Sample records for lab ir fel

  1. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  2. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Hardy; S.V. Benson; Michelle D. Shinn

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  3. Status Report on the CEBAF IR and UV FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemann, Christoph; Bisognano, Joseph; Douglas, David

    1993-07-01

    The CEBAF five pass recirculating, superconducting linac, being developed as a high power electron source for nuclear physics, is also an ideal FEL driver.The 45 MeV front end linac is presently operational with a CW (low peak current) nuclear physics gun and has met all CEBAF performance specifications including low emittance and energy spread (< 1 * 10^-4). Progress will be reported in commissioning.This experience leads to predictions of excellent FEL performance.Initial designs reported last year have been advanced.Using the output of a high charge DC photoemission gun under development with a 6 cm period wiggler produces kilowatt output powersmore » in the 3.6 to 17 micrometer range in the fundamental.Third harmonic operation extends IR performance down to 1.2 micrometer.Beam at energies up to 400 MeV from the first full CEBAF linac will interact in a similar but longer wiggler to yield kilowatt UV light production at wavelengths as short as 0.15 micrometers.Full power FEL« less

  4. Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL.

    PubMed

    Halliwell, Diane E; Morais, Camilo L M; Lima, Kássio M G; Trevisan, Julio; Siggel-King, Michele R F; Craig, Tim; Ingham, James; Martin, David S; Heys, Kelly A; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L

    2016-07-12

    Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit.

  5. Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL

    PubMed Central

    Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Julio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly A.; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.

    2016-01-01

    Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit. PMID:27406404

  6. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  7. Parameter design considerations for an oscillator IR-FEL

    NASA Astrophysics Data System (ADS)

    Jia, Qi-Ka

    2017-01-01

    An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)

  8. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin

    NASA Astrophysics Data System (ADS)

    Schöllkopf, Wieland; Gewinner, Sandy; Junkes, Heinz; Paarmann, Alexander; von Helden, Gert; Bluem, Hans P.; Todd, Alan M. M.

    2015-05-01

    A mid-infrared oscillator FEL has been commissioned at the Fritz Haber Institute. The accelerator consists of a thermionic gridded gun, a subharmonic buncher, and two S-band standing-wave copper structures. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (< 50 keV ps) and transverse emittance (< 20 πmm mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 µs. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 µm. A characterization of the FEL performance in terms of pulse energy, bandwidth, and micro-pulse shape of the IR radiation is given. In addition, selected user results are presented. These include, for instance, spectroscopy of bio-molecules (peptides and small proteins) either conformer selected by ion mobility spectrometry or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase.

  9. Regions of Stability of FEL Oscillators,

    DTIC Science & Technology

    1987-10-01

    EGION5 OF STABILITY OF FEL OCCILLATORS(U) MARYLAND 1/1 UNIV COLLEGE PARK LAB FOR PLASMA AND FUSION ENERGY STUDIES B LEVUSH ET AL OCT 87 UNLPF-88...MARYLAND j LABRATRY ORPLASMA AND FUSION ENERGY . STUDIES...:’ COLLEGE PARK, MARYLANI) ’ 20742- a 0.6.3 ~0 DT!C IlELEcTEI REGIONS OF STABILITY OF FEL...University of Maryland, Laboratory for Plasma and Fusion Energy Studies ~IT~UTION ST TEMEN Approved iom public :elOOS61=D triution Unli __e REGIONS OF

  10. Addressing Physics Grand Challenges Using the Jefferson Lab FEL

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.

    2006-11-01

    The Jefferson Lab Free Electron Laser[1] is the first of the so-called 4^th generation light sources to go operational. Capable of delivering extraordinarily bright, tunable light in ultrafast pulses from THz[2] through infrared to UV, the facility extends the experimental reach of accelerator-based light-sources by many orders of magnitude. This allows new opportunities to study many of the ``Grand Challenges'' recently defined by the Office of Science, Basic Energy Sciences Division, most of which are concerned with understandings of equilibrium and non-equilibrium behavior of materials in physics, chemistry and biology using precise pump and probe techniques. Specifically, in condensed matter physics, the JLab FEL permits new studies which go beyond earlier studies of reductionist behavior to those which examine emergent behavior. Thus, the understanding of high Tc superconductivity, colossal magneto-resistance, and observations of the breakdown of the Born-Oppenheimer approximation, are examples of collective behavior which is now treated theoretically via the concept of quasiparticles. In this presentation we will describe the dual pathways of light source development and physics challenges, and then show how they are combined in experiments that allow new insights to be developed to understand material function. We will illustrate this with details of the evolution of accelerator-based light sources, and with examples of work performed to date. References: [1] Neil et al. Phys. Rev.Letts 84, 662 (2000). [2] Carr, Martin, McKinney, Neil, Jordan & Williams, Nature 420, 153 (2002).

  11. Electron Beam Diagnostics Of The JLAB UV FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less

  12. A high-average-power FEL for industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunabilitymore » and pulse structure. 4 refs., 3 figs., 2 tabs.« less

  13. Lattice Design for a High-Power Infrared FEL

    NASA Astrophysics Data System (ADS)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  14. Studies Of Coherent Synchrotron Radiation And Longitudinal Space Charge In The Jefferson Lab FEL Driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tennant, Christopher D.; Douglas, David R.; Li, Rui

    2014-12-01

    The Jefferson Laboratory IR FEL Driver provides an ideal test bed for studying a variety of beam dynamical effects. Recent studies focused on characterizing the impact of coherent synchrotron radiation (CSR) with the goal of benchmarking measurements with simulation. Following measurements to characterize the beam, we quantitatively characterized energy extraction via CSR by measuring beam position at a dispersed location as a function of bunch compression. In addition to operating with the beam on the rising part of the linac RF waveform, measurements were also made while accelerating on the falling part. For each, the full compression point was movedmore » along the backleg of the machine and the response of the beam (distribution, extracted energy) measured. Initial results of start-to-end simulations using a 1D CSR algorithm show remarkably good agreement with measurements. A subsequent experiment established lasing with the beam accelerated on the falling side of the RF waveform in conjunction with positive momentum compaction (R56) to compress the bunch. The success of this experiment motivated the design of a modified CEBAF-style arc with control of CSR and microbunching effects.« less

  15. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  16. UCSB FEL user-mode adaption project. Final report, 1 Jan 86-31 Dec 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaccarino, V.

    1992-04-14

    This research sponsored by the SDIO Biomedical and Materials Sciences FEL Program held the following objectives. Provide a facility in which in-house and outside user research in the materials and biological sciences can be carried out in the Far Infrared using-the unique properties of the UCSB electrostatic accelerator-driven FEL. Develop and implement new FEL concepts and FIR technology and encourage the transfer and application of this research. Train graduate students, post doctoral researchers and technical personnel in varied aspects of scientific user disciplines, FEL science and FIR technology in a cooperative, interdisciplinary environment. In summary, a free electron laser facilitymore » has been developed which is operational from 200 GH z, (6.6 cm -1), to 4.8 THz, (160 cm-1) tunable under computer control and able to deliver kilowatts of millimeter wave and far-infrared power. This facility has a well equipped user lab that has been used to perform ground breaking experiments in scientific areas as diverse as bio-physics. Nine graduate students and post doctoral researchers have been trained in the operation, use and application of these free-electron lasers.« less

  17. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIRmore » region with over 100 W/cm-1 output.« less

  18. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  19. FEL-FTIR spectroscopy of matrix-isolated formic acid

    NASA Astrophysics Data System (ADS)

    Henderson, Don O.; Mu, Richard; Silberman, Enrique; Berryman, Kenneth W.; Rella, Chris W.

    1994-07-01

    Infrared spectral hole burning studies have provided a wealth of information concerning site reorientation of defects in solids and vibrational relaxation dynamics. The most investigated systems appear to be impurities trapped in alkali halides. Limited studies on molecules trapped in noble gas matrices have demonstrated that these systems are good candidates for investigating persistent spectral holes. However, most infrared spectral hole burning studies have been limited by the tunability of commercially available infrared lasers which in turn restricts the spectral feature which can be burned. On the other hand, the tunability of Infrared Free Electron Lasers (IR-FELs) allows for targeting radiation into vibrational of the molecular system under study. We have used the Free Electron Laser-Fourier Transform Infrared Spectroscopy to investigate infrared hole burning of formic acid (HCOOD) isolated in an Ar matrix at a matrix/sample ratio of 4000/1. The results of the FEL radiation tuned to v2 mode of HCOOD are discussed together with matrix induced frequency shifts and matrix induced band splittings.

  20. Tapered undulator for SASE FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  1. Towards short wavelengths FELs workshop

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  2. Simulations of a FIR Oscillator with Large Slippage parameter at Jefferson Lab for FIR/UV pump-probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Campbell, L. T.; McNeil, B.W.T.

    We previously proposed a dual FEL configuration on the UV Demo FEL at Jefferson Lab that would allow simultaneous lasing at FIR and UV wavelengths. The FIR source would be an FEL oscillator with a short wiggler providing diffraction-limited pulses with pulse energy exceeding 50 microJoules, using the exhaust beam from a UVFEL as the input electron beam. Since the UV FEL requires very short pulses, the input to the FIR FEL is extremely short compared to a slippage length and the usual Slowly Varying Envelope Approximation (SVEA) does not apply. We use a non-SVEA code to simulate this systemmore » both with a small energy spread (UV laser off) and with large energy spread (UV laser on).« less

  3. Innovative FEL schemes using variable-gap undulators

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2017-06-01

    We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.

  4. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculatormore » design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.« less

  5. Technological Challenges to X-Ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less

  6. Three years of biomedical FEL use in medicine and surgery How far have we come?

    NASA Astrophysics Data System (ADS)

    Jean, Benedikt

    1997-02-01

    Since the FEL has been made available for biophysical research in the IR, it has revolutionized the optimization strategies of laser-tissue interaction and the minimizing of adverse effects, in particular for photoablative use in surgery. Its tunability together with the free combination of wavelength and energy made it an efficient research tool, allowing the reduction of risks and costs of preclinical biomedical research. New computer-assisted surgical techniques evolved and the broader data basis of IR photothermal ablation allows more accurate predictive modelling of the efficiency and the adverse effects of photoablation. New applications for diagnostic imaging as well as the first clinical applications in neurosurgery lay ahead.

  7. Duke storage rink UV/VUV FEL: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL andmore » the Duke storage ring are discussed.« less

  8. Start-Up of FEL Oscillator from Shot Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  9. Fused rock from Köfels, Tyrol

    USGS Publications Warehouse

    Milton, Daniel J.

    1964-01-01

    The vesicular glass from Köfels, Tyrol, contains grains of quartz that have been partially melted but not dissolved in the matrix glass. This phenomenon has been observed in similar glasses formed by friction along a thrust fault and by meteorite impact, but not in volcanic glasses. The explosion of a small nuclear device buried behind a steep slope produced a geologic structure that is a good small-scale model of that at Köfels. Impact of a large meteorite would have an effect analogous to that of a subsurface nuclear explosion and is the probable cause of the Köfels feature.

  10. The APS SASE FEL : modeling and code comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedron, S. G.

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  11. Saturation Measurements of a Visible SASE FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Roger

    2002-08-14

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  12. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  13. Compact single-pass X-ray FEL with harmonic multiplication cascades

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2018-07-01

    The generation of X-ray radiation in cascaded single-pass free electron laser (FEL), which amplifies high harmonics of a two-frequency undulator, is studied. Power dynamics of FEL harmonics is explored with the help of the phenomenological model of a single pass FEL. The model describes both linear and non-linear harmonic generation, starting from a coherent seed laser and initial shot noise with account for main loss factors for each harmonic in each cascade individually: the energy spread and beam divergence, the coupling losses between FEL cascades, the diffraction etc. The model was validated with the experiment and with relevant 3-D simulations. It is employed for modeling the cascaded FELs with harmonic multiplication and analyzing the evolution of FEL harmonic power with the aim to obtain the maximum high harmonic power in the X-ray band at the shortest possible FEL length with the lowest possible seed frequency. The advantages of two-frequency undulators in HGHG FELs are elucidated. The requirements for the electron beam are studied; the need for low energy spread is evidenced: our evaluations yield σe < 2 × 10-4. Several cascaded HGHG FELs with two-frequency undulators are modeled. Generation of soft X-ray radiation at λ = 2 . 71 nm, reaching ∼50 MW power with I0 ∼ 100 A in a cascaded FEL at just 40 m with 13.51 nm seed, matching peak reflectivity of Mo/Si, is demonstrated. The generation of 40 MW radiation power at λ = 2 . 27 nm with the beam current I0 ∼ 100 A, energy E = 950 MeV and the energy spread σe = 2 × 10-4 is studied, using second and third harmonics in three-stage 45 m long FEL. The multistage FEL is modeled for generating radiation in nanometer band: ∼40 MW power at λ ∼ 2 . 6 nm with I0 ∼ 175 A current in just ∼40 m long FEL with commercially available F2 excimer UV laser seed at 157 nm. The peak radiation power rises to ∼0.5 GW for ∼1 kA beam current.

  14. Bunch Length Measurements at JLab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Evtushenko; J. L. Coleman; K. Jordan

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  15. Efficiency Optimization for FEL Oscillators,

    DTIC Science & Technology

    1987-12-01

    I 7 -ŕvle 3IIATIONCIFOR FEL OSCILLATORS(U) MARYLAND i/1’ UNIV COLLEGE PARK LAS FOR PLASMIA AND FUSION ENERGY STUDIES A SERBETO ET AL DEC 87 UMLPF-88...University of Maryland, By3 f *O- 0Laboratory for Plasrra and Fusion Energy Studies D i~ Avciil adi r "UnOUIO SAEMNT A APPrOVed for public reloe...Distribution Unlimited EFFICIENCY OPTIMIZATION FOR FEL OSCILLATORS A. Serbeto, B. Levush, and T. M. Antonsen, Jr. Laboratory for Plasma and Fusion Energy Studies

  16. ER@CEBAF: A test of 5-pass energy recovery at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, S. A.; Douglas, D.; Dubbe, C.

    2016-06-06

    Jefferson Lab personnel have broad expertise in the design, commissioning, and operation of multiple energy recovery linacs (ERLs): the CEBAF Front-End Test (early 1990s), CEBAF-ER (2003), the IR Free Electron Laser (FEL) Demo, the IR FEL Upgrade, and the UV FEL Driver (1997-2014). Continued development of this core competency has led to this collaborative proposal to explore the forefronts of ERL technology at high energy in a unique expansion of CEBAF capability to a 5-pass ERL with negligible switchover time and programmatic impact to the CEBAF physics program. Such a capability would enable world-class studies of open issues in high-energymore » ERL beam dynamics that are relevant to future facilities such as electron-ion colliders (EICs). This proposal requests support from the CEBAF Program Advisory Committee to seek funding for hardware installation, and a prospective 12 days of beam time circa Fall 2018 for commissioning this high-energy multi-pass ERL experiment in CEBAF.« less

  17. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen.

    PubMed

    Bonnet, B; Messaoudi, K; Jacomet, F; Michaud, E; Fauquert, J L; Caillaud, D; Evrard, B

    2018-01-01

    Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends.

  18. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be... revised FEL for the remainder of their service lives, unless it is changed again under this section during...

  19. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be... revised FEL for the remainder of their service lives, unless it is changed again under this section during...

  20. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Y.C.

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetricmore » electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.« less

  1. Integrating the FEL on an All-Electric Ship

    DTIC Science & Technology

    2007-06-01

    6 4. Optical Cavity ( Oscillator Configuration...36 Figure 12. Optical energy in an oscillator FEL with an electron beam tilt. ......................37 Figure 13. Optical energy in an oscillator ...38 Figure 15. Optical energy in an oscillator FEL with a mirror tilt. ....................................39 Figure 16. Diagram of a

  2. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  3. Characterization of an 800 nm SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  4. Perspective: Opportunities for ultrafast science at SwissFEL

    PubMed Central

    Abela, Rafael; Beaud, Paul; van Bokhoven, Jeroen A.; Chergui, Majed; Feurer, Thomas; Haase, Johannes; Ingold, Gerhard; Johnson, Steven L.; Knopp, Gregor; Lemke, Henrik; Milne, Chris J.; Pedrini, Bill; Radi, Peter; Schertler, Gebhard; Standfuss, Jörg; Staub, Urs; Patthey, Luc

    2018-01-01

    We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science. PMID:29376109

  5. Validity and reliability of the Fels physical activity questionnaire for children.

    PubMed

    Treuth, Margarita S; Hou, Ningqi; Young, Deborah R; Maynard, L Michele

    2005-03-01

    The aim was to evaluate the reliability and validity of the Fels physical activity questionnaire (PAQ) for children 7-19 yr of age. A cross-sectional study was conducted among 130 girls and 99 boys in elementary (N=70), middle (N=81), and high (N=78) schools in rural Maryland. Weight and height were measured on the initial school visit. All the children then wore an Actiwatch accelerometer for 6 d. The Fels PAQ for children was given on two separate occasions to evaluate reliability and was compared with accelerometry data to evaluate validity. The reliability of the Fels PAQ for the girls, boys, and the elementary, middle, and high school age groups range was r=0.48-0.76. For the elementary school children, the correlation coefficient examining validity between the Fels PAQ total score and Actiwatch (counts per minute) was 0.34 (P=0.004). The correlation coefficients were lower in middle school (r=0.11, P=0.31) and high school (r=0.21, P=0.006) adolescents. The sport index of the Fels PAQ for children had the highest validity in the high school participants (r=0.34, P=0.002). The Fels PAQ for children is moderately reliable for all age groups of children. Validity of the Fels PAQ for children is acceptable for elementary and high school students when the total activity score or the sport index is used. The sport index was similar to the total score for elementary students but was a better measure of physical activity among high school students.

  6. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...

  7. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...

  8. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...

  9. FEL Trajectory Analysis for the VISA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1998-10-06

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less

  10. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  11. Optimization Studies of the FERMI at ELETTRA FEL Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation includingmore » vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported.« less

  12. Coherence and linewidth studies of a 4-nm high power FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output linemore » widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.« less

  13. Optical design of the ARAMIS-beamlines at SwissFEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follath, R.; Flechsig, U.; Milne, C.

    2016-07-27

    SwissFEL is a free electron laser facility for hard and soft X-rays at the Paul Scherrer Institut in Switzerland. The first hard X-ray FEL named ARAMIS will deliver photons in the wavelength range from 1 Å to 7 Å in up to three beamlines alternatively. The beamlines are equipped with crystal monochromators, cover the full wavelength range and offer a variety of operational modes.

  14. A Test of Superradiance in an FEL Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, R

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  15. FEL system with homogeneous average output

    DOEpatents

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  16. GINGER simulations of short-pulse effects in the LEUTL FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Fawley, W.M.

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulsemore » regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.« less

  17. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency.

    PubMed

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D

    2014-01-01

    Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The "face expressive lifting" (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related negative facial expressions. On the other hand, FEL incorporates novel bipolar RF technology aiming to correct local skin distension. One hundred twenty-six patients underwent FEL procedure. Facial expression and local skin distension were assessed with 2 years follow-up. There was a correction of negative facial expression for 96 patients (76 %) and a tightening of local skin distension in 100 % of cases. FEL is an effective procedure taking into account and able to correct both age-related negative changes in facial expression and local skin distension using radiofrequency. Level of Evidence: Level IV, therapeutic study.

  18. Statistical properties of the radiation from SASE FEL operating in the linear regime

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-02-01

    The paper presents comprehensive analysis of statistical properties of the radiation from self amplified spontaneous emission (SASE) free electron laser operating in linear mode. The investigation has been performed in a one-dimensional approximation, assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied: field correlations, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and photoelectric counting statistics of SASE FEL radiation. It is shown that the radiation from SASE FEL operating in linear regime possesses all the features corresponding to completely chaotic polarized radiation.

  19. Harmonic cascade FEL designs for LUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, G.; Reinsch, M.; Wurtele, J.

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1more » keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.« less

  20. Analysis Of FEL Optical Systems With Grazing Incidence Mirrors

    NASA Astrophysics Data System (ADS)

    Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.

    1986-11-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  1. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  2. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    PubMed

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  3. Future of ePix detectors for high repetition rate FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G., E-mail: blaj@slac.stanford.edu; Caragiulo, P.; Carini, G.

    2016-07-27

    Free-electron lasers (FELs) made the imaging of atoms and molecules in motion possible, opening new science opportunities with high brilliance, ultra-short x-ray laser pulses at up to 120 Hz. Some new or upgraded FEL facilities will operate at greatly increased pulse rates (kHz to MHz), presenting additional requirements on detection. We will present the ePix platform for x-ray detectors and the current status of the ePix detectors: ePix100 for low noise applications, ePix10k for high dynamic range applications, and ePixS for spectroscopic applications. Then we will introduce the plans to match the ePix detectors with the requirements of currently plannedmore » high repetition rate FELs (mainly readout speed and energy range).« less

  4. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  5. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  6. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    NASA Astrophysics Data System (ADS)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  7. Influence of nonlinear effects on statistical properties of the radiation from SASE FEL

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-02-01

    The paper presents analysis of statistical properties of the radiation from self-amplified spontaneous emission (SASE) free-electron laser operating in nonlinear mode. The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. It has been observed that the statistics of the instantaneous radiation power from SASE FEL operating in the nonlinear regime changes significantly with respect to the linear regime. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility under construction at DESY.

  8. Beam Conditioning for FELs: Consequences and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matchingmore » conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.« less

  9. Embryonic expression of festina lente (fel), a novel maternal gene, in the oligochaete annelid Tubifex tubifex.

    PubMed

    Nakamura, Takuma; Shiomi, Inori; Shimizu, Takashi

    2017-11-01

    We have cloned and characterized the expression of a novel maternal gene festina lente (designated Ttu-fel) from the clitellate annelid Tubifex tubifex. Northern blot analyses have shown that Ttu-fel mRNA is approximately 8 kbp in length and that its expression is restricted to oocytes undergoing maturation division and early embryos up to 22-cell stage. Maternal transcripts of Ttu-fel are first detected in oocytes in the ovary of young adults (ca. 40 days after hatching); its expression continues in growing oocytes in the ovisac. Ttu-fel mRNA is distributed broadly throughout the egg undergoing maturation divisions. During the process of ooplasmic segregation that results in the pole plasm formation, Ttu-fel mRNA becomes concentrated to the animal and vegetal poles. The RNA in the animal hemisphere is distributed in a gradient with highest concentration in the cortical region. During the first two cleavages, Ttu-fel mRNA is segregated to CD cell then to D cell; it is subsequently inherited by the three D quadtrant micromeres, 1d, 2d and 3d. Around the time of transition to 22-cell stage, Ttu-fel mRNA becomes undetectable throughout the embryo. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The GALAXIE all-optical FEL project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-highmore » brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.« less

  11. The GALAXIE all-optical FEL project

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; Tantawi, S.; Valloni, A.; Yakimenko, V.; Xu, G.

    2012-12-01

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brighness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  12. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  13. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  14. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  15. Lightning control system using high power microwave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.« less

  16. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1.

    PubMed

    Apostolovic, D; Sánchez-Vidaurre, S; Waden, K; Curin, M; Grundström, J; Gafvelin, G; Cirkovic Velickovic, T; Grönlund, H; Thomas, W R; Valenta, R; Hamsten, C; van Hage, M

    2016-10-01

    We investigated the prevalence of sensitization to the cat lipocalin Fel d 7 among 140 cat-sensitized Swedish patients and elucidated its allergenic activity and cross-reactivity with the dog lipocalin Can f 1. Sixty-five of 140 patients had IgE to rFel d 7 whereof 60 also had IgE to rCan f 1. A moderate correlation between IgE levels to rFel d 7 and rCan f 1 was found. rFel d 7 activated basophils in vitro and inhibited IgE binding to rCan f 1 in 4 of 13 patients, whereas rCan f 1 inhibited IgE binding to rFel d 7 in 7 of 13 patients. Fel d 7 and Can f 1 showed high similarities in protein structure and epitopes in common were found using cross-reactive antisera. Fel d 7 is a common allergen in a Swedish cat-sensitized population that cross-reacts with Can f 1, and may contribute to symptoms in cat- but also in dog-allergic patients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Field Encapsulation Library The FEL 2.2 User Guide

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  18. Reflection Matrix for Optical Resonators in FEL (Free Electron Lasers) Oscillators

    DTIC Science & Technology

    1988-09-22

    is the dominant factor determining the reflction coefficient. The effects of deflecting tho’ light beam enter as small corrections, of first order in...RESONATORS IN FEL OSCILLATORS I. INTRODUCTION 1-7 Free Electron Lasers (FEL) operating as oscillators require the 8-10 trapping of light pulses between...The simplest oscillator configuration is that of an open resonator with two opposed identical mirrors. The radiation vector potential for this

  19. Laser-induced fine structures on silicon exposed to THz-FEL

    NASA Astrophysics Data System (ADS)

    Irizawa, Akinori; Suga, Shigemasa; Nagashima, Takeshi; Higashiya, Atsushi; Hashida, Masaki; Sakabe, Shuji

    2017-12-01

    We found the irradiation of focused linearly polarized terahertz (THz)-waves emitted from THz free-electron laser (THz-FEL) engraved fine periodic stripe structures on the surfaces of single-crystal Si wafers. The experiments were performed at several wavelengths ranging from 50 to 82 μm with a macro-pulse fluence up to 32 J/cm2. The engraved structures are considered equivalent to the laser-induced periodic surface structures (LIPSS) produced by the irradiation of a femtosecond (fs)-pulsed laser in the near-infrared (NIR) region. However, the minimum period of ˜1/25 of the wavelength in the present case of THz-FEL is surely much smaller than those reported so far by use of fs-lasers and no more explicable by the so far proposed mechanisms. The finer LIPSS confirmed by longer-wavelength laser excitation by means of THz-FEL motivates investigation into the universal mechanism of LIPSS formation, which has been under a hot debate for decades.

  20. Beam conditioning for FELs: Consequences and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, A.; Penn, G.; Sessler, A.

    2004-06-29

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or more. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided inmore » each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.« less

  1. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2.

    PubMed

    Yamamoto, N

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10(-11). P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c(1), c(2), and c(3)) markers of P22. The color markers h(21), g, and m(3) of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages.

  2. Enhanced modeling and simulation of EO/IR sensor systems

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; May, Christopher

    2015-05-01

    The testing and evaluation process developed by the Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) provides end to end systems evaluation, testing, and training of EO/IR sensors. By combining NV-LabCap, the Night Vision Integrated Performance Model (NV-IPM), One Semi-Automated Forces (OneSAF) input sensor file generation, and the Night Vision Image Generator (NVIG) capabilities, NVESD provides confidence to the M&S community that EO/IR sensor developmental and operational testing and evaluation are accurately represented throughout the lifecycle of an EO/IR system. This new process allows for both theoretical and actual sensor testing. A sensor can be theoretically designed in NV-IPM, modeled in NV-IPM, and then seamlessly input into the wargames for operational analysis. After theoretical design, prototype sensors can be measured by using NV-LabCap, then modeled in NV-IPM and input into wargames for further evaluation. The measurement process to high fidelity modeling and simulation can then be repeated again and again throughout the entire life cycle of an EO/IR sensor as needed, to include LRIP, full rate production, and even after Depot Level Maintenance. This is a prototypical example of how an engineering level model and higher level simulations can share models to mutual benefit.

  3. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.

  4. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  5. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornacchia, Massimo

    2002-08-19

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation ({approx} 1 {micro}J) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FELmore » radiation to produce coherent, femtosecond X-rays.« less

  6. Acute optic nerve sheath fenestration in humans using the free electron laser (FEL): a case report

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Mawn, Louise A.; Shen, Jin-Hui; Jansen, E. Duco; Casagrande, Vivien A.

    2002-06-01

    Our previous studies using rabbits and monkeys showed that the Amide II wavelength (6.45 micrometers ) produced by the FEL could efficiently produce an optic nerve sheath fenestration with minimal damage. In order to determine if the technology safely could be applied to human surgery, we used 2 blind human eyes during enucleation to compare the results of producing fenestrations with the FEL or a scissors. FDA and Vanderbilt IRB approvals, and individual patient consents were obtained. The FEL energy was transmitted to a human operating room. After disinsertion of the medial rectus muscle, an optic nerve sheath fenestration (2 mm diameter) was made with either the FEL (6.45 micrometers , 325 micrometers spot size, 30 Hz, 3 mJ) through a hollow waveguide surgical probe or with a scissors. The enucleation was then completed. The optic nerve was dissected from the globe and fixed. Specimens were examined histologically. Dural incisions were effective with both methods. FEL energy at 6.45 micrometers can be transmitted to an operating room and delivered to human ocular tissue through a hollow waveguide surgical probe. This FEL wavelength can produce an optic nerve sheath fenestration without acute direct damage to the nerve in this case report.

  7. 77 FR 75660 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...] Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of-Business.... (2) Title of the Form/Collection: FEL Out of Business Records. (3) Form Number: None. Bureau of..., as well as a brief abstract: Primary: Business or other for-profit. Other: None. Need for Collection...

  8. GENETIC EVOLUTION OF BACTERIOPHAGE, I. HYBRIDS BETWEEN UNRELATED BACTERIOPHAGES P22 AND FELS 2*

    PubMed Central

    Yamamoto, Nobuto

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10-11. P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c1, c2, and c3) markers of P22. The color markers h21, g, and m3 of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages. Images PMID:4890254

  9. Burst mode FEL with the ETA-III induction linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C.J.; Allen, S.L.; Felker, B.

    1993-05-13

    Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less

  10. Using The SLAC Two-Mile Accelerator for Powering an FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, W.A.; /LLNL, Livermore; Sessler, A.M.

    2012-06-29

    A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

  11. INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRIGOLA,P.; MUROKH,A.; ET AL

    2000-08-13

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  12. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    NASA Astrophysics Data System (ADS)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  13. The role of radiation reaction in Lienard-Wiechert description of FEL interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimel, I.; Elias, L.R.

    1995-12-31

    The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursuedmore » the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.« less

  14. Comparison between simulations and lab results on the ASSIST test-bench

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin

    2016-07-01

    We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.

  15. Immunological differences in the global release of the major cat allergen Fel d 1 are influenced by sex and behaviour.

    PubMed

    Bienboire-Frosini, Cécile; Cozzi, Alessandro; Lafont-Lecuelle, Céline; Vervloet, Daniel; Ronin, Catherine; Pageat, Patrick

    2012-07-01

    The biological function of Fel d 1, the major cat allergen released in the environment, is still unclear despite studies suggesting a putative role in chemical communication. Structural and immunological polymorphisms of Fel d 1 have been described. This study examined how Fel d 1 immunological polymorphism may have a physiological origin by estimating a potential relationship with the sex of cats and cat-human interactions. Samples from bath washes of 21 cats were screened to study antibody binding to Fel d 1 using an ELISA. Personality and Tolerance Handling scores were used to assess the behaviour of the cats. In the washes, Fel d 1 concentrations were significantly lower in females than in males (P<0.05). Slopes from the ELISA dose-dependent curves varied among the cats: males secreted Fel d 1 variants with higher antibody recognition than females (P<0.01). Females that were aggressive and difficult to handle displayed a diminished slope value, and therefore a weaker Fel d 1 immunoreactivity in global washes, compared to females that were sociable (P=0.09) and easy to handle (P=0.07). This study shows a variable immunological polymorphism of Fel d 1 within a cat population, particularly between males and females, and this polymorphism appears to be related to cat-human interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  17. FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL.

    ERIC Educational Resources Information Center

    BAIR, ROBERT A.; AND OTHERS

    THE OPERATION OF THE FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL IN HANFORD, CALIFORNIA, IS DESCRIBED. OF GENERAL CONCERN WAS THE PREPARATION OF CULTURALLY DEPRIVED CHILDREN FOR SCHOOL EXPERIENCES AND FOR FUTURE EMPLOYMENT. A MAJOR GOAL WAS TO IMPROVE THE SELF-IMAGE OF THE CHILDREN AND TO ASSIST THE PARENTS AND CHILDREN IN PROVIDING…

  18. INTRA-UNDULATOR MEASUREMENTS AT VISA FEL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MUROKH,A.; FRIGOLA,P.; ET AL

    2000-08-13

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  19. Intra-undulator measurements at VISA FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A; Frigola, P; Pellegrini, C

    2000-08-10

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  20. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  1. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Evtushenko; James Coleman; Kevin Jordan

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  2. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P.; Coleman, J.; Jordan, K.

    2006-11-20

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  3. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  4. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less

  5. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    NASA Astrophysics Data System (ADS)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  6. A helical optical for circular polarized UV-FEL project at the UVSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Hiroyuki

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to bemore » shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.« less

  7. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).

    PubMed

    Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco

    2012-11-01

    Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.

  8. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, P.; Wurtele, J.; Penn, G.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is usedmore » as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.« less

  9. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  10. A 1kW EUV source for lithography based on FEL emission in a compact storage ring

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Ruth, Ron; Loewen, Rod

    2017-10-01

    EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.

  11. Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol

    ERIC Educational Resources Information Center

    Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R.

    2007-01-01

    An ozonolysis experiment, suitable for undergraduate organic chemistry lab, is presented. Ozonolysis of eugenol (clove oil), followed by reductive workup furnishes an aldehyde that is easily identified by its NMR and IR spectra. Ozone (3-5% in oxygen) is produced using an easily built generator. (Contains 2 figures and 1 scheme.)

  12. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli.

    PubMed

    Grönlund, Hans; Bergman, Tomas; Sandström, Kristofer; Alvelius, Gunvor; Reininger, Renate; Verdino, Petra; Hauswirth, Alexander; Liderot, Karin; Valent, Peter; Spitzauer, Susanne; Keller, Walter; Valenta, Rudolf; van Hage-Hamsten, Marianne

    2003-10-10

    Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys3(1) Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d l reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.

  13. Output characteristics of SASE-driven short wavelength FEL`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponentialmore » gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.« less

  14. Dispersion relations for 1D high-gain FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J.; Hao, H.; Li, J. Y.

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradationmore » of FEL mirrors on the two-color FEL operation is reported. Moreover, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.« less

  16. Storage ring two-color free-electron laser

    DOE PAGES

    Yan, J.; Hao, H.; Li, J. Y.; ...

    2016-07-05

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradationmore » of FEL mirrors on the two-color FEL operation is reported. Moreover, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.« less

  17. Serial snapshot crystallography for materials science with SwissFEL

    DOE PAGES

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; ...

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of datamore » can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.« less

  18. The DarkLight Experiment at the JLab FEL

    NASA Astrophysics Data System (ADS)

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  19. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach

  20. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to

  1. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    EPA Science Inventory

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  2. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  3. The FERMIatElettra FEL Photon Transport System

    NASA Astrophysics Data System (ADS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-06-01

    The FERMI@Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI@Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  4. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; /LBL, Berkeley; Bane, K.L.F.

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  5. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  6. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, S.; /UCLA; Bane, K.L.F.

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELAmore » and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.« less

  7. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  8. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  9. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    PubMed

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  10. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE PAGES

    Feng, Y.; Schafer, D. W.; Song, S.; ...

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  11. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Schafer, D. W.; Song, S.

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  12. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  13. Development of BPM Electronics at the JLAB FEL

    NASA Astrophysics Data System (ADS)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  14. Design considerations of 10 kW-scale extreme ultraviolet SASE FEL for lithography

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-05-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry roadmap, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not obvious. The problem of construction of Extreme Ultraviolet (EUV) quantum laser for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant break through in the near future. Nevertheless, there is clear path for optical lithography to take us to sub- 100 nm dimensions. Theoretical and experimental work in free electron laser (FEL) and accelerator physics and technology over the last 10 years has pointed to the possibility of generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain self-amplified spontaneous emission (SASE) FEL at 100 nm wavelength (Andruszkov et al., Phys. Rev. Lett. 85 (2000), 3825). In the SASE FEL powerful, coherent radiation is produced by the electron beam during single-pass of the undulator, thus there are no apparent limitations which would prevent operation at very short wavelength range and to increase the average output power of this device up to 10 kW level. The use of superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 1%. A 10-kW-scale transversely coherent radiation source with narrow bandwidth (0.5%) and variable wavelength could be an excellent tool for manufacturing computer chips with the minimum feature size below 100 nm. All components of the proposed SASE FEL equipment (injector, driver accelerator structure, energy-recovery system, undulator, etc.) have been demonstrated in practice. This is guaranteed success in the time schedule requirement.

  15. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-12-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andruszkov, et al., Phys. Rev. Lett. 85 (2000) 3821). The SASE FEL concept eliminates the need for an optical cavity. As a result, there are no apparent limitations which would prevent operating at very short wavelength range and increasing the average output power of this device up to 10-kW level. The use of super conducting energy-recovery linac could produce a major, cost-efficient facility with wall plug power to output optical power efficiency of about 1%. A 10-kW scale transversely coherent radiation source with narrow bandwidth (0.5%) and variable wavelength could be excellent tool for manufacturing computer chips with the minimum feature size below 100 nm. All components of the proposed SASE FEL equipment (injector, driver accelerator structure, energy recovery system, undulator, etc.) have been demonstrated in practice. This is guaranteed success in the time-schedule requirement.

  16. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  17. Diffraction and pulse slippage in the Boeing 1 kW FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, J.; Wong, R.K.; Colson, W.B.

    1995-12-31

    A four-dimensional simulation in x, y, z, and t, including betatron motion of the electrons, is used to study the combined effects of diffraction, pulse slippage and desynchronism in the Boeing 1 kW FEL oscillator.

  18. Development of BPM Electronics at the JLAB FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, D.; Evtushenko, P.; Jordan, K.

    2006-11-20

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reducedmore » to 1.17 MHz, which corresponds to about 160 {mu}A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 {mu}m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.« less

  19. Development of BPM Electronics at the JLAB FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Sexton; Pavel Evtushenko; Kevin Jordan

    2006-05-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with the micropulse up to 74.85 MHz. For diagnostic reasons and for the machine tune up, the micropulse frequency canmore » be reduced to 1.17 MHz, which corresponds to about 160 ?A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 ?m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.« less

  20. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser.

    PubMed

    Halliwell, Diane E; Morais, Camilo L M; Lima, Kássio M G; Trevisan, Júlio; Siggel-King, Michele R F; Craig, Tim; Ingham, James; Martin, David S; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L

    2017-07-11

    Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.

  1. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser

    NASA Astrophysics Data System (ADS)

    Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Júlio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.

    2017-07-01

    Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.

  2. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser

    PubMed Central

    Halliwell, Diane E.; Morais, Camilo L.M.; Lima, Kássio M.G.; Trevisan, Júlio; Siggel-King, Michele R.F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.

    2017-01-01

    Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an ‘intact’ chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach. PMID:28696426

  3. Analysis Of The Boeing FEL Mirror Measurements

    NASA Astrophysics Data System (ADS)

    Knapp, Charles E.; Viswanathan, Vriddhachalam K.; Appert, Quentin D.

    1989-07-01

    The aberrations have been measured for the finished mirrors that are part of the Burst Mode ring resonator of the Free Electron Laser (FEL) being constructed at the Boeing Aerospace Company in Seattle, Washington. This paper presents analysis of these measurements using the GLAD code, a diffraction ray-tracing code. The diffraction losses within the resonator due to the aberrations are presented. The analysis was conducted in two different modes, a paraxial approximation and a full 3-D calculation, and good agreement between the two approaches is shown. Finally, a proposed solution to the problems caused by the aberrations is presented and analyzed.

  4. Fels-Rand: an Xlisp-Stat program for the comparative analysis of data under phylogenetic uncertainty.

    PubMed

    Blomberg, S

    2000-11-01

    Currently available programs for the comparative analysis of phylogenetic data do not perform optimally when the phylogeny is not completely specified (i.e. the phylogeny contains polytomies). Recent literature suggests that a better way to analyse the data would be to create random trees from the known phylogeny that are fully-resolved but consistent with the known tree. A computer program is presented, Fels-Rand, that performs such analyses. A randomisation procedure is used to generate trees that are fully resolved but whose structure is consistent with the original tree. Statistics are then calculated on a large number of these randomly-generated trees. Fels-Rand uses the object-oriented features of Xlisp-Stat to manipulate internal tree representations. Xlisp-Stat's dynamic graphing features are used to provide heuristic tools to aid in analysis, particularly outlier analysis. The usefulness of Xlisp-Stat as a system for phylogenetic computation is discussed. Available from the author or at http://www.uq.edu.au/~ansblomb/Fels-Rand.sit.hqx. Xlisp-Stat is available from http://stat.umn.edu/~luke/xls/xlsinfo/xlsinfo.html. s.blomberg@abdn.ac.uk

  5. Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.

    2018-06-01

    A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.

  6. The photon beam transport and diagnostics system at FERMI@Elettra, the Italian seeded FEL source: commissioning experience and most recent results

    NASA Astrophysics Data System (ADS)

    Zangrando, Marco; Abrami, Alessandro; Cocco, Daniele; Fava, Claudio; Gerusina, Simone; Gobessi, Riccardo; Mahne, Nicola; Mazzucco, Eric; Raimondi, Lorenzo; Rumiz, Luca; Svetina, Cristian; Parmigiani, Fulvio

    2012-10-01

    FERMI@Elettra, the Italian Free Electron Laser (FEL) source, is in an advanced commissioning phase, having already delivered radiation down to the endstations. The facility is routinely using the low energy branch (FEL1) to produce photons in the 65-20 nm range, while the 20-4 nm range will be covered by FEL2 that is now being commissioned. A dedicated system to collect, diagnose, transport and focus the radiation (PADReS) is used to provide informations about the photon beam intensity, position, spectral content, transverse coherence, and so on. The experience gathered so far, as well as the most recent results both from the diagnostic section and the beam manipulation part are presented here.

  7. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Weilun; Huang, S.; Liu, K.X.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flatmore » energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.« less

  8. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches

    PubMed Central

    Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding. PMID:29771985

  9. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches.

    PubMed

    Durairaj, Rajesh; Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.

  10. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    NASA Astrophysics Data System (ADS)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  11. Quantification of Fel d 1 in house dust samples of cat allergic patients by using monoclonal antibody specific to a novel IgE-binding epitope.

    PubMed

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Aiumurai, Pisinee; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2018-03-01

    Avoidance of allergen exposure is an effective measure for preventing naÏve and allergic individuals from sensitization (primary intervention) and disease aggravation (secondary intervention), respectively. Regular monitoring of the allergens in the environment is required for the effective intervention. Thus, there is a need for cost-effective test kits for environmental allergen quantifications. To invent a test kit for quantification of cat major allergen, Fel d 1. A mouse monoclonal antibody (MAb) specific to the newly identified IgE-binding conformational epitope of the cat major allergen (Fel d 1) and rabbit polyclonal IgG to recombinant Fel d 1 were used as allergen capture and detection reagents, respectively. Native Fel d 1 was used in constructing a standard curve. Sixteen of 36 dust samples collected from houses of cat allergic subjects in Bangkok contained Fel d 1 above 0.29 μg/gram of dust which is considered as a novel threshold level for causing cat allergy sensitization or symptoms. Among them, 7 samples contained the allergen exceeding 2.35 μg/gram of dust which is the level that would aggravate asthma. Results of the allergen quantification using the locally made test kit showed strong correlation (r = 0.923) with the allergen quantification using commercialized reagents. The assay using MAb to Fel d 1 IgE-binding epitope of this study has potential application as an economic and practical tool for cat allergy intervention measure especially in localities where health resources are relatively limited.

  12. A new THz/Far-IR beamline at the Jefferson Lab ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, George; Williams, Gwyn

    2003-08-01

    Multiparticle coherent synchrotron emitted by sub-picosecond bunches of electrons in an energy recovering linac, (ERL), at 75 MHz, yield average powers of ~ 100 watts, even for beam currents of 10 mA.This is 10,000 times higher than typical table-top systems.We describe a new ERL facility under construction at Jefferson Lab, and a new THz extraction system and beamline.We also present theoretical calculations.Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor bandgaps, electronic scattering, collective electronic excitationsmore » (e.g., charge density waves), and spintronics.This work was supported by the US Department of Energy, the Office of Naval Research and the Commonwealth of Virginia.G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil and G.P. Wi« less

  13. Love the Lab, Hate the Lab Report?

    ERIC Educational Resources Information Center

    Bjorn, Genevive

    2018-01-01

    In the author's large, urban high school, enrollment in a laboratory science is mandatory. While the student participation rate for lab activities is over 98%, the turn-in rate for traditional lab reports averages just 35% to 85%. Those students who don't produce a lab report miss a critical opportunity to improve their skills in scientific…

  14. Mid-IR Plasmonics, Cavity Coupled Excitations, and IR Spectra of Individual Airborne Particulate Matter

    NASA Astrophysics Data System (ADS)

    Luthra, Antriksh

    environments pose different health hazards. Chemical insights of such dust collected from four very different environments: lab air, home air filter, the 11 September 2001 WTC event and the International Space Station is reported. These particles were collected by pumping air through plasmonic metal films with a 12.6 mum square lattice of 5 mum square holes, enabling us to record "scatter-free" IR absorption spectra of individual particles whose peaks reveal their IR active components. In Chapter 5, statistical methods such as single value decomposition (SVD) and support vector machine (SVM) informed with a Mie-Bruggeman model is presented, analyzing the spectral data from different dust environments.

  15. A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Forti, F.; Casarosa, G.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2017-08-01

    The PixFEL collaboration has developed the building blocks for an X-ray imager to be used in applications at FELs. In particular, slim edge pixel detectors with high detection efficiency over a broad energy range, from 1 to 12 keV, have been developed. Moreover, a multichannel readout chip, called PFM2 (PixFEL front-end Matrix 2) and consisting of 32 × 32 cells, has been designed and fabricated in a 65 nm CMOS technology. The pixel pitch is 110 μm, the overall area is around 16 mm2. In the chip, different solutions have been implemented for the readout channel, which includes a charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper and an A-to-D converter with a 10 bit resolution. The CSA can be configured in four different gain modes, so as to comply with photon energies in the 1 to 10 keV range. The paper will describe in detail the channel architecture and present the results from the characterization of PFM2. It will discuss the design of a new version of the chip, called PFM3, suitable for post-processing with peripheral, under-pad through silicon vias (TSVs), which are needed to develop four-side buttable chips and cover large surfaces with minimum inactive area.

  16. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/--IRS-1+/- Double Heterozygous (IR-IRS1dh) Mice.

    PubMed

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J

    2017-05-30

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR) +/- -insulin receptor substrate-1 (IRS-1) +/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  17. The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams

    NASA Astrophysics Data System (ADS)

    Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.

    2015-05-01

    The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.

  18. The Use and Evaluation of Scaffolding, Student Centered-Learning, Behaviorism, and Constructivism to Teach Nuclear Magnetic Resonance and IR Spectroscopy in a Two-Semester Organic Chemistry Course

    ERIC Educational Resources Information Center

    Livengood, Kimberly; Lewallen, Denver W.; Leatherman, Jennifer; Maxwell, Janet L.

    2012-01-01

    Since 2002, infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectrometry have been introduced at the beginning of the first-semester organic chemistry lab course at this university. Starting in 2008, each individual student was given 20 unique homework problems that consisted of multiple-choice [superscript 1]H NMR and IR problems…

  19. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    DOE PAGES

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; ...

    2017-04-10

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  20. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  1. Multiplexing of spatial modes in the mid-IR region

    NASA Astrophysics Data System (ADS)

    Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew

    2017-02-01

    Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.

  2. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by {pi} radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments wouldmore » limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments.« less

  3. Human perception testing methodology for evaluating EO/IR imaging systems

    NASA Astrophysics Data System (ADS)

    Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.

    2018-04-01

    The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.

  4. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh) Mice

    PubMed Central

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J.

    2017-01-01

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR)+/−-insulin receptor substrate-1 (IRS-1)+/− double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver. PMID:28556799

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Oe.

    The Turkish Accelerator Center (TAC) Project was started in 1997 with support of the State Planning Organization (SPO) of Turkey under Ankara University's coordination. After completing Feasibility Report (FR, 2000) and Conceptual Design Repot (CDR, 2005), third phase of the project was started in 2006 as an inter-university project with support of SPO. Third phase of the project has two main scientific goals: to write Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility as a first step. The first facility and TDR studies are planned to be completed in 2012. Constructionmore » phase of TAC will cover 2013-2023. TAC collaboration include ten Turkish Universities: Ankara, Gazi, Istanbul, Bogazici, Dogus, Uludag, Dumlupmar, Nigde, Erciyes and S. Demirel Universities. It was planned that the first facility will be an IR FEL and Bremsstrahlung laboratory based on 15-40 MeV electron linac and two optical cavities with 2.5 and 9 cm undulators to scan 2-250 microns wavelength range. Main purpose of the facility is to use IR FEL for research in material science, nonlinear optics, semiconductors, biotechnology, medicine and photochemical processes. In this study; aims, regional importance, main parts and main parameters of TAC and TAC IR FEL and Bremsstrahlung facility are explained. Road map of the TAC project is given. National and international collaborations are explained.« less

  6. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  7. Theoretical study of the design and performance of a high-gain, high-extraction-efficiency FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.

    1996-10-01

    We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5%more » is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.« less

  8. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  9. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  10. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  11. Experimental and DFT simulation study of a novel felodipine cocrystal: Characterization, dissolving properties and thermal decomposition kinetics.

    PubMed

    Yang, Caiqin; Guo, Wei; Lin, Yulong; Lin, Qianqian; Wang, Jiaojiao; Wang, Jing; Zeng, Yanli

    2018-05-30

    In this study, a new cocrystal of felodipine (Fel) and glutaric acid (Glu) with a high dissolution rate was developed using the solvent ultrasonic method. The prepared cocrystal was characterized using X-ray powder diffraction, differential scanning calorimetry, thermogravimetric (TG) analysis, and infrared (IR) spectroscopy. To provide basic information about the optimization of pharmaceutical preparations of Fel-based cocrystals, this work investigated the thermal decomposition kinetics of the Fel-Glu cocrystal through non-isothermal thermogravimetry. Density functional theory (DFT) simulations were also performed on the Fel monomer and the trimolecular cocrystal compound for exploring the mechanisms underlying hydrogen bonding formation and thermal decomposition. Combined results of IR spectroscopy and DFT simulation verified that the Fel-Glu cocrystal formed via the NH⋯OC and CO⋯HO hydrogen bonds between Fel and Glu at the ratio of 1:2. The TG/derivative TG curves indicated that the thermal decomposition of the Fel-Glu cocrystal underwent a two-step process. The apparent activation energy (E a ) and pre-exponential factor (A) of the thermal decomposition for the first stage were 84.90 kJ mol -1 and 7.03 × 10 7  min -1 , respectively. The mechanism underlying thermal decomposition possibly involved nucleation and growth, with the integral mechanism function G(α) of α 3/2 . DFT calculation revealed that the hydrogen bonding between Fel and Glu weakened the terminal methoxyl, methyl, and ethyl groups in the Fel molecule. As a result, these groups were lost along with the Glu molecule in the first thermal decomposition. In conclusion, the formed cocrystal exhibited different thermal decomposition kinetics and showed different E a , A, and shelf life from the intact active pharmaceutical ingredient. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. THE FIRST LASING OF 193 NM SASE, 4TH HARMONIC HGHG AND ESASE AT THE NSLS SDL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG, X.J.; SHEN Y.; WATANABE, T.

    2006-08-28

    The first lasing of three types of single-pass high-gain FELs, SASE at 193 nm, 4th harmonic HGHG at 199 nm and ESASE at the Source Development Lab (SDL) of Brookhaven National Laboratory (BNL) is reported. The saturation of 4th harmonic HGHG and ESASE FELs was observed. We also observed the spectral broadening and instability of the 4th harmonic HGHG.

  13. Femtosecond timing distribution and control for next generation accelerators and light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li -Jin

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even attosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. Anmore » increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objective of the work described in this proposal is to set up an optical timing distribution system based on mode locked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the

  14. Dog allergen (Can f 1) and cat allergen (Fel d 1) in US homes: Results from the National Survey of Lead and Allergens in Housing

    PubMed Central

    Arbes, Samuel J.; Cohn, Richard D.; Yin, Ming; Muilenberg, Michael L.; Friedman, Warren; Zeldin, Darryl C.

    2017-01-01

    Background Exposures to dog and cat allergens are believed to play important roles in the etiology of asthma; however, the levels of these allergens have never been assessed in a representative sample of US homes. Objective The objective of this study was to estimate and characterize exposures to Can f 1 (dog allergen) and Fel d 1 (cat allergen) in US homes. Methods Data were obtained from the National Survey of Lead and Allergens in Housing, a nationally representative survey of 831 US homes. Vacuumed-collected dust samples from the bed, bedroom floor, living room floor, and living room sofa were analyzed for concentrations of Can f 1 and Fel d 1 (micrograms of allergen per gram of dust). Results Although a dog or cat had lived in only 49.1% of homes in the previous 6 months, Can f 1 and Fel d 1 were detected in 100% and 99.9% of homes, respectively. Averaged over the sampled sites, geometric mean concentrations (µg/g) were 4.69 for Can f 1 and 4.73 for Fel d 1. Among homes with an indoor dog and cat, respectively, geometric mean concentrations were 69 for Can f 1 and 200 for Fel d 1. Among homes without the indoor pet, geometric mean concentrations were above 1.0. The independent predictors of elevated concentrations in homes without pets were all demographic variables that were also linked to a higher prevalence of pet ownership. Conclusions Can f 1 and Fel d 1 are universally present in US homes. Levels that have been associated with an increased risk of allergic sensitization were found even in homes without pets. Because of the transportability of these allergens on clothing, elevated levels in homes without pets, particularly among demographic groups in which pet ownership is more prevalent, implicate the community as an important source of these pet allergens. PMID:19055206

  15. A scheme for a shot-to-shot, femtosecond-resolved pulse length and arrival time measurement of free electron laser x-ray pulses that overcomes the time jitter problem between the FEL and the laser

    NASA Astrophysics Data System (ADS)

    Juranić, P. N.; Stepanov, A.; Peier, P.; Hauri, C. P.; Ischebeck, R.; Schlott, V.; Radović, M.; Erny, C.; Ardana-Lamas, F.; Monoszlai, B.; Gorgisyan, I.; Patthey, L.; Abela, R.

    2014-03-01

    The recent entry of X-ray free electron lasers (FELs) to all fields of physics has created an enormous need, both from scientists and operators, for better characterization of the beam created by these facilities. Of particular interest is the measurement of the arrival time of the FEL pulse relative to a laser pump, for pump-probe experiments, and the measurement of the FEL pulse length. This article describes a scheme that corrects one of the major sources of uncertainty in these types of measurements, namely the jitter in the arrival time of the FEL relative to an experimental laser beam. The setup presented here uses a combination of THz streak cameras and a spectral encoding setup to reduce the effect of an FEL's jitter, leaving the pulse length as the only variable that can affect the accuracy of the pulse length and arrival time measurement. A discussion of underlying principles is also provided.

  16. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  17. Spontaneous and amplified radiation at the initial stage of a SASE FEL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Kim, K.-J.

    At the initial stage of a self-amplified spontaneous emission (SASE) free-electron laser (FEL), spontaneous undulator radiation in certain experimental configurations can dominate the amplified signal over an extended undulator distance. In this paper they study both the spontaneous and the amplified radiation in the framework of the paraxial wave equation and determine the transition from the dominance of spontaneous emission to exponential amplification. They compare theoretical expectations with SASE simulation codes GINGER and GENESIS.

  18. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    EPA Science Inventory

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  19. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  20. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less

  1. Endangered Languages and Literacy. Proceedings of the Fourth FEL Conference (Charlotte, North Carolina, September 21-24, 2000).

    ERIC Educational Resources Information Center

    Ostler, Nicholas, Ed.; Rudes, Blair, Ed.

    Papers for the fourth Foundation for Endangered Languages (FEL) Conference include the following: "Endangered languages and Literacy" (Nicholas Ostler, Blair Rudes); "Keynote Address: On Native Language Literacy: a Personal Perspective" (Ofelia Zepeda); "A Community's Solution to Some Literacy Problems: The Mayangna of…

  2. FEL investigations of energy transfer in condensed phase systems

    NASA Astrophysics Data System (ADS)

    Henderson, Don O.; Mu, Richard; Silberman, Enrique; Johnson, J. B.; Edwards, Glenn S.

    1993-07-01

    The vibrational dynamics of O-H groups in fused silica have been examined by a time- resolved pump-probe technique using the Vanderbilt Free Electron Laser (FEL). We consider two effects, local heating and transient thermal lensing, which can influence measured T1 values in one color pump-probe measurements. The dependence of these two effects on both the micropulse spacing and the total number of micropulses delivered to the sample are analyzed in detail for the O-H/SiO2 system. The results indicate that transient thermal lensing can significantly influence the measured probe signal. The local heating may cause thermally induced changes in the ground state population of the absorber, thereby complicating the analysis of the relaxation dynamics.

  3. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  4. Kinematic Labs with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  5. MethLAB

    PubMed Central

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K

    2012-01-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798

  6. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  7. High temperature Ir segregation in Ir-B ceramics: Effect of oxygen presence on stability of IrB 2 and other Ir-B phases

    DOE PAGES

    Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; ...

    2015-05-13

    The formation of IrB 2, IrB 1.35, IrB 1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB 2 type IrB 2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Irmore » segregation along disordered domains of the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.« less

  8. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects.

    PubMed

    Alexander, C; Tarzi, M; Larché, M; Kay, A B

    2005-10-01

    We previously showed that overlapping Fel d 1-derived T-cell peptides inhibited surrogate markers of allergy (i.e. early and late-phase skin reactions and T-cell function) in cat allergic subjects. The present pilot study was designed to determine whether this treatment affected clinically relevant outcome measurements such as the allergen-induced nasal and bronchial reactions, and asthma/rhinitis quality of life (QOL). Sixteen cat-allergic asthmatic subjects who gave a dual (early and late) asthmatic response (DAR) to inhaled cat allergen were randomly assigned to receive either Fel d 1 peptides (approximately 300 mug in increasing, divided doses) or placebo (8 active : 8 placebo). Twelve single early responders (SER) were also studied in an open fashion design. Allergen-induced bronchial and nasal measurements as well as the QOL was measured at baseline, 4-8 weeks (follow-up 1 (FU1)) and 3-4 months (FU2). In the active, but not placebo, group there were significant decreases in the late asthmatic reaction (LAR) to whole cat dander (P = 0.03) at FU2 but with no between group difference. There were also significant improvements in asthma quality of life (QOL) scores [asthma-activity limitation (P = 0.014); rhinitis-sleep (P = 0.024), non-nose/non-eye symptoms (P = 0.031), nasal problems (P = 0.015)]. In the open study Fel d 1 peptide treatment resulted in significant decreases in number of sneezes (P = 0.05), weight of nasal secretions (P = 0.04) and nasal blockage (P = 0.01) following allergen challenge. Multiple, short, overlapping Fel d 1 T-cell peptides have potential for inhibiting upper and lower airway outcome measurements in cat allergic patients. Larger, dose-ranging, studies are required before firm conclusions on clinical efficacy of peptide allergen therapy can be made.

  9. TangoLab-2 Card Troubleshooting

    NASA Image and Video Library

    2017-10-17

    iss053e105442 (Oct. 17, 2017) --- Flight Engineer Mark Vande Hei swaps out a payload card from the TangoLab-1 facility and places into the TangoLab-2 facility. TangoLab provides a standardized platform and open architecture for experimental modules called CubeLabs. CubeLab modules may be developed for use in 3-dimensional tissue and cell cultures.

  10. Connecting Lab-Based Attosecond Science with FEL research

    ScienceCinema

    Vrakking, Marc

    2017-12-09

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to “illuminating the molecule from within”. I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

  11. The ETA-2 induction linac as a high average power FEL driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.

    1989-10-16

    The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less

  12. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  13. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  14. 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water.

    PubMed

    Mattio, Elodie; Robert-Peillard, Fabien; Vassalo, Laurent; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Knoery, Joël; Boudenne, Jean-Luc; Coulomb, Bruno

    2018-06-01

    In recent years, the development of 3D printing in flow analysis has allowed the creation of new systems with various applications. Up to now, 3D printing was mainly used for the manufacture of small units such as flow detection cells, preconcentration units or mixing systems. In the present study, a new 3D printed lab-on-valve system was developed to selectively quantify lead and cadmium in water. Different technologies were compared for lab-on-valve 3D printing. Printed test units have shown that stereolithography or digital light processing are satisfactory techniques for creating complex lab-on-valve units. The lab-on-valve system was composed of two columns, eight peripheral ports and a central port, and a coil integrating baffles to increase mixing possibilities. A selective extraction of lead was first carried out by TrisKem Pb™ Resin column. Then, cadmium not retained on the first column was extracted on a second column of Amberlite® IR 120 resin. In a following step, lead and cadmium were eluted with ammonium oxalate and potassium iodide, respectively. Finally, the two metals were sequentially detected by the same Rhod-5N™ fluorescent reagent. This 3D printed lab-on-valve flow system allowed us to quantify lead and cadmium with a linear response from 0.2 to 15 µg L -1 and detection limits of 0.17 and 0.20 µg L -1 for lead and cadmium, respectively, which seems adapted for natural water analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A Constructivist Cloud Lab.

    ERIC Educational Resources Information Center

    Emery, Dave

    1996-01-01

    Describes a lab involving a cloud formation activity that uses the constructivist learning model to get students more involved in creating the lab. Enables students to develop a greater understanding of the concepts involved and more interest in the lab's outcomes. (JRH)

  16. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  17. LabSkills

    ERIC Educational Resources Information Center

    O'Brien, Nick

    2010-01-01

    This article describes LabSkills, a revolutionary teaching tool to improve practical science in schools. LabSkills offers the chance to help improve the exposure that the average Key Stage 5 (age 16-19) student has to practical work. This is a huge area for development being highlighted by universities who are seeing a worryingly growing trend in…

  18. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  19. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  20. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE PAGES

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...

    2018-01-01

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  1. Calibrated Mid-wave Infrared (IR) (MidIR) and Long-wave IR (LWIR) Stokes and Degree-of-Liner Polarization (DOLP)

    DTIC Science & Technology

    2008-09-01

    LWIR long-wave IR MCT mercury cadmium telluride MidIR mid-wave IR NUC nonuniformity corrections ROI regions-of-interest 22 No. of Copies...Calibrated Mid-wave Infrared (IR) (MidIR) and Long-wave IR ( LWIR ) Stokes and Degree-of-Liner Polarization (DOLP) by Kristan P. Gurton and... LWIR ) Stokes and Degree-of-Liner Polarization (DOLP) Kristan P. Gurton and Melvin Felton Computational and Information Sciences Directorate

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  3. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  4. Endangered Languages and the Media. Proceedings of the Fifth FEL Conference (Agadir, Morocco, September 20-23, 2001).

    ERIC Educational Resources Information Center

    Moseley, Christopher, Ed.; Ostler, Nicholas, Ed.; Ouzzate, Hassan, Ed.

    Papers for the fifth Foundation for Endangered Languages (FEL) Conference include the following papers: "The State and the Global Marketplace in the Provision of Minority Media Services" (George Jones); "Local Language Media: What Does It Take?" (Paul Lewis); "Power of the Media for the Good of Small Languages: An Indian…

  5. Transformations of Gaussian Light Beams Caused by Reflection in FEL (free Electron Lasers) Resonators

    DTIC Science & Technology

    1988-10-27

    il FILE COPy Naval Research Laboratory Washingon, DC 20375-500 NRL Memorandum Report 6347 ,qJ. o Transformations of Gaussian Light Beams N Caused by...Transformations of 7aussian Light Beams Caused by Reflection in FEL Resonators 12 PERSONAL AUTHOR(S) Riyopoulos,* S., Tang, C.M. and Sprangle, P...34 𔃾-6603 -"I, -,’ SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACTS (Continued) cross-coupling among vector components of the radiation field, caused

  6. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  7. Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.

    PubMed

    Lang, Stacey

    2012-01-01

    The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.

  8. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  9. Design and test of SX-FEL cavity BPM

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-Xian; Zhou, Wei-Min; Chen, Zhi-Chu; Yu, Lu-Yang; Wang, Bao-Pen; Leng, Yong-Bin

    2013-11-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test.

  10. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  11. Porting of EPICS to Real Time UNIX, and Usage Ported EPICS for FEL Automation

    NASA Astrophysics Data System (ADS)

    Salikova, Tatiana

    This article describes concepts and mechanisms used in porting of EPICS (Experimental Physical and Industrial Control System) codes to platform of operating system UNIX. Without destruction of EPICS architecture, new features of EPICS provides the support for real time operating system LynxOS/x86 and equipment produced by INP (Budker Institute of Nuclear Physics). Application of ported EPICS reduces the cost of software and hardware is used for automation of FEL (Free Electron Laser) complex.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    WATANABE, T.; LIU, D.; MURPHY, J.B.

    The strong focusing VISA undulator is presented in this report. The proposed FEL will operate at the 1 {micro}m water window. Extensive simulations were performed to optimize an FEL amplifier based on the two-meter long VISA undulator which has a period of 1.8 cm and an undulator parameter K = 1.26. The betatron function inside the VISA undulator is about 30 cm. For an electron beam with a peak current {approx}1 kA and a normalized emittance of 5 mm-mrad, the FEL peak power can exceed 1 GW within the 2 m VISA undulator using a 5 kW peak power seedmore » laser. Such a device can produce a megawatt of average power for a 700 MHz rep rate. The transverse distribution of the FEL radiation along the undulator, as well as after the undulator, is explored by numerical simulation. The FEL power density at 5 m downstream from the undulator is less than 100 kW/cm{sup 2} for this MW-class FEL. We will also discuss the feasibility of an experimental demonstration of the laser seeded FEL amplifier based on the 2-m VISA undulator at the NSLS Source Development Lab (SDL).« less

  13. IR LASER BASED CHEMICAL SENSOR FOR THE COOPERATIVE MONITORING PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward A Whitaker

    The purpose of this project was to investigate the device properties of the quantum cascade laser (QCL), a type of laser invented at Bell Laboratories, Lucent Technologies in the device physics research lab of Dr. Federico Capasso and more specifically to determine the remote sensing capability of this device. The PI and Stevens Institute of Technology collaborated with Dr. Capasso and Bell Laboratories to carry out this research project. The QCL is a unique laser source capable of generating laser radiation in the middle-infrared spectral region that overlaps the most important molecular absorption bands. With appropriate modulation techniques it ismore » possible to use the laser to measure the concentration of many molecules of interest to the remote sensing community. In addition, the mid-IR emission wavelength is well suited to atmospheric transmission as mid-IR experiences much less scattering due to dust and fog. At the onset of this project little was known about several key device performance parameters of this family of lasers and the NNSA supported research enabled them to determine values of several of these characteristics.« less

  14. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with openingmore » angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.« less

  15. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  16. Status of the Northrop Grumman Compact Infrared Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A.

    1995-12-31

    The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL`s for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental resultsmore » of the CERFEL will be presented.« less

  17. Mode pumping experiments on biomolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, R.H.; Erramilli, S.; Xie, A.

    1995-12-31

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T{sub 1} and T{sub 2} relaxation measurements at 1650 cm{sup -1}. (2) Probing the influence of collectivemore » dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm{sup -1}. A form of action spectrum using FEL excitation will be used to probe this state.« less

  18. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  19. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  20. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  1. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  2. A fast analytical undulator model for realistic high-energy FEL simulations

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Cremer, T.

    1997-02-01

    A number of leading FEL simulation codes used for modeling gain in the ultralong undulators required for SASE saturation in the <100 Å range employ simplified analytical models both for field and error representations. Although it is recognized that both the practical and theoretical validity of such codes could be enhanced by incorporating realistic undulator field calculations, the computational cost of doing this can be prohibitive, especially for point-to-point integration of the equations of motion through each undulator period. In this paper we describe a simple analytical model suitable for modeling realistic permanent magnet (PM), hybrid/PM, and non-PM undulator structures, and discuss selected techniques for minimizing computation time.

  3. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    NASA Astrophysics Data System (ADS)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  4. IR Instruments | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments ‹› You are here CTIO Home » Astronomers » Instruments » IR Instruments IR Instruments Infrared Imaging ANDICAM - Ohio State Visual/IR Imager (on SMARTS 1.3m Telescope) OSIRIS - The Ohio State

  5. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  6. Lab Report Blues

    ERIC Educational Resources Information Center

    Diaz, Andrew

    2004-01-01

    For middle school students, writing a formal lab report can be challenging. For middle level teachers, reading students lab reports can be overwhelming. After grading report after report with incomplete procedures, incorrect graphs, and missing conclusions, the author's frustration level was at an all-time high. Ready to try anything, he thought,…

  7. Reforming Cookbook Labs

    ERIC Educational Resources Information Center

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  8. IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.

    Here in this paper we report an IR-IR double resonance study of the structural landscape present in the Na +(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na +(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctivemore » Na+ coordination.« less

  9. IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts

    DOE PAGES

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; ...

    2017-09-27

    Here in this paper we report an IR-IR double resonance study of the structural landscape present in the Na +(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na +(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctivemore » Na+ coordination.« less

  10. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5))more » and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure« less

  11. Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple

    NASA Astrophysics Data System (ADS)

    Murakami, Rikito; Kamada, Kei; Shoji, Yasuhiro; Yokota, Yuui; Yoshino, Masao; Kurosawa, Shunsuke; Ohashi, Yuji; Yamaji, Akihiro; Yoshikawa, Akira

    2018-04-01

    The fabrication and thermal electromotive force characteristics of Ir/Ir-Rh thermocouples capable of repeated bending deformation are described. Ir and Ir-Rh wires with a diameter of 0.5 mm were fabricated using the alloy-micro-pulling-down method. Scanning electron microscopy and electron backscattering diffraction of the radial cross section of the grown wires were performed to investigate the microstructure and orientation of the crystal grains. At the start of growth, the microstructure was polycrystalline with diameters of several hundred micrometers, while at the 8-m growth point it was found to be monocrystalline. The observed single crystals of pure Ir and Ir-Rh alloy were oriented in the 〈1 1 3〉 and 〈1 1 2〉 directions, respectively, whereas the polycrystalline Ir-Rh samples showed preferential growth in the 〈1 0 0〉 direction. The thermal electromotive force of the fabricated Ir/Ir-Rh thermocouple was measured by the comparison technique and the fixed-point technique, and the thermoelectric power was estimated to be 5.9 μV/°C in the range from 600°C to 1100°C.

  12. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  13. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  14. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separatedmore » by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.« less

  15. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  16. Observations of z-dependent microbunching harmonic intensities using COTR in a SASE FEL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Biedron, S. G.; Dejus, R. J.

    The nonlinear generation of harmonics in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) continues to be of interest. Complementary to such studies is the search for information on the electron beam microbunching harmonic components, which are revealed by coherent optical transition radiation (COTR) experiments. An initial z-dependent set of data has been obtained with the fundamental at 530 nm and the second harmonic at 265 nm. The latter data were collected after every other undulator in a nine-undulator string. These results are compared to estimates based on GINGER and an analytical model for nonlinear harmonic generation.

  17. Identification of an immunodominant region of Fel d 1 and characterization of constituent epitopes.

    PubMed

    Bateman, E A L; Ardern-Jones, M R; Ogg, G S

    2008-11-01

    Characterization of T cell epitopes restricted by common HLA alleles is a powerful tool in the understanding of the immune responses to allergens and for the identification of potential peptides for future peptide immunotherapy (PIT). One important requirement is the identification and use of peptides that will bind to HLA molecules covering a large proportion of the population. To identify commonly recognized CD4(+) T cell epitopes in Fel d 1, restricted through frequently expressed HLA molecules for potential future use in PIT. HLA matched antigen presenting cells, HLA blocking antibodies, and peptide truncations were used in ELISpot assays to establish HLA-restricted T cell epitopes. Cytokine responses were measured by ex vivo and cultured IFN-gamma, IL-4, and IL-10 ELISpots. Responses to an immunodominant region of chain 2 were identified in the majority of atopic individuals and epitopes restricted by HLA-DQB1(*)06 and -DPB1(*)0401 were characterized in detail. Significantly higher ex vivo IL-4 and lower IFN-gamma responses were observed to both epitopes in individuals with atopic dermatitis (AD) compared with those without disease. IL-10 responses were significantly lower in those with AD in the individuals with HLA-DPB1(*)0401. We have identified an immunodominant region of Fel d 1 which is frequently recognized by CD4(+) T cells from atopic individuals and contains epitopes that are restricted by very common HLA alleles.

  18. SenseLab

    PubMed Central

    Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.

    2009-01-01

    This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162

  19. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  20. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  1. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  2. Multipurpose end-station for coherent diffraction imaging and scattering at FERMI@Elettra free-electron laser facility.

    PubMed

    Capotondi, Flavio; Pedersoli, Emanuele; Bencivenga, Filippo; Manfredda, Michele; Mahne, Nicola; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco; Demidovich, Alexander; Nikolov, Ivaylo; Danailov, Miltcho; Masciovecchio, Claudio; Kiskinova, Maya

    2015-05-01

    The Diffraction and Projection Imaging (DiProI) beamline at FERMI, the Elettra free-electron laser (FEL), hosts a multi-purpose station that has been opened to users since the end of 2012. This paper describes the core capabilities of the station, designed to make use of the unique features of the FERMI-FEL for performing a wide range of static and dynamic scattering experiments. The various schemes for time-resolved experiments, employing both soft X-ray FEL and seed laser IR radiation are presented by using selected recent results. The ongoing upgrade is adding a reflection geometry setup for scattering experiments, expanding the application fields by providing both high lateral and depth resolution.

  3. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    ERIC Educational Resources Information Center

    Haagen-Schuetzenhoefer, Claudia

    2012-01-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…

  4. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  5. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  6. Spaceport Processing System Development Lab

    NASA Technical Reports Server (NTRS)

    Dorsey, Michael

    2013-01-01

    The Spaceport Processing System Development Lab (SPSDL), developed and maintained by the Systems Hardware and Engineering Branch (NE-C4), is a development lab with its own private/restricted networks. A private/restricted network is a network with restricted or no communication with other networks. This allows users from different groups to work on their own projects in their own configured environment without interfering with others utilizing their resources in the lab. The different networks being used in the lab have no way to talk with each other due to the way they are configured, so how a user configures his software, operating system, or the equipment doesn't interfere or carry over on any of the other networks in the lab. The SPSDL is available for any project in KSC that is in need of a lab environment. My job in the SPSDL was to assist in maintaining the lab to make sure it's accessible for users. This includes, but is not limited to, making sure the computers in the lab are properly running and patched with updated hardware/software. In addition to this, I also was to assist users who had issues in utilizing the resources in the lab, which may include helping to configure a restricted network for their own environment. All of this was to ensure workers were able to use the SPSDL to work on their projects without difficulty which would in turn, benefit the work done throughout KSC. When I wasn't working in the SPSDL, I would instead help other coworkers with smaller tasks which included, but wasn't limited to, the proper disposal, moving of, or search for essential equipment. I also, during the free time I had, used NASA's resources to increase my knowledge and skills in a variety of subjects related to my major as a computer engineer, particularly in UNIX, Networking, and Embedded Systems.

  7. FEL (free-electron lasers) undulator technology and synchrotron radiation source requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Quimby, D.; Slater, J.

    This paper describes design and construction considerations of the THUNDER undulator, for use in free-electron laser experiments at visible wavelengths. For the parameters of these experiments, an unusually high degree of optimization of the electron-photon interaction is required and, as a result, THUNDER is built to especially high mechanical and magnetic precision. Except for its narrow magnet gap, the 5-meter THUNDER undulator is quite similar to insertion devices under consideration for the proposed 6-GeV storage ring. The engineering and physics approach adopted for this FEL modulator design is directly applicable to insertion device development. The tolerance limits to THUNDER, establishedmore » by modeling and design and achieved through careful control of mechanical and magnetic errors, are essential to the next generation of insertion devices.« less

  8. Some issues and subtleties in numerical simulation of X-ray FEL's

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuraciesmore » of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).« less

  9. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  10. Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers.

    PubMed

    Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca

    2016-03-01

    Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. GeneLab: Open Science For Exploration

    NASA Technical Reports Server (NTRS)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  12. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  13. Airborne megawatt class free-electron laser for defense and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the farmore » infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.« less

  14. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    PubMed

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  15. Magnetism and anisotropy of Ir5+ based double perovskites Sr2CoIrO6andSr2FeIrO6

    NASA Astrophysics Data System (ADS)

    Terzic, Jasminka; Yuan, S. J.; Song, W. H.; Aswartham, S.; Cao, G.

    2015-03-01

    We report on structural, thermodynamic and transport study of single-crystal double perovskites Sr2CoIrO6andSr2FeIrO6.TheisostructuralSr2CoIrO6andSr2FeIrO6 feature a cubic crystal structure with pentavalent Ir5+(5d4) which are anticipated to have J =0 singlet ground states in the strong spin-orbit coupling limit. Here we observe magnetic coupling between 5d and 3d (Co, Fe) elements, which result in antiferromagnetic order at high temperatures in both double perovskites. Of the two, Sr2CoIrO6 displays antiferromagnetic metallic behavior with a pronounced magnetic anisotropy; in sharp contrast, the isostructural Sr2FeIrO6 exhibits an antiferroamagnetic, insulating ground state without discernible magnetic anisotropy. The data will be discussed and presented with comparisons drawn with similar systems. This work was supported by NSF via Grant DMR 1265162.

  16. Spin orientations of the spin-half Ir 4+ ions in Sr 3NiIrO 6, Sr 2IrO 4 and Na 2IrO 3: Density functional, perturbation theory and Madelung potential analyses

    DOE PAGES

    Gordon, Elijah E.; Xiang, Hongjun; Koehler, Jurgen; ...

    2016-03-01

    The spins of the low-spin Ir 4+ (S = 1/2, d 5) ions at the octahedral sites of the oxides Sr 3NiIrO 6, Sr 2IrO 4 and Na 2IrO 3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of DFT calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr 3NiIrO 6 and Sr 2IrO 4 are correctly predicted by DFT calculations, and are accounted formore » by the perturbation theory analysis. As for the spin orientation of Na 2IrO 3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir 4+ spin orientation of Na 2IrO 3 should have nonzero components along the c- and a-axes directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir 4+ ions are taken into consideration. There are indications implying that the 5d electrons of Na 2IrO 3 are less strongly localized compared with those of Sr 3NiIrO 6 and Sr 2IrO 4. This implication was confirmed by showing that the Madelung potentials of the Ir 4+ ions are less negative in Na 2IrO 3 than in Sr 3NiIrO 6, Sr 2IrO 4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. As a result, the spin-orbital entanglement for the 5d spin-half ions Ir 4+ is not as strong as has been assumed lately.« less

  17. Spin orientations of the spin-half Ir4+ ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses

    NASA Astrophysics Data System (ADS)

    Gordon, Elijah E.; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-01

    The spins of the low-spin Ir4+ (S = 1/2, d5) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir4+ spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir4+ ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir4+ ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir4+ is not as strong as has been assumed.

  18. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  19. Megawatt-class free-electron laser concept for shipboard self-defense

    NASA Astrophysics Data System (ADS)

    Todd, Alan M. M.; Colson, William B.; Neil, George R.

    1997-05-01

    An efficient MW-class free electron laser (FEL) directed energy weapon (DEW) system holds promise for satisfying shipboard self-defense (SSD) requirements on future generations of Navy vessels because of the potential for high- power operation and the accessibility to all IR wavelengths. In order to meet shipboard packaging and prime power constraints, the power efficiency and high real-estate gradient achievable in a FEL driven by a superconducting rf accelerator is attractive. Configuration options and the key development issues for such a system are described.

  20. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; hide

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  1. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  2. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  3. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  4. NOT Another Lab Report

    ERIC Educational Resources Information Center

    Ende, Fred

    2012-01-01

    Ask students to name the aspects of science class they enjoy most, and working on labs will undoubtedly be mentioned. What often won't be included, however, is writing lab reports. For many students, the process of exploration and data collection is paramount, while the explanation and analysis of findings often takes a backseat. After all, if…

  5. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  6. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  8. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  9. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  10. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  11. Endangered Languages and Education. Proceedings of the Foundation for Endangered Languages (FEL) Conference (3rd, Maynooth, Ireland, September 17-19, 1999).

    ERIC Educational Resources Information Center

    Ostler, Nicholas, Ed.

    The theme of the third annual Foundation for Endangered Languages (FEL) Conference was Endangered Languages and Education, focusing on how education can be used to promote, resist, and reverse the decline of a language. The conference papers are broken into several sections covering the topic from a variety of aspects and perspectives.…

  12. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila.

    PubMed

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan Dt; Garrity, Paul A

    2016-04-29

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.

  13. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis.

    PubMed

    Sadagurski, Marianna; Dong, X Charlie; Myers, Martin G; White, Morris F

    2014-02-01

    Insulin receptor substrates (Irs1, 2, 3 and Irs4) mediate the actions of insulin/IGF1 signaling. They have similar structure, but distinctly regulate development, growth, and metabolic homeostasis. Irs2 contributes to central metabolic sensing, partially by acting in leptin receptor (LepRb)-expressing neurons. Although Irs4 is largely restricted to the hypothalamus, its contribution to metabolic regulation is unclear because Irs4-null mice barely distinguishable from controls. We postulated that Irs2 and Irs4 synergize and complement each other in the brain. To examine this possibility, we investigated the metabolism of whole body Irs4(-/y) mice that lacked Irs2 in the CNS (bIrs2(-/-)·Irs4(-/y)) or only in LepRb-neurons (Lepr (∆Irs2) ·Irs4 (-/y) ). bIrs2(-/-)·Irs4(-/y) mice developed severe obesity and decreased energy expenditure, along with hyperglycemia and insulin resistance. Unexpectedly, the body weight and fed blood glucose levels of Lepr (∆Irs2) ·Irs4 (-/y) mice were not different from Lepr (∆Irs2) mice, suggesting that the functions of Irs2 and Irs4 converge upon neurons that are distinct from those expressing LepRb.

  14. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  15. Synthesis and characterization of carbazolide-based iridium PNP pincer complexes. Mechanistic and computational investigation of alkene hydrogenation: evidence for an Ir(III)/Ir(V)/Ir(III) catalytic cycle.

    PubMed

    Cheng, Chen; Kim, Bong Gon; Guironnet, Damien; Brookhart, Maurice; Guan, Changjian; Wang, David Y; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-05-07

    New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.

  16. Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Ding, Y.; Huang, Z.

    2011-12-14

    The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be <10 fs. In this paper we report our numerical optimization and simulations to produce even shorter x-ray pulses by optimizing the machine and undulator setup at 20 pC charge. In the soft x-ray regime, with combination of slotted-foil or undulator taper, a single spike x-ray pulse is achievablemore » with peak FEL power of a few 10s GW. Linac Coherent Light Source (LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at

  17. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  18. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila

    PubMed Central

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan DT; Garrity, Paul A

    2016-01-01

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI: http://dx.doi.org/10.7554/eLife.13254.001 PMID:27126188

  19. Interband Transitions, IR-Active Phonons, and Plasma Vibrations of Some Metal Hexaborides

    NASA Astrophysics Data System (ADS)

    Werheit, H.; Au, T.; Schmechel, R.; Paderno, Yu. B.; Konovalova, E. S.

    2000-10-01

    The high IR reflectivity of monocrystalline metallic metal hexaborides is superimposed by weak phonon spectra. The symmetry selection rules are lifted, probably because of structural defects. From the plasmon-phonon polariton frequencies in metallic LaB6 compared with those in semiconducting EuB6 and YbB6, the softening and the hardening of specific F1u modes by the free carriers are determined. From the plasma edges of EuB6 and YbB6, some parameters of the electronic transport are derived. The electron concentration increases proportional to the C content, whose donor properties are found to be comparable to those of hydrogen-like impurities. The existence of energy gaps in EuB6 and YbB6 proves that these compounds are semiconductors.

  20. The IRS-1 signaling system.

    PubMed

    White, M F

    1994-02-01

    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  1. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  2. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  3. SPARTAN Near-IR Camera | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "

  4. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  5. IR in Norway

    NASA Astrophysics Data System (ADS)

    Haakenaasen, Randi; Lovold, Stian

    2003-01-01

    Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.

  6. Planning a Computer Lab: Considerations To Ensure Success.

    ERIC Educational Resources Information Center

    IALL Journal of Language Learning Technologies, 1994

    1994-01-01

    Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…

  7. TQM in a Computer Lab.

    ERIC Educational Resources Information Center

    Swanson, Dewey A.; Phillips, Julie A.

    At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  9. Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111)

    NASA Astrophysics Data System (ADS)

    Perini, Marco; Meyer, Sebastian; Dupé, Bertrand; von Malottki, Stephan; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland; Heinze, Stefan

    2018-05-01

    We use spin-polarized scanning tunneling microscopy and density functional theory (DFT) to study domain walls (DWs) and the Dzyaloshinskii-Moriya interaction (DMI) in epitaxial films of Co/Ir(111) and Pt/Co/Ir(111). Our measurements reveal DWs with fixed rotational sense for one monolayer of Co on Ir, with a wall width around 2.7 nm. With Pt islands on top, we observe that the DWs occur mostly in the uncovered Co/Ir areas, suggesting that the wall energy density is higher in Pt/Co/Ir(111). From DFT we find an interfacial DMI that stabilizes Néel-type DWs with clockwise rotational sense. The calculated DW widths are in good agreement with the experimental observations. The calculated total DMI nearly doubles from Co/Ir(111) to Pt/Co/Ir(111); however, in the latter case the DMI is almost entirely due to the Pt with only a minor Ir contribution. Therefore a simple additive effect, in which both interfaces contribute significantly to the total DMI, is not observed for one atomic Co layer sandwiched between Ir and Pt.

  10. EPICS Channel Access Server for LabVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Alexander P.

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  11. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nmmore » from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.« less

  12. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    PubMed

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  13. JUNGFRAU 0.2: prototype characterization of a gain-switching, high dynamic range imaging system for photon science at SwissFEL and synchrotrons

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Maliakal, D.; Mezza, D.; Mozzanica, A.; Ruder, Ch; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional pixel detector for photon science applications at free electron lasers and synchrotron light sources. It is developed for the SwissFEL currently under construction at the Paul Scherrer Institute, Switzerland. Characteristics of this application-specific integrating circuit readout chip include single photon sensitivity and low noise over a dynamic range of over four orders of magnitude of photon input signal. These characteristics are achieved by a three-fold gain-switching preamplifier in each pixel, which automatically adjusts its gain to the amount of charge deposited on the pixel. The final JUNGFRAU chip comprises 256 × 256 pixels of 75 × 75 μm2 each. Arrays of 2 × 4 chips are bump-bonded to monolithic detector modules of about 4 × 8 cm2. Multi-module systems up to 16 Mpixels are planned for the end stations at SwissFEL. A readout rate in excess of 2 kHz is anticipated, which serves the readout requirements of SwissFEL and enables high count rate synchrotron experiments with a linear count rate capability of > 20 MHz/pixel. Promising characterization results from a 3.6 × 3.6 mm2 prototype (JUNGFRAU 0.2) with fluorescence X-ray, infrared laser and synchrotron irradiation are shown. The results include an electronic noise as low as 100 electrons root-mean-square, which enables single photon detection down to X-ray energies of about 2 keV. Noise below the Poisson fluctuation of the photon number and a linearity error of the pixel response of about 1% are demonstrated. First imaging experiments successfully show automatic gain switching. The edge spread function of the imaging system proves to be comparable in quality to single photon counting hybrid pixel detectors.

  14. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  15. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  16. Science Lab: A Peer Approach.

    ERIC Educational Resources Information Center

    Ronca, Courtney C.

    The two goals of this program were to increase the number of classroom teachers using the lab and to increase the amount of time that the science lab was used. The solution strategy chosen was a combination of peer tutoring, orientation presentations, small group discovery experiments and activities, and individual science experiment stations. The…

  17. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2003-03-19

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith,more » Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II.« less

  18. LANGUAGE LABS--AN UPDATED REPORT.

    ERIC Educational Resources Information Center

    1963

    REPORTS FROM SEVERAL SCHOOL DISTRICTS ON THE USE OF AND PLANNING OF LANGUAGE LABORATORIES ARE PRESENTED. LABORATORIES SHOULD BE ARRANGED FOR FLEXIBLE USE. THE AVERAGE HIGH SCHOOL STUDENT CAN USE A LAB PROFITABLY FOR 20 TO 25 MINUTES. THERE ARE THREE DIFFERENT TYPES OF LANGUAGE LABORATORIES THAT ARE DESCRIBED. THE SATELLITE LAB IS DIVIDED BY A…

  19. Academic Pipeline and Futures Lab

    DTIC Science & Technology

    2016-02-01

    AFRL-RY-WP-TR-2015-0186 ACADEMIC PIPELINE AND FUTURES LAB Brian D. Rigling Wright State University FEBRUARY 2016...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) February 2016 Final 12 June 2009 – 30 September 2015 4. TITLE AND SUBTITLE ACADEMIC ...6 3 WSU ACADEMIC PIPELINE AND LAYERED SENSING FUTURES LAB (prepared by K

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  1. Towards a Manifesto for Living Lab Co-creation

    NASA Astrophysics Data System (ADS)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  2. International Conference on Infrared and Millimeter Waves, 18th, Univ. of Essex, Colchester, United Kingdom, Sept. 6-10, 1993, Conference Digest

    NASA Astrophysics Data System (ADS)

    Birch, James R.; Parker, Terence J.

    Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.

  3. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    PubMed Central

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  4. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  5. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  6. Labs: 1987.

    ERIC Educational Resources Information Center

    Igelsrud, Don, Ed.

    1988-01-01

    This article presents a variety of topics discussed in this column and at a biology teachers' workshop concerning the quality and value of lab techniques used for teaching high school biology. Topics included are Drosophila salivary glands, sea urchins, innovations, dyes and networking. (CW)

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    -486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510

  8. Report from the banding lab

    USGS Publications Warehouse

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  9. Identification of forged Bank of England £20 banknotes using IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnex, Emily; Almond, Matthew J.; Baum, John V.; Bond, John W.

    2014-01-01

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm-1 arising from νasym (CO32-) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm-1), ν(Csbnd H) (ca. 2900 cm-1) and ν(Cdbnd O) (ca. 1750 cm-1) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper.

  10. Identification of forged Bank of England £20 banknotes using IR spectroscopy.

    PubMed

    Sonnex, Emily; Almond, Matthew J; Baum, John V; Bond, John W

    2014-01-24

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm(-1) arising from νasym (CO3(2-)) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm(-1)), ν(C-H) (ca. 2900 cm(-1)) and ν(C=O) (ca. 1750 cm(-1)) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  12. ALBERMARLE PAMLICO IR 2002

    EPA Science Inventory

    The 2002 Albermarle Pamlico Implementation Review (IR) highlights recent successes and challenges with the estuary program. Various components within the IR include: CCMP implementation, outlining priority management actions, public involvement, stakeholder contribution, and limi...

  13. Macro-fingerprint analysis-through-separation of licorice based on FT-IR and 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Ping; Xu, Changhua; Yang, Yan; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili; Zhou, Qun; Sun, Suqin; Li, Huifen

    2014-07-01

    In this paper, a step-by-step analysis-through-separation method under the navigation of multi-step IR macro-fingerprint (FT-IR integrated with second derivative IR (SD-IR) and 2DCOS-IR) was developed for comprehensively characterizing the hierarchical chemical fingerprints of licorice from entirety to single active components. Subsequently, the chemical profile variation rules of three parts (flavonoids, saponins and saccharides) in the separation process were holistically revealed and the number of matching peaks and correlation coefficients with standards of pure compounds was increasing along the extracting directions. The findings were supported by UPLC results and a verification experiment of aqueous separation process. It has been demonstrated that the developed multi-step IR macro-fingerprint analysis-through-separation approach could be a rapid, effective and integrated method not only for objectively providing comprehensive chemical characterization of licorice and all its separated parts, but also for rapidly revealing the global enrichment trend of the active components in licorice separation process.

  14. Evaluation of oral microbiology lab curriculum reform.

    PubMed

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  15. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  16. The mid-IR and near-IR interferometry of AGNs: key results and their implications

    NASA Astrophysics Data System (ADS)

    Kishimoto, M.

    2015-09-01

    Infrared interferometry has been very productive in directly probing the structure of AGNs at sub-pc scales. With tens of objects already probed in the mid-IR and near-IR, I will summarize the key results and im- plications from this direct exploration. The Keck interferometry in the near-IR and VLTI in the mid-IR shaped the luminosity dependence of the torus size and structure, while the latter also revealed an equatorial structure at several Rsub (dust sublimation radius), and a polar-elongated region at a few tens of Rsub. Notably, this polar component seems to dominate the compact mid-IR flux. This component can persuasively be attributed to a polar outflow. However, interferometry, through emissivity estimations, also indicates that it is not a UV-optically-thin cloud but participating in the obscuration of the nucleus. I will discuss how to accommodate all these facts to build a consistent picture.

  17. Innovation - A view from the Lab

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  18. Validation of Maturity Offset in the Fels Longitudinal Study.

    PubMed

    Malina, Robert M; Choh, Audrey C; Czerwinski, Stefan A; Chumlea, Wm Cameron

    2016-08-01

    Sex-specific equations for predicting maturity offset, time before or after peak height velocity (PHV), were evaluated in 63 girls and 74 boys from the Fels Longitudinal Study. Serially measured heights (0.1 cm), sitting heights (0.1 cm), weights (0.1 kg), and estimated leg lengths (0.1 cm) from 8 to 18 years were used. Predicted age at PHV (years) was calculated as the difference between chronological age (CA) and maturity offset. Actual age at PHV for each child was derived with a triple logistic model (Bock-Thissen-du Toit). Mean predicted maturity offset was negative and lowest at 8 years and increased linearly with increasing CA. Predicted ages at PHV increased linearly with CA from 8 to 18 years in girls and from 8 to 13 years in boys; predictions varied within relatively narrow limits from 12 to 15 years and then increased to 18 years in boys. Differences between predicted and actual ages at PHV among youth of contrasting maturity status were significant across the age range in both sexes. Dependence of predicted age at PHV upon CA at prediction and on actual age at PHV limits its utility as an indicator of maturity timing and in sport talent programs.

  19. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  20. LABS Foundational Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jerry

    2012-01-01

    They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.

  1. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila.

    PubMed

    Ai, Minrong; Blais, Steven; Park, Jin-Yong; Min, Soohong; Neubert, Thomas A; Suh, Greg S B

    2013-06-26

    Drosophila olfactory sensory neurons express either odorant receptors or ionotropic glutamate receptors (IRs). The sensory neurons that express IR64a, a member of the IR family, send axonal projections to either the DC4 or DP1m glomeruli in the antennal lobe. DC4 neurons respond specifically to acids/protons, whereas DP1m neurons respond to a broad spectrum of odorants. The molecular composition of IR64a-containing receptor complexes in either DC4 or DP1m neurons is not known, however. Here, we immunoprecipitated the IR64a protein from lysates of fly antennal tissue and identified IR8a as a receptor subunit physically associated with IR64a by mass spectrometry. IR8a mutants and flies in which IR8a was knocked down by RNAi in IR64a+ neurons exhibited defects in acid-evoked physiological and behavioral responses. Furthermore, we found that the loss of IR8a caused a significant reduction in IR64a protein levels. When expressed in Xenopus oocytes, IR64a and IR8a formed a functional ion channel that allowed ligand-evoked cation currents. These findings provide direct evidence that IR8a is a subunit that forms a functional olfactory receptor with IR64a in vivo to mediate odor detection.

  2. IR GRIN optics: design and fabrication

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; McClain, Collin; Deegan, John; Lindberg, George; Unger, Blair; Vizgaitis, Jay

    2017-06-01

    Infrared (IR) transmitting gradient index (GRIN) materials have been developed for broad-band IR imaging. This material is derived from the diffusion of homogeneous chalcogenide glasses has good transmission for all IR wavebands. The optical properties of the IR-GRIN materials are presented and the fabrication and design methodologies are discussed. Modeling and optimization of the diffusion process is exploited to minimize the deviation of the index profile from the design profile. Fully diffused IR-GRIN blanks with Δn of 0.2 are demonstrated with deviation errors of +/-0.01 refractive index units.

  3. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.

    PubMed

    Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F

    2016-09-02

    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A

  5. Experiential Learning of Digital Communication Using LabVIEW

    ERIC Educational Resources Information Center

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  6. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    PubMed

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p < 0.001). The cut-off values for IR were: HOMA1-IR > 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  7. Practical Physics Labs: A Resource Manual.

    ERIC Educational Resources Information Center

    Goodwin, Peter

    This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…

  8. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  9. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  10. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  11. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  12. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  13. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    PubMed Central

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  14. Spin orientations of the spin-half Ir{sup 4+} ions in Sr{sub 3}NiIrO{sub 6}, Sr{sub 2}IrO{sub 4}, and Na{sub 2}IrO{sub 3}: Density functional, perturbation theory, and Madelung potential analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Elijah E.; Whangbo, Myung-Hwan, E-mail: mike-whangbo@ncsu.edu; Xiang, Hongjun

    2016-03-21

    The spins of the low-spin Ir{sup 4+} (S = 1/2, d{sup 5}) ions at the octahedral sites of the oxides Sr{sub 3}NiIrO{sub 6}, Sr{sub 2}IrO{sub 4}, and Na{sub 2}IrO{sub 3} exhibit preferred orientations with respect to their IrO{sub 6} octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr{sub 3}NiIrO{sub 6} and Sr{sub 2}IrO{sub 4} are correctly predicted by DFT calculations,more » and are accounted for by the perturbation theory analysis. As for the spin orientation of Na{sub 2}IrO{sub 3}, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir{sup 4+} spin orientation of Na{sub 2}IrO{sub 3} should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir{sup 4+} ions are taken into consideration. There are indications implying that the 5d electrons of Na{sub 2}IrO{sub 3} are less strongly localized compared with those of Sr{sub 3}NiIrO{sub 6} and Sr{sub 2}IrO{sub 4}. This implication was confirmed by showing that the Madelung potentials of the Ir{sup 4+} ions are less negative in Na{sub 2}IrO{sub 3} than in Sr{sub 3}NiIrO{sub 6} and Sr{sub 2}IrO{sub 4}. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin

  15. Baseball Physics: A New Mechanics Lab

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  16. Teaching Chemistry Lab Safety through Comics

    NASA Astrophysics Data System (ADS)

    di Raddo, Pasquale

    2006-04-01

    As a means for raising students' interest in aspects pertaining to chemistry lab safety, this article presents a novel approach to teaching this important subject. Comic book lab scenes that involve fictional characters familiar to many students are presented and discussed as to the safety concerns represented in those images. These are discussed in a safety prelab session. For the sake of comparison, students are then shown images taken from current chemistry journals of safety-conscious contemporary chemists at work in their labs. Finally the need to adhere to copyright regulations for the use of the images is discussed so as to increase students' awareness of academic honesty and copyright issues.

  17. Optical/IR from ground

    NASA Technical Reports Server (NTRS)

    Strom, Stephen; Sargent, Wallace L. W.; Wolff, Sidney; Ahearn, Michael F.; Angel, J. Roger; Beckwith, Steven V. W.; Carney, Bruce W.; Conti, Peter S.; Edwards, Suzan; Grasdalen, Gary

    1991-01-01

    Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists)

  18. RF Couplers for Normal-Conducting Photoinjector of High-Power CW FEL

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey; Schrage, Dale; Wood, Richard; Schultheiss, Tom; Rathke, John; Young, Lloyd

    2004-05-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be build for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by "dog-bone" irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  19. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaikh, M.; Shaygi, B.; Asadi, H., E-mail: asadi.hamed@gmail.com

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to themore » post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.« less

  20. Hydrogel Beads: The New Slime Lab?

    ERIC Educational Resources Information Center

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  1. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  2. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  3. Seeing an Old Lab in a New Light: Transforming a Traditional Optics Lab into Full Guided Inquiry

    ERIC Educational Resources Information Center

    Maley, Tim; Stoll, Will; Demir, Kadir

    2013-01-01

    This paper describes the authors' experiences transforming a "cookbook" lab into an inquiry-based investigation and the powerful effect the inquiry-oriented lab had on our students' understanding of lenses. We found the inquiry-oriented approach led to richer interactions between students as well as a deeper conceptual…

  4. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  5. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  6. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  7. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    NASA Astrophysics Data System (ADS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  8. Mid-IR supercontinuum generation and applications: a review

    NASA Astrophysics Data System (ADS)

    Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire

    2014-09-01

    In this paper, a review on mid-IR supercontinuum generation (SCG) and its applications is presented. First, the physical mechanism of the supercontinuum generation in IR crystal fiber is introduced. Second, the recent progress on IR single crystal fiber, in particular ultrathin core double cladding IR single crystal fiber is described. Third, the transmission characteristics of mid-IR crystal fiber is illustrated. Fourth, the mid-IR supercontinuum generation in IR single crystal fiber is presented. Finally, the application of IR supercontinuum for smart target recognition is illustrated

  9. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  10. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  11. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    PubMed

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Supercharging Lessons with a Virtual Lab

    ERIC Educational Resources Information Center

    Stewart, Jefferson; Vincent, Daniel

    2013-01-01

    The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…

  13. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  14. A highly active and stable IrO x/SrIrO 3 catalyst for the oxygen evolution reaction

    DOE PAGES

    Seitz, Linsey C.; Dickens, Colin F.; Nishio, Kazunori; ...

    2016-09-02

    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x/SrIrO 3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3. This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidicmore » electrolyte. Here, density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x/SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.« less

  15. Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio

    Science.gov Websites

    Preservation Research | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News to digitally recover a 128-year-old recording of Alexander Graham Bell's voice, enabling people to

  16. IR reflectance spectroscopy of carbon dioxide clathrate hydrates. Implications for Saturn's icy moons.

    NASA Astrophysics Data System (ADS)

    Oancea, A.; Grasset, O.; Le Menn, E.; Bezacier, L.; Bollengier, O.; Le Mouélic, S.; Tobie, G.

    2012-04-01

    A CO2 spectral band was discovered by VIMS on the Saturn's satellites Dione, Hyperion, Iapetus and Phoebe [1]. The band position on the three first satellites corresponds to CO2 trapped in a complex material, but no indication exists whether this latter is water ice or some mineral or complex organic compound [1]. On Phoebe, the CO2 spectral band is consistent with solid CO2 or CO2 molecules trapped in the small cages of a clathrate hydrate structure [2]. It is thought that clathrate hydrates could play a significant role in the chemistry of the solar nebula [3] and in the physical evolution of astrophysical objects [4]. But so far, no clathrate hydrate structure has been observed in astrophysical environments. Moreover, identification of molecules trapped in a clathrate hydrate structure is extremely difficult because of the strong IR vibration modes of the water ice matrix. In this work, experimental IR reflectance spectra for CO2 clathrate hydrates are studied on grains and films. Clathrates are synthesized in a high pressure autoclave at low temperatures. IR spectral analysis is made with a low pressure and low temperature cryostat. These experimental conditions - 80 < T < 110 K, P~10-5 bar - are relevant to icy moons' surfaces. We have observed that the IR reflectance, in the spectral region (3 - 5 μm) characterized by H2O and CO2 high absorption coefficients, is strongly dependent on physical (size, surface) and optical (n and k) properties of the samples. The impact of these parameters on the CO2 clathrate IR reflectance spectrum will be presented. A comparison between the absorption bands of CO2 clathrate hydrates obtained in our lab and CO2 absorption bands as detected by VIMS on the icy satellites of Saturn will be shown. This experimental work confirms that VIMS data are not consistent with the presence of structure I CO2 clathrate hydrates on the surface of the icy moons. Possibility of having metastable structure II still remains unsolved and will be

  17. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  18. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    ERIC Educational Resources Information Center

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  19. Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes

    ERIC Educational Resources Information Center

    Baseya, J. M.; Francis, C. D.

    2011-01-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…

  20. Diffraction-limited IR Microspectroscopy with IRENI

    Treesearch

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl

    2012-01-01

    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  1. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  2. Transforming the advanced lab: Part I - Learning goals

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.

    2012-02-01

    Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).

  3. Student Plagiarism and Faculty Responsibility in Undergraduate Engineering Labs

    ERIC Educational Resources Information Center

    Parameswaran, Ashvin; Devi, Poornima

    2006-01-01

    In undergraduate engineering labs, lab reports are routinely copied. By ignoring this form of plagiarism, teaching assistants and lab technicians neglect their role responsibility. By designing courses that facilitate it, however inadvertently, professors neglect their causal responsibility. Using the case of one university, we show via interviews…

  4. The IRS-1 signaling system.

    PubMed

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  5. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    PubMed

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  6. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  7. Accurate Transmittance Measurements of Thick, High-Index, High- Dispersion, IR Windows, Using a Fourier Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Kupferberg, Lenn C.

    1996-03-01

    Fourier transform IR [FT-IR] spectrometers have virtually replaced scanned grating IR spectrometers in the commercial market. While FTIR spectrometers have been a boon for the chemist, they present problems for the measurement of transmittance of thick, high-index, high-dispersion, IR windows. Reflection and refraction of light by the windows introduce measurement errors. The principles of the FT-IR spectrometer will be briefly reviewed. The origins of the measurement errors will be discussed. Simple modifications to the operation of commercially available instruments will be presented. These include using strategically placed apertures and the use of collimated vs. focused beams at the sample position. They are essential for removing the effects of reflected light entering the interferometer and limiting the divergence angle of light in the interferometer. The latter minimizes refractive effects and insures consistent underfilling of the detector. Data will be shown from FT-IR spectrometers made by four manufactures and compared to measurements from a dispersive spectrometer.

  8. Effectiveness of a Lab Manual Delivered on CD-ROM

    ERIC Educational Resources Information Center

    Brickman, Peggy; Ketter, Catherine A. Teare; Pereira, Monica

    2005-01-01

    Although electronic instructional media are becoming increasingly prevalent in science classrooms, their worth remains unproven. Here, student perceptions and performance using CD-ROM delivery of lab materials are assessed. Numerous learning barriers that produced lower lab grades for students using a CD-ROM lab manual in comparison to a print…

  9. Upconversion of the mid-IR pulses to the near-IR in LiGaS2

    NASA Astrophysics Data System (ADS)

    Kato, Kiyoshi; Umemura, Nobuhiro; Okamoto, Takuya; Petrov, Valentin

    2018-02-01

    This paper reports on the phase-matching properties of LiGaS2 for upconverting a Nd:YAG laser-pumped KTP and AgGaS2 optical parametric oscillator (OPO) at mid-IR to the near-IR by mixing with its pump source together with the new Sellmeier equations that provide a good reproduction of the present experimental results as well as the published data points of second-harmonic generation (SHG) and sum-frequency generation (SFG) of a CO2 laser, a Ti:Al2O3 laser-pumped optical parametric amplifier (OPA), and a Nd:YAG laser-pumped OPO in the mid-IR. This index formula gives the important information that group velocity mismatch (GVM) (Δsp = 1/υs - 1/υp) of LiGaS2 in the 4 - 11 μm range is 12 27 fs/mm lower than that of the widely used LiInS2, which makes it ideal for the upconversion of the mid-IR femtosecond pulses having large spectral bandwidths to the near-IR.

  10. Rapid discrimination of Panax notogeinseng of different grades by FT-IR and 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Ma, Fang; Chen, Jian-bo; Wu, Xian-xue; Zhou, Qun; Sun, Su-qin

    2016-11-01

    The herbal material of Notoginseng (the root of Panax notoginseng) is sold by "Tou" (the number of Notoginseng in every 500 g) to distinguish the grade. Normally the better quality, the few number of the "Tou" and the size of Notoginseng is bigger. In this study, three grades of Notoginseng harvested from Yunnan province were discriminated and identified by Fourier transform infrared spectroscopy (FT-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR)). The correlation coefficient of IR spectra between the three grades of Notoginseng and starch are greater than 0.95 in the range of 1300-800 cm-1, means the main compositions of Notoginseng are starch polysaccharide. Also, when the size of Notoginseng is bigger, it may contain more polysaccharide. There is no difference in range of 815-1000 cm-1 of the 2DCOS-IR synchronous spectra of the three grades means polysaccharides possess good thermal stability. In the range of 1200-1300 cm-1 shows the inverse ration between the thermal sensitivity of C-O and the number of "Tou". Combination with the 2DCOS-IR asynchronous spectra, the response speed of amino acid (1640 cm-1) on the thermal perturbation is the fastest, followed by nitrate (1384 cm-1); the response speed of polysaccharides (1079 cm-1) is the slowest. The result proved that the 2DCOS-IR could discriminate different grades of Notoginseng.

  11. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    NASA Astrophysics Data System (ADS)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  12. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys.

    PubMed

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-19

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn 2 ][Ir(NO 2 ) 6 ], [AuEn 2 ][Ir(NO 2 ) 6 ] х [Rh(NO 2 ) 6 ] 1-х and [AuEn 2 ][Rh(NO 2 ) 6 ]. The precursors employed contain all desired metals 'mixed' at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr 0.75 Rh 0.25 , AuIr 0.50 Rh 0.50 and AuIr 0.25 Rh 0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the 'conversion chemistry' mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  13. California State University, Northridge: Hybrid Lab Courses

    ERIC Educational Resources Information Center

    EDUCAUSE, 2014

    2014-01-01

    California State University, Northridge's Hybrid Lab course model targets high failure rate, multisection, gateway courses in which prerequisite knowledge is a key to success. The Hybrid Lab course model components incorporate interventions and practices that have proven successful at CSUN and other campuses in supporting students, particularly…

  14. The Portable Usability Testing Lab: A Flexible Research Tool.

    ERIC Educational Resources Information Center

    Hale, Michael E.; And Others

    A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…

  15. Modifying Cookbook Labs.

    ERIC Educational Resources Information Center

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  16. Teaching IR to Medical Students: A Call to Action.

    PubMed

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  17. Iridium Interfacial Stack - IrIS

    NASA Technical Reports Server (NTRS)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  18. HST WFC3/IR Calibration Updates

    NASA Astrophysics Data System (ADS)

    Durbin, Meredith; Brammer, Gabriel; Long, Knox S.; Pirzkal, Norbert; Ryan, Russell E.; McCullough, Peter R.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; HST WFC3 Team

    2016-01-01

    We report on several improvements to the characterization, monitoring, and calibration of the HST WFC3/IR detector. The detector performance has remained overall stable since its installation during HST Servicing Mission 4 in 2009. We present an updated persistence model that takes into account effects of exposure time and spatial variations in persistence across the detector, new grism wavelength solutions and master sky images, and a new SPARS sample sequence. We also discuss the stability of the IR gain, the time evolution and photometric properties of IR "snowballs," and the effect of IR "blobs" on point-source photometry.

  19. Traditional Labs + New Questions = Improved Student Performance.

    ERIC Educational Resources Information Center

    Rezba, Richard J.; And Others

    1992-01-01

    Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…

  20. Measuring Collimator Infrared (IR) Spectral Transmission

    DTIC Science & Technology

    2016-05-01

    TECHNICAL REPORT RDMR-WD-16-15 MEASURING COLLIMATOR INFRARED (IR) SPECTRAL TRANSMISSION Christopher L. Dobbins Weapons...AND DATES COVERED Final 4. TITLE AND SUBTITLE Measuring Collimator Infrared (IR) Spectral Transmission 5. FUNDING NUMBERS 6. AUTHOR(S) Christopher L...release; distribution is unlimited. 12b. DISTRIBUTION CODE A 13. ABSTRACT (Maximum 200 Words) Several Infrared (IR) imaging systems have been measured

  1. Optical/IR Products - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › USNO › Astrometry › Optical/IR Products USNO Logo USNO Navigation Optical/IR VLBI-based Products Astrometry Information Center Info Optical/IR Products Access to astrometric 2012. A poster paper describing the progress of URAT was presented at the April 2014 DDA meeting in

  2. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    ERIC Educational Resources Information Center

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  3. MatLab Programming for Engineers Having No Formal Programming Knowledge

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  4. eComLab: remote laboratory platform

    NASA Astrophysics Data System (ADS)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  5. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  6. Frederick National Lab Collaboration Success Stories | FNLCR Staging

    Cancer.gov

    IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to eval

  7. Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy

    Science.gov Websites

    -based tool for calculating energy use in residential buildings. About one million people visit the Home Management Software | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News

  8. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    PubMed

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  9. Reducing unnecessary lab testing in the ICU with artificial intelligence

    PubMed Central

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  10. Latest results from FROST at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, Barry G.

    2014-06-01

    The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of a polarized photon beam incident on a polarized target in meson photoproduction experiments. At Jefferson Lab, a program of such measurements has made use of the Jefferson Lab FROzen Spin Target (FROST). An overview of preliminary results are presented.

  11. The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Beussman, Douglas J.

    2007-01-01

    A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…

  12. Sodium Blood Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... Lab Tests Online [Internet]. American Association for Clinical Chemistry; c2001–2017. Cirrhosis; [updated 2017 Jan 8; cited ... Lab Tests Online [Internet]. American Association for Clinical Chemistry; c2001–2017. Electrolytes: Common Questions [updated 2015 Dec ...

  13. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    PubMed

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  14. LIVING LAB: User-Driven Innovation for Sustainability

    ERIC Educational Resources Information Center

    Liedtke, Christa; Welfens, Maria Jolanta; Rohn, Holger; Nordmann, Julia

    2012-01-01

    Purpose: The purpose of this paper is to summarize and discuss the results from the LIVING LAB design study, a project within the 7th Framework Programme of the European Union. The aim of this project was to develop the conceptual design of the LIVING LAB Research Infrastructure that will be used to research human interaction with, and stimulate…

  15. NASA GeneLab Concept of Operations

    NASA Technical Reports Server (NTRS)

    Thompson, Terri; Gibbs, Kristina; Rask, Jon; Coughlan, Joseph; Smith, Jeffrey

    2014-01-01

    NASA's GeneLab aims to greatly increase the number of scientists that are using data from space biology investigations on board ISS, emphasizing a systems biology approach to the science. When completed, GeneLab will provide the integrated software and hardware infrastructure, analytical tools and reference datasets for an assortment of model organisms. GeneLab will also provide an environment for scientists to collaborate thereby increasing the possibility for data to be reused for future experimentation. To maximize the value of data from life science experiments performed in space and to make the most advantageous use of the remaining ISS research window, GeneLab will apply an open access approach to conducting spaceflight experiments by generating, and sharing the datasets derived from these biological studies in space.Onboard the ISS, a wide variety of model organisms will be studied and returned to Earth for analysis. Laboratories on the ground will analyze these samples and provide genomic, transcriptomic, metabolomic and proteomic data. Upon receipt, NASA will conduct data quality control tasks and format raw data returned from the omics centers into standardized, annotated information sets that can be readily searched and linked to spaceflight metadata. Once prepared, the biological datasets, as well as any analysis completed, will be made public through the GeneLab Space Bioinformatics System webb as edportal. These efforts will support a collaborative research environment for spaceflight studies that will closely resemble environments created by the Department of Energy (DOE), National Center for Biotechnology Information (NCBI), and other institutions in additional areas of study, such as cancer and environmental biology. The results will allow for comparative analyses that will help scientists around the world take a major leap forward in understanding the effect of microgravity, radiation, and other aspects of the space environment on model organisms

  16. VLT near- to mid-IR imaging and spectroscopy of the M 17 UC1 - IRS5 region

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Jiang, Zhibo; Fang, Min

    2015-06-01

    Aims: We investigate the surroundings of the hypercompact H ii region M 17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Methods: We use diffraction-limited near-IR (VLT/NACO) and mid-IR (VLT/VISIR) images to reveal the different morphologies at various wavelengths. Likewise, we investigate the stellar and nebular content of the region with VLT/SINFONI integral field spectroscopy with a resolution R ˜ 1500 at H + K bands. Results: Five of the seven point sources in this region show L-band excess emission. A geometric match is found between the H2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H2 emission is typical for dense photodissociation regions (PDRs), which are initially far-ultraviolet pumped and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity LIR in the range 1-20 μm is derived for three objects; we obtain 2.0 × 103 L⊙ for IRS5A, 13 L⊙ for IRS5C, and 10 L⊙ for B273A. Conclusions: IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (˜9 M⊙, ˜1 × 105 yrs); it might have terminated accretion due to the feedback from stellar activities (radiation pressure, outflow) and the expanding H ii region of M 17. The object UC1 might also have terminated accretion because of the expanding hypercompact H ii region, which it ionizes. The disk clearing process of the low-mass young stellar objects in this region might be accelerated by the expanding H ii region. The outflows driven by UC1 are running south-north with its northeastern side suppressed by the expanding ionization front of M 17; the blue-shifted outflow lobe of IRS5A is seen in two types of tracers along the same line of sight in the form of H2 emission

  17. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  18. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  19. Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine

    NASA Astrophysics Data System (ADS)

    Rosado, Mário Túlio S.; Duarte, Maria Leonor R. S.; Fausto, Rui

    1997-06-01

    The vibrational spectra of α- and β-alaine molecules in both their zwitterionic and neutral forms are studied by FT-IR, Raman and MI-IR spectroscopy. Together with results from theoretical SCF-MO ab initio calculations, the spectroscopic data obtained under the various experimental conditions used in this study (crystalline phase; low temperature matrix isolated molecules) enable to undertake a detailed assignment of the vibrational spectra of the studied compounds.

  20. A Case Study of a High School Fab Lab

    NASA Astrophysics Data System (ADS)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  1. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2018-01-16

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  2. Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures

    NASA Astrophysics Data System (ADS)

    Shang, T.; Yang, H. L.; Zhan, Q. F.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2016-10-01

    We report an investigation of anomalous-Hall resistance (AHR) and spin-Hall magnetoresistance (SMR) in Pt/Ir20Mn80/Y3Fe5O12 (Pt/IrMn/YIG) heterostructures. The AHR of Pt/IrMn/YIG heterostructures with an antiferromagnetic inserted layer is dramatically enhanced as compared to that of the Pt/YIG bilayer. The temperature dependent AHR behavior is nontrivial, while the IrMn thickness dependent AHR displays a peak at an IrMn thickness of 3 nm. The observed SMR in the temperature range of 10-300 K indicates that the spin current generated in the Pt layer can penetrate the IrMn layer (≤3 nm) to interact with the ferromagnetic YIG layer. The lack of conventional anisotropic magnetoresistance (AMR) implies that the insertion of the IrMn layer between Pt and YIG could efficiently suppress the magnetic proximity effect (MPE) on induced Pt moments by YIG.

  3. The History of Science and Technology at Bell Labs

    NASA Astrophysics Data System (ADS)

    Bishop, David

    2008-03-01

    Over the last 80 years, Bell Labs has been one of the most scientifically and technologically productive research labs in the world. Inventions such as the transistor, laser, cell phone, solar cell, negative feedback amplifier, communications satellite and many others were made there. Scientific breakthroughs such as discovery of the Big Bang, the wave nature of the electron, electron localization and the fractional quantum hall effect were also made there making Bell Labs almost unique in terms of large impacts in both science and technology. In my talk, I will discuss the history of the lab, talk about the present and give some suggestions for how I see it evolving into the future.

  4. Towards a Flexible Language Lab for Community Colleges.

    ERIC Educational Resources Information Center

    Conway, Diana

    1992-01-01

    Suggestions are offered for ways to modify a typical community college language laboratory to serve diverse student needs. The discussion is based on experiences of Anchorage Community College, which modeled its lab on a learning resources center rather than a traditional lab. (LB)

  5. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  6. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  7. Time Trials--An AP Physics Challenge Lab

    ERIC Educational Resources Information Center

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  8. [IR study on a series of tungsten clusters].

    PubMed

    Yu, R; Chen, J; Lu, S

    2000-10-01

    In this paper, the IR study on a series of tungsten clusters which contain a [W2S4]2+ or [W2MM'S4]4+ (M,M'=Cu,Ag) core is reported. According to the results of X-ray structural analysis and the IR spectra of the clusters, some characteristic IR absorptions of the clusters were assigned. The study of IR spectra of these clusters shows that the variation of structure can reflect on the IR spectra significantly.

  9. Elemental Chem Lab

    ERIC Educational Resources Information Center

    Franco Mariscal, Antonio Joaquin

    2008-01-01

    This educative material uses the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs. This teaching material has been divided into three puzzles according to the type of the laboratory equipment: (i) glassware as reaction vessels or containers; (ii) glassware for measuring, addition or…

  10. Lab with Dad

    ERIC Educational Resources Information Center

    Havers, Brenda; Delmotte, Karen

    2012-01-01

    Family science nights are fantastic, but planning one can be overwhelming, especially when one considers the already overloaded schedule of a classroom teacher. To overcome this challenge, the authors--colleagues with a mutual love of science--developed a much simpler annual event called "Lab With Dad." The purpose was for one target age group of…

  11. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program get an inside look at NASA Kennedy Space Center’s iconic Vehicle Assembly Building from the transfer aisle. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  12. Rapid discrimination of cultivated Codonopsis lanceolata in different ages by FT-IR and 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Zhu, Yun; Xu, Chang-hua; Huang, Jian; Li, Guo-yu; Liu, Xin-Hu; Sun, Su-qin; Wang, Jin-hui

    2014-07-01

    Deodeok (Codonopsis lanceolata) root, a traditional Chinese herbal medicine, has been used to treat lung ailments, rheumatism, menstrual disturbance and bruises with a long history in China and some other Asian countries. In this study, four types of Deodeok with different growth years were discriminated and identified by a Tri-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (conventional FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy(2DCOS-IR) under thermal perturbation. Although only small differences were found in the FT-IR spectra of the samples, the positions and intensities of peaks around 1736, 1634, 1246, 1055, 1033, 818, 779 cm-1 could be considered as the key factors for discriminating them. The differences among them were amplified by their SD-IR spectra. The 2DCOS-IR spectra provided obvious dynamic chemical structure information of Deodeok samples, which present different particular auto peak clusters in the range of 875-1130 cm-1 and 1170-1630 cm-1, respectively. It was demonstrated that the content of triterpene were decreasing when C. lanceolata were growing older, but the relative content of saccharides initially increased and decreased significantly afterwards. It indicated a general trend that the content of polysaccharides accumulated with increasing years. Specifically, the content of polysaccharides accumulated in the root of 2-year-old plant was the lowest, 4-years-old was the highest, and then the content decreased gradually. Furthermore, according to the differences of locations and intensities of auto-peaks in 2D-IR spectra, the integral changes of components were revealed. This study offers a promising method inherent with cost-effective and time-saving to characterize and discriminate the complicated system like Deodeok.

  13. Constructing the Components of a Lab Report Using Peer Review

    ERIC Educational Resources Information Center

    Berry, David E.; Fawkes, Kelli L.

    2010-01-01

    A protocol that emphasizes lab report writing using a piecemeal approach coupled with peer review is described. As the lab course progresses, the focus of the report writing changes sequentially through the abstract and introduction, the discussion, and the procedure. Two styles of lab programs are presented. One style rotates the students through…

  14. Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?

    ERIC Educational Resources Information Center

    Ryker, Katherine; McConnell, David

    2014-01-01

    This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…

  15. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  16. Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of insulin receptor substrate-1 (IRS-1) and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR.

    PubMed

    Tzatsos, Alexandros

    2009-08-21

    In normal physiological states mTOR phosphorylates and activates Akt. However, under diabetic-mimicking conditions mTOR inhibits phosphatidylinositol (PI) 3-kinase/Akt signaling by phosphorylating insulin receptor substrate-1 (IRS-1) at Ser-636/639. The molecular basis for the differential effect of mTOR signaling on Akt is poorly understood. Here, it has been shown that knockdown of mTOR, Raptor, and mLST8, but not Rictor and mSin1, suppresses insulin-stimulated phosphorylation of IRS-1 at Ser-636/639 and stabilizes IRS-1 after long term insulin stimulation. This phosphorylation depends on the PI 3-kinase/PDK1 axis but is Akt-independent. At the molecular level, Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of IRS-1 and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR. IRS-1 lacking the SAIN domain does not interact with Raptor, is not phosphorylated at Ser-636/639, and favorably interacts with PI 3-kinase. Overall, these data provide new insights in the molecular mechanisms by which mTORC1 inhibits PI 3-kinase/Akt signaling at the level of IRS-1 and suggest that mTOR signaling toward Akt is scaffold-dependent.

  17. Inside Linden Lab

    ERIC Educational Resources Information Center

    Atkinson, Tom

    2008-01-01

    In this article, the author provides an overview of Second Life[trademark], or simply SL, which was developed at Linden Lab, a San Francisco-based corporation. SL is an online society within a threee-dimensional virtual world entirely built and owned by its residents, where they can explore, build, socialize and participate in their own economy.…

  18. 193Ir Mössbauer spectroscopy of Pt-IrO 2 nanoparticle catalysts developed for detection and removal of carbon monoxide from air

    NASA Astrophysics Data System (ADS)

    Sawicki, J. A.; Marcinkowska, K.; Wagner, F. E.

    2010-08-01

    Mössbauer spectroscopy of 73.0 keV gamma-ray transition in 193Ir and supplementary analytical techniques were used to study the microstructure and chemical form of polymer-supported hydrophobic bimetallic Pt-Ir catalysts for detection and removal of CO from humid air at ambient conditions. The catalysts, typically with a composition of 9 wt.% Pt and 1 wt.% Ir, were prepared by incipient wetness impregnation of polystyrene-divinylbenzene (SDB) granules with ethanol solutions of hexachloroplatinic and hexachloroiridic acids. This procedure, followed by reduction in H 2 or CO at only 200 °C or 250 °C, resulted in formation of highly-dispersed Pt-Ir particles usually smaller than 20 nm and having high catalytic activity and selectivity. Mössbauer spectra of 73.0 keV gamma-ray transition in 193Ir were taken after consecutive steps of preparation and exposure of catalysts to better understand and further improve the fabrication processes. In the as-impregnated state, iridium was found mostly as Ir(III) in [IrCl 6] 3- ions, with only a small fraction of Ir(IV) in [IrCl 6] 2- ions. The iridium in bimetallic clusters formed by reduction in hydrogen showed a strong tendency towards oxidation on exposure to air at room temperature, while Pt remained mostly metallic. In the most active and stable catalysts, the Ir and Pt in metallic regions of the clusters did not tend to segregate, unlike in Pt-Ir/silica-supported catalysts studied by us earlier. Further, this study shows that the IrO 2-like regions in the clusters exhibit stronger deviations from local symmetry and stoichiometry of crystalline IrO 2 than observed previously in Pt-Ir/silica catalysts. Our study also indicates that in the examined Pt-IrO 2 nanoparticles iridium largely provides the dissociative O 2 adsorption sites, while the CO adsorption occurs primarily at metallic Pt sites.

  19. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    NASA Astrophysics Data System (ADS)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  20. Modeling the Frequency and Costs Associated with Postsurgical Gastrointestinal Adverse Events for Tapentadol IR versus Oxycodone IR

    PubMed Central

    Paris, Andrew; Kozma, Chris M.; Chow, Wing; Patel, Anisha M.; Mody, Samir H.; Kim, Myoung S.

    2013-01-01

    Background Few studies have estimated the economic effect of using an opioid that is associated with lower rates of gastrointestinal (GI) adverse events (AEs) than another opioid for postsurgical pain. Objective To estimate the number of postsurgical GI events and incremental hospital costs, including potential savings, associated with lower GI AE rates, for tapentadol immediate release (IR) versus oxycodone IR, using a literature-based calculator. Methods An electronic spreadsheet–based cost calculator was developed to estimate the total number of GI AEs (ie, nausea, vomiting, or constipation) and incremental costs to a hospital when using tapentadol IR 100 mg versus oxycodone IR 15 mg, in a hypothetical cohort of 1500 hospitalized patients requiring short-acting opioids for postsurgical pain. Data inputs were chosen from recently published, well-designed studies, including GI AE rates from a previously published phase 3 clinical trial of postsurgical patients who received these 2 opioids; GI event–related incremental length of stay from a large US hospital database; drug costs using wholesale acquisition costs in 2011 US dollars; and average hospitalization cost from the 2009 Healthcare Cost and Utilization Project database. The base case assumed that 5% (chosen as a conservative estimate) of patients admitted to the hospital would shift from oxycodone IR to tapentadol IR. Results In this hypothetical cohort of 1500 hospitalized patients, replacing 5% of oxycodone IR 15-mg use with tapentadol IR 100-mg use predicted reductions in the total number of GI events from 1095 to 1085, and in the total cost of GI AEs from $2,978,400 to $2,949,840. This cost reduction translates to a net savings of $22,922 after factoring in drug cost. For individual GI events, the net savings were $26,491 for nausea; $12,212 for vomiting; and $7187 for constipation. Conclusion Using tapentadol IR in place of a traditional μ-opioid shows the potential for reduced GI events and

  1. Introductory labs; what they don't, should, and can teach (and why)

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2016-03-01

    Introductory physics labs are widely used and expensive. They have a wide variety of potential learning goals, but these are seldom specified and less often measured if they are achieved. We cover three different research projects on introductory labs: 1) We have done cognitive task analyses of both experimental research in physics and instructional labs. The striking differences explain much of the unhappiness expressed by students with labs: 2) We have measured the effectiveness of two introductory physics lab courses specifically intended to teach the physics content covered in standard introductory courses on mechanics and E & M. As measured by course exams, the benefit is 0 +/-2% for both. 3) We show how it is possible to use lab courses to teach students to correctly evaluate physical models with uncertain data. Such quantitative critical thinking is an important skill that is not learned in typical lab courses, but is well learned by our modified lab instruction.

  2. Surface Modified TiO2 Obscurants for Increased Safety and Performance

    DTIC Science & Technology

    2012-11-01

    based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification

  3. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2018-04-16

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  4. New Features in ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Di Milia, G.; Luker, J.; Murray, S. S.

    2013-01-01

    The NASA Astrophysics Data System (ADS) has been working hard on updating its services and interfaces to better support our community's research needs. ADS Labs is a new interface built on the old tried-and-true ADS Abstract Databases, so all of ADS's content is available through it. In this presentation we highlight the new features that have been developed in ADS Labs over the last year: new recommendations, metrics, a citation tool and enhanced fulltext search. ADS Labs has long been providing article-level recommendations based on keyword similarity, co-readership and co-citation analysis of its corpus. We have now introduced personal recommendations, which provide a list of articles to be considered based on a individual user's readership history. A new metrics interface provides a summary of the basic impact indicators for a list of records. These include the total and normalized number of papers, citations, reads, and downloads. Also included are some of the popular indices such as the h, g and i10 index. The citation helper tool allows one to submit a set of records and obtain a list of top 10 papers which cite and/or are cited by papers in the original list (but which are not in it). The process closely resembles the network approach of establishing "friends of friends" via an analysis of the citation network. The full-text search service now covers more than 2.5 million documents, including all the major astronomy journals, as well as physics journals published by Springer, Elsevier, the American Physical Society, the American Geophysical Union, and all of the arXiv eprints. The full-text search interface interface allows users and librarians to dig deep and find words or phrases in the body of the indexed articles. ADS Labs is available at http://adslabs.org

  5. LabVIEW Interface for PCI-SpaceWire Interface Card

    NASA Technical Reports Server (NTRS)

    Lux, James; Loya, Frank; Bachmann, Alex

    2005-01-01

    This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.

  6. Practical Clinical Training in Skills Labs: Theory and Practice

    PubMed Central

    Bugaj, T. J.; Nikendei, C.

    2016-01-01

    Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that allows the repeated, anxiety- and risk-free practice of targeted skills. In this selective literature review, the first section is devoted to (I) the development and dissemination of the skills lab concept. There follows (II) an outline of the underlying idea and (III) an analysis of key efficacy factors. Thereafter, (IV) the training method’s effectiveness and transference are illuminated, before (V) the use of student tutors, in the sense of peer-assisted-learning, in skills labs is discussed separately. Finally, (VI) the efficiency of the skills lab concept is analyzed, followed by an outlook on future developments and trends in the field of skills lab training. PMID:27579363

  7. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  8. Design of compressors for FEL pulses using deformable gratings

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  9. Stream piracy in the Black Hills: A geomorphology lab exercise

    USGS Publications Warehouse

    Zaprowski, B.J.; Evenson, E.B.; Epstein, J.B.

    2002-01-01

    The Black Hills of South Dakota exhibits many fine examples of stream piracy that are very suitable for teaching geomorphology lab exercises. This lab goes beyond standard topographic map interpretation by using geologic maps, well logs, gravel provenance and other types of data to teach students about stream piracy. Using a step-by-step method in which the lab exercises ramp up in difficulty, students hone their skills in deductive reasoning and data assimilation. The first exercises deal with the identification of stream piracy at a variety of spatial scales and the lab culminates with an exercise on landscape evolution and drainage rearrangement.

  10. Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES.

    PubMed

    Zuclich, Joseph A; Lund, David J; Stuck, Bruce E

    2007-01-01

    This report summarizes the results of a series of infrared (IR) laser-induced ocular damage studies conducted over the past decade. The studies examined retinal, lens, and corneal effects of laser exposures in the near-IR to far-IR transition region (wavelengths from 1.3-1.4 mum with exposure durations ranging from Q-switched to continuous wave). The corneal and retinal damage thresholds are tabulated for all pulsewidth regimes, and the wavelength dependence of the IR thresholds is discussed and contrasted to laser safety standard maximum permissible exposure limits. The analysis suggests that the current maximum permissible exposure limits could be beneficially revised to (1) relax the IR limits over wavelength ranges where unusually high safety margins may unintentionally hinder applications of recently developed military and telecommunications laser systems; (2) replace step-function discontinuities in the IR limits by continuously varying analytical functions of wavelength and pulsewidth which more closely follow the trends of the experimental retinal (for point-source laser exposures) and corneal ED50 threshold data; and (3) result in an overall simplification of the permissible exposure limits over the wavelength range from 1.2-2.6 mum. A specific proposal for amending the IR maximum permissible exposure limits over this wavelength range is presented.

  11. Creative Science Teaching Labs: New Dimensions in CPD

    ERIC Educational Resources Information Center

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  12. Online Writing Labs as Sites for Community Engagement

    ERIC Educational Resources Information Center

    Wells, Jaclyn Michelle

    2010-01-01

    This dissertation investigates the Community Writing and Education Station (CWEST), a community engagement project that partners a community adult basic literacy program with a university writing lab. The author argues that the community and university partners, the Lafayette Adult Resource Academy (LARA) and the Purdue Writing Lab, offer positive…

  13. Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab

    Science.gov Websites

    astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics News Release Paul Preuss 510-486-6249 * October professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics

  14. Tax-deferred annuity plans: meeting the IRS audit challenge.

    PubMed

    Schussler, M

    1997-01-01

    A growing number of nonprofit organizations are being fined for violations of IRS regulations following IRS audits of their tax-deferred annuity (TDA) plans. To ensure that their organizations can withstand the scrutiny of an IRS audit, TDA plan administrators must ensure that plans meet IRS regulations and be prepared for IRS audits. Documentation--particularly of the TDA plan itself, and procedures related to salary reduction programs, compensation limits, excess deferrals and other excess contributions, loans, and distributions--must be comprehensive and in compliance with IRS regulations.

  15. ERLN Technical Support for Labs

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  16. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and

  17. Letters Home as an Alternative to Lab Reports

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2014-01-01

    The traditional lab report is known to create several pedagogical shortcomings in the introductory physics course, particularly with regard to promoting student engagement and encouraging quality writing. This paper discusses the use of a "letter home" written to a non-physicist as an alternative to lab reports that creates a more…

  18. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  19. Introduction to Computing: Lab Manual. Faculty Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Frasca, Joseph W.

    This lab manual is designed to accompany a college course introducing students to computing. The exercises are designed to be completed by the average student in a supervised 2-hour block of time at a computer lab over 15 weeks. The intent of each lab session is to introduce a topic and have the student feel comfortable with the use of the machine…

  20. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  1. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  2. Study of transitional doubly-odd /sup 186/Ir and /sup 184/Ir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Braham, A.; Bourgeois, C.; Kilcher, P.

    1987-12-10

    The transitional doubly-odd iridium nuclei with A = 184 and 186 have been studied from the ..beta../sup +//EC decay of the corresponding platinum isotopes using the on-line mass separator ISOCELE. Configurations can be reasonably Attributed to the low-lying states of /sup 184/Ir in agreement with results already known. On the other hand an E3 transition observed in /sup 186/Ir suggests that the known long-lived 1.7h 2/sup -/ state is located at 137.5 keV above the 16h 5/sup +/ state, raising questions about structure of this latter state.

  3. Macromolecules Inquiry: Transformation of a Standard Biochemistry Lab

    ERIC Educational Resources Information Center

    Unsworth, Elizabeth

    2014-01-01

    Identification of macromolecules in food is a standard introductory high school biology lab. The intent of this article is to describe the conversion of this standard cookbook lab into an inquiry investigation. Instead of verifying the macromolecules found in food, students use their knowledge of the macromolecules in food to determine the…

  4. Personal Adult Learning Lab (Pall). Implications for Practice.

    ERIC Educational Resources Information Center

    Klippel, Judith A.; And Others

    The Personal Adult Learning Lab was establsiehd at the Georgia Center for Continuing Education (GCCE) at the University of Georgia to serve self-directed adult learners and conduct research on self-directed learning. The lab allows adult learners to design, conduct, and evaluate their personal learning experiences while proceeding at their own…

  5. Role of IRS-2 in insulin and cytokine signalling.

    PubMed

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  6. Study on IR Properties of Reduced Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  7. Use of HOMA-IR in hepatitis C.

    PubMed

    Eslam, M; Kawaguchi, T; Del Campo, J A; Sata, M; Khattab, M Abo-Elneen; Romero-Gomez, M

    2011-10-01

    Chronic infection with hepatitis C virus (HCV) can induce insulin resistance (IR) in a genotype-dependent manner and contributes to steatosis, progression of fibrosis and resistance to interferon plus ribavirin therapy. Our understanding of HCV-induced IR has improved considerably over the years, but certain aspects concerning its evaluation still remain elusive to clinical researchers. One of the most important issues is elucidating the ideal method for assessment of IR in the setting of hepatitis C. The hyperinsulinaemic euglycaemic clamp is the gold standard method for determining insulin sensitivity, but is impractical as it is labour intensive and time-consuming. To date, all human studies except for four where IR was evaluated in the HCV setting, an estimation of IR has been used rather than direct measurements of insulin-mediated glucose uptake. The most commonly used estimation in the HCV population is the homeostasis model assessment of insulin resistance (HOMA-IR) which is calculated from a single measurement of fasting insulin and glucose. In this article, we review the use and reporting of HOMA in the literature and provide guidance on its appropriate as well as inappropriate use in the hepatitis setting. © 2011 Blackwell Publishing Ltd.

  8. IR Variability of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2007-02-01

    Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and trace dust formation episodes. This will provide a direct measurement of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.

  9. Rapid discrimination of three Uighur medicine of Eremurus by FT-IR combined with 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Zhu, Yun; Xu, Chang-hua; Huang, Jian; Li, Guo-yu; Zhou, Qun; Liu, Xin-Hu; Sun, Su-qin; Wang, Jin-hui

    2014-07-01

    As complicated mixture systems, traditional Chinese medicines (TCMs) are difficult to be identified and discriminated, especially for the drug samples originated from the same source. In this study, a tri-step infrared spectroscopy method, i.e., conventional infrared spectroscopy (FT-IR) combined with second derivatives spectra and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was employed to study and identify three Uighur drugs of Eremurus in Xinjiang, i.e. Eremurus altaicus (Pall.) Stev (AET), E. inderiensis (M.Bieb.)Regel(CB), E. anisopterus (Kar.et Kir.) Regel(YC). It was founded that the conventional IR spectra of the three species Eremurus were very similar based on the peak positions and shapes, indicating that the three had similar chemical profiles. On the basis of the different IR spectra of reference compounds and microscopic identification, the roots of YC, CB and AET all have comparable amount of calcium oxalate. The second derivative spectra of Eremurus enhanced the spectral resolution and amplified the small differences, especially at about 1468 cm-1, 1454 cm-1, and 1164 cm-1, and subsequently provided some dissimilarity in their calcium oxalate content. AET has relatively higher content of calcium oxalate but the lower content of anthraquinones. Moreover, the 2D-IR spectra revealed tiny differences among the three species by providing dynamic structural information of their chemical components in a more direct and visual way. The differences embodied mainly on the intensity of the auto-peaks at 971 cm-1, 1008 cm-1, 1468 cm-1 and 1578 cm-1. As a result, it was demonstrated that the macroscopic IR fingerprint method could discriminate the three similar Uighur drugs, YC, CB and AET.

  10. The College of Charleston's 400-Student Observational Lab Program

    NASA Astrophysics Data System (ADS)

    True, C. M.

    2006-06-01

    For over thirty years the College of Charleston has been teaching a year-long introductory astronomy course incorporating a mandatory 3 hour lab. Despite our location in a very light polluted, coastal, high humidity, and often cloudy metropolitan area we have emphasized observational activities as much as possible. To accommodate our population of between 300-400 students per semester, we have 28 8-inch Celestron Telescopes and 25 GPS capable 8-inch Meade LX-200 telescopes. Finally, we have a 16 DFM adjacent to our rooftop observing decks. For indoor activities we have access to 42 computers running a variety of astronomy education software. Some of the computer activities are based on the Starry Night software (Backyard and Pro), the CLEA software from Gettysburg College, and Spectrum Explorer from Boston University. Additionally, we have labs involving cratering, eclipses and phases, coordinate systems with celestial globes, the inverse square law, spectroscopy and spectral classification, as well as others. In this presentation we will discuss the difficulties in managing a program of this size. We have approximately 14 lab sections a week. The lab manager's task involves coordinating 8-10 lab instructors and the same number of undergraduate teaching assistants as well as trying to maintain a coherent experience between the labs and lecture sections. Our lab manuals are produced locally with yearly updates. Samples from the manuals will be available. This program has been developed by a large number of College of Charleston astronomy faculty, including Don Drost, Bob Dukes, Chris Fragile, Tim Giblin, Jon Hakkila, Bill Kubinec, Lee Lindner, Jim Neff, Laura Penny, Al Rainis, Terry Richardson, and D. J. Williams, as well as adjunct and visiting faculty Bill Baird, Kevin Bourque, Ethan Denault, Kwayera Davis, Francie Halter, and Alan Johnson. Part of this work has been funded by NSF DUE grants to the College of Charleston.

  11. The Living Labs: Innovation in Real-Life Settings

    ERIC Educational Resources Information Center

    Hawk, Nathan; Bartle, Gamin; Romine, Martha

    2012-01-01

    The living lab (LL) is an open innovation ecosystem serving to provide opportunities for local stakeholders to practice research and to experiment with meaningful improvements for cities and other organizations. Living labs aim at involving the user as a cocreator. In this article the relationship between the LLs and a variety of stakeholders is…

  12. Glucose in Urine Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... Lab Tests Online [Internet]. American Association for Clinical Chemistry; c2001–2017. Diabetes [updated 2017 Jan 15; cited ... Lab Tests Online [Internet]. American Association for Clinical Chemistry; c2001–2017. Glucose Tests: Common Questions [updated 2017 ...

  13. Hermann agreement updates IRS guidelines for incentives.

    PubMed

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  14. WFC3 TV3 Testing: IR Channel Blue Leaks

    NASA Astrophysics Data System (ADS)

    Brown, Thomas R.

    2008-03-01

    A new IR detector (IR4; FPA165) is housed in WFC3 during the current campaign of thermal vacuum (TV) ground testing at GSFC. As part of these tests, we measured the IR channel throughput. Compared to the previous IR detectors, IR4 has much higher quantum efficiency at all wavelengths, particularly in the optical. The total throughput for the IR channel is still low in the optical, due to the opacity of the IR filters at these wavelengths, but there is a small wavelength region (~710-830 nm) where these filters do not offer as much blocking as needed to meet Contract End Item specifications. For this reason, the throughput measurements were extended into the blue to quantify the amount of blue leak in the narrow and medium IR bandpasses where a few percent of the measured flux could come from optical photons when observing hot sources. The results are tabulated here.

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Emergency Diversity and Inclusion Committee Members Lab Contacts Resources & Operations Acknowledging ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010

  16. What Is LAB and Why Was It Renormed?

    ERIC Educational Resources Information Center

    Abbott, Muriel

    A report on the Language Assessment Battery (LAB) explains, in question-and-answer form, the causes and results of some changes made in the test norms. The LAB is a test of communicative language competence, written in English and Spanish versions and used for student placement in the New York City Public Schools. The report describes the test…

  17. Solar University-National Lab Ultra-Effective Program | Photovoltaic

    Science.gov Websites

    Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the

  18. FOREWORD: Jefferson Lab: A Long Decade of Physics

    NASA Astrophysics Data System (ADS)

    Montgomery, Hugh

    2011-04-01

    Jefferson Lab Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief

  19. StagLab: Post-Processing and Visualisation in Geodynamics

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio

    2017-04-01

    Despite being simplifications of nature, today's Geodynamic numerical models can, often do, and sometimes have to become very complex. Additionally, a steadily-increasing amount of raw model data results from more elaborate numerical codes and the still continuously-increasing computational power available for their execution. The current need for efficient post-processing and sensible visualisation is thus apparent. StagLab (www.fabiocrameri.ch/software) provides such much-needed strongly-automated post-processing in combination with state-of-the-art visualisation. Written in MatLab, StagLab is simple, flexible, efficient and reliable. It produces figures and movies that are both fully-reproducible and publication-ready. StagLab's post-processing capabilities include numerous diagnostics for plate tectonics and mantle dynamics. Featured are accurate plate-boundary identification, slab-polarity recognition, plate-bending derivation, mantle-plume detection, and surface-topography component splitting. These and many other diagnostics are derived conveniently from only a few parameter fields thanks to powerful image processing tools and other capable algorithms. Additionally, StagLab aims to prevent scientific visualisation pitfalls that are, unfortunately, still too common in the Geodynamics community. Misinterpretation of raw data and exclusion of colourblind people introduced with the continuous use of the rainbow (a.k.a. jet) colour scheme is just one, but a dramatic example (e.g., Rogowitz and Treinish, 1998; Light and Bartlein, 2004; Borland and Ii, 2007). StagLab is currently optimised for binary StagYY output (e.g., Tackley 2008), but is adjustable for the potential use with other Geodynamic codes. Additionally, StagLab's post-processing routines are open-source. REFERENCES Borland, D., and R. M. T. Ii (2007), Rainbow color map (still) considered harmful, IEEE Computer Graphics and Applications, 27(2), 14-17. Light, A., and P. J. Bartlein (2004), The end of

  20. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    PubMed

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  1. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  2. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    ERIC Educational Resources Information Center

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  3. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  4. Virtual Labs in proteomics: new E-learning tools.

    PubMed

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  6. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  7. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  8. Problem Solvers: MathLab's Design Brings Professional Learning into the Classroom

    ERIC Educational Resources Information Center

    Morales, Sara; Sainz, Terri

    2017-01-01

    Imagine teachers, administrators, and university mathematicians and staff learning together in a lab setting where students are excited about attending a week-long summer math event because they are at the forefront of the experience. Piloted in three New Mexico classrooms during summer 2014, MathLab expanded into 17 lab settings over six…

  9. LabLessons: Effects of Electronic Prelabs on Student Engagement and Performance

    ERIC Educational Resources Information Center

    Gryczka, Patrick; Klementowicz, Edward; Sharrock, Chappel; Maxfield, MacRae; Montclare, Jin Kim

    2016-01-01

    Lab instructors, for both high school and undergraduate college level courses, face issues of constricted time within the lab period and limited student engagement with prelab materials. To address these issues, an online prelab delivery system named LabLessons is developed and tested out in a high school chemistry classroom. The system…

  10. Growth and phase transformations of Ir on Ge(111)

    NASA Astrophysics Data System (ADS)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  11. Future development of IR thermovision weather satellite equipment

    NASA Technical Reports Server (NTRS)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  12. Qualification Lab Testing on M1 Abrams Engine Oil Filters

    DTIC Science & Technology

    2016-11-01

    UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM

  13. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Daria L.; Beltrán-Suito, Rodrigo; Thomsen, Julianne M.

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation processmore » requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.« less

  14. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  15. IR Variability of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2008-02-01

    Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur at the very end of 2008. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the massw in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with Phoenix will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.

  16. An Evaluation of Two Hands-On Lab Styles for Plant Biodiversity in Undergraduate Biology

    ERIC Educational Resources Information Center

    Basey, John M.; Maines, Anastasia P.; Francis, Clinton D.; Melbourne, Brett

    2014-01-01

    We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice…

  17. A "Canned" Computer Lab

    ERIC Educational Resources Information Center

    Dowling, John, Jr.

    1972-01-01

    Discusses the use of a set of computer programs (FORTRAN IV) in an introductory mechanics course for science majors. One laboratory activity is described for determining the coefficient of restitution of a glider on an air track. A student evaluation for the lab is included in the appendix. (Author/TS)

  18. WFC3/IR Blob Monitoring

    NASA Astrophysics Data System (ADS)

    Sunnquist, Ben

    2018-06-01

    Throughout the lifetime of WFC3, a growing number of 'blobs' (small, circular regions with slightly decreased sensitivity) have appeared in WFC3/IR images. In this report, we present the current workflow used for identifying, characterizing and flagging new IR blobs. We also describe the methods currently used to monitor the repeatability of the channel select mechanism (CSM) movements as a way to ensure that the CSM is still operating normally as these new blobs form. A full listing of all known blobs, which incorporates the work from past blob monitoring efforts, is presented in the Appendix as well as all of the IR bad pixel tables generated to include the strongest of these blobs. These tables, along with all of the other relevant figures and tables in this report, will be continuously updated as new blobs form.

  19. Validity of Selected Lab and Field Tests of Physical Working Capacity.

    ERIC Educational Resources Information Center

    Burke, Edmund J.

    The validity of selected lab and field tests of physical working capacity was investigated. Forty-four male college students were administered a series of lab and field tests of physical working capacity. Lab tests include a test of maximum oxygen uptake, the PWC 170 test, the Harvard Step Test, the Progressive Pulse Ratio Test, Margaria Test of…

  20. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  1. Electronics lab instructors' approaches to troubleshooting instruction

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri R.; Lewandowski, H. J.

    2017-06-01

    In this exploratory qualitative study, we describe instructors' self-reported practices for teaching and assessing students' ability to troubleshoot in electronics lab courses. We collected audio data from interviews with 20 electronics instructors from 18 institutions that varied by size, selectivity, and other factors. In addition to describing participants' instructional practices, we characterize their perceptions about the role of troubleshooting in electronics, the importance of the ability to troubleshoot more generally, and what it means for students to be competent troubleshooters. One major finding of this work is that, while almost all instructors in our study said that troubleshooting is an important learning outcome for students in electronics lab courses, only half of instructors said they directly assessed students' ability to troubleshoot. Based on our findings, we argue that there is a need for research-based instructional materials that attend to both cognitive and noncognitive aspects of troubleshooting proficiency. We also identify several areas for future investigation related to troubleshooting instruction in electronics lab courses.

  2. Networking Labs in the Online Environment: Indicators for Success

    ERIC Educational Resources Information Center

    Lahoud, Hilmi A.; Krichen, Jack P.

    2010-01-01

    Several techniques have been used to provide hands-on educational experiences to online learners, including remote labs, simulation software, and virtual labs, which offer a more structured environment, including simulations and scheduled asynchronous access to physical resources. This exploratory study investigated how these methods can be used…

  3. Vista and Pemex in LAB deal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, G.D.L.

    1993-01-20

    Vista Chemical (Houston) and Petroleos Mexicanos (Pemex; Mexico City) have firmed up their long-negotiated plans for Pemex to supply feedstock for a linear alkylbenzene (LAB) plant that Vista will build in Mexico (CW, Sept. 16, 1992 p. 8). Specifically, the two companies have signed an agreement of understanding to pursue negotiations and finalize agreements. The plant would cost $250 million, produce 260 million-330 million lbs/year of LAB, and create about 200 permanent jobs. Final agreements, including a site selection, are expected to be completed by midyear. Vista expects startup in 1996, and is considering forming aj oint venture with amore » Mexican partner.« less

  4. The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports

    NASA Astrophysics Data System (ADS)

    Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward

    2009-11-01

    This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.

  5. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  6. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  7. State of the Lab 2012

    ScienceCinema

    King, Alex

    2018-05-07

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  8. State of the Lab 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alex

    2012-01-01

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  9. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less

  10. Writing Better Lab Reports

    ERIC Educational Resources Information Center

    Porter, Rhiannon; Guarienti, Kristy; Brydon, Barbara; Robb, Jeanine; Royston, Ann; Painter, Heidi; Sutherland, Alex; Passmore, Cynthia; Smith, Martin H.

    2010-01-01

    As science teachers at a suburban California high school, the authors were concerned about the lab report conclusions written by their upper-level chemistry, biology, and ecology students--which were consistently of poor quality. Their work lacked inferences derived from data and support for their concluding statements. Working as part of a…

  11. Science Labs: Beyond Isolationism

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2007-01-01

    A national study released in 2005 concluded that most high school students are not exposed to high quality science labs because of these reasons: (a) poor school facilities and organizations; (b) weak teacher preparation; (c) poor design; (d) cluttered state standards; (e) little representation on state tests; and (f) scarce evidence of what…

  12. WetLab-2: Wet Lab RNA SmartCycler Providing PCR Capability on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Schonfeld, Julie

    2015-01-01

    The WetLab-2 system will provide sample preparation and qRT-PCR analysis on-board the ISS, a capability to enable using the ISS as a real laboratory. The system will be validated on SpX-7, and is planned for its first PI use on SpX-9.

  13. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  14. Strategic Design of an Interactive Video Learning Lab (IVL).

    ERIC Educational Resources Information Center

    Switzer, Ralph V., Jr.; Switzer, Jamie S.

    1993-01-01

    Describes a study that researched elements necessary for the design of an interactive video learning (IVL) lab for business courses. Highlights include a review of pertinent literature; guidelines for the use of an IVL lab; IVL systems integration; system specifications; hardware costs; and system software. (five references) (LRW)

  15. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    PubMed

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  16. Innovative Use of a Classroom Response System During Physics Lab

    NASA Astrophysics Data System (ADS)

    Walgren, Jay

    2011-01-01

    More and more physics instructors are making use of personal/classroom response systems or "clickers." The use of clickers to engage students with multiple-choice questions during lecture and available instructor resources for clickers have been well documented in this journal.1-4 Newer-generation clickers, which I refer to as classroom response systems (CRS), have evolved to accept numeric answers (such as 9.81) instead of just single "multiple-choice" entries (Fig. 1). This advancement is available from most major clicker companies and allows for a greater variety of engaging questions during lecture. In addition, these new "numeric ready" clickers are marketed to be used for student assessments. During a test or quiz, students' answers are entered into their clicker instead of on paper or Scantron® and immediately absorbed by wireless connection into a computer for grading and analysis. I recognize the usefulness and benefit these new-generation CRSs provide for many instructors. However, I do not use my CRS in either of the aforementioned activities. Instead, I use it in an unconventional way. I use the CRS to electronically capture students' lab data as they are performing a physics lab (Fig. 2). I set up the clickers as if I were going to use them for a test, but instead of entering answers to a test, my students enter lab data as they collect it. In this paper I discuss my use of a classroom response system during physics laboratory and three benefits that result: 1) Students are encouraged to "take ownership of" and "have integrity with" their physics lab data. 2) Students' measuring and unit conversion deficiencies are identified immediately during the lab. 3) The process of grading students' labs is simplified because the results of each student's lab calculations can be pre-calculated for the instructor using a spreadsheet. My use of clickers during lab can be implemented with most clicker systems available to instructors today. The CRS I use is the e

  17. First results on GlioLab/GlioSat Precursors Missions

    NASA Astrophysics Data System (ADS)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  18. OGTT results in obese adolescents with normal HOMA-IR values.

    PubMed

    Sahin, Nursel Muratoglu; Kinik, Sibel Tulgar; Tekindal, Mustafa Agah

    2013-01-01

    To investigate insulin resistance (IR) with OGTT in obese adolescents who have normal fasting insulin and homeostasis model assessment for insulin resistance (HOMA-IR). A total of 97 obese adolescents who had values of HOMA-IR <3.16 and insulin levels <18 μU/mL (125 pmol/L) were included in the study. Oral glucose tolerance test (OGTT) was performed on all cases. Subjects were divided into two groups: subjects with and without IR using an insulin peak of ≥150 μU/mL (1041.8 pmol/L) and/or ≥75 μU/mL (520.9 pmol/L) 120 min after glucose charge and the sum of insulin levels >2083.5 pmol/L (300 μU/mL) in OGTT. IR risk factors were defined as family history of diabetes mellitus, acanthosis nigricans (AN), and hepatic steatosis. IR was detected in 61 (62.9%) patients. The IR group had significantly more frequent AN (p=0.0001). As the number of risk factors increased, the frequency of IR also increased (p=0.01). We advise to perform OGTT in obese adolescents with normal HOMA-IR, if they have risk factors for IR.

  19. The Concept of Fit in Contingency Theory.

    DTIC Science & Technology

    1984-11-01

    Research Center San Diego, CA 92152 Psychology Department Naval Regional Medical Center San Diego, CA 92134 Com~’arding Officer - Naval Submarine Medical ...Research Laboratory Naval Submarine Base New London, Box 900 Grotcn, CT 06249 Co~anding Officer :;ava! Aerospace Medical Resea-:ch’ Lab Naval Air...Station Pen~sacola, FEL 32508 Program Manager for Human 44 Performance (Code 44) Naval Medical R&D Command National Naval Medical Center Bethesda, MD 20014A

  20. The sequence measurement system of the IR camera

    NASA Astrophysics Data System (ADS)

    Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo

    2011-08-01

    Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement