because of the nature of our contract, the US Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license

  13. 76 FR 159 - Discretionary Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... detection of iron deficiency, another pediatric health issue. Proficiency testing (PT) is a proven method... monthly PT and other lab quality improvement tools to nearly 600 laboratories across the U.S. and beyond... Competition: The participation of large numbers of these labs in voluntary proficiency was by design, and...

  14. Telerobotics control of ExoGeoLab lander instruments

    NASA Astrophysics Data System (ADS)

    Lillo, A.; Foing, B. H.

    2017-09-01

    This document is about the improvement of the autonomy and capabilities of the prototype lander ExoGeoLab, designed to host remote controlled instruments for analogue Moon/Mars manned missions. Accent is put on new exploration capabilities for the lander to reduce the need for EVA.

  15. Is This Real Life? Is This Just Fantasy?: Realism and Representations in Learning with Technology

    NASA Astrophysics Data System (ADS)

    Sauter, Megan Patrice

    Students often engage in hands-on activities during science learning; however, financial and practical constraints often limit the availability of these activities. Recent advances in technology have led to increases in the use of simulations and remote labs, which attempt to recreate hands-on science learning via computer. Remote labs and simulations are interesting from a cognitive perspective because they allow for different relations between representations and their referents. Remote labs are unique in that they provide a yoked representation, meaning that the representation of the lab on the computer screen is actually linked to that which it represents: a real scientific device. Simulations merely represent the lab and are not connected to any real scientific devices. However, the type of visual representations used in the lab may modify the effects of the lab technology. The purpose of this dissertation is to examine the relation between representation and technology and its effects of students' psychological experiences using online science labs. Undergraduates participated in two studies that investigated the relation between technology and representation. In the first study, participants performed either a remote lab or a simulation incorporating one of two visual representations, either a static image or a video of the equipment. Although participants in both lab conditions learned, participants in the remote lab condition had more authentic experiences. However, effects were moderated by the realism of the visual representation. Participants who saw a video were more invested and felt the experience was more authentic. In a second study, participants performed a remote lab and either saw the same video as in the first study, an animation, or the video and an animation. Most participants had an authentic experience because both representations evoked strong feelings of presence. However, participants who saw the video were more likely to believe the remote technology was real. Overall, the findings suggest that participants' experiences with technology were shaped by representation. Students had more authentic experiences using the remote lab than the simulation. However, incorporating visual representations that enhance presence made these experiences even more authentic and meaningful than afforded by the technology alone.

  16. Design of a K/Q-Band Beacon Receiver for the Alphasat TDP#5 Experiment

    NASA Technical Reports Server (NTRS)

    Morse, Jacquelynne R.

    2014-01-01

    This paper describes the design and performance of a coherent KQ-band (2040 GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload 5 (TDP5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40 GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58 dB at 1 Hz and better than 48 dB at 10 Hz rates.

  17. Design of a K/Q-Band Beacon Receiver for the Alphasat Technology Demonstration Payload (TDP) #5 Experiment

    NASA Technical Reports Server (NTRS)

    Morse, Jacquelynne R.

    2014-01-01

    This paper describes the design and performance of a coherent KQ-band (2040 GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload 5 (TDP5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40 GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58 dB at 1 Hz and better than 48 dB at 10 Hz rates.

  18. Design of a K/Q-band Beacon Receiver for the Alphasat TDP#5 Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zemba, Michael J.; Morse, Jacquelynne R.

    2014-01-01

    This paper describes the design and performance of a coherent K/Q-band (20/40GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload #5 (TDP#5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58dB at 1Hz and better than 48dB at 10Hz rates.

  19. Identification of cognitive and non-cognitive predictive variables related to attrition in baccalaureate nursing education programs in Mississippi

    NASA Astrophysics Data System (ADS)

    Hayes, Catherine

    2005-07-01

    This study sought to identify a variable or variables predictive of attrition among baccalaureate nursing students. The study was quantitative in design and multivariate correlational statistics and discriminant statistical analysis were used to identify a model for prediction of attrition. The analysis then weighted variables according to their predictive value to determine the most parsimonious model with the greatest predictive value. Three public university nursing education programs in Mississippi offering a Bachelors Degree in Nursing were selected for the study. The population consisted of students accepted and enrolled in these three programs for the years 2001 and 2002 and graduating in the years 2003 and 2004 (N = 195). The categorical dependent variable was attrition (includes academic failure or withdrawal) from the program of nursing education. The ten independent variables selected for the study and considered to have possible predictive value were: Grade Point Average for Pre-requisite Course Work; ACT Composite Score, ACT Reading Subscore, and ACT Mathematics Subscore; Letter Grades in the Courses: Anatomy & Physiology and Lab I, Algebra I, English I (101), Chemistry & Lab I, and Microbiology & Lab I; and Number of Institutions Attended (Universities, Colleges, Junior Colleges or Community Colleges). Descriptive analysis was performed and the means of each of the ten independent variables was compared for students who attrited and those who were retained in the population. The discriminant statistical analysis performed created a matrix using the ten variable model that was able to correctly predicted attrition in the study's population in 77.6% of the cases. Variables were then combined and recombined to produce the most efficient and parsimonious model for prediction. A six variable model resulted which weighted each variable according to predictive value: GPA for Prerequisite Coursework, ACT Composite, English I, Chemistry & Lab I, Microbiology & Lab I, and Number of Institutions Attended. Results of the study indicate that it is possible to predict attrition among students enrolled in baccalaureate nursing education programs and that additional investigation on the subject is warranted.

  20. Development and Testing of a Smartphone-Based Cognitive/Neuropsychological Evaluation System for Substance Abusers.

    PubMed

    Pal, Reshmi; Mendelson, John; Clavier, Odile; Baggott, Mathew J; Coyle, Jeremy; Galloway, Gantt P

    2016-01-01

    In methamphetamine (MA) users, drug-induced neurocognitive deficits may help to determine treatment, monitor adherence, and predict relapse. To measure these relationships, we developed an iPhone app (Neurophone) to compare lab and field performance of N-Back, Stop Signal, and Stroop tasks that are sensitive to MA-induced deficits. Twenty healthy controls and 16 MA-dependent participants performed the tasks in-lab using a validated computerized platform and the Neurophone before taking the latter home and performing the tasks twice daily for two weeks. N-Back task: there were no clear differences in performance between computer-based vs. phone-based in-lab tests and phone-based in-lab vs. phone-based in-field tests. Stop-Signal task: difference in parameters prevented comparison of computer-based and phone-based versions. There was significant difference in phone performance between field and lab. Stroop task: response time measured by the speech recognition engine lacked precision to yield quantifiable results. There was no learning effect over time. On an average, each participant completed 84.3% of the in-field NBack tasks and 90.4% of the in-field Stop Signal tasks (MA-dependent participants: 74.8% and 84.3%; healthy controls: 91.4% and 95.0%, respectively). Participants rated Neurophone easy to use. Cognitive tasks performed in-field using Neurophone have the potential to yield results comparable to those obtained in a laboratory setting. Tasks need to be modified for use as the app's voice recognition system is not yet adequate for timed tests.

  1. Teacher Support in Computer-Supported Lab Work: Bridging the Gap between Lab Experiments and Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Furberg, Anniken

    2016-01-01

    This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…

  2. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Cadorette, Jules; Tétrault, Marc-André; Beaudoin, Jean-François; Leroux, Jean-Daniel; Fontaine, Réjean; Lecomte, Roger

    2014-02-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm3), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250-650 keV) and a high-resolution mode (350-650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250-650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250-650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml-1. With the same phantom, the scatter fraction for all scanners is about 17% for an energy threshold of 250 keV and 10% for an energy threshold of 350 keV. The results obtained with two energy window settings confirm the relevance of high-efficiency and high-resolution operating modes to take full advantage of the imaging capabilities of the LabPET scanners for molecular imaging applications.

  3. Army Research Laboratory 2009 Annual Review

    DTIC Science & Technology

    2009-01-01

    and in new Navy DDX and DDG ships . As a result of the high performance and low weight of composite materials, it is very likely that the Services...labs, an explosives casting lab, and it also has explosives x-ray capability . An indoor small arms shooting performance simulator with a high ...of nervous systems, rather than simply depending upon the adaptive abilities of Soldiers, and radically improve Soldier-system performance . a high

  4. Geolab 2010: Desert Rats Field Demonstration

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Calaway, M. J.; Bell, M. S.

    2009-01-01

    In 2010, Desert Research and Technology Studies (Desert RATS), NASA's annual field exercise designed to test spacesuit and rover technologies, will include a first generation lunar habitat facility, the Habitat Demonstration Unit (HDU). The habitat will participate in joint operations in northern Arizona with the Lunar Electric Rover (LER) and will be used as a multi-use laboratory and working space. A Geology Laboratory or GeoLab is included in the HDU design. Historically, science participation in Desert RATS exercises has supported the technology demonstrations with geological traverse activities that are consistent with preliminary concepts for lunar surface science Extravehicular Activities (EVAs). Next year s HDU demonstration is a starting point to guide the development of requirements for the Lunar Surface Systems Program and test initial operational concepts for an early lunar excursion habitat that would follow geological traverses along with the LER. For the GeoLab, these objectives are specifically applied to support future geological surface science activities. The goal of our GeoLab is to enhance geological science returns with the infrastructure that supports preliminary examination, early analytical characterization of key samples, and high-grading lunar samples for return to Earth [1, 2] . Figure 1: Inside view schematic of the GeoLab a 1/8 section of the HDU, including a glovebox for handling and examining geological samples. Other outfitting facilities are not depicted in this figure. GeoLab Description: The centerpiece of the GeoLab is a glovebox, allowing for samples to be brought into the habitat in a protected environment for preliminary examination (see Fig. 1). The glovebox will be attached to the habitat bulkhead and contain three sample pass-through antechambers that would allow direct transfer of samples from outside the HDU to inside the glovebox. We will evaluate the need for redundant chambers, and other uses for the glovebox antechambers, such as a staging area for additional tools or samples. The sides of the glovebox are designed with instrument ports and additional smaller ports for cable pass-through, imagery feeds and environmental monitoring. This first glovebox version will be equipped with basic tools for manipulating, viewing, and early analysis of samples. The GeoLab was also designed for testing additional analytical instruments in a field setting.

  5. Using hot lab to increase pre-service physics teacher’s critical thinking skills related to the topic of RLC circuit

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Samsudin, A.; Safitri, D.; Lisdiani, S. A. S.; Sapriadil, S.; Hermita, N.

    2018-05-01

    This research purposes to explore the used of Higher Order Thinking Laboratory (HOT-Lab) in enhancing the critical thinking skills of pre-service teachers related to the topic of Resistors, Inductors, Capacitor (RLC circuit). This study utilised a quasi-experiment method with Pretest-Posttest Control Group design. The sample of the study was 60 students that were divided into two groups covering in experiment and control group, consists of 30 students. The instrument for measuring critical thinking skills is essay test. Data has been analyzed using normalized gain average, effect size, and t-test. The results show that students’ critical thinking skills using the HOT Lab are higher than the verification lab. Using HOT-lab was implemented in the form of activity in the laboratory can improve high-order thinking skills. Hence, it was concluded that the use of HOT Lab had a greater impact on improving students’ critical thinking skills on RLC topic. Finally, HOT Lab can be used for other physics topics.

  6. Adaptive Tunable Laser Spectrometer for Space Applications

    NASA Technical Reports Server (NTRS)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  7. The Virtual Genetics Lab: A Freely-Available Open-Source Genetics Simulation

    ERIC Educational Resources Information Center

    White, Brian; Bolker, Ethan; Koolar, Nikunj; Ma, Wei; Maw, Naing Naing; Yu, Chung Ying

    2007-01-01

    This lab is a computer simulation of transmission genetics. It presents students with a genetic phenomenon--the inheritance of a randomly--selected trait. The students' task is to determine how this trait is inherited by designing their own crosses and analyzing the results produced by the software.

  8. Using Learning Labs for Culturally Responsive Positive Behavioral Interventions and Supports

    ERIC Educational Resources Information Center

    Bal, Aydin; Schrader, Elizabeth M.; Afacan, Kemal; Mawene, Dian

    2016-01-01

    Culturally responsive positive behavioral interventions and supports (CRPBIS) is a statewide research project designed to renovate behavioral support systems to become more inclusive, adaptive, and supportive for all. The CRPBIS methodology, called "learning lab," provides a research-based process to bring together local stakeholders and…

  9. Technical memo, project 0-6132 : task 6 - test sections in the districts.

    DOT National Transportation Integrated Search

    2011-01-01

    This Tech Memo provides a summary of the Lab Test, Distress Survey, and Construction Reports : for the RAP Test Sections in Laredo District. Based on extensive lab testing by TTI, the District : elected to use the TTI mix-design (5.0% PG 64-22 + Crus...

  10. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    ERIC Educational Resources Information Center

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  11. Installing a Microcomputer Lab in a Medium-Sized Academic Library.

    ERIC Educational Resources Information Center

    Hallman, Clark N.; And Others

    Designed to serve as a blueprint for other libraries developing plans for microcomputer facilities, this report describes the planning and implementation of a microcomputer laboratory at South Dakota State University's Hilton M. Briggs Library. The university's plan for installing microcomputer labs on campus and the initial planning process…

  12. Perspectives on Blended Learning through the On-Line Platform, LabLessons, for Chemistry

    ERIC Educational Resources Information Center

    Jihad, Teeba; Klementowicz, Edward; Gryczka, Patrick; Sharrock, Chappel; Maxfield, MacRae; Lee, Yongjun; Montclare, Jin Kim

    2018-01-01

    The effectiveness of blended learning was evaluated through the integration of an online chemistry platform, LabLessons. Two modules, "Formation of Hydrogen" and "Titration," were designed by college mentors alongside classroom chemistry teachers to engage and allow high school students to better comprehend these scientific…

  13. Science Labs: Beyond Isolationism

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2007-01-01

    A national study released in 2005 concluded that most high school students are not exposed to high quality science labs because of these reasons: (a) poor school facilities and organizations; (b) weak teacher preparation; (c) poor design; (d) cluttered state standards; (e) little representation on state tests; and (f) scarce evidence of what…

  14. 360 Video Tour of 3D Printing Labs at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  15. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    ERIC Educational Resources Information Center

    Holmes, N. G.; Bonn, D. A.

    2015-01-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and…

  16. Comparison of Intervertebral ROM in Multi-Level Cadaveric Lumbar Spines Using Distinct Pure Moment Loading Approaches.

    PubMed

    Santoni, Brandon; Cabezas, Andres F; Cook, Daniel J; Yeager, Matthew S; Billys, James B; Whiting, Benjamin; Cheng, Boyle C

    2015-01-01

    Pure-moment loading is the test method of choice for spinal implant evaluation. However, the apparatuses and boundary conditions employed by laboratories in performing spine flexibility testing vary. The purpose of this study was to quantify the differences, if they exist, in intervertebral range of motion (ROM) resulting from different pure-moment loading apparatuses used in two laboratories. Twenty-four (laboratory A) and forty-two (laboratory B) intact L1-S1 specimens were loaded using pure moments (±7.5 Nm) in flexion-extension (FE), lateral bending (LB) and axial torsion (AT). At laboratory A, pure moments were applied using a system of cables, pulleys and suspended weights in 1.5 Nm increments. At laboratory B, specimens were loaded in a pneumatic biaxial test frame mounted with counteracting stepper-motor-driven biaxial gimbals. ROM was obtained in both labs using identical optoelectronic systems and compared. In FE, total L1-L5 ROM was similar, on average, between the two laboratories (lab A: 37.4° ± 9.1°; lab B: 35.0° ± 8.9°, p=0.289). Larger apparent differences, on average, were noted between labs in AT (lab A: 19.4° ± 7.3°; lab B: 15.7° ± 7.1°, p=0.074), and this finding was significant for combined right and left LB (lab A: 45.5° ± 11.4°; lab B: 35.3° ± 8.5°, p < 0.001). To our knowledge, this is the first study comparing ROM of multi-segment lumbar spines between laboratories utilizing different apparatuses. The results of this study show that intervertebral ROM in multi-segment lumbar spine constructs are markedly similar in FE loading. Differences in boundary conditions are likely the source of small and sometimes statistically significant differences between the two techniques in LB and AT ROM. The relative merits of each testing strategy with regard to the physiologic conditions that are to be simulated should be considered in the design of a study including LB and AT modes of loading. An understanding of these differences also serves as important information when comparing study results across different laboratories.

  17. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload bay of Atlantis, two workers (background and right) watch STS-98 Robert Curbeam practice work he will do on the U.S. Lab Destiny in space. The mission payload, Destiny is a key element in the construction of the International Space Station. The lab is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. The STS-98 crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  18. Cosmic collaboration in an undergraduate astrophysics laboratory

    NASA Astrophysics Data System (ADS)

    Gunter, Ramona; Spiczak, Glenn; Madsen, James

    2010-10-01

    Lessons learned during the first offering of a lab component of an intermediate astrophysics course at the University of Wisconsin-River Falls are discussed. The course enrolled students from a variety of majors. Students worked in mixed-gender, mixed-major collaborative groups. They explored cosmic rays through hands-on, inquiry-based activities that took them from classic, fundamental discoveries to open-ended questions of their own design. We find that students divided their labor and brought the various parts of their research project together with little or no discussion regarding the various pieces and how they inform each other. Aspects of the lab design helped disrupt some typical gender dynamics in that men did not dominate group discussions. However, men did dominate the hands-on activities of the lab.

  19. Integration for navigation on the UMASS mobile perception lab

    NASA Technical Reports Server (NTRS)

    Draper, Bruce; Fennema, Claude; Rochwerger, Benny; Riseman, Edward; Hanson, Allen

    1994-01-01

    Integration of real-time visual procedures for use on the Mobile Perception Lab (MPL) was presented. The MPL is an autonomous vehicle designed for testing visually guided behavior. Two critical areas of focus in the system design were data storage/exchange and process control. The Intermediate Symbolic Representation (ISR3) supported data storage and exchange, and the MPL script monitor provided process control. Resource allocation, inter-process communication, and real-time control are difficult problems which must be solved in order to construct strong autonomous systems.

  20. S-band range tracker and Surveillance Lab interface

    NASA Astrophysics Data System (ADS)

    Bush, B. D.

    1983-09-01

    This report documents the design, construction, test and laboratory integration of the range tracker and associated subsystems for the RADC/OC Surveillance Laboratory's S-Band tracking radar. This development was accomplished over the period from December 1981 to November 1983 and was designed, constructed and tested entirely in-house. This report contains information on the use of the range tracker, its interfaces to other laboratory equipment, the philosophy behind its design, the detailed design of the hardware (including schematics, timing and cabling diagrams), the detailed software design (including flowcharts), and the mathematical description of its algorithms. The range tracker will be used in conjunction with other equipment in the OC Surveillance Lab in the taking and recording of radar data during flight tests.

  1. A study of energy-size relationship and wear rate in a lab-scale high pressure grinding rolls unit

    NASA Astrophysics Data System (ADS)

    Rashidi Dashtbayaz, Samira

    This study is focused on two independent topics of energy-size relationship and wear-rate measurements on a lab-scale high pressure grinding rolls (HPGR). The first part of this study has been aimed to investigate the influence of the operating parameters and the feed characteristics on the particle-bed breakage using four different ore samples in a 200 mm x 100 mm lab-scale HPGR. Additionally, multistage grinding, scale-up from a lab-scale HPGR, and prediction of the particle size distributions have been studied in detail. The results obtained from energy-size relationship studies help with better understanding of the factors contributing to more energy-efficient grinding. It will be shown that the energy efficiency of the two configurations of locked-cycle and open multipass is completely dependent on the ore properties. A test procedure to produce the scale-up data is presented. The comparison of the scale-up factors between the data obtained on the University of Utah lab-scale HPGR and the industrial machine at the Newmont Boddington plant confirmed the applicability of lab-scale machines for trade-off studies. The population balance model for the simulation of product size distributions has shown to work well with the breakage function estimated through tests performed on the HPGR at high rotational speed. Selection function has been estimated by back calculation of population balance model with the help of the experimental data. This is considered to be a major step towards advancing current research on the simulation of particle size distribution by using the HPGR machine for determining the breakage function. Developing a technique/setup to measure the wear rate of the HPGR rolls' surface is the objective of the second topic of this dissertation. A mockup was initially designed to assess the application of the linear displacement sensors for measuring the rolls' weight loss. Upon the analysis of that technique and considering the corresponding sources of errors, the application of the 2D distance measurement sensors was studied to directly determine the wear rate on the lab-sale HPGR roll. Results obtained from various grinding tests revealed that the operating variations were beyond the expected wear rate. Based on the valuable outcomes from the two mentioned experimental designs, a cup-disc arrangement similar to piston-die apparatus was developed to indirectly measure the wear rate on the HPGR roll. The preliminary outputs proved to be promising for further investigation into the development of this method in order to relate the measured data on the cup-disc apparatus to the actual wear rate on the HPGR rolls.

  2. Design and development of a structural mode control system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was conducted to compile and document some of the existing information about the conceptual design, development, and tests of the B-1 structural mode control system (SMCS) and its impact on ride quality. This report covers the following topics: (1) Rationale of selection of SMCS to meet ride quality criteria versus basic aircraft stiffening. (2) Key considerations in designing an SMCS, including vane geometry, rate and deflection requirements, power required, compensation network design, and fail-safe requirements. (3) Summary of key results of SMCS vane wind tunnel tests. (4) SMCS performance. (5) SMCS design details, including materials, bearings, and actuators. (6) Results of qualification testing of SMCS on the "Iron Bird" flight control simulator, and lab qualification testing of the actuators. (7) Impact of SMCS vanes on engine inlet characteristics from wind tunnel tests.

  3. GeoLab's First Field Trials, 2010 Desert RATS: Evaluating Tools for Early Sample Characterization

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Bell, M. S.; Calaway, M. J.; Graff, Trevor; Young, Kelsey

    2011-01-01

    As part of an accelerated prototyping project to support science operations tests for future exploration missions, we designed and built a geological laboratory, GeoLab, that was integrated into NASA's first generation Habitat Demonstration Unit-1/Pressurized Excursion Module (HDU1-PEM). GeoLab includes a pressurized glovebox for transferring and handling samples collected on geological traverses, and a suite of instruments for collecting preliminary data to help characterize those samples. The GeoLab and the HDU1-PEM were tested for the first time as part of the 2010 Desert Research and Technology Studies (DRATS), NASA's analog field exercise for testing mission technologies. The HDU1- PEM and GeoLab participated in two weeks of joint operations in northern Arizona with two crewed rovers and the DRATS science team.

  4. [A design of simple ventilator control system based on LabVIEW].

    PubMed

    Pei, Baoqing; Xu, Shengwei; Li, Hui; Li, Deyu; Pei, Yidong; He, Haixing

    2011-01-01

    This paper designed a ventilator control system to control proportional valves and motors. It used LabVIEW to control the object mentioned above and design ,validate, evaluate arithmetic, and establish hardware in loop platform. There are two system' s hierarchies. The high layer was used to run non-real time program and the low layer was used to run real time program. The two layers communicated through TCP/IP net. The program can be divided into several modules, which can be expanded and maintained easily. And the harvest in the prototype designing can be seamlessly used to embedded products. From all above, this system was useful in employing OEM products.

  5. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2018-01-16

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  6. The Infant Version of the Laboratory Temperament Assessment Battery (Lab-TAB): Measurement Properties and Implications for Concepts of Temperament

    PubMed Central

    Planalp, Elizabeth M.; Van Hulle, Carol; Gagne, Jeffrey R.; Goldsmith, H. Hill

    2017-01-01

    We describe large-sample research using the Infant Laboratory Temperament Assessment Battery (Lab-TAB; Goldsmith and Rothbart, 1996) in 1,076 infants at 6 and 12 months of age. The Lab-TAB was designed to assess temperament dimensions through a series of episodes that mimic everyday situations. Our goal is to provide guidelines for scoring Lab-TAB episodes to derive temperament composites. We also present a set of analyses examining mean differences and stability of temperament in early infancy, gender differences in infant temperament, as well as a validation of Lab-TAB episodes and composites with parent reported Infant Behavior Questionnaire (IBQ; Rothbart, 1981) scales. In general, laboratory observed temperament was only modestly related to parent reported temperament. However, temperament measures were significantly stable across time and several gender differences that align with previous research emerged. In sum, the Lab-TAB usefully assesses individual differences in infant emotionality. PMID:28596748

  7. Communication & Negotiation Skills Workshop for Women I

    NASA Astrophysics Data System (ADS)

    2016-03-01

    This workshop is designed to provide women physics students and postdocs with the professional skills they need to effectively perform research, including: negotiating a position in academia, industry or at a national lab, interacting positively on teams and with a mentor or advisor, thinking tactically, articulating goals, enhancing their personal presence, and developing alliances. We will discuss negotiation strategies and tactics that are useful for achieving professional goals. This is a highly interactive workshop where participants are invited to bring examples of difficult professional situations to discuss.

  8. Communication & Negotiation Skills Workshop for Women II

    NASA Astrophysics Data System (ADS)

    2016-03-01

    This workshop is designed to provide women physics students and postdocs with the professional skills they need to effectively perform research, including: negotiating a position in academia, industry or at a national lab, interacting positively on teams and with a mentor or advisor, thinking tactically, articulating goals, enhancing their personal presence, and developing alliances. We will discuss negotiation strategies and tactics that are useful for achieving professional goals. This is a highly interactive workshop where participants are invited to bring examples of difficult professional situations to discuss.

  9. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    NASA Astrophysics Data System (ADS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  10. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    NASA Astrophysics Data System (ADS)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  11. First results on GlioLab/GlioSat Precursors Missions

    NASA Astrophysics Data System (ADS)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  12. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  13. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  14. Performance assessment instrument to assess the senior high students' psychomotor for the salt hydrolysis material

    NASA Astrophysics Data System (ADS)

    Nahadi, Firman, Harry; Yulina, Erlis

    2016-02-01

    The purposes of this study were to develop a performance assessment instrument for assessing the competence of psychomotor high school students on salt hydrolysis concepts. The design used in this study was the Research & Development which consists of three phases: development, testing and application of instruments. Subjects in this study were high school students in class XI science, which amounts to 93 students. In the development phase, seven validators validated 17 tasks instrument. In the test phase, we divided 19 students into three-part different times to conduct performance test in salt hydrolysis lab work and observed by six raters. The first, the second, and the third groups recpectively consist of five, six, and eight students. In the application phase, two raters observed the performance of 74 students in the salt hydrolysis lab work in several times. The results showed that 16 of 17 tasks of performance assessment instrument developed can be stated to be valid with CVR value of 1,00 and 0,714. While, the rest was not valid with CVR value was 0.429, below the critical value (0.622). In the test phase, reliability value of instrument obtained were 0,951 for the five-student group, 0,806 for the six-student group and 0,743 for the eight-student group. From the interviews, teachers strongly agree with the performance instrument developed. They stated that the instrument was feasible to use for maximum number of students were six in a single observation.

  15. Improve Data Mining and Knowledge Discovery Through the Use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.

  16. Improve Data Mining and Knowledge Discovery through the use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.

  17. From Ions to Bits - Developing the IT infrastructure around the CAMECA IMS 1280-HR SIMS lab at GFZ Potsdam

    NASA Astrophysics Data System (ADS)

    Galkin, A.; Klump, J.; Wiedenbeck, M.

    2012-04-01

    Secondary Ion Mass Spectrometers (SIMS) is an highly sensitive technique for analyzing the surfaces of solids and thin film samples, but has the major drawback that such instruments are both rare and expensive. The Virtual SIMS project aims to design, develop and operate the IT infrastructure around the CAMECA IMS 1280-HR SIMS at GFZ Potsdam. The system will cover the whole spectrum of the procedures in the lab - from the online application for measurement time, to the remote access to the instrument and finally the maintenance of the data for publishing and future re-use. A virtual lab infrastructure around the IMS 1280 will enable remote access to the instrument and make measurement time available to the broadest possible user community. Envisioned is that the IT infrastructure would consist of the following: web portal, data repository, sample repository, project management software, communication arrangements between the lab staff and distant researcher and remote access to the instruments. The web portal will handle online applications for the measurement time. The data from the experiments, the monitoring sensor logs and the lab logbook entries are to be stored and archived. Researchers will be able to access their data remotely in real time, thus imposing a user rights management strucuture. Also planned is that all samples and the standards will be assigned a unique International GeoSample Number (IGSN) and that the images of the samples will be stored and made accessible in addition to any additional documents which might be uploaded by the researcher. The project management application will schedule the application process, the measurements times, notifications and alerts. A video conference capability is forseen for communication between the Potsdam staff and the remote researcher. The remote access to the instruments requires a sophisticated client-server solution. This highly sensitive instrument has to be controlled in real-time with latencies diminished to a minimum. Also, failures and shortages of the internet connection, as well as possible outages on the client side, have to be considered and safe fallbacks for such events must be provided. The level of skills of the researcher remotely operating the instrument will define the scope of control given during an operating session. An important aspect of the project is the design of the virtual lab system in collaboration with the laboratory operators and the researchers who will use the instrument and its peripherals. Different approaches for the IT solutions will be tested and evaluated, so imporved guidelines can evolve from obsperved operating performance.

  18. Guided inquiry lab exercises in development and oxygen consumption using zebrafish.

    PubMed

    Bagatto, Brian

    2009-06-01

    Zebrafish have become a model organism in many areas of research and are now being used with more frequency in the classroom to teach important biological concepts. The two guided inquiry exercises in this article are each aimed at a different level of instruction, but each can be modified to fit the needs of many high school or college-level courses. The "Zebrafish Development and Environment" exercise teaches high school students about zebrafish development by presenting a series of embryos at different ages. Without access to visual references, students are asked to rank developing zebrafish by age and explain their choices. The students also learn about the heart and circulatory system and the effects of temperature on physiological processes. The second exercise, "Oxygen Consumption," is a 2-week laboratory designed for introductory college biology majors and involves the concept of oxygen consumption as a predictor of metabolic rate. During the first week of lab, students are introduced to the concept and learn how to measure oxygen consumption in zebrafish. In the second week, they perform an instructor-approved experiment of their own design, analyze the results using statistics, and write a report.

  19. An ionization pressure gauge with LaB6 emitter for long-term operation in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; Pedersen, T. S.; Marquardt, M.; Singer, M.

    2018-03-01

    We report here on a potentially significant improvement in the design of neutral pressure gauges of the so-called ASDEX-type which were first used in the Axially Symmetric Divertor EXperiment (ASDEX). Such gauges are considered state-of-the-art and are in wide use in fusion experiments, but they nonetheless suffer from a relatively high failure rate when operated at high magnetic field strengths for long times. This is therefore a significant concern for long-pulse, high-field experiments such as Wendelstein 7-X (W7-X) and ITER. The new design is much more robust. The improvement is to use a LaB6 crystal instead of a tungsten wire as the thermionic emitter of electrons in the gauge. Such a LaB6 prototype gauge was successfully operated for a total of 60 h in B = 3.1 T, confirming the significantly improved robustness of the new design and qualifying it for near-term operation in W7-X. With the LaB6 crystal, an order of magnitude reduction in heating current is achieved, relative to the tungsten filament based gauges, from 15-20 A to 1-2 A. This reduces the Lorenz forces and the heating power by an order of magnitude also and is presumably the reason for the much improved robustness. The new gauge design, test environment setup at the superconducting magnet, and results from test operation are described.

  20. Improved low-cost, non-hazardous, all-iron cell for the developing world

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed; Williams, Benjamin; Wang, Wu-Chieh Jerry; Weber, Adam Z.

    2016-11-01

    A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade after a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm-2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. We anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.

  1. Assessment of human epidermal model LabCyte EPI-MODEL for in vitro skin irritation testing according to European Centre for the Validation of Alternative Methods (ECVAM)-validated protocol.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2009-06-01

    A validation study of an in vitro skin irritation testing method using a reconstructed human skin model has been conducted by the European Centre for the Validation of Alternative Methods (ECVAM), and a protocol using EpiSkin (SkinEthic, France) has been approved. The structural and performance criteria of skin models for testing are defined in the ECVAM Performance Standards announced along with the approval. We have performed several evaluations of the new reconstructed human epidermal model LabCyte EPI-MODEL, and confirmed that it is applicable to skin irritation testing as defined in the ECVAM Performance Standards. We selected 19 materials (nine irritants and ten non-irritants) available in Japan as test chemicals among the 20 reference chemicals described in the ECVAM Performance Standard. A test chemical was applied to the surface of the LabCyte EPI-MODEL for 15 min, after which it was completely removed and the model then post-incubated for 42 hr. Cell v iability was measured by MTT assay and skin irritancy of the test chemical evaluated. In addition, interleukin-1 alpha (IL-1alpha) concentration in the culture supernatant after post-incubation was measured to provide a complementary evaluation of skin irritation. Evaluation of the 19 test chemicals resulted in 79% accuracy, 78% sensitivity and 80% specificity, confirming that the in vitro skin irritancy of the LabCyte EPI-MODEL correlates highly with in vivo skin irritation. These results suggest that LabCyte EPI-MODEL is applicable to the skin irritation testing protocol set out in the ECVAM Performance Standards.

  2. 78 FR 48866 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... and hood fume interface with Phoenix Controls hood. The components were specifically designed to fit... Module Assembly to repair existing Johnson Controls Lab and Hood Fume Interface with Phoenix Controls... Johnson Controls lab and hood fume interface with Phoenix Controls hood (where utilization of an American...

  3. Teaching Calculus with Wolfram|Alpha

    ERIC Educational Resources Information Center

    Dimiceli, Vincent E.; Lang, Andrew S. I. D.; Locke, LeighAnne

    2010-01-01

    This article describes the benefits and drawbacks of using Wolfram|Alpha as the platform for teaching calculus concepts in the lab setting. It is a result of our experiences designing and creating an entirely new set of labs using Wolfram|Alpha. We present the reasoning behind our transition from using a standard computer algebra system (CAS) to…

  4. Gapminder: An AP Human Geography Lab Assignment

    ERIC Educational Resources Information Center

    Keller, Kenneth H.

    2012-01-01

    This lesson is designed as a lab assignment for Advanced Placement (AP) Human Geography students wherein they use the popular Gapminder web site to compare levels of development in countries from different world regions. For this lesson, it is important for the teacher to practice with Gapminder before giving the assignment to students. (Contains…

  5. Physics for the Technologies. Supplementary Units.

    ERIC Educational Resources Information Center

    Brown, Tim; And Others

    These supplemental units contain four laboratory exercises that can be used to enhance the labs in "Physics for the Technologies." The four units (one mechanical, two thermal, and one electrical) are designed to enhance labs in presenting specific concepts. Each unit can be used as an example of how the concepts behind the theory apply…

  6. Speech Understanding in Air Intercept Controller Training System Design.

    DTIC Science & Technology

    1979-01-01

    Street MD 700 Utica, NY 13503chief MI Field Unit Mr. J. Michael Nyc, Pres identP.O. Box 476 Marketing Consultants Interna tional , Inc.Fort Rucker, AL... Researc h Lab Systems and Information Sciences Lab ~aman Engi neering Division Texas Instruments ~fright-Patterson AFB P. 0. Box 5936 Dayton, OH

  7. Making the Rate: Enzyme Dynamics

    ERIC Educational Resources Information Center

    Ragsdale, Frances R.

    2004-01-01

    An enzyme exercise to address the problem of students inability to visualize chemical reaction at the molecular level is described. This exercise is designed as a dry lab exercise but can be modified into a classroom activity then can be augmented by a wet lab procedure, thereby providing students with a practical exposure to enzyme function.

  8. A Series of Molecular Dynamics and Homology Modeling Computer Labs for an Undergraduate Molecular Modeling Course

    ERIC Educational Resources Information Center

    Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.

    2010-01-01

    As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…

  9. 40 Low-Waste, Low-Risk Chemistry Labs.

    ERIC Educational Resources Information Center

    Dougan, David

    This resource book contains 40 chemistry labs and provides a single solution to the problems of purchase, storage, use, and disposal of chemicals. The text is designed to be used alone or integrated with current textbooks. A mixture of microchemistry and macrochemistry is used to provide variety and reflects trends in research and industry. Most…

  10. Of Mice and Meth: A New Media-Based Neuropsychopharmacology Lab to Teach Research Methods

    ERIC Educational Resources Information Center

    Hatch, Daniel L.; Zschau, Tony; Hays, Arthur; McAllister, Kristin; Harrison, Michelle; Cate, Kelly L.; Shanks, Ryan A.; Lloyd, Steven A.

    2014-01-01

    This article describes an innovative neuropsychopharmacology laboratory that can be incorporated into any research methods class. The lab consists of a set of interconnected modules centered on observations of methamphetamine-induced behavioral changes in mice and is designed to provide students with an opportunity to acquire basic skills…

  11. Portable Anthrax Testing with Lab-in-a-Pocket

    ScienceCinema

    Finley, Melissa; Koskelo, Markku; Edwards, Thayne

    2018-05-30

    BaDx (Bacillus anthracis Diagnostics) is a lab-in-a-pocket device to sample, sense, and diagnose bacteria that cause anthrax. It accomplishes these tasks in environments with no power, refrigerated storage, or laboratory equipment. BaDx was designed to be used with minimal or no training, and to keep handlers safe.

  12. Development of an Experimental Literacy Assessment Battery. Final Report.

    ERIC Educational Resources Information Center

    Sticht, Thomas G.; Beck, Lawrence J.

    This report describes the development of a Literacy Assessment Battery (LAB) for determining the relative efficiency with which adults can comprehend language by reading or listening. Development of the LAB included: the tryout with adults of two listening and reading tests designed for children; experimental studies of a decoding task involving…

  13. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  14. Portable Anthrax Testing with Lab-in-a-Pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa; Koskelo, Markku; Edwards, Thayne

    2014-10-24

    BaDx (Bacillus anthracis Diagnostics) is a lab-in-a-pocket device to sample, sense, and diagnose bacteria that cause anthrax. It accomplishes these tasks in environments with no power, refrigerated storage, or laboratory equipment. BaDx was designed to be used with minimal or no training, and to keep handlers safe.

  15. Driving Objectives and High-level Requirements for KP-Lab Technologies

    ERIC Educational Resources Information Center

    Lakkala, Minna; Paavola, Sami; Toikka, Seppo; Bauters, Merja; Markannen, Hannu; de Groot, Reuma; Ben Ami, Zvi; Baurens, Benoit; Jadin, Tanja; Richter, Christoph; Zoserl, Eva; Batatia, Hadj; Paralic, Jan; Babic, Frantisek; Damsa, Crina; Sins, Patrick; Moen, Anne; Norenes, Svein Olav; Bugnon, Alexandra; Karlgren, Klas; Kotzinons, Dimitris

    2008-01-01

    One of the central goals of the KP-Lab project is to co-design pedagogical methods and technologies for knowledge creation and practice transformation in an integrative and reciprocal manner. In order to facilitate this process user tasks, driving objectives and high-level requirements have been introduced as conceptual tools to mediate between…

  16. Web-based e-learning and virtual lab of human-artificial immune system.

    PubMed

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.

  17. Optics and optics-based technologies education with the benefit of LabVIEW

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  18. Performance and Architecture Lab Modeling Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-06-19

    Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less

  19. Surface Modified TiO2 Obscurants for Increased Safety and Performance

    DTIC Science & Technology

    2012-11-01

    based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification

  20. Commerce lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Conceived as one or more arrays of carriers which would fly aboard space shuttle, Commerce Lab can provide a point of focus for implementing a series of shuttle flights, co-sponsored by NASA and U.S. domestic concerns, for performing materials processing in research and pre-commercial investigations. As an orbiting facility for testing, developing, and implementing hardware and procedures, Commerce Lab can enhance space station development and hasten space platform production capability. Tasks considered include: (1) synthesis of user requirements and identification of common element and voids; (2) definition of performance and infrastructure requirement and alternative approaches; and (3) carrier, mission model, and infrastructure development.

  1. Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.

  2. Boomwhackers and End-Pipe Corrections

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2014-02-01

    End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.

  3. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Hardy; S.V. Benson; Michelle D. Shinn

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  4. Window Observational Research Facility (WORF)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  5. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  6. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the support of the literature and the readiness of the IAD administration and teachers, a recommendation to implement virtual labs into the curriculum can be made.

  7. Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs.

    PubMed

    Ruiz Rodríguez, L; Vera Pingitore, E; Rollan, G; Cocconcelli, P S; Fontana, C; Saavedra, L; Vignolo, G; Hebert, E M

    2016-05-01

    To analyse lactic acid bacteria (LAB) diversity and technological-functional and safety properties of strains present during spontaneous fermented quinoa sourdoughs. Fermentation was performed by daily backslopping at 30°C for 10 days. Autochthonous LAB microbiota was monitored by a biphasic approach combining random amplified polymorphic DNA (RAPD)-PCR and rRNA gene sequencing with PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Identification and intraspecies differentiation allowed to group isolates within nine LAB species belonging to four genera. A succession of LAB species occurred during 10-days backslopping; Lactobacillus plantarum and Lactobacillus brevis were detected as dominant species in the consortium. The characterization of 15 representative LAB strains was performed based on the acidifying capacity, starch and protein hydrolysis, γ-aminobutyric acid and exopolysaccharides production, antimicrobial activity and antibiotic resistance. Strains characterization led to the selection of Lact. plantarum CRL1905 and Leuconostoc mesenteroides CRL1907 as candidates to be assayed as functional starter culture for the gluten-free (GF) quinoa fermented products. Results on native LAB microbiota present during quinoa sourdough fermentation will allow the selection of strains with appropriate technological properties to be used as a novel functional starter culture for GF-fermented products. © 2016 The Society for Applied Microbiology.

  8. New Policy Focuses on Lab Coats, Safety Glasses, and Footwear | Poster

    Cancer.gov

    By Paul Stokely, Guest Writer When working in any laboratory or animal facility, you must wear a lab coat, protective eyewear, appropriate gloves, and closed-toe shoes, unless you are performing purely administrative tasks.

  9. LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2018-01-24

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  10. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy

    2012-02-02

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  11. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2017-12-09

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  12. Comparison between simulations and lab results on the ASSIST test-bench

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin

    2016-07-01

    We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.

  13. Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application.

    PubMed

    Höfflin, Jens; Torres Delgado, Saraí M; Suárez Sandoval, Fralett; Korvink, Jan G; Mager, Dario

    2015-06-21

    We present a design for wireless power transfer, via inductively coupled coils, to a spinning disk. The rectified and stabilised power feeds an Arduino-compatible microcontroller (μC) on the disc, which in turn drives and monitors various sensors and actuators. The platform, which has been conceived to flexibly prototype such systems, demonstrates the feasibility of a wireless power supply and the use of a μC circuit, for example for Lab-on-a-disk applications, thereby eliminating the need for cumbersome slip rings or batteries, and adding a cogent and new degree of freedom to the setup. The large number of sensors and actuators included demonstrate that a wide range of physical parameters can be easily monitored and altered. All devices are connected to the μC via an I(2)C bus, therefore can be easily exchanged or augmented by other devices in order to perform a specific task on the disk. The wireless power supply takes up little additional physical space and should work in conjunction with most existing Lab-on-a-disk platforms as a straightforward add-on, since it does not require modification of the rotation axis and can be readily adapted to specific geometrical requirements.

  14. Fundamental Fractal Antenna Design Process

    NASA Astrophysics Data System (ADS)

    Zhu, L. P.; Kim, T. C.; Kakas, G. D.

    2017-12-01

    Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.

  15. Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model

    NASA Astrophysics Data System (ADS)

    Dordevich, Milorad C. W.

    This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.

  16. Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods.

    PubMed

    Palla, Michela; Cristani, Caterina; Giovannetti, Manuela; Agnolucci, Monica

    2017-06-05

    Sourdough fermentation has been increasingly used worldwide, in accordance with the demand of consumers for tasty, natural and healthy food. The high diversity of lactic acid bacteria (LAB) and yeast species, detected in sourdoughs all over the world, may affect nutritional, organoleptic and technological traits of leavened baked goods. A wide regional variety of traditional sourdough breads, over 200 types, has been recorded in Italy, including special types selected as worthy of either Protected Geographical Indication (PGI) or Protected Designation of Origin (PDO), whose sourdough microbiota has been functionally and molecularly characterized. As, due to the very recent designation, the microbiota of Tuscan bread sourdough has not been investigated so far, the aim of the present work was to isolate and characterize the species composition of LAB and yeasts of PDO Tuscan bread sourdough by culture-independent and dependent methods. A total of 130 yeasts from WLN medium and 193 LAB from both mMRS and SDB media were isolated and maintained to constitute the germplasm bank of PDO Tuscan bread. Ninety six LAB from mMRS medium and 68 yeasts from WLN medium were randomly selected and molecularly identified by ARDRA (Amplified Ribosomal DNA Restriction Analysis) and PCR-RFLP analysis of the ITS region, respectively, and sequencing. The yeast identity was confirmed by 26S D1/D2 sequencing. All bacterial isolates showed 99% identity with Lactobacillus sanfranciscensis, 65 yeast isolates were identified as Candida milleri, and 3 as Saccharomyces cerevisiae. Molecular characterization of PDO Tuscan bread sourdough by PCR-DGGE confirmed such data. The distinctive tripartite species association, detected as the microbiota characterizing the sourdough used to produce PDO Tuscan bread, encompassed a large number of L. sanfranciscensis and C. milleri strains, along with a few of S. cerevisiae. The relative composition and specific physiological characteristics of such microbiota could potentially affect the nutritional features of PDO Tuscan bread, as suggested by the qualitative functional characterization of the isolates. Investigations on the differential functional traits of such LAB and yeast isolates could lead to the selection of the most effective single strains and of the best performing strain combinations to be used as starters for the production of baked goods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nukes in the Post-Cold War Era A View of the World from Inside the US Nuclear Weapons Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Blake Philip

    Why do we have nuclear weapons? What is in the US stockpile, how is it deployed and controlled, and how it has changed over the years? What is in the “nuclear weapons complex” and what does each lab and plant do? How do the DOE/NNSA Design Labs interact with the Intelligence Community? How does the US stockpile, NW complex, and NW policy compare with those of other countries? What is easy and hard about designing nuclear weapons?

  18. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  19. Programmable spectral engine design of hyperspectral image projectors based on digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Wang, Xicheng; Gao, Jiaobo; Wu, Jianghui; Li, Jianjun; Cheng, Hongliang

    2017-02-01

    Recently, hyperspectral image projectors (HIP) have been developed in the field of remote sensing. For the advanced performance of system-level validation, target detection and hyperspectral image calibration, HIP has great possibility of development in military, medicine, commercial and so on. HIP is based on the digital micro-mirror device (DMD) and projection technology, which is capable to project arbitrary programmable spectra (controlled by PC) into the each pixel of the IUT1 (instrument under test), such that the projected image could simulate realistic scenes that hyperspectral image could be measured during its use and enable system-level performance testing and validation. In this paper, we built a visible hyperspectral image projector also called the visible target simulator with double DMDs, which the first DMD is used to product the selected monochromatic light from the wavelength of 410 to 720 um, and the light come to the other one. Then we use computer to load image of realistic scenes to the second DMD, so that the target condition and background could be project by the second DMD with the selected monochromatic light. The target condition can be simulated and the experiment could be controlled and repeated in the lab, making the detector instrument could be tested in the lab. For the moment, we make the focus on the spectral engine design include the optical system, research of DMD programmable spectrum and the spectral resolution of the selected spectrum. The detail is shown.

  20. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    NASA Astrophysics Data System (ADS)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  1. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less

  2. Electromagnetic launchers for space applications

    NASA Technical Reports Server (NTRS)

    Schroeder, J. M.; Gully, J. H.; Driga, M. D.

    1989-01-01

    An electromagnetic launcher (EML) was designed for NASA-Langley to boost large models to hypervelocity for flight evaluation. Two different concepts were developed using railgun and coilgun principles. A coilgun was designed to accelerate a 14-kg mass to 6 km/s and, by adding additional equipment, to accelerate a 10-kg mass to 11 km/s. The railgun system was designed to accelerate only 14 kg to 6 km/s. Of significance in this development is the opportunity to use the launcher for aeroballistic research of the upper atmosphere, eventually placing packages in low earth orbit using a small rocket. The authors describe the railgun and coilgun launch designs and suggest a reconfiguration for placement of 150-kg parcels into low earth orbit for aeroballistic studies and possible space lab support. Each design is detailed along with the performance adjustments which would be required for circular orbit payload placement.

  3. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  4. State Performance-Based Regulation Using Multiyear Rate Plans for U.S. Electric Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Mark Newton; Makos, Matt; Deason, Jeff

    Electric utilities today must contain costs at a time when many need to modernize aging systems and all face major changes in technologies, customer preferences and competitive pressures.Most U.S. electric utility facilities are investor-owned, subject to rate and service regulation by state public utility commissions. Regulatory systems under which these utilities operate affect their performance and ability to meet these challenges. In this business environment, multiyear rate plans have some advantages over traditional rate regulation.The report focuses on key design issues and provides case studies of the multiyear rate plan approach, applicable to both vertically integrated and restructured states. Markmore » Newton Lowry and Matt Makos of Pacific Energy Group Research and Jeff Deason of Berkeley Lab authored the report; Lisa Schwartz, Berkeley Lab, was project manager and technical editor.The report is aimed primarily at state utility regulators and stakeholders in the state regulatory process. The multiyear rate approach also provides ideas on how to streamline oversight of public power utilities and rural electric cooperatives for their governing boards.Two key provisions of multiyear rate plans strengthen cost containment incentives and streamline regulation: 1. Reducing frequency of rate cases, typically to every four or five years 2. Using an attrition relief mechanism to escalate rates or revenue between rate cases to address cost pressures such as inflation and growth in number of customers, independently of the utility’s own cost Better utility performance can be achieved under well-designed multiyear rate plans while achieving lower regulatory costs. Benefits can be shared between utilities and their customers. But plans can be complex and involve significant changes in the regulatory system. Designing plans that stimulate utility performance without undue risk and share benefits fairly can be challenging.This report discusses the rationale for multiyear rate plans and their usefulness under modern business conditions. It then explains critical plan design issues and challenges and presents results from numerical research that considers the extra incentive power achieved under different plan provisions. Next, the report presents several case studies of utilities that have operated under formal multiyear rate plans or, for various reasons, have stayed out of rate cases for more than a decade. These studies consider the effect of multiyear rate plans and rate case frequency on utility cost, reliability and other performance dimensions.« less

  5. How to Build a Hybrid Neurofeedback Platform Combining EEG and fMRI

    PubMed Central

    Mano, Marsel; Lécuyer, Anatole; Bannier, Elise; Perronnet, Lorraine; Noorzadeh, Saman; Barillot, Christian

    2017-01-01

    Multimodal neurofeedback estimates brain activity using information acquired with more than one neurosignal measurement technology. In this paper we describe how to set up and use a hybrid platform based on simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), then we illustrate how to use it for conducting bimodal neurofeedback experiments. The paper is intended for those willing to build a multimodal neurofeedback system, to guide them through the different steps of the design, setup, and experimental applications, and help them choose a suitable hardware and software configuration. Furthermore, it reports practical information from bimodal neurofeedback experiments conducted in our lab. The platform presented here has a modular parallel processing architecture that promotes real-time signal processing performance and simple future addition and/or replacement of processing modules. Various unimodal and bimodal neurofeedback experiments conducted in our lab showed high performance and accuracy. Currently, the platform is able to provide neurofeedback based on electroencephalography and functional magnetic resonance imaging, but the architecture and the working principles described here are valid for any other combination of two or more real-time brain activity measurement technologies. PMID:28377691

  6. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  7. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  8. Exploratory Study of the Acceptance of Two Individual Practical Classes with Remote Labs

    ERIC Educational Resources Information Center

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-01-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote…

  9. Gene Expression Analysis: Teaching Students to Do 30,000 Experiments at Once with Microarray

    ERIC Educational Resources Information Center

    Carvalho, Felicia I.; Johns, Christopher; Gillespie, Marc E.

    2012-01-01

    Genome scale experiments routinely produce large data sets that require computational analysis, yet there are few student-based labs that illustrate the design and execution of these experiments. In order for students to understand and participate in the genomic world, teaching labs must be available where students generate and analyze large data…

  10. Pulse Oximetry in the Physics Lab: A Colorful Alternative to Traditional Optics Curricula

    ERIC Educational Resources Information Center

    Kutschera, Ellynne; Dunlap, Justin C.; Byrd, Misti; Norlin, Casey; Widenhorn, Ralf

    2013-01-01

    We designed a physics laboratory exercise around pulse oximetry, a noninvasive medical technique used to assess a patient's blood oxygen saturation. An alternative to a traditional optics and light lab, this exercise teaches the principles of light absorption, spectroscopy, and the properties of light, while simultaneously studying a common…

  11. The Use of Feedback in Lab Energy Conservation: Fume Hoods at MIT

    ERIC Educational Resources Information Center

    Wesolowski, Daniel; Olivetti, Elsa; Graham, Amanda; Lanou, Steve; Cooper, Peter; Doughty, Jim; Wilk, Rich; Glicksman, Leon

    2010-01-01

    Purpose: The purpose of this paper is to report on the results of an Massachusetts Institute of Technology Chemistry Department campaign to reduce energy consumption in chemical fume hoods. Hood use feedback to lab users is a crucial component of this campaign. Design/methodology/approach: Sash position sensor data on variable air volume fume…

  12. Are They Bloody Guilty? Blood Doping with Simulated Samples

    ERIC Educational Resources Information Center

    Stuart, Parker E.; Lees, Kelsey D.; Milanick, Mark A.

    2014-01-01

    In this practice-based lab, students are provided with four Olympic athlete profiles and simulated blood and urine samples to test for illegal substances and blood-doping practices. Throughout the course of the lab, students design and conduct a testing procedure and use their results to determine which athletes won their medals fairly. All of the…

  13. EJS, JIL Server, and LabVIEW: An Architecture for Rapid Development of Remote Labs

    ERIC Educational Resources Information Center

    Chacón, Jesús; Vargas, Hector; Farias, Gonzalo; Sanchez, José; Dormido, Sebastián

    2015-01-01

    Designing and developing web-enabled remote laboratories for pedagogical purposes is not an easy task. Often, developers (generally, educators who know the subjects they teach but lack of the technical and programming skills required to build Internet-based educational applications) end up discarding the idea of exploring these new teaching and…

  14. The research of binocular vision ranging system based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Shikuan; Yang, Xu

    2017-10-01

    Based on the study of the principle of binocular parallax ranging, a binocular vision ranging system is designed and built. The stereo matching algorithm is realized by LabVIEW software. The camera calibration and distance measurement are completed. The error analysis shows that the system fast, effective, can be used in the corresponding industrial occasions.

  15. 360 Video Tour of 3D Printing Labs at LLNL

    ScienceCinema

    None

    2018-01-16

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  16. Competence-Based, Research-Related Lab Courses for Materials Modeling: The Case of Organic Photovoltaics

    ERIC Educational Resources Information Center

    Schellhammer, Karl Sebastian; Cuniberti, Gianaurelio

    2017-01-01

    We are hereby presenting a didactic concept for an advanced lab course that focuses on the design of donor materials for organic solar cells. Its research-related and competence-based approach qualifies the students to independently and creatively apply computational methods and to profoundly and critically discuss the results obtained. The high…

  17. Beginning Plant Biotechnology Laboratories Using Fast Plants.

    ERIC Educational Resources Information Center

    Williams, Mike

    This set of 16 laboratory activities is designed to illustrate the life cycle of Brassicae plants from seeds in pots to pods in 40 days. At certain points along the production cycle of the central core of labs, there are related lateral labs to provide additional learning opportunities employing this family of plants, referred to as "fast…

  18. Biology Labs That Work: The Best of How-To-Do-Its.

    ERIC Educational Resources Information Center

    Moore, Randy, Ed.

    This book is a compilation of articles from the The American Biology Teacher journal that present biology labs that are safe, simple, dependable, economic, and diverse. Each activity can be used alone or as a starting point for helping students design follow-up experiments for in-depth study on a particular topic. Students must make keen…

  19. Tools and Techniques for Simplifying the Analysis of Captured Packet Data

    ERIC Educational Resources Information Center

    Cavaiani, Thomas P.

    2008-01-01

    Students acquire an understanding of the differences between TCP and UDP (connection-oriented vs. connection-less) data transfers as they analyze network packet data collected during one of a series of labs designed for an introductory network essentials course taught at Boise State University. The learning emphasis of the lab is not on the…

  20. Designing a Versatile Dedicated Computing Lab to Support Computer Network Courses: Insights from a Case Study

    ERIC Educational Resources Information Center

    Gercek, Gokhan; Saleem, Naveed

    2006-01-01

    Providing adequate computing lab support for Management Information Systems (MIS) and Computer Science (CS) programs is a perennial challenge for most academic institutions in the US and abroad. Factors, such as lack of physical space, budgetary constraints, conflicting needs of different courses, and rapid obsolescence of computing technology,…

  1. Designing for Problem-Based Learning in a Collaborative STEM Lab: A Case Study

    ERIC Educational Resources Information Center

    Estes, Michele D.; Liu, Juhong; Zha, Shenghua; Reedy, Kim

    2014-01-01

    Higher education institutions are using virtual telepresence systems to engage in collaborative course redesign and research projects. These systems hold promise and challenge for inter-institutional work in STEM areas. This paper describes a case study involving two universities in the 4-VA consortium, and the redesign of a shared STEM lab. The…

  2. Berkeley Lab's Cool Your School Program

    ScienceCinema

    Brady, Susan; Gilbert, Haley; McCarthy, Robert

    2018-02-02

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  3. Wave journal bearing with compressible lubricant--Part 1: The wave bearing concept and a comparison to the plain circular bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    To improve hydrodynamic journal bearing steady-state and dynamic performance, a new bearing concept, the wave journal bearing, was developed at the author's lab. This concept features a waved inner bearing diameter. Compared to other alternative bearing geometries used to improve bearing performance such as spiral or herring-bone grooves, steps, etc., the wave bearing's design is relatively simple and allows the shaft to rotate in either direction. A three-wave bearing operating with a compressible lubricant, i.e., gas is analyzed using a numerical code. Its performance is compared to a plain (truly) circular bearing over a broad range of bearing working parameters, e.g., bearing numbers from 0.01 to 100.

  4. Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)

    NASA Astrophysics Data System (ADS)

    Davis, Doyle V.; Cherner, Y.

    2006-12-01

    The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)

  5. Solar process water heat for the IRIS images custom color photo lab

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.

  6. Recognition and inference of crevice processing on digitized paintings

    NASA Astrophysics Data System (ADS)

    Karuppiah, S. P.; Srivatsa, S. K.

    2013-03-01

    This paper is designed to detect and removal of cracks on digitized paintings. The cracks are detected by threshold. Afterwards, the thin dark brush strokes which have been misidentified as cracks are removed using Median radial basis function neural network on hue and saturation data, Semi-automatic procedure based on region growing. Finally, crack is filled using wiener filter. The paper is well designed in such a way that most of the cracks on digitized paintings have identified and removed. The paper % of betterment is 90%. This paper helps us to perform not only on digitized paintings but also the medical images and bmp images. This paper is implemented by Mat Lab.

  7. Prototyping a 10 Gigabit-Ethernet Event-Builder for the CTA Camera Server

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dirk; Houles, Julien

    2012-12-01

    While the Cherenkov Telescope Array will end its Preperatory Phase in 2012 or 2013 with the publication of a Technical Design Report, our lab has undertaken within the french CTA community the design and prototyping of a Camera-Server, which is a PC architecture based computer, used as a switchboard assigned to each of a hundred telescopes to handle a maximum amount of scientific data recorded by each telescope. Our work aims for a data acquisition hardware and software system for the scientific raw data at optimal speed. We have evaluated the maximum performance that can be obtained by choosing standard (COTS) hardware and software (Linux) in conjunction with a 10 Gb/s switch.

  8. Research Based on AMESim of Electro-hydraulic Servo Loading System

    NASA Astrophysics Data System (ADS)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  9. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2015-10-01

    antitumor activity in mouse xenografts did not exert toxic effects on normal tissues. BMI-1 targeted therapy when combined with taxotere resulted in...utilizing zebrafish xenografts (Sabaawy Lab) and prostate cancer cell lines (Bertino Lab), and 3) Confirmation of the antitumor activity of C-209...in mouse xenografts alone and upon combination with taxotere (Bertino Lab). The following tasks from the approved SOW were performed to achieve the

  10. X-Ray Backscatter Machine Support Frame

    NASA Technical Reports Server (NTRS)

    Cannon, Brooke

    2010-01-01

    This summer at Kennedy Space Center, I spent 10 weeks as an intern working at the Prototype Development Lab. During this time I learned about the design and machining done here at NASA. I became familiar with the process from where a design begins in Pro/Engineer and finishes at the hands of the machinists. As an intern I was given various small jobs to do and then one project of my own. My personal project was a job for the Applied Physics Lab; in their work they use an X-Ray Backscatter machine. Previously it was resting atop a temporary frame that limited the use of the machine. My job was to design a frame for the machine to rest upon that would allow a full range of sample sizes. The frame was required to support the machine and provide a strain relief for the cords attached to the machine as it moved in the x and y directions. Calculations also had to be done to be sure the design would be able to withstand any loads or outside sources of stress. After the calculations proved the design to be ready to withstand the requirements, the parts were ordered or fabricated, as required. This helped me understand the full process of jobs sent to the Prototype Development Lab.

  11. Teaching About Theory-Laden Observation to Secondary Students Through Manipulated Lab Inquiry Experience

    NASA Astrophysics Data System (ADS)

    Lau, Kwok-chi; Chan, Shi-lun

    2013-10-01

    This study seeks to develop and evaluate a modified lab inquiry approach to teaching about nature of science (NOS) to secondary students. Different from the extended, open-ended inquiry, this approach makes use of shorter lab inquiry activities in which one or several specific NOS aspects are manipulated deliberately so that students are compelled to experience and then reflect on these NOS aspects. In this study, to let students experience theory-laden observation, they were provided with different "theories" in order to bias their observations in the lab inquiry. Then, in the post-lab discussion, the teacher guided students to reflect on their own experience and explicitly taught about theory-ladenness. This study employs a quasi-experimental pretest-posttest design using the historical approach as the control group. The results show that the manipulated lab inquiry approach was much more effective than the historical approach in fostering students' theory-laden views, and it was even more effective when the two approaches were combined. Besides, the study also sought to examine the practical epistemological beliefs of students concerning theory-ladenness, but limited evidence could be found.

  12. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.

  13. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  14. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    NASA Astrophysics Data System (ADS)

    Chambers, Timothy

    This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to the novel nature of this research and the large number of item-level results we produced, we recommend additional research to determine the reproducibility of our results. Analyzing the data with item response theory yields additional information about the performance of our students on both conceptual questions and quantitative problems. We find that performing lab activities on a topic does lead to better-than-expected performance on some conceptual questions regardless of pedagogical approach, but that this acquired conceptual understanding is strongly context-dependent. The results also suggest that a single "Newtonian reasoning ability" is inadequate to explain student response patterns to items from the Force Concept Inventory. We develop a framework for applying polytomous item response theory to the analysis of quantitative free-response problems and for analyzing how features of student solutions are influenced by problem-solving ability. Patterns in how students at different abilities approach our post-test problems are revealed, and we find hints as to how features of a free-response problem influence its item parameters. The item-response theory framework we develop provides a foundation for future development of quantitative free-response research instruments. Chapter 1 of the dissertation presents a brief history of physics education research and motivates the present study. Chapter 2 describes our experimental methodology and discusses the treatments applied to students and the instruments used to measure their learning. Chapter 3 provides an introduction to the statistical and analytical methods used in our data analysis. Chapter 4 presents the full data set, analyzed using both classical test theory and item response theory. Chapter 5 contains a discussion of the implications of our results and a data-driven analysis of our experimental methods. Chapter 6 describes the importance of this work to the field and discusses the relevance of our research to curriculum development and to future work in physics education research.

  15. Evaluation of notched wedge pavement joints vs. traditional butt joints for use in Connecticut.

    DOT National Transportation Integrated Search

    2008-01-01

    Following up on earlier research performed by several states and the : National Center for Asphalt Technology (NCAT) at Auburn University, the : University of Connecticuts Advanced Pavement Lab (CAP Lab) was : charged with evaluating the longitudi...

  16. Context Matters: Volunteer Bias, Small Sample Size, and the Value of Comparison Groups in the Assessment of Research-Based Undergraduate Introductory Biology Lab Courses

    PubMed Central

    Brownell, Sara E.; Kloser, Matthew J.; Fukami, Tadashi; Shavelson, Richard J.

    2013-01-01

    The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course. PMID:24358380

  17. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  18. Context matters: volunteer bias, small sample size, and the value of comparison groups in the assessment of research-based undergraduate introductory biology lab courses.

    PubMed

    Brownell, Sara E; Kloser, Matthew J; Fukami, Tadashi; Shavelson, Richard J

    2013-01-01

    The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  19. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  20. Auto-tuning system for NMR probe with LabView

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Mateo, Olivia; Bernal, Oscar

    2013-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program is designed to analyze the detected power signal of an antenna near the NMR probe and use this analysis to automatically tune the sample coil to match the impedance of the spectrometer (50 Ω). The tuning capacitors of the probe are controlled by a stepper motor through a LabVIEW/computer interface. Our program calculates the area of the power signal as an indicator to control the motor so disconnecting the coil to tune it through a network analyzer is unnecessary. Work supported by NSF-DMR 1105380

  1. Utah Virtual Lab: JAVA interactivity for teaching science and statistics on line.

    PubMed

    Malloy, T E; Jensen, G C

    2001-05-01

    The Utah on-line Virtual Lab is a JAVA program run dynamically off a database. It is embedded in StatCenter (www.psych.utah.edu/learn/statsampler.html), an on-line collection of tools and text for teaching and learning statistics. Instructors author a statistical virtual reality that simulates theories and data in a specific research focus area by defining independent, predictor, and dependent variables and the relations among them. Students work in an on-line virtual environment to discover the principles of this simulated reality: They go to a library, read theoretical overviews and scientific puzzles, and then go to a lab, design a study, collect and analyze data, and write a report. Each student's design and data analysis decisions are computer-graded and recorded in a database; the written research report can be read by the instructor or by other students in peer groups simulating scientific conventions.

  2. Viscosity of Common Seed and Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  3. Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria.

    PubMed

    Signorini, M L; Soto, L P; Zbrun, M V; Sequeira, G J; Rosmini, M R; Frizzo, L S

    2012-08-01

    Before weaning, dairy calves are susceptible to many pathogens which can affect their subsequent performance. The use of lactic acid bacteria (LAB) has been identified as a tool to maintain the intestinal microbial balance and to prevent the establishment of opportunistic pathogenic bacterial populations. However, a consensus has not been reached as to whether probiotics may be effective in reducing the prevalence of gastrointestinal diseases in young calves. The aim of this meta-analysis was to assess the effect of probiotics on diarrhea incidence and the intestinal microbial balance. LAB supplementation has been shown to exert a protective effect and to reduce the incidence of diarrhea (relative risk, RR=0.437, 95% confidence interval (CI) 0.251-0.761). In the subanalysis, this protective effect of the probiotics against diarrhea was observed only in trials that used whole milk (RR=0.154, 95% CI 0.079-0.301) and trials that used multistrain inocula (RR=0.415, 95% CI 0.227-0.759). Probiotics did not improve the fecal characteristics (standardized mean difference, SMD=-0.4904, 95% CI -1.011-0.035) and were unable to change the LAB:coliforms ratio (SMD=0.016, 95% CI -0.701-0.733). Probiotics showed a beneficial impact on the LAB:coliforms ratio in the subanalysis that included trials that used whole milk (SMD=0.780, 95% CI 0.141-1.418) and monostrain inocula (SMD=0.990, 95% CI 0.340-1.641). The probability of significant effects (probiotic positive effect) in a new study was >0.70 for diarrhea and fecal consistency. Whole milk feeding improved the action of the probiotic effect on the incidence of diarrhea and LAB:coliforms ratio. The probability to find significant effects in the diarrhea frequency and LAB:coliforms ratio was higher (P>0.85) if the new studies were conducted using whole milk to feed calves. This paper defines the guidelines to standardize the experimental designs of future trials. LAB can be used as growth promoters in calves instead of antibiotics to counteract the negative effects of their widespread use. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Empirical evaluation of a virtual laboratory approach to teach lactate dehydrogenase enzyme kinetics.

    PubMed

    Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman

    2016-06-01

    Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.

  5. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study

    PubMed Central

    Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-01-01

    Objective  The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential.  Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions  A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134

  6. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.

    PubMed

    Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-03-16

    OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.

  7. A high-throughput lab-on-a-chip interface for zebrafish embryo tests in drug discovery and ecotoxicology

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Delaage, Pierre; Wlodkowic, Donald

    2013-12-01

    Drug discovery screenings performed on zebrafish embryos mirror with a high level of accuracy. The tests usually performed on mammalian animal models, and the fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, conventional methods utilising 96-well microtiter plates and manual dispensing of fish embryos are very time-consuming. They rely on laborious and iterative manual pipetting that is a main source of analytical errors and low throughput. In this work, we present development of a miniaturised and high-throughput Lab-on-a-Chip (LOC) platform for automation of FET assays. The 3D high-density LOC array was fabricated in poly-methyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining while the off-chip interfaces were fabricated using additive manufacturing processes (FDM and SLA). The system's design facilitates rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It has been conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. We also present proof-of-concept interfacing with a high-speed imaging cytometer Plate RUNNER HD® capable of multispectral image acquisition with resolution of up to 8192 x 8192 pixels and depth of field of about 40 μm. Furthermore, we developed a miniaturized and self-contained analytical device interfaced with a miniaturized USB microscope. This system modification is capable of performing rapid imaging of multiple embryos at a low resolution for drug toxicity analysis.

  8. The Installation of a P.E.T. Pharmacy at Washington University

    NASA Astrophysics Data System (ADS)

    Gaehle, G.; Schwarz, S.; Mueller, M.; Margenau, B.; Welch, M. J.

    2003-08-01

    Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.

  9. Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.

  10. The Installation of a P.E.T. Pharmacy at Washington University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaehle, G.; Schwarz, S.; Mueller, M.

    2003-08-26

    Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.

  11. One dimensional two-body collisions experiment based on LabVIEW interface with Arduino

    NASA Astrophysics Data System (ADS)

    Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai

    2017-09-01

    The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.

  12. A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis.

    PubMed

    Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura

    2017-01-01

    A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.

  13. Effects of lactic acid bacteria and smectite after aflatoxin B1 challenge on the growth performance, nutrient digestibility and blood parameters of broilers.

    PubMed

    Liu, N; Ding, K; Wang, J; Deng, Q; Gu, K; Wang, J

    2018-04-11

    This study aimed to investigate the effect of lactic acid bacteria (LAB) and smectite on the growth performance, nutrient digestibility and blood parameters of broilers that were fed diets contaminated with aflatoxin B 1 (AFB 1 ). A total of 480 newly hatched male Arbor Acres broilers were randomly allocated into four groups with six replicates of 20 chicks each. The broilers were fed diets with the AFB 1 (40 μg/kg) challenge or without (control) it and supplemented with smectite (3.0 g/kg) or LAB (4.0 × 10 10  CFU/kg) based on the AFB 1 diet. The trial lasted for 42 days. The results showed that during days 1-42 of AFB 1 challenge, the feed intake (FI) and body weight gain (BWG) were depressed (p < .05). The inclusion of LAB and smectite increased (p < .05) the BWG by 71.58 and 41.89 g/bird, respectively, which reached the level of the control diet (p ≥ .05), but there were no differences (p ≥ .05) in performance between LAB and smectite. LAB and smectite also increased (p < .05) the apparent total tract digestibility of the crude protein. Regarding the blood parameters, AFB 1 decreased (p < .05) the levels of red blood cell count, haematocrit, mean corpuscular volume, haemoglobin, albumin and total protein. In the meantime, the AFB 1 increased (p < .05) leucocyte counts, urea nitrogen, cholesterol, total bilirubin, creatinine, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase and alkaline phosphatase. By contrast, LAB and smectite affected (p < .05) these parameters in the opposite direction. It can be concluded that after the AFB 1 challenge, LAB and smectite have similar effects on the growth and health of the broilers, suggesting that LAB could be an alternative against AFB 1 in commercial animal feeds. © 2018 Blackwell Verlag GmbH.

  14. Ultra-dense magnetoresistive mass memory

    NASA Technical Reports Server (NTRS)

    Daughton, J. M.; Sinclair, R.; Dupuis, T.; Brown, J.

    1992-01-01

    This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis.

  15. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    PubMed

    Makransky, Guido; Thisgaard, Malene Warming; Gadegaard, Helen

    2016-01-01

    To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment. The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology. Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  16. Report to Lincoln Labs on TWPAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, J.; Carosi, G.; Woollett, N.

    2017-09-26

    This past spring LLNL’s Quantum Sensor’s team received two TWPA amplifiers from Lincoln Labs along with a data-sheet explaining handling, operations and expected performance. Here we will outline some of the initial tests performed on this amplifiers as part of LLNL’s Quantum Sensors Strategic Initiative (QSSI). Initial testing confirmed that both amplifiers worked and provided gain and SNR improvement similar to that called out in the data-sheets provided.

  17. Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.

    1990-01-01

    Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.

  18. Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications.

    PubMed

    de Cesare, Giampiero; Carpentiero, Matteo; Nascetti, Augusto; Caputo, Domenico

    2016-02-20

    This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals.

  19. Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications

    PubMed Central

    de Cesare, Giampiero; Carpentiero, Matteo; Nascetti, Augusto; Caputo, Domenico

    2016-01-01

    This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals. PMID:26907292

  20. Controlled microfluidic interfaces for microsensors

    NASA Astrophysics Data System (ADS)

    Jiang, H.

    2009-02-01

    Lab on a chip has found many applications in biological and chemical analysis, including pathogen detections. Because these labs on chips involve handling of fluids at the microscale, surface tension profoundly affects the behavior and performance of these systems. Through careful engineering, controlled liquid-liquid or liquid-gas interfaces at the microscale can be formed and used in many interesting applications. In this talk, I will present our work on applying such interfaces to microsensing. These interfaces are created at hydrophobic-hydrophilic boundaries formed within microfluidic channels and pinned by surface tension. We have designed and fabricated a few microsensing techniques including chemical and biological sensing using dissolvable micromembranes in microchannels, chemical and biological sensing at liquid crystals interfacing either air or aqueous solutions, and collection of gaseous samples and aerosols through air-liquid microfludic interfaces. I will next introduce on-chip microlenses and microlens arrays for optical detection, including smart and adaptive liquid microlenses actuated by stimuli-responsive hydrogels, and liquid microlenses in situ formed within microfluidic channels via pneumatic control of droplets.

  1. Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent; Badman, Toby; Camsonne, Alexandre; Chen, Jian-ping; Cummings, Melissa; Gu, Chao; Huang, Min; Liu, Jie; Musson, John; Slifer, Karl; Sulkosky, Vincent; Ye, Yunxiu; Zhang, Jixie; Zielinski, Ryan

    2016-02-01

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.

  2. Determination of the Shock Properties of Ceramic Corbit 98: 98% Alumina

    DTIC Science & Technology

    2010-06-01

    sapphire or aluminum. A single stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used...stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used a higher performance gun...Gigapascals, one billion pascals of pressure or force per unit area HEL Hugoniot elastic limit LANL Los Alamos National Lab mm Millimeter, or one

  3. Developing design principles for a Virtual Hospice: improving access to care.

    PubMed

    Taylor, Andrea; French, Tara; Raman, Sneha

    2018-03-01

    Providing access to hospice services will become increasingly difficult due to the pressures of an ageing population and limited resources. To help address this challenge, a small number of services called Virtual Hospice have been established. This paper presents early-stage design work on a Virtual Hospice to improve access to services provided by a hospice (Highland Hospice) serving a largely remote and rural population in Scotland, UK. The study was structured as a series of Experience Labs with Highland Hospice staff, healthcare professionals and patients. Experience Labs employ a participatory design approach where participants are placed at the centre of the design process, helping to ensure that the resultant service meets their needs. Data from the Experience Labs were analysed using qualitative thematic analysis and design analysis. A number of themes and barriers to accessing Highland Hospice services were identified. In response, an initial set of seven design principles was developed. Design principles are high-level guidelines that are used to improve prioritisation and decision making during the design process by ensuring alignment with research insights. The design principles were piloted with a group of stakeholders and gained positive feedback. The design principles are intended to guide the ongoing development of the Highland Hospice Virtual Hospice. However, the challenges faced by Highland Hospice in delivering services in a largely remote and rural setting are not unique. The design principles, encompassing digital and non-digital guidelines, or the design approach could be applied by other hospices in the UK or overseas. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. A robotic system for automation of logistics functions on the Space Station

    NASA Technical Reports Server (NTRS)

    Martin, J. C.; Purves, R. B.; Hosier, R. N.; Krein, B. A.

    1988-01-01

    Spacecraft inventory management is currently performed by the crew and as systems become more complex, increased crew time will be required to perform routine logistics activities. If future spacecraft are to function effectively as research labs and production facilities, the efficient use of crew time as a limited resource for performing mission functions must be employed. The use of automation and robotics technology, such as automated warehouse and materials handling functions, can free the crew from many logistics tasks and provide more efficient use of crew time. Design criteria for a Space Station Automated Logistics Inventory Management System is focused on through the design and demonstration of a mobile two armed terrestrial robot. The system functionally represents a 0 gravity automated inventory management system and the problems associated with operating in such an environment. Features of the system include automated storage and retrieval, item recognition, two armed robotic manipulation, and software control of all inventory item transitions and queries.

  5. Instrumentation for electrochemical performance characterization of neural electrodes

    NASA Astrophysics Data System (ADS)

    Marsh, Michael P.; Kruchowski, James N.; Hara, Seth A.; McIntosh, Malcom B.; Forsman, Renae M.; Reed, Terry L.; Kimble, Christopher; Lee, Kendall H.; Bennet, Kevin E.; Tomshine, Jonathan R.

    2017-08-01

    In an effort to determine the chronic stability, sensitivity, and thus the potential viability of various neurochemical recording electrode designs and compositions, we have developed a custom device called the Voltammetry Instrument for Neurochemical Applications (VINA). Here, we describe the design of the VINA and initial testing of its functionality for prototype neurochemical sensing electrodes. The VINA consists of multiple electrode fixtures, a flowing electrolyte bath, associated reservoirs, peristaltic pump, voltage waveform generator, data acquisition hardware, and system software written in National Instrument's LabVIEW. The operation of VINA was demonstrated on a set of boron-doped diamond neurochemical recording electrodes, which were subjected to an applied waveform for a period of eighteen days. Each electrode's cyclic voltammograms (CVs) were recorded, and sensitivity calibration to dopamine (DA) was performed. Results showed an initial decline with subsequent stabilization in the CV current measured during the voltammetric sweep, corresponding closely with changes in electrode sensitivity to DA. The VINA has demonstrated itself as a useful tool for the characterization of electrode stability and chronic electrochemical performance.

  6. Virtual Reality Simulator Systems in Robotic Surgical Training.

    PubMed

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  7. EVALUATING DEGRADATION RATES OF CHLORINATED ORGANICS IN GROUNDWATER USING ANALYTICAL MODELS

    EPA Science Inventory

    The persistence and fate of organic contaminants in the environment largely depends on their rate of degradation. Most studies of degradation rate are performed in the lab where chemical conditions can be controlled precisely. Unfortunately, literature values for lab degradation ...

  8. Making the Grid "Smart" Through "Smart" Microgrids: Real-Time Power Management of Microgrids with Multiple Distributed Generation Sources Using Intelligent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nehrir, M. Hashem

    In this Project we collaborated with two DOE National Laboratories, Pacific Northwest National Lab (PNNL) and Lawrence Berkeley National Lab (LBL). Dr. Hammerstrom of PNNL initially supported our project and was on the graduate committee of one of the Ph.D. students (graduated in 2014) who was supported by this project. He is also a committee member of a current graduate student of the PI who was supported by this project in the last two years (August 2014-July 2016). The graduate student is now supported be the Electrical and Computer Engineering (ECE) Department at Montana State University (MSU). Dr. Chris Marneymore » of LBL provided actual load data, and the software WEBOPT developed at LBL for microgrid (MG) design for our project. NEC-Labs America, a private industry, also supported our project, providing expert support and modest financial support. We also used the software “HOMER,” originally developed at the National Renewable Energy Laboratory (NREL) and the most recent version made available to us by HOMER Energy, Inc., for MG (hybrid energy system) unit sizing. We compared the findings from WebOpt and HOMER and designed appropriately sized hybrid systems for our case studies. The objective of the project was to investigate real-time power management strategies for MGs using intelligent control, considering maximum feasible energy sustainability, reliability and efficiency while, minimizing cost and undesired environmental impact (emissions). Through analytic and simulation studies, we evaluated the suitability of several heuristic and artificial-intelligence (AI)-based optimization techniques that had potential for real-time MG power management, including genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and multi-agent systems (MAS), which is based on the negotiation of smart software-based agents. We found that PSO and MAS, in particular, distributed MAS, were more efficient and better suited for our work. We investigated the following: • Intelligent load control - demand response (DR) - for frequency stabilization in islanded MGs (partially supported by PNNL). • The impact of high penetration of solar photovoltaic (PV)-generated power at the distribution level (partially supported by PNNL). • The application of AI approaches to renewable (wind, PV) power forecasting (proposed by the reviewers of our proposal). • Application of AI approaches and DR for real-time MG power management (partially supported by NEC Labs-America) • Application of DR in dealing with the variability of wind power • Real-time MG power management using DR and storage (partially supported by NEC Labs-America) • Application of DR in enhancing the performance of load-frequency controller • MAS-based whole-sale and retail power market design for smart grid A« less

  9. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    ERIC Educational Resources Information Center

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  10. 77 FR 33360 - Approval and Promulgation of Implementation Plans and Designations of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Air Lab site for the first quarter of 2010. Coarse particular matter (PM 10 ) data substitution, using.../memoranda/pmfinal.pdf ), was applied at the Air Lab site because a PM 10 sampler is co-located at the site. PM 10 data substitution was used instead of max value substitution because the substituted values...

  11. Rate- and duration-of-load behavior of lab-made structural flakeboards

    Treesearch

    J. D. McNatt

    1985-01-01

    Tests of structural use panels under different loading conditions provide basic information for establishing design stresses. This paper reports the effects of loading rate in tension and bending and of duration of load in tension on the properties of four lab-made structural flakeboards, (two of which had aligned flakes). The objective was to determine if these panels...

  12. Designing a ruggedisation lab to characterise materials for harsh environments.

    PubMed

    Frazzette, Nicholas; Jethva, Janak; Mehta, Khanjan; Stapleton, Joshua J; Randall, Clive

    Designing products for use in developing countries presents a unique set of challenges including harsh operating environments, costly repairs and maintenance, and users with varying degrees of education and device familiarity. For products to be robust, adaptable and durable, they need to be ruggedised for environmental factors such as high temperature and humidity as well as different operational conditions such as shock and chemical exposure. The product characterisation and ruggedisation processes require specific expertise and resources that are seldom available outside of large corporations and elite national research labs. There is no standardised process since product needs strongly depend on the context and user base, making it particularly onerous for underfunded start-ups and academic groups. Standardised protocols that identify essential lab testing regimens for specific contexts and user groups can complement field-testing and accelerate the product development process while reducing costs. This article synthesises current methods and strategies for product testing employed by large corporations as well as defence-related entities. A technological and organisational framework for a service-for-fee product characterisation and ruggedisation lab that reduces costs and shortens the timespan from product invention to commercial launch in harsh settings is presented.

  13. Characterizing Mystery Cell Lines: Student-driven Research Projects in an Undergraduate Neuroscience Laboratory Course.

    PubMed

    Lemons, Michele L

    2012-01-01

    Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a "mystery" cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed.

  14. Characterizing Mystery Cell Lines: Student-driven Research Projects in an Undergraduate Neuroscience Laboratory Course

    PubMed Central

    Lemons, Michele L.

    2012-01-01

    Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a “mystery” cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed. PMID:23504583

  15. Modelling and control system of multi motor conveyor

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. S.; Baburin, S. V.

    2018-03-01

    The paper deals with the actual problem of developing the mathematical model of electromechanical system: conveyor – multimotor electric drive with a frequency converter, with the implementation in Simulink/MatLab, which allows one to perform studies of conveyor operation modes, taking into account the specifics of the mechanism with different electric drives control algorithms. The authors designed the mathematical models of the conveyor and its control system that provides increased uniformity of load distribution between drive motors and restriction of dynamic loads on the belt (over-regulation until 15%).

  16. The Design and Evolution of Jefferson Lab's Jasmine Mass Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan Hess; M. Andrew Kowalski; Michael Haddox-Schatz

    We describe the Jasmine mass storage system, in operation since 2001. Jasmine has scaled to meet the challenges of grid applications, petabyte class storage, and hundreds of MB/sec throughput using commodity hardware, Java technologies, and a small but focused development team. The evolution of the integrated disk cache system, which provides a managed online subset of the tape contents, is examined in detail. We describe how the storage system has grown to meet the special needs of the batch farm, grid clients, and new performance demands.

  17. Investigation of Vehicle Requirements and Options for Future Space Tourism

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    2001-01-01

    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  18. Electrically-Assisted Turbocharger Development for Performance and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachinemore » has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.« less

  19. FVMS: A novel SiL approach on the evaluation of controllers for autonomous MAV

    NASA Astrophysics Data System (ADS)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    The originality of this work is to propose a novel SiL (Software-in-the-Loop) platform using Microsoft Flight Simulator (MSFS) to assist control design regarding the stabilization problem found in © AscTec Pelican platform. Aerial Robots Team (USP/EESC/LabRoM/ART) has developed a custom C++/C# software named FVMS (Flight Variables Management System) that interfaces the communication between the virtual Pelican and the control algorithms allowing the control designer to perform fast full closed loop real time algorithms. Emulation of embedded sensors as well as the possibility to integrate OpenCV Optical Flow algorithms to a virtual downward camera makes the SiL even more reliable. More than a strictly numeric analysis, the proposed SiL platform offers an unique experience, simultaneously offering both dynamic and graphical responses. Performance of SiL algorithms is presented and discussed.

  20. Life Testing and Diagnostics of a Planar Out-of-Core Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Thayer, Kevin L.; Ramalingam, Mysore L.; Young, Timothy J.; Lamp, Thomas R.

    1994-07-01

    This paper details the design and performance of an automated computer data acquisition system for a planar, out-of-core thermionic converter with CVD rhenium electrodes. The output characteristics of this converter have been mapped for emitter temperatures ranging from approximately 1700K to 2000K, and life testing of the converter is presently being performed at the design point of operation. An automated data acquisition system has been constructed to facilitate the collection of current density versus output voltage (J-V) and temperature data from the converter throughout the life test. This system minimizes the amount of human interaction necessary during the lifetest to measure and archive the data and present it in a usable form. The task was accomplished using a Macintosh Ilcx computer, two multiple-purpose interface boards, a digital oscilloscope, a sweep generator, and National Instrument's LabVIEW application software package.

  1. The large-area hybrid-optics RICH detector for the CLAS12 spectrometer

    DOE PAGES

    Mirazita, M.; Angelini, G.; Balossino, I.; ...

    2017-01-16

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forwardmore » tracks) or after two mirror reflections (large angle tracks). Finally, the preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.« less

  2. Assessment of the human epidermal model LabCyte EPI-MODEL for In vitro skin corrosion testing according to the OECD test guideline 431.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2010-06-01

    A new OECD test guideline 431 (TG431) for in vitro skin corrosion tests using human reconstructed skin models was adopted by OECD in 2004. TG431 defines the criteria for the general function and performance of applicable skin models. In order to confirm that the new reconstructed human epidermal model, LabCyte EPI-MODEL is applicable for the skin corrosion test according to TG431, the predictability and repeatability of the model for the skin corrosion test was evaluated. The test was performed according to the test protocol described in TG431. Based on the knowledge that LabCyte EPI-MODEL is an epidermal model as well as EpiDerm, we decided to adopt the the Epiderm prediction model of skin corrosion for the LabCyte EPI-MODEL, using twenty test chemicals (10 corrosive chemicals and 10 non-corrosive chemicals) in the 1(st) stage. The prediction model results showed that the distinction of non-corrosion to corrosion corresponded perfectly. Therefore, it was judged that the prediction model of EpiDerm could be applied to the LabCyte EPI-MODEL. In the 2(nd) stage, the repeatability of this test protocol with the LabCyte EPI-MODEL was examined using twelve chemicals (6 corrosive chemicals and 6 non-corrosive chemicals) that are described in TG431, and these results recognized a high repeatability and accurate predictability. It was concluded that LabCyte EPI-MODEL is applicable for the skin corrosive test protocol according to TG431.

  3. Improving the Laboratory Experience for Introductory Geology Students Using Active Learning and Evidence-Based Reform

    NASA Astrophysics Data System (ADS)

    Oien, R. P.; Anders, A. M.; Long, A.

    2014-12-01

    We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.

  4. A review of digital microfluidics as portable platforms for lab-on a-chip applications.

    PubMed

    Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina

    2016-07-07

    Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.

  5. Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.

    2017-10-01

    As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.

  6. Brief Online Training Enhances Competitive Performance: Findings of the BBC Lab UK Psychological Skills Intervention Study

    PubMed Central

    Lane, Andrew M.; Totterdell, Peter; MacDonald, Ian; Devonport, Tracey J.; Friesen, Andrew P.; Beedie, Christopher J.; Stanley, Damian; Nevill, Alan

    2016-01-01

    In conjunction with BBC Lab UK, the present study developed 12 brief psychological skill interventions for online delivery. A protocol was designed that captured data via self-report measures, used video recordings to deliver interventions, involved a competitive concentration task against an individually matched computer opponent, and provided feedback on the effects of the interventions. Three psychological skills were used; imagery, self-talk, and if-then planning, with each skill directed to one of four different foci: outcome goal, process goal, instruction, or arousal-control. This resulted in 12 different intervention participant groups (randomly assigned) with a 13th group acting as a control. Participants (n = 44,742) completed a competitive task four times—practice, baseline, following an intervention, and again after repeating the intervention. Results revealed performance improved following practice with incremental effects for imagery-outcome, imagery-process, and self-talk-outcome and self-talk-process over the control group, with the same interventions increasing the intensity of effort invested, arousal and pleasant emotion. Arousal-control interventions associated with pleasant emotions, low arousal, and low effort invested in performance. Instructional interventions were not effective. Results offer support for the utility of online interventions in teaching psychological skills and suggest brief interventions that focus on increasing motivation, increased arousal, effort invested, and pleasant emotions were the most effective. PMID:27065904

  7. Improved low-cost, non-hazardous, all-iron cell for the developing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed

    A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated in this paper. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade aftermore » a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm -2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US$0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. Finally, we anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.« less

  8. Flow Cytometry Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture

  9. Portable, one-step, and rapid GMR biosensor platform with smartphone interface.

    PubMed

    Choi, Joohong; Gani, Adi Wijaya; Bechstein, Daniel J B; Lee, Jung-Rok; Utz, Paul J; Wang, Shan X

    2016-11-15

    Quantitative immunoassay tests in clinical laboratories require trained technicians, take hours to complete with multiple steps, and the instruments used are generally immobile-patient samples have to be sent in to the labs for analysis. This prevents quantitative immunoassay tests to be performed outside laboratory settings. A portable, quantitative immunoassay device will be valuable in rural and resource-limited areas, where access to healthcare is scarce or far away. We have invented Eigen Diagnosis Platform (EDP), a portable quantitative immunoassay platform based on Giant Magnetoresistance (GMR) biosensor technology. The platform does not require a trained technician to operate, and only requires one-step user involvement. It displays quantitative results in less than 15min after sample insertion, and each test costs less than US$4. The GMR biosensor employed in EDP is capable of detecting multiple biomarkers in one test, enabling a wide array of immune diagnostics to be performed simultaneously. In this paper, we describe the design of EDP, and demonstrate its capability. Multiplexed assay of human immunoglobulin G and M (IgG and IgM) antibodies with EDP achieves sensitivities down to 0.07 and 0.33 nanomolar, respectively. The platform will allow lab testing to be performed in remote areas, and open up applications of immunoassay testing in other non-clinical settings, such as home, school, and office. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Justification of rapid prototyping in the development cycle of thermoplastic-based lab-on-a-chip.

    PubMed

    Preywisch, Regina; Ritzi-Lehnert, Marion; Drese, Klaus S; Röser, Tina

    2011-11-01

    During the developmental cycle of lab-on-a-chip devices, various microstructuring techniques are required. While in the designing and assay implementation phase direct structuring or so-called rapid-prototyping methods such as milling or laser ablation are applied, replication methods like hot embossing or injection moulding are favourable for large quantity manufacturing. This work investigated the applicability of rapid-prototyping techniques for thermoplastic chip development in general, and the reproducibility of performances in dependency of the structuring technique. A previously published chip for prenatal diagnosis that preconcentrates DNA via electrokinetic trapping and field-amplified-sample-stacking and afterwards separates it in CGE was chosen as a model. The impact of structuring, sealing, and the integration of membranes on the mobility of the EOF, DNA preconcentration, and DNA separation was studied. Structuring methods were found to significantly change the location where preconcentration of DNA occurs. However, effects on the mobility of the EOF and the separation quality of DNA were not observed. Exchange of the membrane has no effect on the chip performance, whereas the sealing method impairs the separation of DNA within the chip. The overall assay performance is not significantly influenced by different structuring methods; thus, the application of rapid-prototyping methods during a chip development cycle is well justified. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved low-cost, non-hazardous, all-iron cell for the developing world

    DOE PAGES

    Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed; ...

    2016-09-28

    A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated in this paper. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade aftermore » a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm -2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US$0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. Finally, we anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.« less

  12. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  13. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  14. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  15. Enhanced modeling and simulation of EO/IR sensor systems

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; May, Christopher

    2015-05-01

    The testing and evaluation process developed by the Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) provides end to end systems evaluation, testing, and training of EO/IR sensors. By combining NV-LabCap, the Night Vision Integrated Performance Model (NV-IPM), One Semi-Automated Forces (OneSAF) input sensor file generation, and the Night Vision Image Generator (NVIG) capabilities, NVESD provides confidence to the M&S community that EO/IR sensor developmental and operational testing and evaluation are accurately represented throughout the lifecycle of an EO/IR system. This new process allows for both theoretical and actual sensor testing. A sensor can be theoretically designed in NV-IPM, modeled in NV-IPM, and then seamlessly input into the wargames for operational analysis. After theoretical design, prototype sensors can be measured by using NV-LabCap, then modeled in NV-IPM and input into wargames for further evaluation. The measurement process to high fidelity modeling and simulation can then be repeated again and again throughout the entire life cycle of an EO/IR sensor as needed, to include LRIP, full rate production, and even after Depot Level Maintenance. This is a prototypical example of how an engineering level model and higher level simulations can share models to mutual benefit.

  16. The Effect of High School Physics Laboratories on Performance in Introductory College Physics

    NASA Astrophysics Data System (ADS)

    Maltese, Adam V.; Tai, Robert H.; Sadler, Philip M.

    2010-05-01

    Laboratory experiences play a substantial role in most high school science courses, and many teachers believe the number of labs they offer is a measure of the quality of their curriculum. While some teachers believe labs are meant to confirm concepts taught during lectures, others feel labs should address students' everyday beliefs about the world. Still other teachers emphasize learning of the scientific method and laboratory techniques. Accordingly, many articles offer advice on "effective" pedagogical practices.2-5

  17. A Highly Efficient Design Strategy for Regression with Outcome Pooling

    PubMed Central

    Mitchell, Emily M.; Lyles, Robert H.; Manatunga, Amita K.; Perkins, Neil J.; Schisterman, Enrique F.

    2014-01-01

    The potential for research involving biospecimens can be hindered by the prohibitive cost of performing laboratory assays on individual samples. To mitigate this cost, strategies such as randomly selecting a portion of specimens for analysis or randomly pooling specimens prior to performing laboratory assays may be employed. These techniques, while effective in reducing cost, are often accompanied by a considerable loss of statistical efficiency. We propose a novel pooling strategy based on the k-means clustering algorithm to reduce laboratory costs while maintaining a high level of statistical efficiency when predictor variables are measured on all subjects, but the outcome of interest is assessed in pools. We perform simulations motivated by the BioCycle study to compare this k-means pooling strategy with current pooling and selection techniques under simple and multiple linear regression models. While all of the methods considered produce unbiased estimates and confidence intervals with appropriate coverage, pooling under k-means clustering provides the most precise estimates, closely approximating results from the full data and losing minimal precision as the total number of pools decreases. The benefits of k-means clustering evident in the simulation study are then applied to an analysis of the BioCycle dataset. In conclusion, when the number of lab tests is limited by budget, pooling specimens based on k-means clustering prior to performing lab assays can be an effective way to save money with minimal information loss in a regression setting. PMID:25220822

  18. A highly efficient design strategy for regression with outcome pooling.

    PubMed

    Mitchell, Emily M; Lyles, Robert H; Manatunga, Amita K; Perkins, Neil J; Schisterman, Enrique F

    2014-12-10

    The potential for research involving biospecimens can be hindered by the prohibitive cost of performing laboratory assays on individual samples. To mitigate this cost, strategies such as randomly selecting a portion of specimens for analysis or randomly pooling specimens prior to performing laboratory assays may be employed. These techniques, while effective in reducing cost, are often accompanied by a considerable loss of statistical efficiency. We propose a novel pooling strategy based on the k-means clustering algorithm to reduce laboratory costs while maintaining a high level of statistical efficiency when predictor variables are measured on all subjects, but the outcome of interest is assessed in pools. We perform simulations motivated by the BioCycle study to compare this k-means pooling strategy with current pooling and selection techniques under simple and multiple linear regression models. While all of the methods considered produce unbiased estimates and confidence intervals with appropriate coverage, pooling under k-means clustering provides the most precise estimates, closely approximating results from the full data and losing minimal precision as the total number of pools decreases. The benefits of k-means clustering evident in the simulation study are then applied to an analysis of the BioCycle dataset. In conclusion, when the number of lab tests is limited by budget, pooling specimens based on k-means clustering prior to performing lab assays can be an effective way to save money with minimal information loss in a regression setting. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices.

    PubMed

    Valero-Cases, Estefanía; Nuncio-Jáuregui, Nallely; Frutos, María José

    2017-08-09

    This study describes the effect of fermentation and the impact of simulated gastrointestinal digestion (SGD) of four fermented pomegranate juices with different lactic acid bacteria (LAB) on the biotransformation of phenolic compounds. The changes of the antioxidant capacity (AOC) and of LAB growth and survival in different fermented juices were also studied. Two new phenolic derivatives (catechin and α-punicalagin) were identified only in fermented juices. During SGD, the AOC increased together with the phenolic derivatives concentration mainly in the juices fermented with Lactobacillus. These derivatives were formed due to the LAB metabolism of the ellagitannins, epicatechin, and catechin after fermentation and during SGD. The FRAP assay performance might be associated with the degradation and biotransformation of catechin. The fermented pomegranate juices with these LAB increased the bioaccessibility of phenolic compounds, ensuring the survival of LAB after SGD, suggesting a possible prebiotic effect of phenolic compounds on LAB.

  20. Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments.

    PubMed

    Germine, Laura; Nakayama, Ken; Duchaine, Bradley C; Chabris, Christopher F; Chatterjee, Garga; Wilmer, Jeremy B

    2012-10-01

    With the increasing sophistication and ubiquity of the Internet, behavioral research is on the cusp of a revolution that will do for population sampling what the computer did for stimulus control and measurement. It remains a common assumption, however, that data from self-selected Web samples must involve a trade-off between participant numbers and data quality. Concerns about data quality are heightened for performance-based cognitive and perceptual measures, particularly those that are timed or that involve complex stimuli. In experiments run with uncompensated, anonymous participants whose motivation for participation is unknown, reduced conscientiousness or lack of focus could produce results that would be difficult to interpret due to decreased overall performance, increased variability of performance, or increased measurement noise. Here, we addressed the question of data quality across a range of cognitive and perceptual tests. For three key performance metrics-mean performance, performance variance, and internal reliability-the results from self-selected Web samples did not differ systematically from those obtained from traditionally recruited and/or lab-tested samples. These findings demonstrate that collecting data from uncompensated, anonymous, unsupervised, self-selected participants need not reduce data quality, even for demanding cognitive and perceptual experiments.

Top