Sample records for lab programs advance

  1. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  2. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  3. Advanced teaching labs in physics - celebrating progress; challenges ahead

    NASA Astrophysics Data System (ADS)

    Peterson, Richard

    A few examples of optical physics experiments may help us first reflect on significant progress on how advanced lab initiatives may now be more effectively developed, discussed, and disseminated - as opposed to only 10 or 15 years back. Many cooperative developments of the last decade are having profound impacts on advanced lab workers and students. Central to these changes are the programs of the Advanced Laboratory Physics Association (ALPhA) (Immersions, BFY conferences), AAPT (advlab-l server, ComPADRE, apparatus competitions, summer workshops/sessions), APS (Reichert Award, FEd activities and sessions), and the Jonathan F. Reichert Foundation (ALPhA support and institution matched equipment grants for Immersion participants). Broad NSF support has helped undergird several of these initiatives. Two of the most significant challenges before this new advanced lab community are (a) to somehow enhance funding opportunities for teaching equipment and apparatus in an era of minimal NSF equipment support, and (b) to help develop a more complementary relationship between research-based advanced lab pedagogies and the development of fresh physics experiments that help enable the mentoring and experimental challenge of our students.

  4. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  5. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  6. MatLab Programming for Engineers Having No Formal Programming Knowledge

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  7. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    PubMed

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  8. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    PubMed Central

    Van Oosten, Ellen B.; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants. PMID:29326618

  9. Array data extractor (ADE): a LabVIEW program to extract and merge gene array data.

    PubMed

    Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg

    2013-12-01

    Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Although existing software allows for complex data analyses, the LabVIEW based program presented here, "Array Data Extractor (ADE)", provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge.

  10. Array data extractor (ADE): a LabVIEW program to extract and merge gene array data

    PubMed Central

    2013-01-01

    Background Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Findings Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Conclusions Although existing software allows for complex data analyses, the LabVIEW based program presented here, “Array Data Extractor (ADE)”, provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge. PMID:24289243

  11. Integrating Language Lab Materials into Advanced Russian.

    ERIC Educational Resources Information Center

    Allar, Gregory

    1986-01-01

    Describes the use of language lab materials supplied by the pedagogical journal "Russkij Jazyk Za Rubezom" in an advanced Russian-language class. Each week students were given a relevant picture and vocabulary list prior to listening to a taped story. The story was used as the basis for conversation. (LMO)

  12. Solar University-National Lab Ultra-Effective Program | Photovoltaic

    Science.gov Websites

    Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the

  13. Transforming the advanced lab: Part I - Learning goals

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.

    2012-02-01

    Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).

  14. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  15. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  16. LabPatch, an acquisition and analysis program for patch-clamp electrophysiology.

    PubMed

    Robinson, T; Thomsen, L; Huizinga, J D

    2000-05-01

    An acquisition and analysis program, "LabPatch," has been developed for use in patch-clamp research. LabPatch controls any patch-clamp amplifier, acquires and records data, runs voltage protocols, plots and analyzes data, and connects to spreadsheet and database programs. Controls within LabPatch are grouped by function on one screen, much like an oscilloscope front panel. The software is mouse driven, so that the user need only point and click. Finally, the ability to copy data to other programs running in Windows 95/98, and the ability to keep track of experiments using a database, make LabPatch extremely versatile. The system requirements include Windows 95/98, at least a 100-MHz processor and 16 MB RAM, a data acquisition card, digital-to-analog converter, and a patch-clamp amplifier. LabPatch is available free of charge at http://www.fhs.mcmaster.ca/huizinga/.

  17. Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis of Improved Integrated Codes on Advanced Architecture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert J.; Hammond, Simon David; Richards, David

    2017-09-01

    This milestone is a tri-lab deliverable supporting ongoing Co-Design efforts impacting applications in the Integrated Codes (IC) program element Advanced Technology Development and Mitigation (ATDM) program element. In FY14, the trilabs looked at porting proxy application to technologies of interest for ATS procurements. In FY15, a milestone was completed evaluating proxy applications in multiple programming models and in FY16, a milestone was completed focusing on the migration of lessons learned back into production code development. This year, the co-design milestone focuses on extracting the knowledge gained and/or code revisions back into production applications.

  18. The Advanced Lab Course at the University of Houston

    NASA Astrophysics Data System (ADS)

    Forrest, Rebecca

    2009-04-01

    The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.

  19. An iLab for Teaching Advanced Logic Concepts with Hardware Descriptive Languages

    ERIC Educational Resources Information Center

    Ayodele, Kayode P.; Inyang, Isaac A.; Kehinde, Lawrence O.

    2015-01-01

    One of the more interesting approaches to teaching advanced logic concepts is the use of online laboratory frameworks to provide student access to remote field-programmable devices. There is as yet, however, no conclusive evidence of the effectiveness of such an approach. This paper presents the Advanced Digital Lab, a remote laboratory based on…

  20. The College of Charleston's 400-Student Observational Lab Program

    NASA Astrophysics Data System (ADS)

    True, C. M.

    2006-06-01

    For over thirty years the College of Charleston has been teaching a year-long introductory astronomy course incorporating a mandatory 3 hour lab. Despite our location in a very light polluted, coastal, high humidity, and often cloudy metropolitan area we have emphasized observational activities as much as possible. To accommodate our population of between 300-400 students per semester, we have 28 8-inch Celestron Telescopes and 25 GPS capable 8-inch Meade LX-200 telescopes. Finally, we have a 16 DFM adjacent to our rooftop observing decks. For indoor activities we have access to 42 computers running a variety of astronomy education software. Some of the computer activities are based on the Starry Night software (Backyard and Pro), the CLEA software from Gettysburg College, and Spectrum Explorer from Boston University. Additionally, we have labs involving cratering, eclipses and phases, coordinate systems with celestial globes, the inverse square law, spectroscopy and spectral classification, as well as others. In this presentation we will discuss the difficulties in managing a program of this size. We have approximately 14 lab sections a week. The lab manager's task involves coordinating 8-10 lab instructors and the same number of undergraduate teaching assistants as well as trying to maintain a coherent experience between the labs and lecture sections. Our lab manuals are produced locally with yearly updates. Samples from the manuals will be available. This program has been developed by a large number of College of Charleston astronomy faculty, including Don Drost, Bob Dukes, Chris Fragile, Tim Giblin, Jon Hakkila, Bill Kubinec, Lee Lindner, Jim Neff, Laura Penny, Al Rainis, Terry Richardson, and D. J. Williams, as well as adjunct and visiting faculty Bill Baird, Kevin Bourque, Ethan Denault, Kwayera Davis, Francie Halter, and Alan Johnson. Part of this work has been funded by NSF DUE grants to the College of Charleston.

  1. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  2. ASC Tri-lab Co-design Level 2 Milestone Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Rich; Jones, Holger; Keasler, Jeff

    2015-09-23

    In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \

  3. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum.

    PubMed

    Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  4. TIMESERIESSTREAMING.VI: LabVIEW program for reliable data streaming of large analog time series

    NASA Astrophysics Data System (ADS)

    Czerwinski, Fabian; Oddershede, Lene B.

    2011-02-01

    With modern data acquisition devices that work fast and very precise, scientists often face the task of dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time has virtually no limitation. We explicitly show how to use the program to extract time series from two experiments: For a photodiode detection system that tracks the position of an optically trapped particle and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable, and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise quantification. Program summaryProgram title: TimeSeriesStreaming.VI Catalogue identifier: AEHT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 No. of bytes in distributed program, including test data, etc.: 63 259 Distribution format: tar.gz Programming language: LabVIEW ( http://www.ni.com/labview/) Computer: Any machine running LabVIEW 8.6 or higher Operating system: Windows XP and Windows 7 RAM: 60-360 Mbyte Classification: 3 Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have an efficient, reliable, and flexible program to perform data streaming of time series sampled with high frequencies and possibly for long time intervals. This type of data acquisition often produces very large amounts of data not easily streamed onto a computer hard disk using standard methods. Solution method: This LabVIEW program is developed to directly

  5. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    PubMed

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  6. The Floating Lab Research Project: An Approach to Evaluating Field Programs.

    ERIC Educational Resources Information Center

    Brody, Michael J.

    This report explains an evaluative study of the conceptual and affective development of students associated with the Floating Lab Program, an experiential field project sponsored by the University of New Hampshire and the Maine Sea Grant Program. The field program involved an opportunity for students to have hands-on experiences aboard a 65-foot…

  7. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum†

    PubMed Central

    Shanks, Ryan A.; Robertson, Chuck L.; Haygood, Christian S.; Herdliksa, Anna M.; Herdliska, Heather R.; Lloyd, Steven A.

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads. PMID:28904647

  8. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  9. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    NASA Astrophysics Data System (ADS)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting

  10. Commerce Lab: Mission analysis payload integration study. Appendix A: Data bases

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The development of Commerce Lab is detailed. Its objectives are to support the space program in these areas: (1) the expedition of space commercialization; (2) the advancement of microgravity science and applications; and (3) as a precursor to future missions in the space program. Ways and means of involving private industry and academia in this commercialization is outlined.

  11. Auto-tuning for NMR probe using LabVIEW

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Pham, Stephanie; Bernal, Oscar

    2014-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program uses a simplified model of the NMR probe conditions near perfect tuning to mimic the tuning process and predict the position of the capacitor shafts needed to achieve the desirable impedance. The tuning capacitors of the probe are controlled by stepper motors through a LabVIEW/computer interface. Our program calculates the effective capacitance needed to tune the probe and provides controlling parameters to advance the motors in the right direction. The impedance reading of a network analyzer can be used to correct the model parameters in real time for feedback control.

  12. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    NASA Astrophysics Data System (ADS)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p < .001; Home Chemicals lab t(114) = 8.585, p < .001; Water Use lab, t(116) = 6.657, p < .001; Trees and Carbon lab, t(113) = 9.921, p < .001; Stratospheric Ozone lab, t(112) =12.974, p < .001; Renewable Energy lab, t(115) = 7.369, p < .001. The end of the course Scientific Skills quiz revealed statistically significant improvements, t(112) = 8.221, p < .001. The results of the two surveys showed a statistically significant improvement on student Scientific Self-Confidence because of lab completion, t(114) = 3.015, p < .05. Because age and gender were available, regression models were developed. The results indicated weak multiple correlation coefficients and were not statistically significant at alpha = .05. Evidence suggests that labs play a positive role in a student's academic success. It is recommended that lab experiences be included in all online Environmental Science

  13. Adolescent bariatric surgery program characteristics: the Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study experience.

    PubMed

    Michalsky, Marc P; Inge, Thomas H; Teich, Steven; Eneli, Ihuoma; Miller, Rosemary; Brandt, Mary L; Helmrath, Michael; Harmon, Carroll M; Zeller, Meg H; Jenkins, Todd M; Courcoulas, Anita; Buncher, Ralph C

    2014-02-01

    The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Data were obtained from the Teen-LABS database, and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. All centers had extensive multidisciplinary involvement in the assessment, pre-operative education, and post-operative management of adolescents undergoing WLS. Eligibility criteria and pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well-developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. The composition of clinical team and institutional resources is consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. © 2013 Published by Elsevier Inc.

  14. Adolescent Bariatric Surgery Program Characteristics: The Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study Experience

    PubMed Central

    Michalsky, M.P.; Inge, T.H.; Teich, S.; Eneli, I.; Miller, R.; Brandt, M.L.; Helmrath, M.; Harmon, C.M.; Zeller, M.H.; Jenkins, T.M.; Courcoulas, A.; Buncher, C.R.

    2013-01-01

    Background The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Methods Data were obtained from the Teen-LABS database and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. Results All centers had extensive multidisciplinary involvement in the assessment, preoperative education and post-operative management of adolescents undergoing WLS. Eligibility criteria, pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. Conclusions The composition of clinical team and institutional resources are consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. PMID:24491361

  15. Numerical simulation of nonlinear feedback model of saccade generation circuit implemented in the LabView graphical programming language.

    PubMed

    Jackson, M E; Gnadt, J W

    1999-03-01

    The object-oriented graphical programming language LabView was used to implement the numerical solution to a computational model of saccade generation in primates. The computational model simulates the activity and connectivity of anatomical strictures known to be involved in saccadic eye movements. The LabView program provides a graphical user interface to the model that makes it easy to observe and modify the behavior of each element of the model. Essential elements of the source code of the LabView program are presented and explained. A copy of the model is available for download from the internet.

  16. Developing a Standard Based Advanced Lab Course that Fulfills COM3 Requirements

    NASA Astrophysics Data System (ADS)

    Michalak, Rudi

    2015-03-01

    An advanced physics lab has been developed into a course that fulfills the requirements for a university studies program `COM3' course using Standard Teaching (ST) methods. The COM3 course is a capstone course under the new USP2015 study requirements for all majors. It replaces the WC writing requirement, typically filled in the English Dept., and adds the teaching of oral and digital communication skills. ST is a method that replaces typical assessments (homework / exam grades) with new assessments that measure certain specified learning outcomes. In combination with oral assessments and an oral final exam, the ST proves an efficient tool to implement the USP Learning Outcomes into a physics course. COM3 requires an unprecedented seven learning outcomes in a single course. Variety of learning outcomes: interdisciplinary goals, levels of writing (with drafting steps), organizational structure, standard language metrics, research and presentation deliverance skills, appropriate addressing of a variety of audiences, etc. With other assessment approaches than ST this variety would be difficult to meet in a physics course. An extended ST rubric has been developed for this course and will be presented and discussed in some detail.

  17. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    NASA Astrophysics Data System (ADS)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  18. Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, Vince

    Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.

  19. Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab

    ScienceCinema

    Battaglia, Vince

    2018-02-06

    Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.

  20. LABS Foundational Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jerry

    2012-01-01

    They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.

  1. Criteria for Evaluating Advancement Programs.

    ERIC Educational Resources Information Center

    Heemann, Warren, Ed.

    Criteria for evaluating college and university advancement programs are presented, based on the efforts of professional area trustees and advisory committees of the Council for Advancement and Support of Education (CASE). The criteria can be useful in three ways: as the basis of internal audits of advancement programs or program components; as the…

  2. Lab on a Chip Application Development for Exploration

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2004-01-01

    At Marshall Space Flight Center a new capability has been established to aid the advancement of microfluidics for space flight monitoring systems. Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 & 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD's process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-devices can be created such as the development of a microfluidic system to aid in the search for life, past and present, on Mars. Particular indicators in the Martian soil can contain the direct evidence of life. But to extract the information from the soil and present it to the proper detectors requires multiple fluidic/chemical operations. This is where LOCAD is providing its unique abilities.

  3. The Advanced Labs Website: resources for upper-level laboratories

    NASA Astrophysics Data System (ADS)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  4. Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.

    PubMed

    Lang, Stacey

    2012-01-01

    The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.

  5. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  6. KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  7. KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  8. Virtual Labs in proteomics: new E-learning tools.

    PubMed

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  10. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  11. 76 FR 7935 - Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...The Rural Business-Cooperative Service (Agency) is establishing the Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. Under this Program, the Agency will enter into contracts with advanced biofuel producers to pay such producers for the production of eligible advanced biofuels. To be eligible for payments, advanced biofuels must be produced from renewable biomass, excluding corn kernel starch, in a biofuel facility located in a State. In addition, this interim rule establishes new program requirements for applicants to submit applications for Fiscal Year 2010 payments for the Advanced Biofuel Payment Program. These new program requirements supersede the Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers in its entirety.

  12. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  13. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  14. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  15. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  16. Four Decades of the Advanced Placement Program.

    ERIC Educational Resources Information Center

    Rothschild, Eric

    1999-01-01

    Reports on the history of the Advanced Placement (AP) program, considering such issues as the program's initiation, changes within the program, its various problems, growth in Advanced Placement, and the program's reach overseas. (CMK)

  17. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR CODING: ARIZONA LAB DATA (UA-D-13.0)

    EPA Science Inventory

    The purpose of this SOP is to define the coding strategy for Arizona Lab Data. This strategy was developed for use in the Arizona NHEXAS project and the Border study. Keywords: data; coding; lab data forms.

    The U.S.-Mexico Border Program is sponsored by the Environmental Healt...

  18. A Remote Lab for Experiments with a Team of Mobile Robots

    PubMed Central

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-01-01

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab. PMID:25192316

  19. A remote lab for experiments with a team of mobile robots.

    PubMed

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-09-04

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab.

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  1. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  2. Jonathan F. Reichert and Barbara Wolff-Reichert Award for Excellence in Advanced Laboratory Instruction: Advanced Instructional Labs: Why Bother?

    NASA Astrophysics Data System (ADS)

    Bistrow, Van

    What aren't we teaching about physics in the traditional lecture course? Plenty! By offering the Advanced Laboratory Course, we hope to shed light on the following questions: How do we develop a systematic process of doing experiments? How do we record procedures and results? How should we interpret theoretical concepts in the real world? What experimental and computational techniques are available for producing and analyzing data? With what degree of confidence can we trust our measurements and interpretations? How well does a theory represent physical reality? How do we collaborate with experimental partners? How do we best communicate our findings to others?These questions are of fundamental importance to experimental physics, yet are not generally addressed by reading textbooks, attending lectures or doing homework problems. Thus, to provide a more complete understanding of physics, we offer laboratory exercises as a supplement to the other modes of learning. The speaker will describe some examples of experiments, and outline the history, structure and student impressions of the Advanced Lab course at the University of Chicago Department of Physics.

  3. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  4. Science Lab: A Peer Approach.

    ERIC Educational Resources Information Center

    Ronca, Courtney C.

    The two goals of this program were to increase the number of classroom teachers using the lab and to increase the amount of time that the science lab was used. The solution strategy chosen was a combination of peer tutoring, orientation presentations, small group discovery experiments and activities, and individual science experiment stations. The…

  5. Spike-train acquisition, analysis and real-time experimental control using a graphical programming language (LabView).

    PubMed

    Nordstrom, M A; Mapletoft, E A; Miles, T S

    1995-11-01

    A solution is described for the acquisition on a personal computer of standard pulses derived from neuronal discharge, measurement of neuronal discharge times, real-time control of stimulus delivery based on specified inter-pulse interval conditions in the neuronal spike train, and on-line display and analysis of the experimental data. The hardware consisted of an Apple Macintosh IIci computer and a plug-in card (National Instruments NB-MIO16) that supports A/D, D/A, digital I/O and timer functions. The software was written in the object-oriented graphical programming language LabView. Essential elements of the source code of the LabView program are presented and explained. The use of the system is demonstrated in an experiment in which the reflex responses to muscle stretch are assessed for a single motor unit in the human masseter muscle.

  6. Filling a Plastic Bag with Carbon Dioxide: A Student-Designed Guided-Inquiry Lab for Advanced Placement and College Chemistry Courses

    ERIC Educational Resources Information Center

    Lanni, Laura M.

    2014-01-01

    A guided-inquiry lab, suitable for first-year general chemistry or high school advanced placement chemistry, is presented that uses only inexpensive, store-bought materials. The reaction of sodium bicarbonate (baking soda) with aqueous acetic acid (vinegar), under the constraint of the challenge to completely fill a sealable plastic bag with the…

  7. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  9. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria.

    PubMed

    Nievas, Fiorela L; Bogino, Pablo C; Giordano, Walter

    2016-05-06

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  11. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  12. KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  13. MethLAB

    PubMed Central

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K

    2012-01-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798

  14. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...-AA75 Advanced Biofuel Payment Program; Correction AGENCY: Rural Business-Cooperative Service; Rural... Federal Register of February 11, 2011, establishing the Advanced Biofuel Payment Program authorized under... this Program, the Agency will enter into contracts with advanced biofuel producers to pay such...

  15. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  16. Overview of Advanced Turbine Systems Program

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  17. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  18. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  19. EPICS Channel Access Server for LabVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Alexander P.

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  20. Berkeley Lab's Cool Your School Program

    ScienceCinema

    Brady, Susan; Gilbert, Haley; McCarthy, Robert

    2018-02-02

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  1. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    NASA Astrophysics Data System (ADS)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  2. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  3. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  4. Pilot Plants Enhance Brazosport Lab Courses.

    ERIC Educational Resources Information Center

    Krieger, James

    1986-01-01

    Describes an experiential lab program for a two-year college's chemical technology program. Discusses student experiences in six miniature pilot plants that represent the essential instrumentation and chemical processes found in the chemical industry. Recognizes the industries that helped implement the program. (TW)

  5. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  6. Results From the N* Program at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inna Aznauryan, Volker Burkert, Tsung-Shung Lee, Viktor Mokeev

    2011-06-01

    search for undiscovered but predicted states continues to be pursued with a vigorous experimental program. While recent data from Jefferson Lab and elsewhere provide intriguing hints of new states, final conclusions will have to wait for the results of the broad experimental effort currently underway with CLAS, and subsequent analyses involving the EBAC at Jefferson Lab.« less

  7. Advanced Industrial Materials (AIM) fellowship program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currentlymore » under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).« less

  8. Improved LCI profile of LAB based on latest technology advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berna, J.L.; Renta, C.

    1995-12-31

    The first technology used to produce LAB was introduced in the early 60`s and since then a continuous optimization process has taken place on this highly competitive product on which additional cost effectiveness improvements became highly challenging. The latest technology introduced in the market (CEPSA {minus} UOP DETAL) based on a fixed bed alkylation process, has already been proved on a commercial scale. The simplicity of the new technology as compared to current ones, namely HF, has proven to be very effective in reducing substantially the impact due to several major components of the Life Cycle Inventory (LCI) in particularmore » the emissions of the overall operation. Additional improvements in other aspects like energy consumption are extremely difficult to achieve today as this parameter has already been highly optimized during the last two decades making in fact LAB a highly effective chemical in terms of energy requirements as well as on raw material consumption. The results of the first LCI of the new LAB technology indicate a reduction of CO process emissions to nearly 1/2 as compared to standard HF process as well as reduction in solid waste to 1/3 of the corresponding HF process. Important reductions have also been noticed on NOx emissions with the new technology.« less

  9. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  10. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    ERIC Educational Resources Information Center

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  11. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  12. Toward a Rb MOT for Undergrad Research and Advanced labs at Bridgewater State University

    NASA Astrophysics Data System (ADS)

    Deveney, Edward

    2015-03-01

    The seminal paper for the undergraduate MOT appeared in AJP (63 (4), 1995) by C. Wieman, G. Flowers and S. Gilbert; `Inexpensive laser cooling and trapping experiment for undergraduate laboratories'. They wrote: ``Because of this visual appeal and the current research excitement in this area, we felt that it was highly desirable to develop an atom trapping apparatus that could be incorporated into the undergraduate laboratory classes.'' From our observations, it seems that while there are extraordinary examples of MOTs thriving in a few undergraduate labs, MOT experiments have yet to be widely incorporated into the undergraduate curriculum - likely because they are, in fact, not trivial to make. With the benefit of 20 years evolution since this 1st undergraduate MOT paper, we report the progress at BSU of constructing a 85Rb MOT that incorporates significant simplifications and straightforward techniques that include: using a single ECDL laser for both trapping and re-pumping (using an EOM to add FM sidebands) and combining a purchased stabilized HeNe with the ECDL in a Fabry-Perot Interferometer to correct and sufficiently stabilize the ECDL for trapping. When completed we will revisit the question of do-ability for the undergraduate research/advanced lab. The BSU MOT was planned with and is currently being built with the help and guidance of David DeMille and his research group at Yale University [including J. Barry Thesis, Yale].

  13. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  14. Latest results from FROST at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, Barry G.

    2014-06-01

    The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of a polarized photon beam incident on a polarized target in meson photoproduction experiments. At Jefferson Lab, a program of such measurements has made use of the Jefferson Lab FROzen Spin Target (FROST). An overview of preliminary results are presented.

  15. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  16. Brayton advanced heat receiver development program

    NASA Technical Reports Server (NTRS)

    Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.

    1989-01-01

    NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.

  17. Exploratory Advanced Research Program

    DOT National Transportation Integrated Search

    2013-08-20

    The Exploratory Advanced Research Program strives to develop partnerships with the public and private sectors because the very nature of EAR is to apply ideas across traditional fields of research and stimulate new approaches to problem solving. Thro...

  18. Advancing Research in the National Science Foundation's Advanced Technological Education Program

    ERIC Educational Resources Information Center

    Wingate, Lori A.

    2017-01-01

    Advanced Technological Education is distinct from typical National Science Foundation programs in that it is essentially a training--not research--program, and most grantees are located at technical and two-year colleges. This article presents empirical data on the status of research in the program, discusses the program's role in supporting NSF's…

  19. Advance Control Measures & Programs

    EPA Pesticide Factsheets

    As areas develop their path forward or action plan, they should consider a variety of voluntary and mandatory measures and programs. The resources on this page can help, and participants are also encouraged to talk with their EPA Advance contact

  20. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  1. Constructing the Components of a Lab Report Using Peer Review

    ERIC Educational Resources Information Center

    Berry, David E.; Fawkes, Kelli L.

    2010-01-01

    A protocol that emphasizes lab report writing using a piecemeal approach coupled with peer review is described. As the lab course progresses, the focus of the report writing changes sequentially through the abstract and introduction, the discussion, and the procedure. Two styles of lab programs are presented. One style rotates the students through…

  2. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  3. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  4. Online Writing Labs as Sites for Community Engagement

    ERIC Educational Resources Information Center

    Wells, Jaclyn Michelle

    2010-01-01

    This dissertation investigates the Community Writing and Education Station (CWEST), a community engagement project that partners a community adult basic literacy program with a university writing lab. The author argues that the community and university partners, the Lafayette Adult Resource Academy (LARA) and the Purdue Writing Lab, offer positive…

  5. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(R) (MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many cou ntries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its re al strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbo x. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using s ymbolic operations. MatLab in its interpreter programming language fo rm (command interface) is similar with well known programming languag es such as C/C++, support data structures and cell arrays to define c lasses in object oriented programming. As such, MatLab is equipped with most ofthe essential constructs of a higher programming language. M atLab is packaged with an editor and debugging functionality useful t o perform analysis of large MatLab programs and find errors. We belie ve there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and ana lysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applicati ons. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientifi c problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabu lar format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed. The presentation will emphasize creating

  6. Successful Minority PhD Producing Programs -- Bell Laboratories and the Meyerhoff Scholarship Program at UMBC

    NASA Astrophysics Data System (ADS)

    Johnson, Anthony

    2009-03-01

    The Bell Labs Cooperative Research Fellowship Program for Minorities (CRFP), founded in 1972 was one of the first programs of its kind in the US to address the issue of under-representation of minorities in the fields of engineering, mathematics and science. As of 2000, well over 100 PhDs graduated with CRFP sponsorship and a significant fraction joined the research ranks of Bell Labs. In the early days of the program as much as 50% of African American PhDs in Physics in the US were granted to students supported by CRFP. Another unique program initiated by Bell Labs in 1974 that introduced undergraduate students to cutting edge research was the Summer Research Program for Minorities and Women (SRP). The SRP served as a natural feeder to the CRFP. Personally, my career in Optical Physics owes its foundation to these programs and I will give my perspective on participation and impact of the Bell Labs SRP (1974) and CRFP (1975) programs. The Meyerhoff Scholars Program at UMBC was developed in 1988. At that time, UMBC was graduating fewer than 18 African-American STEM majors per year. In 1996 the program was opened to all students with an interest in the advancement of minorities in STEM fields. The program enjoys an overall 18-year retention rate of greater than 95% and has over 500 graduates since 1993. As of May 2006, 75% of these graduates are enrolled in graduate and/or professional programs, with 49 PhDs and 20 MD/PhDs completed as of August 2006. The program challenges notions about minority achievement. Meyerhoff Scholars have changed the perceptions of those around them -- the expectations of faculty who instruct them, the attitudes of students who learn beside them, and the perspectives of scientists who engage them in research.

  7. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  8. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  9. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  10. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  11. Advanced Technological Education Program: 1995 Awards and Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Advanced Technological Education (ATE) program promotes exemplary improvement in advanced technological education at the national and regional level through support of curriculum development and program improvement at the undergraduate and secondary school levels, especially for technicians being educated for the high performance workplace of…

  12. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    NASA Astrophysics Data System (ADS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  13. Life Lab Computer Support System's Manual.

    ERIC Educational Resources Information Center

    Lippman, Beatrice D.; Walfish, Stephen

    Step-by-step procedures for utilizing the computer support system of Miami-Dade Community College's Life Lab program are described for the following categories: (1) Registration--Student's Lists and Labels, including three separate computer programs for current listings, next semester listings, and grade listings; (2) Competence and Resource…

  14. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  15. Advanced gas turbine systems program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less

  16. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  17. Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Bossler, Robert B., Jr.

    1993-01-01

    Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of $165K, per unit, and an average transmission direct operating cost savings of 33 percent, or $24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized.

  18. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  19. A "Canned" Computer Lab

    ERIC Educational Resources Information Center

    Dowling, John, Jr.

    1972-01-01

    Discusses the use of a set of computer programs (FORTRAN IV) in an introductory mechanics course for science majors. One laboratory activity is described for determining the coefficient of restitution of a glider on an air track. A student evaluation for the lab is included in the appendix. (Author/TS)

  20. Advanced Rotorcraft Transmission (ART) program summary

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Kish, J. G.

    1992-01-01

    The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct. and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART Program is summarized. A split path design was selected as best able to meet the program goals. Key part technologies needed for this design were identified, studied, and developed. Two of these technologies are discussed in detail: the load sharing of split path designs including the use of a compliant elastomeric torque splitter and the application of a high ratio, low pitch line velocity gear mesh. Development of an angular contact spherical roller bearing, transmission error analysis, and fretting fatigue testing are discussed. The technologies for a light weight, quiet, and reliable rotorcraft transmission were demonstrated.

  1. THE ATHENS LAB'S ROLE IN EPA'S COMPUTATIONAL TOXICOLOGY PROGRAM WITH AN EMPHASIS ON METABOLOMICS AS A DIAGNOSTIC TOOL FOR TOXICOLOGY

    EPA Science Inventory

    This presentation gives a brief introduction to EPA's computational toxicology program and the Athens Lab's role in it. The talk also covered a brief introduction to metabolomics; advantages/disadvanage of metabolomics for toxicity assessment; goals of the EPA Athens metabolomics...

  2. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  3. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  4. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  5. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  6. NASA/industry advanced turboprop technology program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemianski, J.A.; Whitlow, J.B. Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, andmore » a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.« less

  7. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  8. Revisiting "No Easy Answers": Application of Sally Smith's Methods in the Lab School of Washington High School Program

    ERIC Educational Resources Information Center

    Reynolds, Meredith

    2010-01-01

    The first edition of "No Easy Answers" (Smith, 1995) was published in 1979, thirty years ago. That seminal work is as relevant today as it was when the book first appeared. This article provides a description of how Sally Smith's Academic Club Method is implemented in the High School program of The Lab School of Washington.

  9. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and

  10. Demo of three ways to use a computer to assist in lab

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    The objective is to help the slow learner and students with a language problem, or to challenge the advanced student. Technology has advanced to the point where images generated on a computer can easily be recorded on a VCR and used as a video tutorial. This transfer can be as simple as pointing a video camera at the screen and recording the image. For more clarity and professional results, a board may be inserted into a computer which will convert the signals directly to the TV standard. Using a computer program that generates movies one can animate various principles which would normally be impossible to show or would require time-lapse photography. For example, you might show the change in shape of grains as a piece of metal is cold worked and then show the recrystallization and grain growth as heat is applied. More imaginative titles and graphics are also possible using this technique. Remedial help may also be offered via computer to those who find a specific concept difficult. A printout of specific data, details of the theory or equipment set-up can be offered. Programs are now available that will help as well as test the student in specific areas so that a Keller type approach can be used with each student to insure each knows the subject before going on to the next topic. A computer can serve as an information source and contain the microstructures, physical data and availability of each material tested in the lab. With this source present unknowns can be evaluated and various tests simulated to create a simple or complex case study lab assignment.

  11. Love the Lab, Hate the Lab Report?

    ERIC Educational Resources Information Center

    Bjorn, Genevive

    2018-01-01

    In the author's large, urban high school, enrollment in a laboratory science is mandatory. While the student participation rate for lab activities is over 98%, the turn-in rate for traditional lab reports averages just 35% to 85%. Those students who don't produce a lab report miss a critical opportunity to improve their skills in scientific…

  12. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  13. Qualification Lab Testing on M1 Abrams Engine Oil Filters

    DTIC Science & Technology

    2016-11-01

    UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM

  14. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  15. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... (NOCP); additional payment for advanced biofuel produced from October 1, 2008 through September 30, 2009. SUMMARY: RBS is announcing additional payments to advanced biofuel producers determined eligible in Fiscal... biofuel produced in FY 2009, the request must include: Form RD 9005-3, ``Advanced Biofuel Program Payment...

  16. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  17. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  18. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mike; Cipiti, Ben; Demuth, Scott Francis

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  19. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  20. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  1. AP: A Critical Examination of the Advanced Placement Program

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Sonnert, Gerhard; Tai, Robert; Klopfenstein, Kirstin

    2016-01-01

    The Advanced Placement (AP) program was created to enhance the experience of gifted students as they transition from high school to college. "AP: A Critical Examination of the Advanced Placement Program," edited by Philip M. Sadler, Gerhard Sonnert, Robert Tai, and Kirstin Klopfenstein (2010, Harvard Education Press), questions the…

  2. [Specialist's training for laparoscopic surgery in Wet-lab educational operating theatre].

    PubMed

    Khubezov, D A; Sazhin, V P; Ogoreltsev, A Yu; Puchkov, D K; Rodimov, S V; Ignatov, I S; Tazina, T V; Evsyukova, M A

    2018-01-01

    To develop system for students training in laparoscopic surgery by using of Wet-lab educational operating theatre. We have launched laparoscopic surgery teaching program for students of Ryazan State Medical University. This system includes several stages. At the first stage professional selection was carried out on 'dry' laparoscopic simulators among III-IV-year students of medical faculty. So, 10 people were selected. The second stage included theoretical and practical parts consisting of development of basic laparoscopic skills on 'dry' simulators. 5 students who scored the maximum points were admitted to the next stage. The third stage is working in Wet-lab operating theatre with a mentor. There were 10 sessions on 10 laboratory pigs. Final stage of our study compares two groups of participants: main group - 5 students who underwent above-described program and control group of 5 residents without experience for laparoscopic operations. The participants of the main group had significantly higher OSATS score compared with another group (20 vs. 10; p<0.05). Movements effectiveness estimated by measuring of movements trajectory total length was also higher in main group than in control group (6 vs. 20; p<0.05). Experts' subjective assessment according to 10-point scale was also higher for students than for interns (9 vs. 5, p<0.05). Participants in the main group required significantly less time to complete the task compared with the control group (40 vs. 90 minutes, p<0.05). Our experience has shown that training system with Wet-lab operating theatre is effective for quick and efficient training of medical students in main laparoscopic procedures. In our opinion, introduction of students into 'advanced' surgery from early age will make it possible to get finally highly professional specialists.

  3. Materials and Area of Study for Advanced Placement Program in American History.

    ERIC Educational Resources Information Center

    Santos, Peter A.

    This paper describes and evaluates benefits of advanced placement programs and identifies materials which can help high school history classroom teachers develop effective advanced placement programs. An advanced placement program is defined as a program which requires a student to do extensive research and writing throughout the school year.…

  4. Lab experiments are a major source of knowledge in the social sciences.

    PubMed

    Falk, Armin; Heckman, James J

    2009-10-23

    Laboratory experiments are a widely used methodology for advancing causal knowledge in the physical and life sciences. With the exception of psychology, the adoption of laboratory experiments has been much slower in the social sciences, although during the past two decades the use of lab experiments has accelerated. Nonetheless, there remains considerable resistance among social scientists who argue that lab experiments lack "realism" and generalizability. In this article, we discuss the advantages and limitations of laboratory social science experiments by comparing them to research based on nonexperimental data and to field experiments. We argue that many recent objections against lab experiments are misguided and that even more lab experiments should be conducted.

  5. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  6. Fuel savings potential of the NASA Advanced Turboprop Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1984-01-01

    The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less

  7. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  8. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program get an inside look at NASA Kennedy Space Center’s iconic Vehicle Assembly Building from the transfer aisle. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  9. Advanced imaging programs: maximizing a multislice CT investment.

    PubMed

    Falk, Robert

    2008-01-01

    Advanced image processing has moved from a luxury to a necessity in the practice of medicine. A hospital's adoption of sophisticated 3D imaging entails several important steps with many factors to consider in order to be successful. Like any new hospital program, 3D post-processing should be introduced through a strategic planning process that includes administrators, physicians, and technologists to design, implement, and market a program that is scalable-one that minimizes up front costs while providing top level service. This article outlines the steps for planning, implementation, and growth of an advanced imaging program.

  10. Gapminder: An AP Human Geography Lab Assignment

    ERIC Educational Resources Information Center

    Keller, Kenneth H.

    2012-01-01

    This lesson is designed as a lab assignment for Advanced Placement (AP) Human Geography students wherein they use the popular Gapminder web site to compare levels of development in countries from different world regions. For this lesson, it is important for the teacher to practice with Gapminder before giving the assignment to students. (Contains…

  11. Physical Therapist Assistant Fitness Lab.

    ERIC Educational Resources Information Center

    Backstrom, Kurt; And Others

    Colby Community College's (CCC) Fitness Lab was established to provide the Physical Therapist Assistant (PTA) Program with a learning laboratory in which students can practice classroom-acquired skills, while at the same time promoting the physical, emotional, social, and intellectual well-being of CCC students and staff, and community members. A…

  12. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  13. Advanced wiring technique and hardware application: Airplane and space vehicle

    NASA Technical Reports Server (NTRS)

    Ernst, H. L.; Eichman, C. D.

    1972-01-01

    An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

  14. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  15. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  16. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  17. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  18. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  19. A review of digital microfluidics as portable platforms for lab-on a-chip applications.

    PubMed

    Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina

    2016-07-07

    Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.

  20. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  1. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  2. Gulf Breeze, FL Lab--Office of Research and Development

    EPA Pesticide Factsheets

    The Gulf Breeze lab is recognized as a leader in advancing scientific knowledge concerning the effects of human-made stressors on the ecosystems of the Gulf Coast, and the impacts of those effects on the health and well-being of people and communities.

  3. SEAS Classroom to Sea Labs: New Directions for Ridge 2000 Communitywide Education Outreach

    NASA Astrophysics Data System (ADS)

    Goehring, L.

    2005-12-01

    Lessons learned from the two year SEAS pilot program emphasize that student participation in deep-sea research is an important motivator in student learning. Further, SEAS students experience a paradigm shift in understanding evidence-based reasoning and the process of scientific discovery. At the same time, we have learned that fostering authentic student investigations within the confines of the academic year is challenging and only fits classrooms with some academic flexibility. As a result, this year, SEAS will focus on the new Classroom to Sea Lab as a means to help foster student inquiry in the secondary school science classroom. The Classroom to Sea Lab invites student participation in deep-sea research but does so without requiring students to identify and propose suitable sea-going experiments. Classroom to Sea labs are designed to feature current deep-sea research, and emphasize critical skills in laboratory techniques, data collection and analysis, and scientific reporting. Labs are conducted in the classroom (by students) and at sea (by scientists for the students), resulting in parallel datasets for comparison. Labs also feature the work of practicing scientists. An annual Classroom to Sea Report Fair invites students to summarize their findings and submit written analyses for scientist feedback and prizes, emphasizing the importance of communications skills in science. This year, the SEAS program will feature the Shallow-water vs. Deep-sea Vent Mussel Classroom to Sea lab. In this lab, students explore differences in mussel anatomy and feeding strategies, and understand how chemosynthetic symbionts function in this animal. The lab instructs students to dissect shallow-water mussels and measure the proportion of gill tissue to total body tissue. Students are also instructed to download a dataset of vent mussel measurements and compare average proportions. Finally, students are invited to submit their analyses of the lab to the on-line Report Fair

  4. Building Automatic Grading Tools for Basic of Programming Lab in an Academic Institution

    NASA Astrophysics Data System (ADS)

    Harimurti, Rina; Iwan Nurhidayat, Andi; Asmunin

    2018-04-01

    The skills of computer programming is a core competency that must be mastered by students majoring in computer sciences. The best way to improve this skill is through the practice of writing many programs to solve various problems from simple to complex. It takes hard work and a long time to check and evaluate the results of student labs one by one, especially if the number of students a lot. Based on these constrain, web proposes Automatic Grading Tools (AGT), the application that can evaluate and deeply check the source code in C, C++. The application architecture consists of students, web-based applications, compilers, and operating systems. Automatic Grading Tools (AGT) is implemented MVC Architecture and using open source software, such as laravel framework version 5.4, PostgreSQL 9.6, Bootstrap 3.3.7, and jquery library. Automatic Grading Tools has also been tested for real problems by submitting source code in C/C++ language and then compiling. The test results show that the AGT application has been running well.

  5. Development Labs: University Knowledge Production and Global Poverty

    ERIC Educational Resources Information Center

    Collins, Christopher S.

    2017-01-01

    In 2012, the United States Agency for International Development allocated $137 million to fund seven universities to create "development labs" to advance social/economic progress and reduce poverty. International economic development has become a booming field and industry but is also highly contested. The function of the university as a…

  6. Successful Transportation Lab-Industry Collaborations Spotlighted at Summit

    Science.gov Websites

    hosted leaders from the business, government, and research communities at the EERE National Lab Impact prime examples of these win-win partnerships, with major automakers, component manufacturers, and fuel with a keynote address by Ford Motor Company Vice President of Research and Advanced Engineering Ken

  7. LabNet: Toward A Community of Practice. Technology in Education Series.

    ERIC Educational Resources Information Center

    Ruopp, Richard, Ed.; And Others

    Many educators advocate the use of projects in the science classroom. This document describes an effort (LabNet) that has successfully implemented a program that allows students to learn science using projects. Chapter 1, "An Introduction to LabNet" (Richard Ruopp, Megham Pfister), provides an initial framework for understanding the…

  8. Mentoring advanced practice nurses in research: recommendations from a pilot program.

    PubMed

    Leung, Doris; Widger, Kimberley; Howell, Doris; Nelson, Sioban; Molassiotis, Alex

    2012-01-01

    Advanced Practice Nurses (APNs) need research skills to develop and advance their practice and, yet, many have limited access to research training and support following completion of their advanced degree. In this paper we report on the development, delivery, and evaluation of an innovative pilot program that combined research training and one-to-one mentorship for nine APNs in conducting research relevant to their practice. The program was organized within an academic institution and its affiliated hospitals in Toronto, Canada. Our experience with this program may assist those in other organizations to plan and deliver a similar program for APN research mentorship.

  9. 75 FR 21191 - Subpart B-Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Service 7 CFR Part 4288 RIN 0570-AA75 Subpart B--Advanced Biofuel Payment Program; Correction AGENCY... for producers of advanced biofuels to supporting existing advanced biofuel production and to encourage...

  10. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  11. Interprofessional development and implementation of a pharmacist professional advancement and recognition program.

    PubMed

    Hager, David; Chmielewski, Eric; Porter, Andrea L; Brzozowski, Sarah; Rough, Steve S; Trapskin, Philip J

    2017-11-15

    The interprofessional development, implementation, and outcomes of a pharmacist professional advancement and recognition program (PARP) at an academic medical center are described. Limitations of the legacy advancement program, in combination with low rates of employee engagement in peer recognition and professional development, at the UW Health department of pharmacy led to the creation of a task force comprising pharmacists from all practice areas to develop a new pharmacist PARP. Senior leadership within the organization expanded the scope of the project to include an interprofessional work group tasked to develop guidelines and core principles that other professional staff could use to reduce variation across advancement and recognition programs. Key program design elements included a triennial review of performance against advancement standards and the use of peer review to supplement advancement decisions. The primary objective was to meaningfully improve pharmacists' engagement as measured through employee engagement surveys. Secondary outcomes of interest included the results of pharmacist and management satisfaction surveys and the program's impact on the volume and mix of pharmacist professional development activities. Of the 126 eligible pharmacists, 93 participated in the new program. The majority of pharmacists was satisfied with the program. For pharmacists who were advanced as part of the program, meaningful increases in employee engagement scores were observed, and a mean of 95 hours of professional development and quality-improvement activities was documented. Implementation of a PARP helped increase pharmacist engagement through participation in quality-improvement and professional development activities. The program also led to the creation of organizationwide interprofessional guidelines for advancement programs within various healthcare disciplines. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  12. Nurse Leaders’ Experiences of Implementing Career Advancement Programs for Nurses in Iran

    PubMed Central

    Sheikhi, Mohammad Reza; Khoshknab, Masoud Fallahi; Mohammadi, Farahnaz; Oskouie, Fatemeh

    2015-01-01

    Background and purpose: Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses’ Career Advancement Pathway. The purpose of this study was to explore nurse leaders’ experiences about implementing the Nurses’ Career Advancement Pathway program in Iran. Methods: This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. Results: participants’ experiences about implementing the Nurses’ Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. Conclusion: The Nurses’ Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program. PMID:26156907

  13. Nurse Leaders' Experiences of Implementing Career Advancement Programs for Nurses in Iran.

    PubMed

    Sheikhi, Mohammad Reza; Fallahi Khoshknab, Masoud; Mohammadi, Farahnaz; Oskouie, Fatemeh

    2015-02-24

    Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses' Career Advancement Pathway. The purpose of this study was to explore nurse leaders' experiences about implementing the Nurses' Career Advancement Pathway program in Iran. This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. participants' experiences about implementing the Nurses' Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. The Nurses' Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program.

  14. The Rock Valley College Career Advancement Program.

    ERIC Educational Resources Information Center

    Rock Valley Coll., Rockford, IL.

    The Career Advancement Program (CAP) is a joint effort by a 2-year college and industrial firms in its district to expand educational opportunities, to match college programs to local needs, and to help industry meet its present and future technical manpower needs. CAP has worked to attract students, full- or part-time, to technical training.…

  15. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  16. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  17. The Vanderbilt Professional Nursing Practice Program, part 3: managing an advancement process.

    PubMed

    Steaban, Robin; Fudge, Mitzie; Leutgens, Wendy; Wells, Nancy

    2003-11-01

    Consistency of performance standards across multiple clinical settings is an essential component of a credible advancement system. Our advancement process incorporates a central committee, composed of nurses from all clinical settings within the institution, to ensure consistency of performance in inpatient, outpatient, and procedural settings. An analysis of nurses advanced during the first 18 months of the program indicates that performance standards are applicable to nurses in all clinical settings. The first article (September 2003) in this 3-part series described the foundation for and the philosophical background of the Vanderbilt Professional Nursing Practice Program (VPNPP), the career advancement program underway at Vanderbilt University Medical Center. Part 2 described the development of the evaluation tools used in the VPNPP, the implementation and management of this new system, program evaluation, and improvements since the program's inception. The purpose of this article is to review the advancement process, review the roles of those involved in the process, and to describe outcomes and lessons learned.

  18. Advanced Manufacturing Training: Mobile Learning Labs

    ERIC Educational Resources Information Center

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  19. LabVIEW Interface for PCI-SpaceWire Interface Card

    NASA Technical Reports Server (NTRS)

    Lux, James; Loya, Frank; Bachmann, Alex

    2005-01-01

    This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.

  20. NASA advanced turboprop research and concept validation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  1. Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden

    NASA Astrophysics Data System (ADS)

    Briscoe, William; O'Rielly, Grant; Fissum, Kevin

    2014-03-01

    Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.

  2. Laboratory Accreditation Bureau (L-A-B)

    DTIC Science & Technology

    2011-03-28

    to all Technical Advisors. Must agree with code of conduct, confidentiality and our mission DoD ELAP Program  ISO / IEC 17025 :2005 and DoD QSM...Additional DoD QSM requirements fit well in current 17025 process … just much, much more. Sector Specific. Outcome (L-A-B case)  83

  3. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  4. Evaluation of ADVANCE: A Nontraditional Adult Diploma Program.

    ERIC Educational Resources Information Center

    Deegan, James

    An evaluation of Project ADVANCE (Adult Diploma Validating and Accrediting Necessary Competence and Experiences), an adult competency-based high school completion program, was conducted to determine program effectiveness, as viewed subjectively by recent graduates and present students. Personal interviews and/or questionnaires were given to 31 of…

  5. Future lab-on-a-chip technologies for interrogating individual molecules.

    PubMed

    Craighead, Harold

    2006-07-27

    Advances in technology have allowed chemical sampling with high spatial resolution and the manipulation and measurement of individual molecules. Adaptation of these approaches to lab-on-a-chip formats is providing a new class of research tools for the investigation of biochemistry and life processes.

  6. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  7. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  8. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  9. Astronomy for a Better World: IAU OAD Task Force-1 Programs for Advancing Astronomy Education and Research in Universities in Developing Countries

    NASA Astrophysics Data System (ADS)

    Guinan, Edward; Kolenberg, Katrien

    2015-03-01

    We discuss the IAU Commission 46 and Office for Astronomy Development (OAD) programs that support advancing Astronomy education and research primarily in universities in developing countries. The bulk of these operational activities will be coordinated through the OAD's newly installed Task Force 1. We outline current (and future) IAU/OAD Task Force-1 programs that promote the development of University-level Astronomy at both undergraduate and graduate levels. Among current programs discussed are the past and future expanded activities of the International School for Young Astronomers (ISYA) and the Teaching Astronomy for Development (TAD) programs. The primary role of the ISYA program is the organization of a three week School for students for typically M.Sc. and Ph.D students. The ISYA is a very successful program that will now be offered more frequently through the generous support of the Kavli Foundation. The IAU/TAD program provides aid and resources for the development of teaching, education and research in Astronomy. The TAD program is dedicated to assist countries that have little or no astronomical activity, but that wish to develop or enhance Astronomy education. Over the last ten years, the ISYA and TAD programs have supported programs in Africa, Asia, Central America and the Caribbean, the Middle East, South East and West Asia, and South America. Several examples are given. Several new programs being considered by OAD Task Force-1 are also discussed. Other possible programs being considered are the introduction of modular Astronomy courses into the university curricula (or improve present courses) as well as providing access to ``remote learning`` courses and Virtual Astronomy labs in developing countries. Another possible new program would support visits of astronomers from technically advanced countries to spend their sabbatical leaves teaching and advising University Astronomy programs in developing countries. Suggestions for new Task Force -1

  10. Preparing Future Biology Faculty: An Advanced Professional Development Program for Graduate Students

    ERIC Educational Resources Information Center

    Lockwood, Stephanie A.; Miller, Amanda J.; Cromie, Meghan M.

    2014-01-01

    Formal professional development programs for biology graduate students interested in becoming faculty members have come far; however, programs that provide advanced teaching experience for seasoned graduate teaching assistants are scarce. We outline an advanced program that focuses on further training of graduate teaching assistants in pedagogy…

  11. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1989-02-01

    The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).

  12. Folding Inquiry into Cookbook Lab Activities

    ERIC Educational Resources Information Center

    Gooding, Julia; Metz, Bill

    2012-01-01

    Cookbook labs have been a part of science programs for years, even though they serve little purpose other than to verify phenomena that have been previously presented by means other than through investigations. Cookbook science activities follow a linear path to a known outcome, telling students what procedures to follow, which materials to use,…

  13. Auto-tuning system for NMR probe with LabView

    NASA Astrophysics Data System (ADS)

    Quen, Carmen; Mateo, Olivia; Bernal, Oscar

    2013-03-01

    Typical manual NMR-tuning method is not suitable for broadband spectra spanning several megahertz linewidths. Among the main problems encountered during manual tuning are pulse-power reproducibility, baselines, and transmission line reflections, to name a few. We present a design of an auto-tuning system using graphic programming language, LabVIEW, to minimize these problems. The program is designed to analyze the detected power signal of an antenna near the NMR probe and use this analysis to automatically tune the sample coil to match the impedance of the spectrometer (50 Ω). The tuning capacitors of the probe are controlled by a stepper motor through a LabVIEW/computer interface. Our program calculates the area of the power signal as an indicator to control the motor so disconnecting the coil to tune it through a network analyzer is unnecessary. Work supported by NSF-DMR 1105380

  14. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Advanced Placement (AP) Test Fee Program... Information Advanced Placement Test Fee Program. Notice inviting applications for new awards for fiscal year... Program: The AP Test Fee program awards grants to eligible State educational agencies (SEAs) to enable...

  15. 77 FR 8848 - Application for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... DEPARTMENT OF EDUCATION Application for New Awards; Advanced Placement (AP) Test Fee Program... Information: Advanced Placement Test Fee Program. Notice inviting applications for new awards for fiscal year... Description Purpose of Program: The AP Test Fee program awards grants to eligible State educational agencies...

  16. (De)Constructing the Undergraduate Research Experience in an Environmental Geochemistry Lab (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, C. S.

    2013-12-01

    Maintaining a productive research lab at the undergraduate level requires a savvy combination of internal organization, high (but realistic) expectations, and adaptation of one's research interests into semester- and summer-length projects. Several key strategies can help achieve the goal of building a lab culture that both enriches students' academic experiences and advances one's own scholarly research and visibility. Foremost among these is the need to maintain momentum and preserve institutional knowledge in an environment where undergraduate students' lifetime in an individual lab may only last a year or two. Examples from the Environmental Geochemistry Lab at Chapman University (www.chapman.edu/envgeo) developed over several years and with 40+ undergraduate students will be presented which can be transferable to other faculty research labs in the earth sciences. Approaches to writing successful external research grant proposals at a primarily undergraduate institution (PUI) and strategies for both personal and institutional time management/savings will also be discussed, with a focus on new models at Chapman offered to further incentivize faculty involvement in undergraduate research.

  17. Advanced Technological Education Program Fact Sheet, June 2007

    ERIC Educational Resources Information Center

    Ritchie, Liesel A.; Gullickson, Arlen R.; Wygant, Barbara

    2007-01-01

    This fact sheet summarizes data gathered in the 2007 annual survey for the National Science Foundation's (NSF) Advanced Technological Education (ATE) program. This was the eighth annual survey of ATE projects and centers conducted by The Evaluation Center at Western Michigan University. Included here are statistics about the program's grantees and…

  18. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  19. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications.

    PubMed

    Washburn, Adam L; Bailey, Ryan C

    2011-01-21

    By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.

  20. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH

  1. Nutrition for Advanced Chronic Kidney Disease in Adults

    MedlinePlus

    ... How can understanding and keeping track of lab reports help someone with advanced CKD make healthy food choices? Learning how to read and understand lab reports lets a person see how different foods can ...

  2. [Development of advanced educational programs, including research programs, for undergraduate students in National Universities: the facts in 2010].

    PubMed

    Kurosaki, Yuji; Tomioka, Yoshihisa; Santa, Tomofumi; Kitamura, Yoshihisa

    2012-01-01

    This article summarizes detailed facts obtained from the questionnaire conducted in 2010 at about 14 National Universities on the topic of "Research programs and advanced educational programs for undergraduate students". The contents of the questionnaire included: (1) Research programs based on the coalition of university and hospital and/or community pharmacy, other Graduate Schools, such as School of Medicine etc., and the University Hospital, (2) Educational systems for the achievement of research programs and their research outcomes, (3) Research programs based on pharmacist practices, (4) Ongoing advanced educational programs for undergraduate students, taking advantage of the coalition with Graduate School, School of Medicine (and Dentistry), and University Hospital. Some of the advanced educational programs outlined in this questionnaire will be carried out by our group in the coming years and the educational benefits together with associated problems shall as well be clarified. This approach will be informative for the development of the leader-oriented pharmacist programs for the college of Pharmacy.

  3. 78 FR 54255 - HRSA's Bureau of Health Professions Advanced Education Nursing Traineeship Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... of Health Professions Advanced Education Nursing Traineeship Program AGENCY: Health Resources and... announcing a change to its Advanced Education Nursing Traineeship (AENT) program. Effective fiscal year (FY... Wasserman, DrPH, RN, Advanced Nursing Education Branch Chief, Division of Nursing, Bureau of Health...

  4. California State University, Bakersfield Fab Lab: "Making" a Difference in Middle School Students' STEM Attitudes

    ERIC Educational Resources Information Center

    Medina, Andrea Lee

    2017-01-01

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on…

  5. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  6. Orion FSW V and V and Kedalion Engineering Lab Insight

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.

    2010-01-01

    NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.

  7. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  8. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  9. Advanced interdisciplinary undergraduate program: light engineering

    NASA Astrophysics Data System (ADS)

    Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia

    2016-09-01

    The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.

  10. GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues

    NASA Technical Reports Server (NTRS)

    Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid; hide

    2016-01-01

    NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.

  11. DOE EiR at Oakridge National Lab 2008/09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Michael

    2012-11-30

    This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting inmore » five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.« less

  12. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    ERIC Educational Resources Information Center

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  13. Introduction of optical tweezers in advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    2017-08-01

    Laboratories are an essential part of undergraduate optoelectronics and photonics education. Of particular interest are the sequence of laboratories which offer students meaningful research experience within a reasonable time-frame limited by regular laboratory hours. We will present our introduction of optical tweezers into the upper-level physics laboratory. We developed the sequence of experiments in the Advanced Lab to offer students sufficient freedom to explore, rather than simply setting up a demonstration following certain recipes. We will also present its impact on our current curriculum of optoelectronics concentration within the physics program.

  14. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  15. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  16. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  17. Engaging with science: High school students in summer lab internships

    NASA Astrophysics Data System (ADS)

    Bequette, Marjorie Bullitt

    Years of research and rhetoric have suggested that students should be given the opportunity to work with practicing scientists as a way to develop more sophisticated ideas about the nature of science, yet little research about these experiences exists. This project uses a case study approach to examine the experience of eight high school students working part-time during one summer as research assistants in biomedical laboratories. The students completed small research studies under the supervision of scientist-mentors. This dissertation explores questions related to how these students learned to work in a lab, in what ways they grew to understand this scientific context, and how their own relationships with science changed. The goal of looking at these young adults' summer experiences in science labs is to make suggestions for three settings: programs like this one, where high school students work closely with scientists in lab settings; other programs where scientists and students work together; and science education more generally. Analysis of pre- and post-interviews with students, and extensive observations of their laboratory work, suggests that students develop new ideas about the culture of science and the day-to-day workings of the labs. These ideas hold potential power for the students, and other participants in both similar and different educational settings, as they prepare for lives as scientifically engaged adults.

  18. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  19. GeoLab 2011: New Instruments and Operations Tested at Desert RATS

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Calaway, M. J.; Bell, M. S.

    2012-01-01

    GeoLab is a geological laboratory and testbed designed for supporting geoscience activities during NASA's analog demonstrations. Scientists at NASA's Johnson Space Center built GeoLab as part of a technology project to aid the development of science operational concepts for future planetary surface missions [1, 2, 3]. It is integrated into NASA's Habitat Demonstration Unit, a first generation exploration habitat test article. As a prototype workstation, GeoLab provides a high fidelity working space for analog mission crewmembers to perform in-situ characterization of geologic samples and communicate their findings with supporting scientists. GeoLab analog operations can provide valuable data for assessing the operational and scientific considerations of surface-based geologic analyses such as preliminary examination of samples collected by astronaut crews [4, 5]. Our analog tests also feed into sample handling and advanced curation operational concepts and procedures that will, ultimately, help ensure that the most critical samples are collected during future exploration on a planetary surface, and aid decisions about sample prioritization, sample handling and return. Data from GeoLab operations also supports science planning during a mission by providing additional detailed geologic information to supporting scientists, helping them make informed decisions about strategies for subsequent sample collection opportunities.

  20. The Study on Virtual Medical Instrument based on LabVIEW.

    PubMed

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  1. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  2. Women's Center Volunteer Intern Program: Building Community While Advancing Social and Gender Justice

    ERIC Educational Resources Information Center

    Murray, Margaret A.; Vlasnik, Amber L.

    2015-01-01

    This program description explores the purpose, structure, activities, and outcomes of the volunteer intern program at the Wright State University Women's Center. Designed to create meaningful, hands-on learning experiences for students and to advance the center's mission, the volunteer intern program builds community while advancing social and…

  3. An open-source LabVIEW application toolkit for phasic heart rate analysis in psychophysiological research.

    PubMed

    Duley, Aaron R; Janelle, Christopher M; Coombes, Stephen A

    2004-11-01

    The cardiovascular system has been extensively measured in a variety of research and clinical domains. Despite technological and methodological advances in cardiovascular science, the analysis and evaluation of phasic changes in heart rate persists as a way to assess numerous psychological concomitants. Some researchers, however, have pointed to constraints on data analysis when evaluating cardiac activity indexed by heart rate or heart period. Thus, an off-line application toolkit for heart rate analysis is presented. The program, written with National Instruments' LabVIEW, incorporates a variety of tools for off-line extraction and analysis of heart rate data. Current methods and issues concerning heart rate analysis are highlighted, and how the toolkit provides a flexible environment to ameliorate common problems that typically lead to trial rejection is discussed. Source code for this program may be downloaded from the Psychonomic Society Web archive at www.psychonomic.org/archive/.

  4. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates formore » consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  5. Microbes to Biomes at Berkeley Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-10-28

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  6. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  7. The NASA Langley Isolator Dynamics Research Lab

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

    2010-01-01

    The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

  8. Kinematic Labs with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  9. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.

    PubMed

    Nichols, David F

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.

  10. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB

    PubMed Central

    Nichols, David F.

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience. PMID:26557798

  11. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  12. Advancing Scholarship, Team Building, and Collaboration in a Hybrid Doctoral Program in Educational Leadership

    ERIC Educational Resources Information Center

    Holmes, Barbara; Trimble, Meridee; Morrison-Danner, Dietrich

    2014-01-01

    Hybrid programs are changing the landscape of doctoral programs at American universities and colleges. The increased demand for hybrid doctoral programs, particularly for educational and career advancement, serves as an innovative way to increase scholarship, advance service, and promote leadership. Hybrid programs serve as excellent venues for…

  13. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  14. The link evaluation terminal for the advanced communications technology satellite experiments program

    NASA Technical Reports Server (NTRS)

    May, Brian D.

    1992-01-01

    The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode.

  15. National Space Weather Program Advances on Several Fronts

    NASA Astrophysics Data System (ADS)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  16. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.

    PubMed

    Mirasoli, Mara; Guardigli, Massimo; Michelini, Elisa; Roda, Aldo

    2014-01-01

    Miniaturization of analytical procedures through microchips, lab-on-a-chip or micro total analysis systems is one of the most recent trends in chemical and biological analysis. These systems are designed to perform all the steps in an analytical procedure, with the advantages of low sample and reagent consumption, fast analysis, reduced costs, possibility of extra-laboratory application. A range of detection technologies have been employed in miniaturized analytical systems, but most applications relied on fluorescence and electrochemical detection. Chemical luminescence (which includes chemiluminescence, bioluminescence, and electrogenerated chemiluminescence) represents an alternative detection principle that offered comparable (or better) analytical performance and easier implementation in miniaturized analytical devices. Nevertheless, chemical luminescence-based ones represents only a small fraction of the microfluidic devices reported in the literature, and until now no review has been focused on these devices. Here we review the most relevant applications (since 2009) of miniaturized analytical devices based on chemical luminescence detection. After a brief overview of the main chemical luminescence systems and of the recent technological advancements regarding their implementation in miniaturized analytical devices, analytical applications are reviewed according to the nature of the device (microfluidic chips, microchip electrophoresis, lateral flow- and paper-based devices) and the type of application (micro-flow injection assays, enzyme assays, immunoassays, gene probe hybridization assays, cell assays, whole-cell biosensors). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  18. TangoLab-2 Card Troubleshooting

    NASA Image and Video Library

    2017-10-17

    iss053e105442 (Oct. 17, 2017) --- Flight Engineer Mark Vande Hei swaps out a payload card from the TangoLab-1 facility and places into the TangoLab-2 facility. TangoLab provides a standardized platform and open architecture for experimental modules called CubeLabs. CubeLab modules may be developed for use in 3-dimensional tissue and cell cultures.

  19. Astronomy for Everyone: Harvard's Move Toward an All-Inclusive Astronomy Lab and Telescope

    NASA Astrophysics Data System (ADS)

    Bieryla, Allyson

    2016-01-01

    Harvard University has a growing astronomy program that offers various courses to the undergraduate concentrators, secondaries and non-majors. Many of the courses involve labs that use the 16-inch DFM Clay Telescope for night-time observations and the heliostat for observing the Sun. The goal is to proactively adapt the lab and telescope facilities to accommodate all students with disabilities. The current focus is converting the labs to accommodate visually impaired students. Using tactile images and sound, the intention is to create an experience equivalent to that of a student with full sight.

  20. FOREWORD: Jefferson Lab: A Long Decade of Physics

    NASA Astrophysics Data System (ADS)

    Montgomery, Hugh

    2011-04-01

    Jefferson Lab Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief

  1. Advanced CNC Programming (EZ-CAM). 439-366.

    ERIC Educational Resources Information Center

    Casey, Joe

    This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…

  2. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  3. Innovative Use of a Classroom Response System During Physics Lab

    NASA Astrophysics Data System (ADS)

    Walgren, Jay

    2011-01-01

    More and more physics instructors are making use of personal/classroom response systems or "clickers." The use of clickers to engage students with multiple-choice questions during lecture and available instructor resources for clickers have been well documented in this journal.1-4 Newer-generation clickers, which I refer to as classroom response systems (CRS), have evolved to accept numeric answers (such as 9.81) instead of just single "multiple-choice" entries (Fig. 1). This advancement is available from most major clicker companies and allows for a greater variety of engaging questions during lecture. In addition, these new "numeric ready" clickers are marketed to be used for student assessments. During a test or quiz, students' answers are entered into their clicker instead of on paper or Scantron® and immediately absorbed by wireless connection into a computer for grading and analysis. I recognize the usefulness and benefit these new-generation CRSs provide for many instructors. However, I do not use my CRS in either of the aforementioned activities. Instead, I use it in an unconventional way. I use the CRS to electronically capture students' lab data as they are performing a physics lab (Fig. 2). I set up the clickers as if I were going to use them for a test, but instead of entering answers to a test, my students enter lab data as they collect it. In this paper I discuss my use of a classroom response system during physics laboratory and three benefits that result: 1) Students are encouraged to "take ownership of" and "have integrity with" their physics lab data. 2) Students' measuring and unit conversion deficiencies are identified immediately during the lab. 3) The process of grading students' labs is simplified because the results of each student's lab calculations can be pre-calculated for the instructor using a spreadsheet. My use of clickers during lab can be implemented with most clicker systems available to instructors today. The CRS I use is the e

  4. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  5. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  6. A Constructivist Cloud Lab.

    ERIC Educational Resources Information Center

    Emery, Dave

    1996-01-01

    Describes a lab involving a cloud formation activity that uses the constructivist learning model to get students more involved in creating the lab. Enables students to develop a greater understanding of the concepts involved and more interest in the lab's outcomes. (JRH)

  7. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  8. Using a Networked Mac Lab To Facilitate Learning in Art, Foreign Languages, and English.

    ERIC Educational Resources Information Center

    Brutchin, Patricia; And Others

    These presentations examine the use of a new Macintosh Lab in Commercial Art Technology, Spanish, and English Composition classes at Clark State Community College. The first paper describes the Commercial Art Technology program at the college, highlighting the use of the Mac Lab installed in September 1993 and discussing the Electronic Publishing,…

  9. LabSkills

    ERIC Educational Resources Information Center

    O'Brien, Nick

    2010-01-01

    This article describes LabSkills, a revolutionary teaching tool to improve practical science in schools. LabSkills offers the chance to help improve the exposure that the average Key Stage 5 (age 16-19) student has to practical work. This is a huge area for development being highlighted by universities who are seeing a worryingly growing trend in…

  10. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  11. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  12. Integration of MSFC Usability Lab with Usability Testing

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.

  13. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  14. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  15. NASA/USRA University advanced design program

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.; Prussing, John

    1989-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA University Advanced Design Program for the 1988 to 1989 academic year is reviewed. The University's design project was the Logistics Resupply and Emergency Crew Return System for Space Station Freedom. Sixty-one students divided into eight groups, participated in the spring 1989 semester. A presentation prepared by three students and a graduate teaching assistant for the program's summer conference summarized the project results. Teamed with the NASA Marshall Space Flight Center (MSFC), the University received support in the form of remote telecon lectures, reference material, and previously acquired applications software. In addition, a graduate teaching assistant was awarded a summer 1989 internship at MSFC.

  16. Recent developments from the OPEnS Lab

    NASA Astrophysics Data System (ADS)

    Selker, J. S.; Good, S. P.; Higgins, C. W.; Sayde, C.; Buskirk, B.; Lopez, M.; Nelke, M.; Udell, C.

    2016-12-01

    The Openly Published Environmental Sensing (OPEnS) lab is a facility that is open to all from around the world to use (http://agsci.oregonstate.edu/open-sensing). With 3-D CAD, electronics benches, 3-D printers and laser cutters, and a complete precision metal shop, the lab can build just about anything. Electronic platforms such as the Arduino are combined with cutting edge sensors, and packaged in rugged housing to address critical environmental sensing needs. The results are published in GITHub and in the AGU journal Earth and Space Sciences under the special theme of "Environmental Sensing." In this poster we present advancements including: A ultra-precise isotopic sampler for rainfall; an isotopic sampler for soil gas; a data-logging wind vane that can be mounted on the tether of a balloon; a rain-gage calibrator with three rates of constant application; a <$20 dissolved O2 probe for water; a stream-bed permeameter that gives rapid quantification of permeability. You can use the OPEnS lab! Just sketch your idea on a white board and send it in. The conversation is started, and your prototype can be ready in a few weeks. We have a staff of three engineers ready to help, where you are working remotely, or decide to spend some time with the team in Corvallis.

  17. Innovation Incubator: Whisker Labs Technical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany F.; Frank, Stephen M.; Earle, Lieko

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need tomore » open the panel and install current transducers (CTs) on the circuit wiring.« less

  18. ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).

    PubMed

    Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita

    2010-12-03

    The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID

  19. New York City's Smaller Schools Movement: Bronx Lab School, New York City Public Schools

    ERIC Educational Resources Information Center

    Schachter, Ron

    2009-01-01

    This article profiles the 5-year-old Bronx Lab School, a shining achievement in Chancellor Joel Klein's aggressive program of creating new, small schools, almost 400 of which have opened over the past seven years. It's unprecedented anywhere in America. Bronx Lab--which shares the building with similarly sized schools focused on areas such as…

  20. A cross-sectional survey comparing a free treatment program for advanced schistosomiasis japonica to a general assistance program.

    PubMed

    Song, Langui; Wu, Xiaoying; Zhang, Beibei; Liu, Jiahua; Ning, An; Wu, Zhongdao

    2017-11-01

    The prevalence and intensity of schistosomiasis has dropped dramatically in China due to an effective integrated control program. However, advanced schistosomiasis is becoming a key challenge on the road to elimination. The aims of this study were to compare the disease condition between advanced cases under the general assistance program (GAP) and free treatment program (FTP) and to determine whether the FTP should be popularized to provide an objective reference for policymakers in China's advanced schistosomiasis control program. One hundred and ninety-four patients with schistosomiasis japonica who were enrolled in the GAP or FTP participated in this study. Little significant difference was observed in the potential confounders, including general characteristics, comorbidities, and lifestyle, indicating a similar effect on the pathology of liver damage caused by schistosome infection. There was no apparent difference in the incidence of common clinical symptoms. Furthermore, no significant difference was observed in the ultrasound findings, implying that the GAP and FTP groups shared a similar degree of liver lesion. With the exception of the abnormal rates of aspartate aminotransferase (AST), alkaline phosphatase (ALP), and hyaluronic acid (HA), the other serological indicators were comparable between the groups. Overall, the FTP is not a better option for controlling advanced schistosomiasis in China. It is important to reveal the precise mechanism underlying the pathogenesis of advanced schistosomiasis so that specific approaches to treating and preventing the development of advanced schistosomiasis can be developed and schistosomiasis can be eliminated in China.

  1. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    PubMed

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  2. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-04-01

    The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.

  3. Design of a Software for Calculating Isoelectric Point of a Polypeptide According to Their Net Charge Using the Graphical Programming Language LabVIEW

    ERIC Educational Resources Information Center

    Tovar, Glomen

    2018-01-01

    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel…

  4. 3D-Lab: a collaborative web-based platform for molecular modeling.

    PubMed

    Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas

    2016-09-01

    The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.

  5. Microbes to Biomes at Berkeley Lab

    ScienceCinema

    None

    2018-06-21

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  6. Advanced space program studies. Overall executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1977-01-01

    NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.

  7. National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests

    DOT National Transportation Integrated Search

    2017-12-31

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...

  8. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.

    1995-01-01

    The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AM0, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials. Over the last few years, NRL and Steve Wojtczuk at

  9. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  10. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    PubMed

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  11. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  12. Advanced Research Projects Agency counterdrug program

    NASA Astrophysics Data System (ADS)

    Pennella, John J.

    1994-03-01

    The Department of Defense (DoD), in support of the National Drug Control Strategy, has designated that detecting and countering the production, trafficking and use of illegal drugs is a high priority national security mission. The Advanced Research Projects Agency (ARPA) Counterdrug Program is assisting DoD in this objective by developing technology and prototype systems to enhance the capabilities of the DoD and civilian law enforcement agencies, consistent with the DoD mission and the supply reduction goals of the National Drug Control Strategy. The objective of this paper is to summarize the current ARPA Counterdrug Program, with special emphasis on the current efforts and future plans for developing technology to meet the National needs for Non-Intrusive Inspection.

  13. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  14. Competencies for Information Professionals in Learning Labs and Makerspaces

    ERIC Educational Resources Information Center

    Koh, Kyungwon; Abbas, June

    2015-01-01

    An increasing number of libraries and museums provide transformative learning spaces, often called "Learning Labs" and "Makerspaces." These spaces invite users to explore traditional and digital media, interact with mentors and peers, and engage in creative projects. For these spaces and programs to be sustainable, it is…

  15. Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa

    2018-01-01

    The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.

  16. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  17. Corporate Delivery of a Global Smart Buildings Program

    DOE PAGES

    Fernandes, Samuel; Granderson, Jessica; Singla, Rupam; ...

    2017-11-22

    Buildings account for about 40 percent of the total energy consumption in the U.S. and emit approximately one third of greenhouse gas emissions. But they also offer tremendous potential for achieving significant greenhouse gas reductions with the right savings strategies. With an increasing amount of data from buildings and advanced computational and analytical abilities, buildings can be made “smart” to optimize energy consumption and occupant comfort. Smart buildings are often characterized as having a high degree of data and system integration, connectivity and control, as well as the advanced use of data analytics. These “smarts” can enable up to 10–20%more » savings in a building, and help ensure that they persist over time. In 2009, Microsoft Corporation launched the Energy-Smart Buildings (ESB) program with a vision to improve building operations services, security and accessibility in services, and new tenant applications and services that improve productivity and optimize energy use. The ESB program focused on fault diagnostics, advanced analytics and new organizational processes and practices to support their operational integration. In addition to the ESB program, Microsoft undertook capital improvement projects that made effective use of a utility incentive program and lab consolidations over the same duration. The ESB program began with a pilot at Microsoft's Puget Sound campus that identified significant savings of up to 6–10% in the 13 pilot buildings. The success of the pilot led to a global deployment of the program. Between 2009 and 2015, there was a 23.7% reduction in annual electricity consumption (kWh) at the Puget Sound campus with 18.5% of that resulting from the ESB and lab consolidations. This article provides the results of research conducted to assess the best-practice strategies that Microsoft implemented to achieve these savings, including the fault diagnostic routines that are the foundation of the ESB program and

  18. Corporate Delivery of a Global Smart Buildings Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Samuel; Granderson, Jessica; Singla, Rupam

    Buildings account for about 40 percent of the total energy consumption in the U.S. and emit approximately one third of greenhouse gas emissions. But they also offer tremendous potential for achieving significant greenhouse gas reductions with the right savings strategies. With an increasing amount of data from buildings and advanced computational and analytical abilities, buildings can be made “smart” to optimize energy consumption and occupant comfort. Smart buildings are often characterized as having a high degree of data and system integration, connectivity and control, as well as the advanced use of data analytics. These “smarts” can enable up to 10–20%more » savings in a building, and help ensure that they persist over time. In 2009, Microsoft Corporation launched the Energy-Smart Buildings (ESB) program with a vision to improve building operations services, security and accessibility in services, and new tenant applications and services that improve productivity and optimize energy use. The ESB program focused on fault diagnostics, advanced analytics and new organizational processes and practices to support their operational integration. In addition to the ESB program, Microsoft undertook capital improvement projects that made effective use of a utility incentive program and lab consolidations over the same duration. The ESB program began with a pilot at Microsoft's Puget Sound campus that identified significant savings of up to 6–10% in the 13 pilot buildings. The success of the pilot led to a global deployment of the program. Between 2009 and 2015, there was a 23.7% reduction in annual electricity consumption (kWh) at the Puget Sound campus with 18.5% of that resulting from the ESB and lab consolidations. This article provides the results of research conducted to assess the best-practice strategies that Microsoft implemented to achieve these savings, including the fault diagnostic routines that are the foundation of the ESB program and

  19. WAATS: A computer program for Weights Analysis of Advanced Transportation Systems

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.

    1974-01-01

    A historical weight estimating technique for advanced transportation systems is presented. The classical approach to weight estimation is discussed and sufficient data is presented to estimate weights for a large spectrum of flight vehicles including horizontal and vertical takeoff aircraft, boosters and reentry vehicles. A computer program, WAATS (Weights Analysis for Advanced Transportation Systems) embracing the techniques discussed has been written and user instructions are presented. The program was developed for use in the ODIN (Optimal Design Integration System) system.

  20. 48 CFR 252.232-7005 - Reimbursement of subcontractor advance payments-DoD pilot mentor-protege program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subcontractor advance payments-DoD pilot mentor-protege program. 252.232-7005 Section 252.232-7005 Federal... subcontractor advance payments—DoD pilot mentor-protege program. As prescribed in 232.412-70(c), use the following clause: Reimbursement of Subcontractor Advance Payments—DoD Pilot Mentor-Protege Program (SEP 2001...

  1. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2018-05-24

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  2. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  3. CE: Original Research: Creating an Evidence-Based Progression for Clinical Advancement Programs.

    PubMed

    Burke, Kathleen G; Johnson, Tonya; Sites, Christine; Barnsteiner, Jane

    2017-05-01

    : Background: The Institute of Medicine (IOM) and the Quality and Safety Education for Nurses (QSEN) project have identified six nursing competencies and supported their integration into undergraduate and graduate nursing curricula nationwide. But integration of those competencies into clinical practice has been limited, and evidence for the progression of competency proficiency within clinical advancement programs is scant. Using an evidence-based approach and building on the competencies identified by the IOM and QSEN, a team of experts at an academic health system developed eight competency domains and 186 related knowledge, skills, and attitudes (KSAs) for professional nursing practice. The aim of our study was to validate the eight identified competencies and 186 related KSAs and determine their developmental progression within a clinical advancement program. Using the Delphi technique, nursing leadership validated the newly identified competency domains and KSAs as essential to practice. Clinical experts from 13 Magnet-designated hospitals with clinical advancement programs then participated in Delphi rounds aimed at reaching consensus on the developmental progression of the 186 KSAs through four levels of clinical advancement. Two Delphi rounds resulted in consensus by the expert participants. All eight competency domains were determined to be essential at all four levels of clinical practice. At the novice level of practice, the experts identified a greater number of KSAs in the domains of safety and patient- and family-centered care. At more advanced practice levels, the experts identified a greater number of KSAs in the domains of professionalism, teamwork, technology and informatics, and continuous quality improvement. Incorporating the eight competency domains and the 186 KSAs into a framework for clinical advancement programs will likely result in more clearly defined role expectations; enhance accountability; and elevate and promote nursing practice

  4. An Assessment of Social Diffusion in the Respecting Choices Advance Care Planning Program

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Carr, Deborah; Kirchhoff, Karin T.; Hammes, Bernard J.

    2012-01-01

    This study examines the potential social diffusion effects of the Respecting Choices advance care planning program administered in La Crosse, Wisconsin, since 1991. The program produces educational materials for patients, trains facilitators to help patients prepare for end of life, and ensures that advance directives are connected to patients'…

  5. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  6. Comparative Evaluation of Financing Programs: Insights From California’s Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Jeff

    Berkeley Lab examines criteria for a comparative assessment of multiple financing programs for energy efficiency, developed through a statewide public process in California. The state legislature directed the California Alternative Energy and Advanced Transportation Financing Authority (CAEATFA) to develop these criteria. CAEATFA's report to the legislature, an invaluable reference for other jurisdictions considering these topics, discusses the proposed criteria and the rationales behind them in detail. Berkeley Lab's brief focuses on several salient issues that emerged during the criteria development and discussion process. Many of these issues are likely to arise in other states that plan to evaluate the impactsmore » of energy efficiency financing programs, whether for a single program or multiple programs. Issues discussed in the brief include: -The stakeholder process to develop the proposed assessment criteria -Attribution of outcomes - such as energy savings - to financing programs vs. other drivers -Choosing the outcome metric of primary interest: program take-up levels vs. savings -The use of net benefits vs. benefit-cost ratios for cost-effectiveness evaluation -Non-energy factors -Consumer protection factors -Market transformation impacts -Accommodating varying program goals in a multi-program evaluation -Accounting for costs and risks borne by various parties, including taxpayers and utility customers, in cost-effectiveness analysis -How to account for potential synergies among programs in a multi-program evaluation« less

  7. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  8. Developing automated analytical methods for scientific environments using LabVIEW.

    PubMed

    Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard

    2010-01-15

    The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.

  9. Proceedings of the Seventh Annual Summer Conference. NASA/USRA: University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Advanced Design Program (ADP) is a unique program that brings together students and faculty from U.S. engineering schools with engineers from the NASA centers through integration of current and future NASA space and aeronautics projects into university engineering design curriculum. The Advanced Space Design Program study topics cover a broad range of projects that could be undertaken during a 20-30 year period beginning with the deployment of the Space Station Freedom. The Advanced Aeronautics Design Program study topics typically focus on nearer-term projects of interest to NASA, covering from small, slow-speed vehicles through large, supersonic passenger transports and on through hypersonic research vehicles. Student work accomplished during the 1990-91 academic year and reported at the 7th Annual Summer Conference is presented.

  10. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  11. Lab notebooks as scientific communication: Investigating development from undergraduate courses to graduate research

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob T.; Lewandowski, H. J.

    2016-12-01

    In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered "best practice" for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely, physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.

  12. 14 CFR 121.903 - General requirements for Advanced Qualification Programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Qualification Program § 121.903 General requirements for Advanced Qualification Programs. (a) A curriculum... this chapter. Each curriculum must specify the make, model, series or variant of aircraft and each crewmember position or other positions to be covered by that curriculum. Positions to be covered by the AQP...

  13. 14 CFR 121.903 - General requirements for Advanced Qualification Programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Qualification Program § 121.903 General requirements for Advanced Qualification Programs. (a) A curriculum... this chapter. Each curriculum must specify the make, model, series or variant of aircraft and each crewmember position or other positions to be covered by that curriculum. Positions to be covered by the AQP...

  14. Pratt and Whitney Overview and Advanced Health Management Program

    NASA Technical Reports Server (NTRS)

    Inabinett, Calvin

    2008-01-01

    Hardware Development Activity: Design and Test Custom Multi-layer Circuit Boards for use in the Fault Emulation Unit; Logic design performed using VHDL; Layout power system for lab hardware; Work lab issues with software developers and software testers; Interface with Engine Systems personnel with performance of Engine hardware components; Perform off nominal testing with new engine hardware.

  15. Overview of European and other non-US/USSR/Japan launch vehicle and propulsion technology programs

    NASA Technical Reports Server (NTRS)

    Rice, Eric E.

    1991-01-01

    The following subject areas are covered: majority of propulsion technology development work is directly related to the ESA's Ariane 5 program and heavily involves SEP (Societe Europeenne de Propulsion) in all areas; Hermes; advanced work on magnetic bearings for turbomachinery; electric propulsion using Cs and Xe propellants done by SEP in France, MBB ERNO in West Germany, and by Culham Lab in UK; successfully tested fired H/O composite nozzle exit cone on 3rd stage of Ariane; turbine blades made of composites to allow increase in gas temperature and improvement in efficiency; combined cycle (turboramjet-rocket) engine analysis work done by Hyperspace; and ESA advanced program studies.

  16. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-08-01

    SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.

  17. KP-LAB: Breaking New Ground on How to Create Knowledge through Learning

    ERIC Educational Resources Information Center

    Reynolds, Sally; Camilleri, Anthony Fisher

    2010-01-01

    The 5 year KP-Lab project funded under the FP6 of the European Commission's Programme for Research and Technological Development is about developing theories, tools, practical models, and research methods that deliberately advance the ways in which knowledge is created and which help to transform knowledge practices in education and in the…

  18. Computer program user's manual for advanced general aviation propeller study

    NASA Technical Reports Server (NTRS)

    Worobel, R.

    1972-01-01

    A user's manual is presented for a computer program for predicting the performance (static, flight, and reverse), noise, weight and cost of propellers for advanced general aviation aircraft of the 1980 time period. Complete listings of this computer program with detailed instructions and samples of input and output are included.

  19. ThinkSpace: Spatial Thinking in Middle School Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Udomprasert, Patricia S.; Goodman, Alyssa A.; Plummer, Julia; Sadler, Philip M.; Johnson, Erin; Sunbury, Susan; Zhang, Helen; Dussault, Mary E.

    2016-01-01

    Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. Mounting evidence also shows that spatial skills are malleable, i.e., they can be improved through training. We report early work from a new project that will build on this research to create a series of middle schools science labs called "Thinking Spatially about the Universe" (ThinkSpace), in which students will use a blend of physical and virtual models (in WorldWide Telescope) to explore complex 3-dimensional phenomena in space science. In the three-year ThinkSpace labs project, astronomers, technologists, and education researchers are collaborating to create and test a suite of three labs designed to improve learners' spatial abilities through studies of: 1) Moon phases and eclipses; 2) planetary systems around stars other than the Sun; and 3.) celestial motions within the broader universe. The research program will determine which elements in the labs will best promote improvement of spatial skills within activities that emphasize disciplinary core ideas; and how best to optimize interactive dynamic visualizations to maximize student understanding.

  20. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present

    NASA Astrophysics Data System (ADS)

    Arble, Chris; Jia, Meng; Newberg, John T.

    2018-05-01

    Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.

  1. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    ERIC Educational Resources Information Center

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-01-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…

  2. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    NASA Astrophysics Data System (ADS)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  3. Program Processes Thermocouple Readings

    NASA Technical Reports Server (NTRS)

    Quave, Christine A.; Nail, William, III

    1995-01-01

    Digital Signal Processor for Thermocouples (DART) computer program implements precise and fast method of converting voltage to temperature for large-temperature-range thermocouple applications. Written using LabVIEW software. DART available only as object code for use on Macintosh II FX or higher-series computers running System 7.0 or later and IBM PC-series and compatible computers running Microsoft Windows 3.1. Macintosh version of DART (SSC-00032) requires LabVIEW 2.2.1 or 3.0 for execution. IBM PC version (SSC-00031) requires LabVIEW 3.0 for Windows 3.1. LabVIEW software product of National Instruments and not included with program.

  4. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  5. 76 FR 68011 - Medicare Program; Advanced Payment Model

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ..., coordinated care and generate cost savings. The Advance Payment Model will test whether and how pre-paying a..., Medicaid, and Children's Health Insurance Program (CHIP) beneficiaries. One potential mechanism for achieving this goal is for CMS to partner with groups of health care providers of services and suppliers...

  6. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  7. The Rocket Engine Advancement Program 2 (REAP2)

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Hawk, Clark W.

    2004-01-01

    The Rocket Engine Advancement Program (REAP) 2 program is being conducted by a university propulsion consortium consisting of the University of Alabama in Huntsville, Penn State University, Purdue University, Tuskegee University and Auburn University. It has been created to bring their combined skills to bear on liquid rocket combustion stability and thrust chamber cooling. The research team involves well established and known researchers in the propulsion community. The cure team provides the knowledge base, research skills, and commitment to achieve an immediate and continuing impact on present and future propulsion issues. through integrated research teams composed of analysts, diagnosticians, and experimentalists working together in an integrated multi-disciplinary program. This paper provides an overview of the program, its objectives and technical approaches. Research on combustion instability and thrust chamber cooling are being accomplished

  8. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives.

    PubMed

    Hongzhou, Cui; Shuping, Guo; Wenju, Wang; Li, Li; Lulu, Wei; Linjun, Deng; Jingmin, Li; Xiaoli, Ren; Li, Bai

    2017-02-01

    In recent years, molecular biology has proven to be a great asset in our understanding of mechanisms in genodermatoses. However, bench to bedside translation research lags far behind. Advances in lab-on-a-chip technologies enabled programmable, reconfigurable, and scalable manipulation of a variety of laboratory procedures. Sample preparation, microfluidic reactions, and continuous monitoring systems can be integrated on a small chip. These advantages have attracted attention in various fields of clinical application including diagnosis of inherited skin diseases. This review lists an overview of the underlying genes and mutations and describes prospective application of lab-on-a-chip technologies as solutions to challenges for point-of-care genodematoses diagnosis. Copyright © 2016. Published by Elsevier B.V.

  9. Lab Report Blues

    ERIC Educational Resources Information Center

    Diaz, Andrew

    2004-01-01

    For middle school students, writing a formal lab report can be challenging. For middle level teachers, reading students lab reports can be overwhelming. After grading report after report with incomplete procedures, incorrect graphs, and missing conclusions, the author's frustration level was at an all-time high. Ready to try anything, he thought,…

  10. Reforming Cookbook Labs

    ERIC Educational Resources Information Center

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  11. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  12. Advanced Technological Education Program 2008 Survey Fact Sheet

    ERIC Educational Resources Information Center

    Gullickson, Arlen R.; Wingate, Lori A.

    2008-01-01

    This fact sheet summarizes data gathered in the 2008 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the ninth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and…

  13. Advanced Placement Academy: Case Study of a Program within a School

    ERIC Educational Resources Information Center

    Swanson, Julie Dingle; Nagy, Steven

    2014-01-01

    The focus of this study was the first year of implementation of the Advanced Placement Academy (APA), a program within a high school providing honors and Advanced Placement coursework for high-ability African American students with previously limited access to rigorous courses. The qualitative investigation explores practical solutions from…

  14. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    PubMed Central

    Cui, Yang; Hanley, Luke

    2015-01-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  15. Evaluation of the Advanced Situational Awareness Training Pilot Program

    DTIC Science & Technology

    2017-02-01

    M., Holder, L. D., Leibrecht, B. C ., Garland, D. J ., Wampler, R. L., & Matthews, M. D. (2000). Modeling and measuring situation awareness in the...Ware, L. J ., Ratcliff, J . J ., & Irvin, C . R. (2009). Evidence of the camera perspective bias in authentic videotaped interrogations: Implications...Advanced Situational Awareness Training Pilot Program 5a. CONTRACT OR GRANT NUMBER W5J9CQ-11- C -0040 5b. PROGRAM ELEMENT NUMBER 633007 6

  16. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  17. Advanced educational program in optoelectronics for undergraduates and graduates in electronics

    NASA Astrophysics Data System (ADS)

    Vladescu, Marian; Schiopu, Paul

    2015-02-01

    The optoelectronics education included in electronics curricula at Faculty of Electronics, Telecommunications and Information Technology of "Politehnica" University of Bucharest started in early '90s, and evolved constantly since then, trying to address the growing demand of engineers with a complex optoelectronics profile and to meet the increased requirements of microelectronics, optoelectronics, and lately nanotechnologies. Our goal is to provide a high level of theoretical background combined with advanced experimental tools in laboratories, and also with simulation platforms. That's why we propose an advanced educational program in optoelectronics for both grades of our study program, bachelor and master.

  18. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  19. Digital signal processing at Bell Labs-Foundations for speech and acoustics research

    NASA Astrophysics Data System (ADS)

    Rabiner, Lawrence R.

    2004-05-01

    Digital signal processing (DSP) is a fundamental tool for much of the research that has been carried out of Bell Labs in the areas of speech and acoustics research. The fundamental bases for DSP include the sampling theorem of Nyquist, the method for digitization of analog signals by Shannon et al., methods of spectral analysis by Tukey, the cepstrum by Bogert et al., and the FFT by Tukey (and Cooley of IBM). Essentially all of these early foundations of DSP came out of the Bell Labs Research Lab in the 1930s, 1940s, 1950s, and 1960s. This fundamental research was motivated by fundamental applications (mainly in the areas of speech, sonar, and acoustics) that led to novel design methods for digital filters (Kaiser, Golden, Rabiner, Schafer), spectrum analysis methods (Rabiner, Schafer, Allen, Crochiere), fast convolution methods based on the FFT (Helms, Bergland), and advanced digital systems used to implement telephony channel banks (Jackson, McDonald, Freeny, Tewksbury). This talk summarizes the key contributions to DSP made at Bell Labs, and illustrates how DSP was utilized in the areas of speech and acoustics research. It also shows the vast, worldwide impact of this DSP research on modern consumer electronics.

  20. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  1. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  2. Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation

    NASA Technical Reports Server (NTRS)

    Coffey, Connor

    2015-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).

  3. Increasing the speed of medical image processing in MatLab®

    PubMed Central

    Bister, M; Yap, CS; Ng, KH; Tok, CH

    2007-01-01

    MatLab® has often been considered an excellent environment for fast algorithm development but is generally perceived as slow and hence not fit for routine medical image processing, where large data sets are now available e.g., high-resolution CT image sets with typically hundreds of 512x512 slices. Yet, with proper programming practices – vectorization, pre-allocation and specialization – applications in MatLab® can run as fast as in C language. In this article, this point is illustrated with fast implementations of bilinear interpolation, watershed segmentation and volume rendering. PMID:21614269

  4. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  5. SenseLab

    PubMed Central

    Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.

    2009-01-01

    This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162

  6. Developing a career advancement program.

    PubMed

    Pinette, Shirley L

    2003-01-01

    Have you ever asked yourself, "What will I be doing five or ten years from now?" "Will I be doing the same thing I'm doing right now?" How would you feel if the answer were "yes"? I often wonder if any of my employees think the same thing. If they do, and the answer is "yes," just how does that make them feel? A day's work for managers can run the gamut--from billing and coding, to patient issues, to staff performance reviews, to CQI, to JCAHO-just to name a few. We're NEVER bored. Can we say the same of our employees, or do they do the same thing day in and day out? If so, it's no wonder that attitudes may become negative and motivation and productivity may decline. What are we as healthcare managers and administrators doing to value and continually train our employees so that staff morale, productivity and patient satisfaction remain high? What are we doing to keep those highly motivated employees motivated and challenged so that they don't get bored and want to move across town to our neighboring hospital or healthcare center? What are we doing to stop our employees from developing the "same job, different day" attitude? A Career Ladder program holds many benefits and opportunities for the motivated employee who seeks and needs additional challenges on the job. It affords them opportunities to learn new skills, demonstrate initiative, accept additional responsibilities and possibly advance into new positions. It also affords them opportunities to grow, to be challenged and to feel like an important and valued member of the radiology team and radiology department. For the manager, a Career Ladder program affords opportunities to retain valuable employees, attract new high-quality employees and maintain a workforce of well-trained highly motivated employees, which in turn will provide high quality products and services to our customers. A Career Ladder program is a "win-win" situation for everyone. For the last twelve months, I have been working with other

  7. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.

    PubMed

    Erickson, David; O'Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-09-07

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260 M active smartphones in the US and millions of health accessories and software "apps" running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings.

  8. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  9. Strategies for Improving Diversity at Bell Labs, Lucent Technologies

    NASA Astrophysics Data System (ADS)

    Murray, Cherry A.

    2001-03-01

    Over the last quarter century, top management in Bell Labs Research has initiated efforts to train, recruit, and encourage underrepresented minorities into science and engineering positions, and in hiring and retaining underrepresented minority scientists and engineers. I will give some historical background of some of the programs which have worked over the years and some of the new programs in recruiting, mentoring and career planning that we have recently initiated in order to better create a workplace that is accepting and even welcoming of diversity.

  10. EHS Open House: Learning Lab and Life Safety | Poster

    Cancer.gov

    Attendees of the Environment, Health, and Safety Program’s (EHS’) Open House had a chance to learn self-defense techniques, as well as visit with vendors demonstrating the latest trends in laboratory safety. “Working with sharps in labs is inherently dangerous, so EHS proactively focused on featuring equipment that would promote safer techniques,” said Siobhan Tierney, program

  11. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  12. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  13. MarkoLAB: A simulator to study ionic channel's stochastic behavior.

    PubMed

    da Silva, Robson Rodrigues; Goroso, Daniel Gustavo; Bers, Donald M; Puglisi, José Luis

    2017-08-01

    Mathematical models of the cardiac cell have started to include markovian representations of the ionic channels instead of the traditional Hodgkin & Huxley formulations. There are many reasons for this: Markov models are not restricted to the idea of independent gates defining the channel, they allow more complex description with specific transitions between open, closed or inactivated states, and more importantly those states can be closely related to the underlying channel structure and conformational changes. We used the LabVIEW ® and MATLAB ® programs to implement the simulator MarkoLAB that allow a dynamical 3D representation of the markovian model of the channel. The Monte Carlo simulation was used to implement the stochastic transitions among states. The user can specify the voltage protocol by setting the holding potential, the step-to voltage and the duration of the stimuli. The most studied feature of a channel is the current flowing through it. This happens when the channel stays in the open state, but most of the time, as revealed by the low open probability values, the channel remains on the inactive or closed states. By focusing only when the channel enters or leaves the open state we are missing most of its activity. MarkoLAB proved to be quite useful to visualize the whole behavior of the channel and not only when the channel produces a current. Such dynamic representation provides more complete information about channel kinetics and will be a powerful tool to demonstrate the effect of gene mutations or drugs on the channel function. MarkoLAB provides an original way of visualizing the stochastic behavior of a channel. It clarifies concepts, such as recovery from inactivation, calcium- versus voltage-dependent inactivation, and tail currents. It is not restricted to ionic channels only but it can be extended to other transporters, such as exchangers and pumps. This program is intended as a didactical tool to illustrate the dynamical behavior of a

  14. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  15. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  16. Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1991-01-01

    The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized.

  17. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; hide

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  18. Dr. Monaco Examines Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  19. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  20. Advanced rural transportation systems (ARTS) : rural intelligent transportation systems (ITS) : program plan

    DOT National Transportation Integrated Search

    1996-08-01

    This Program Plan for the Advanced Rural Transportation Systems (ARTS) implements the goals and objectives established in the U.S. Department of Transportations (USDOTs) Strategic Plan for the ARTS. This Program Plan proposes five years (FY 97...

  1. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    ERIC Educational Resources Information Center

    Haagen-Schuetzenhoefer, Claudia

    2012-01-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…

  2. The Advanced Placement English Program in Salt Lake and Granite School Districts.

    ERIC Educational Resources Information Center

    Stratopoulos, Irene Chachas

    The main purposes in examining and evaluating the Advanced Placement English Program in Salt Lake and Granite School Districts were to identify the essential curriculum features of the program, to make suggestions for curriculum improvement, and to determine whether or not the quality of the AP English Program surpassed that of the conventional…

  3. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  4. Computers-for-edu: An Advanced Business Application Programming (ABAP) Teaching Case

    ERIC Educational Resources Information Center

    Boyle, Todd A.

    2007-01-01

    The "Computers-for-edu" case is designed to provide students with hands-on exposure to creating Advanced Business Application Programming (ABAP) reports and dialogue programs, as well as navigating various mySAP Enterprise Resource Planning (ERP) transactions needed by ABAP developers. The case requires students to apply a wide variety…

  5. Cone-beam micro-CT system based on LabVIEW software.

    PubMed

    Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen

    2008-09-01

    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.

  6. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-fundedmore » program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  7. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimatesmore » for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  8. Aspiration, Performance, Reward: The Advanced Placement Program at 40.

    ERIC Educational Resources Information Center

    Rothschild, Eric

    1995-01-01

    The history of the College Entrance Examination Board's Advanced Placement Program is chronicled from its conception in 1951 through early developmental stages and 40 years of implementation. Issues discussed include test development, funding, administration at the institutional level, expansion of curriculum areas and testing options, teacher…

  9. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  10. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  11. Spaceport Processing System Development Lab

    NASA Technical Reports Server (NTRS)

    Dorsey, Michael

    2013-01-01

    The Spaceport Processing System Development Lab (SPSDL), developed and maintained by the Systems Hardware and Engineering Branch (NE-C4), is a development lab with its own private/restricted networks. A private/restricted network is a network with restricted or no communication with other networks. This allows users from different groups to work on their own projects in their own configured environment without interfering with others utilizing their resources in the lab. The different networks being used in the lab have no way to talk with each other due to the way they are configured, so how a user configures his software, operating system, or the equipment doesn't interfere or carry over on any of the other networks in the lab. The SPSDL is available for any project in KSC that is in need of a lab environment. My job in the SPSDL was to assist in maintaining the lab to make sure it's accessible for users. This includes, but is not limited to, making sure the computers in the lab are properly running and patched with updated hardware/software. In addition to this, I also was to assist users who had issues in utilizing the resources in the lab, which may include helping to configure a restricted network for their own environment. All of this was to ensure workers were able to use the SPSDL to work on their projects without difficulty which would in turn, benefit the work done throughout KSC. When I wasn't working in the SPSDL, I would instead help other coworkers with smaller tasks which included, but wasn't limited to, the proper disposal, moving of, or search for essential equipment. I also, during the free time I had, used NASA's resources to increase my knowledge and skills in a variety of subjects related to my major as a computer engineer, particularly in UNIX, Networking, and Embedded Systems.

  12. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Standards; Advanced Clean Car Program; Request for Waiver of Preemption; Opportunity for Public Hearing and... developed an Advanced Clean Car program (ACC) which combines the control of smog and soot causing pollutants... cars, light-duty trucks and medium-duty passenger vehicles (and limited requirements related to heavy...

  13. EHS Open House: Learning Lab and Life Safety | Poster

    Cancer.gov

    Attendees of the Environment, Health, and Safety Program’s (EHS’) Open House had a chance to learn self-defense techniques, as well as visit with vendors demonstrating the latest trends in laboratory safety. “Working with sharps in labs is inherently dangerous, so EHS proactively focused on featuring equipment that would promote safer techniques,” said Siobhan Tierney, program manager, EHS.

  14. International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

    NASA Technical Reports Server (NTRS)

    Wieland, Paul; Miller, Lee; Ibarra, Tom

    2003-01-01

    As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.

  15. The Importance of Mentoring Programs to Women's Career Advancement in Biotechnology

    ERIC Educational Resources Information Center

    Anderson, Daun Robin

    2005-01-01

    Mentoring programs provide benefits to mentors, proteges, and organizations, but not all organizations have such programs in place. In those that do, women's exclusion from informal networks limits their visibility and, in turn, their chances of acquiring a mentor. This poses a barrier to women's career advancement, as does the absence of female…

  16. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    ERIC Educational Resources Information Center

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  17. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    NASA Astrophysics Data System (ADS)

    Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.

    2016-10-01

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.

  18. Microtechnology in Space: NASA's Lab-on-a-Chip Applications Development Program

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa; Spearing, Scott; Jenkins, Andy; Symonds, Wes; Mayer, Derek; Gouldie, Edd; Wainwright, Norm; Fries, Marc; Maule, Jake; Toporski, Jan

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) Lab on a Chip Application Development LOCAD) team has worked with microfluidic technology for the past few years in an effort to support NASA's Mission. In that time, such microfluidic based Lab-on-a-Chip (LOC) systems have become common technology in clinical and diagnostic laboratories. The approach is most attractive due to its highly miniaturized platform and ability to perform reagent handling (i-e., dilution, mixing, separation) and diagnostics for multiple reactions in an integrated fashion. LOCAD, along with Caliper Life Sciences has successfully developed the first LOC device for macromolecular crystallization using a workstation acquired specifically for designing custom chips, the Caliper 42. LOCAD uses this, along with a novel MSFC-designed and built workstation for microfluidic development. The team has a cadre of LOC devices that can be used to perform initial feasibility testing to determine the efficacy of the LOC approach for a specific application. Once applicability has been established, the LOCAD team, along with the Army's Aviation and Missile Command microfabrication facility, can then begin to custom design and fabricate a device per the user's specifications. This presentation will highlight the LOCAD team's proven and unique expertise that has been utilized to provide end to end capabilities associated with applying microfluidics for applications that include robotic life detection instrumentation, crew health monitoring and microbial and environmental monitoring for human Exploration.

  19. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    PubMed

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top

  20. National Labs Host Classroom Ready Energy Educational Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  1. Use of a Computer Program for Advance Care Planning with African American Participants.

    PubMed

    Markham, Sarah A; Levi, Benjamin H; Green, Michael J; Schubart, Jane R

    2015-02-01

    The authors wish to acknowledge the support and assistance of Dr. William Lawrence for his contribution to the M.A.UT model used in the decision aid, Making Your Wishes Known: Planning Your Medical Future (MYWK), Dr. Cheryl Dellasega for her leadership in focus group activities, Charles Sabatino for his review of legal aspects of MYWK, Dr. Robert Pearlman and his collaborative team for use of the advance care planning booklet "Your Life, Your Choices," Megan Whitehead for assistance in grant preparation and project organization, and the Instructional Media Development Center at the University of Wisconsin as well as JPL Integrated Communications for production and programming of MYWK. For various cultural and historical reasons, African Americans are less likely than Caucasians to engage in advance care planning (ACP) for healthcare decisions. This pilot study tested whether an interactive computer program could help overcome barriers to effective ACP among African Americans. African American adults were recruited from traditionally Black churches to complete an interactive computer program on ACP, pre-/post-questionnaires, and a follow-up phone interview. Eighteen adults (mean age =53.2 years, 83% female) completed the program without any problems. Knowledge about ACP significantly increased following the computer intervention (44.9% → 61.3%, p=0.0004), as did individuals' sense of self-determination. Participants were highly satisfied with the ACP process (9.4; 1 = not at all satisfied, 10 = extremely satisfied), and reported that the computer-generated advance directive accurately reflected their wishes (6.4; 1 = not at all accurate, 7 = extremely accurate). Follow-up phone interviews found that >80% of participants reported having shared their advance directives with family members and spokespeople. Preliminary evidence suggests that an interactive computer program can help African Americans engage in effective advance care planning, including creating an

  2. Strategic planning for skills and simulation labs in colleges of nursing.

    PubMed

    Gantt, Laura T

    2010-01-01

    While simulation laboratories for clinical nursing education are predicted to grow, budget cuts may threaten these programs. One of the ways to develop a new lab, as well as to keep an existing one on track, is to develop and regularly update a strategic plan. The process of planning not only helps keep the lab faculty and staff apprised of the challenges to be faced, but it also helps to keep senior level management engaged by reason of the need for their input and approval of the plan. The strategic planning documents drafted by those who supervised the development of the new building and Concepts Integration Labs (CILs) helped guide and orient faculty and other personnel hired to implement the plan and fulfill the vision. As the CILs strategic plan was formalized, the draft plans, including the SWOT analysis, were reviewed to provide historical perspective, stimulate discussion, and to make sure old or potential mistakes were not repeated.

  3. Advanced composites wing study program, volume 2

    NASA Technical Reports Server (NTRS)

    Harvey, S. T.; Michaelson, G. L.

    1978-01-01

    The study on utilization of advanced composites in commercial aircraft wing structures was conducted as a part of the NASA Aircraft Energy Efficiency Program to establish, by the mid-1980s, the technology for the design of a subsonic commercial transport aircraft leading to a 40% fuel savings. The study objective was to develop a plan to define the effort needed to support a production commitment for the extensive use of composite materials in wings of new generation aircraft that will enter service in the 1985-1990 time period. Identification and analysis of what was needed to meet the above plan requirements resulted in a program plan consisting of three key development areas: (1) technology development; (2) production capability development; and (3) integration and validation by designing, building, and testing major development hardware.

  4. Using Evernote as an electronic lab notebook in a translational science laboratory.

    PubMed

    Walsh, Emily; Cho, Ilseung

    2013-06-01

    Electronic laboratory notebooks (ELNs) offer significant advantages over traditional paper laboratory notebooks (PLNs), yet most research labs today continue to use paper documentation. While biopharmaceutical companies represent the largest portion of ELN users, government and academic labs trail far behind in their usage. Our lab, a translational science laboratory at New York University School of Medicine (NYUSoM), wanted to determine if an ELN could effectively replace PLNs in an academic research setting. Over 6 months, we used the program Evernote to record all routine experimental information. We also surveyed students working in research laboratories at NYUSoM on the relative advantages and limitations of ELNs and PLNs and discovered that electronic and paper notebook users alike reported the inability to freehand into a notebook as a limitation when using electronic methods. Using Evernote, we found that the numerous advantages of ELNs greatly outweighed the inability to freehand directly into a notebook. We also used imported snapshots and drawing program add-ons to obviate the need for freehanding. Thus, we found that using Evernote as an ELN not only effectively replaces PLNs in an academic research setting but also provides users with a wealth of other advantages over traditional paper notebooks.

  5. Competence-Based, Research-Related Lab Courses for Materials Modeling: The Case of Organic Photovoltaics

    ERIC Educational Resources Information Center

    Schellhammer, Karl Sebastian; Cuniberti, Gianaurelio

    2017-01-01

    We are hereby presenting a didactic concept for an advanced lab course that focuses on the design of donor materials for organic solar cells. Its research-related and competence-based approach qualifies the students to independently and creatively apply computational methods and to profoundly and critically discuss the results obtained. The high…

  6. Advanced nursing training in health policy: designing and implementing a new program.

    PubMed

    Harrington, Charlene; Crider, Mark C; Benner, Patricia E; Malone, Ruth E

    2005-05-01

    Although the nursing profession has a growing role in the health policy arena, the rapidly changing health care environment means that clinicians need a sophisticated understanding of health policy. Nurses are assuming leadership roles in advocacy, research, analysis, and policy development, implementation, and evaluation, contributing to a growing need to educate nurses to specialize in health policy research and analysis. This article provides an overview of a new master's and doctoral educational program specializing in health policy for advanced practice nurses who are culturally diverse and sensitive to issues of diversity. The program, currently in its third year of operation at the University of California San Francisco, School of Nursing, is addressing the gap in nursing education and practice expertise in health policy. The program is supported through funding by the Department of Health and Human Services Health Resources and Services Administration, Advanced Nurse Training program.

  7. Lab and Field Warming Similarly Advance Germination Date and Limit Germination Rate for High and Low Elevation Provenances of Two Widespread Subalpine Conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott

    Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less

  8. Lab and Field Warming Similarly Advance Germination Date and Limit Germination Rate for High and Low Elevation Provenances of Two Widespread Subalpine Conifers

    DOE PAGES

    Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott; ...

    2017-11-11

    Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less

  9. 75 FR 75666 - Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.330B] Advanced Placement (AP) Test Fee Program AGENCY: Office... AP Test Fee fiscal year (FY) 2011 competition. SUMMARY: On September 1, 2010, we published in the Federal Register (75 FR 53681) a notice inviting applications for the AP Test Fee FY 2011 competition...

  10. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  11. Lab-on-a-Chip Instrument Development for Titan Exploration

    NASA Astrophysics Data System (ADS)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  12. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    NASA Astrophysics Data System (ADS)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  13. Advanced Technologies for Transportation Research Program at the University of Tennessee at Chattanooga

    DOT National Transportation Integrated Search

    2009-01-30

    This report documents the results of the research program completed by the Advanced Technologies for Transportation Research Program (ATTRP) at the University of Tennessee at Chattanooga (UTC) under Federal Transit Administration Cooperative Agreemen...

  14. [Realization of Heart Sound Envelope Extraction Implemented on LabVIEW Based on Hilbert-Huang Transform].

    PubMed

    Tan, Zhixiang; Zhang, Yi; Zeng, Deping; Wang, Hua

    2015-04-01

    We proposed a research of a heart sound envelope extraction system in this paper. The system was implemented on LabVIEW based on the Hilbert-Huang transform (HHT). We firstly used the sound card to collect the heart sound, and then implemented the complete system program of signal acquisition, pretreatment and envelope extraction on LabVIEW based on the theory of HHT. Finally, we used a case to prove that the system could collect heart sound, preprocess and extract the envelope easily. The system was better to retain and show the characteristics of heart sound envelope, and its program and methods were important to other researches, such as those on the vibration and voice, etc.

  15. GeneLab: Open Science For Exploration

    NASA Technical Reports Server (NTRS)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  16. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  17. The ADVANCE Program: Targeting the Increase in the Participation and Advancement of Women in Academic Science and Engineering Careers

    NASA Astrophysics Data System (ADS)

    Esperanca, S.

    2003-12-01

    The goal of NSF's ADVANCE Program is to help increase the participation of women in the scientific and engineering workforce through the increased representation and advancement of women in academic science and engineering careers. The Program tries to address this under representation by focusing on support for men and women with three approaches: institutional (Institutional Transformation), grass-root (Leadership), and individual (Fellows) support. The ADVANCE Program alternates with a round of Institutional and Leadership awards in one year and a Fellows competition the next. Since its inception in 2001, NSF has had two competitive rounds for each of the three award types and will have spent approximately 75 M\\ by the end of the next fiscal year (2004). The first and second ADVANCE Institutional Transformation competitions (FY 2001 and 2003) received over 70 proposals each. These awards are for multi-year support in the amount of 3-4M\\ each. Details and access to the websites for the ADVANCE programs of each institution can be found in NSF's ADVANCE webpage at http://nsf.gov/home/crssprgm/advance/itwebsites.htm. The number of proposals submitted for the Leadership awards competition dropped from 35 in 2001 to 26 in 2003, despite an increase in the allowed award size for the second round. In terms of projected goals, this part of ADVANCE is perhaps the most eclectic. Some Leadership awards were made to professional societies to work specifically with their respective scientific communities in identifying needs that might be peculiar to a field of science. In the first round of the Leadership awards, PI Mary-Anne Holmes of the University of Nebraska-Lincoln and collaborators received a grant to work with the Association of Women Geoscientists to determine the current status of women geoscientists in the US. These grantees hope to disseminate the information gathered under this award broadly in order to educate women students and faculty on strategies to

  18. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics

    PubMed Central

    Erickson, David; O’Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-01-01

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260M active smartphones in the US and millions of health accessories and software “apps” running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings. PMID:24700127

  19. Effect of a life review program for Chinese patients with advanced cancer: a randomized controlled trial.

    PubMed

    Xiao, Huimin; Kwong, Enid; Pang, Samantha; Mok, Esther

    2013-01-01

    Empirical data suggest that life review is an effective psychospiritual intervention. However, it has not been applied to Chinese patients with advanced cancer, and its effects on this population remain unknown. The aim of the study was to determine the effect of a life review program on quality of life among Chinese patients with advanced cancer. In this prospective randomized controlled trial, a total of 80 patients were randomly assigned to the life review program group and the control group. The 3-weekly life review program included reviewing a life and formulating a life review booklet. Outcome data were assessed by a collector who was blinded to group assignment before and immediately after the program and at a 3-week follow-up. Significantly better scores in overall quality of life, support, negative emotions, sense of alienation, existential distress, and value of life were found in the life review group immediately after the program and at the 3-week follow-up. This study provides additional data on the potential role of a life review in improving quality of life, particularly psychospiritual well being; it also indicates that the life review program could enable Chinese patients with advanced cancer to express their views on life and death. The life review program offers advanced cancer patients an opportunity to integrate their whole life experiences and discuss end-of-life issues, which lays the ground for further active intervention in their psychospiritual distress. The program could be integrated into daily home care to enhance the psychospiritual well-being of Chinese patients with advanced cancer.

  20. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  1. The Effects of Advanced Placement and International Baccalaureate Programs on Student Achievement

    ERIC Educational Resources Information Center

    Luo, Samia Merza

    2013-01-01

    This study compared student academic achievement in two college readiness programs, Advanced Placement (AP) and International Baccalaureate (IB) and attempted to determine how well program participation predict student performance compared to variables such as SES, parent education level, GPA, gender, and SAT II scores. Finally, the research…

  2. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  3. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    NASA Astrophysics Data System (ADS)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-06-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.

  4. ABB's advanced steam turbine program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellini, R.

    Demand for industrial steam turbines for combined-cycle applications and cogeneration plants has influenced turbine manufacturers to standardize their machines to reduce delivery time and cost. ABB, also a supplier of turnkey plants, manufactures steam turbines in Finspong, Sweden, at the former ASEA Stal facilities and in Nuernberg, Germany, at the former AEG facilities. The companies have joined forces, setting up the advanced Steam Turbine Program (ATP) that, once completed, will cover a power range from two to 100 MW. The company decided to use two criteria as a starting point, the high efficiency design of the Swedish turbines and themore » high reliability of the German machines. Thus, the main task was combining the two designs in standard machines that could be assembled quickly into predefined packages to meet specific needs of combined-cycle and cogeneration plants specified by customers. In carrying out this project, emphasis was put on cost reduction as one of the main goals. The first results of the ATP program, presented by ABB Turbinen Nuernberg, is the range of 2-30 MW turbines covered by two frame sizes comprising standard components supporting the thermodynamic module. An important feature is the standardization of the speed reduction gearbox.« less

  5. LabVIEW application for motion tracking using USB camera

    NASA Astrophysics Data System (ADS)

    Rob, R.; Tirian, G. O.; Panoiu, M.

    2017-05-01

    The technical state of the contact line and also the additional equipment in electric rail transport is very important for realizing the repairing and maintenance of the contact line. During its functioning, the pantograph motion must stay in standard limits. Present paper proposes a LabVIEW application which is able to track in real time the motion of a laboratory pantograph and also to acquire the tracking images. An USB webcam connected to a computer acquires the desired images. The laboratory pantograph contains an automatic system which simulates the real motion. The tracking parameters are the horizontally motion (zigzag) and the vertically motion which can be studied in separate diagrams. The LabVIEW application requires appropriate tool-kits for vision development. Therefore the paper describes the subroutines that are especially programmed for real-time image acquisition and also for data processing.

  6. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  7. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  8. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  9. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  10. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  11. NOT Another Lab Report

    ERIC Educational Resources Information Center

    Ende, Fred

    2012-01-01

    Ask students to name the aspects of science class they enjoy most, and working on labs will undoubtedly be mentioned. What often won't be included, however, is writing lab reports. For many students, the process of exploration and data collection is paramount, while the explanation and analysis of findings often takes a backseat. After all, if…

  12. Summer of Seasons Workshop Program for Emerging Educators in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj

    2002-01-01

    Norfolk State University BEST Lab successfully hosted three Summer of Seasons programs from 1998-2001. The Summer of Seasons program combined activities during the summer with additional seminars and workshops to provide broad outreach in the number of students and teachers who participated. Lessons learned from the each of the first two years of this project were incorporated into the design of the final year's activities. The "Summer of Seasons" workshop program provided emerging educators with the familiarity and knowledge to utilize in the classroom curriculum materials developed through NASA sponsorship on Earth System Science. A special emphasis was placed on the use of advanced technologies to dispel the commonly held misconceptions regarding seasonal, climactic and global change phenomena.

  13. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  14. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  15. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    ERIC Educational Resources Information Center

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  16. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  17. 75 FR 28813 - Capital Advance Program Submission Requirements for the Section 202 Supportive Housing for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-41] Capital Advance Program Submission Requirements for the Section 202 Supportive Housing for the Elderly and the Section 811 Supportive...: Capital Advance Program Submission Requirements for the Section 202 Supportive Housing for the Elderly and...

  18. The Iowa Chautauqua Program: Advancing Reforms in K-12 Science Education.

    ERIC Educational Resources Information Center

    Dass, Pradeep M.; Yager, Robert E.

    1999-01-01

    Describes the dissemination and implementation of the Iowa Chautauqua Program model of professional development for advancing science education reforms within the United States and in several settings abroad. Contains 15 references. (WRM)

  19. Career Advancement and Work Support Services on the Job: Implementing the Fort Worth Work Advancement and Support Center Program

    ERIC Educational Resources Information Center

    Schultz, Caroline; Seith, David

    2011-01-01

    The Work Advancement and Support Center (WASC) program in Fort Worth was part of a demonstration that is testing innovative strategies to help increase the income of low-wage workers, who make up a large segment of the U.S. workforce. The program offered services to help workers stabilize their employment, improve their skills, and increase their…

  20. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  1. Institutionalization and Sustainability of the National Science Foundation's Advanced Technological Education Program.

    ERIC Educational Resources Information Center

    Bailey, Thomas R.; Matsuzuka, Yukari; Jacobs, James; Morest, Vanessa Smith; Hughes, Katherine L.

    This document reports on a study conducted by the National Science Foundation (NSF) that examines the Advanced Technological Education (ATE) program. ATE aims to promote systemic reform of the nation's science, technology, engineering, and mathematics (STEM) education. The study analyzed the influence of the ATE program on the nature of STEM…

  2. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  3. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  4. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and

  5. The Career Advancement for Registered Nurse Excellence Program.

    PubMed

    Fusilero, Jane; Lini, Linda; Prohaska, Priscilla; Szweda, Christine; Carney, Katie; Mion, Lorraine C

    2008-12-01

    Nurse administrators focus on factors that influence nurses' levels of satisfaction to reduce turnover and improve retention. One important determinant of nurses' satisfaction is the opportunity for professional development. On the basis of feedback from the nurses, a professional development program, Career Advancement for Registered Nurse Excellence, was instituted. The authors describe one approach to create opportunities to improve professional nurse development and the necessity for ongoing assessment of its impact on nurses' job satisfaction.

  6. One dimensional two-body collisions experiment based on LabVIEW interface with Arduino

    NASA Astrophysics Data System (ADS)

    Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai

    2017-09-01

    The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.

  7. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% ofmore » industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.« less

  8. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  9. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  10. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  11. Designing post-graduate Master's degree programs: the advanced training program in Dental Functional Analysis and Therapy as one example.

    PubMed

    Ratzmann, Anja; Ruge, Sebastian; Ostendorf, Kristin; Kordass, Bernd

    2014-01-01

    The decision to consolidate European higher education was reached by the Bologna Conference. Based on the Anglo-American system, a two-cycle degree program (Bachelor and Master) has been introduced. Subjects culminating in a state examination, such as Medicine and Dentistry, were excluded from this reform. Since the state examination is already comparable in its caliber to a Master's degree in Medicine or Dentistry, only advanced Master's degree programs with post-graduate specializations come into consideration for these subjects. In the field of dentistry numerous post-graduate study programs are increasingly coming into existence. Many different models and approaches are being pursued. Since the 2004-2005 winter semester, the University of Greifswald has offered the Master's degree program in Dental Functional Analysis and Therapy. Two and a half years in duration, this program is structured to allow program participation while working and targets licensed dentists who wish to attain certified skills for the future in state-of-the-art functional analysis and therapy. The design of this post-graduate program and the initial results of the evaluation by alumni are presented here. Our experiences show that the conceptual idea of an advanced Master's program has proved successful. The program covers a specialty which leads to increased confidence in handling challenging patient cases. The sharing of experiences among colleagues was evaluated as being especially important.

  12. Computer Programs for Chemistry Experiments I and II.

    ERIC Educational Resources Information Center

    Reynard, Dale C.

    This unit of instruction includes nine laboratory experiments. All of the experiments are from the D.C. Health Revision of the Chemical Education Materials Study (CHEMS) with one exception. Program six is the lab from the original version of the CHEMS program. Each program consists of three parts (1) the lab and computer hints, (2) the description…

  13. Design and Implementation of an Educational Program in Advanced Airway Management for Anesthesiology Residents

    PubMed Central

    Borovcanin, Zana; Shapiro, Janine R.

    2012-01-01

    Education and training in advanced airway management as part of an anesthesiology residency program is necessary to help residents attain the status of expert in difficult airway management. The Accreditation Council for Graduate Medical Education (ACGME) emphasizes that residents in anesthesiology must obtain significant experience with a broad spectrum of airway management techniques. However, there is no specific number required as a minimum clinical experience that should be obtained in order to ensure competency. We have developed a curriculum for a new Advanced Airway Techniques rotation. This rotation is supplemented with a hands-on Difficult Airway Workshop. We describe here this comprehensive advanced airway management educational program at our institution. Future studies will focus on determining if education in advanced airway management results in a decrease in airway related morbidity and mortality and overall better patients' outcome during difficult airway management. PMID:22505885

  14. Graduate student training and creating new physics labs for biology students, killing two birds with one stone.

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2001-03-01

    At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.

  15. Using Distance Learning to Impact Access of Diverse Learners to Advanced Placement Programs

    ERIC Educational Resources Information Center

    Fenty, Nicole S.; Allio, Andrea

    2017-01-01

    Distance learning has been used as one method to increase access for students who have otherwise been underrepresented in college preparatory courses like Advanced Placement (AP). This study evaluated the impact of a statewide Virtual Advanced Placement (VAP) program on access to AP courses for students from underrepresented populations. Survey…

  16. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    NASA Astrophysics Data System (ADS)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  17. RatLab: an easy to use tool for place code simulations

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2013-01-01

    In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627

  18. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  19. The Strategies To Advance the Internationalization of Learning (SAIL) Program.

    ERIC Educational Resources Information Center

    Ebert, Kenneth B.; Burnett, Jane

    This report documents the Strategies to Advance the Internalization of Learning (SAIL) program developed at Michigan State University (MSU) to promote international, comparative, and cross-cultural learning and cross-cultural understanding in the university community. A total of 350 foreign and U.S. students who had international experience…

  20. 77 FR 65395 - Air Cargo Advance Screening (ACAS) Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Air Cargo Advance Screening (ACAS) Pilot Program Correction In notice document 2012-26031 appearing on pages 65006-65009 in the issue of October 24, 2012 make the following correction: On page 65007, in the first column, under the...

  1. SacLab: A toolbox for saccade analysis to increase usability of eye tracking systems in clinical ophthalmology practice.

    PubMed

    Cercenelli, Laura; Tiberi, Guido; Corazza, Ivan; Giannaccare, Giuseppe; Fresina, Michela; Marcelli, Emanuela

    2017-01-01

    Many open source software packages have been recently developed to expand the usability of eye tracking systems to study oculomotor behavior, but none of these is specifically designed to encompass all the main functions required for creating eye tracking tests and for providing the automatic analysis of saccadic eye movements. The aim of this study is to introduce SacLab, an intuitive, freely-available MATLAB toolbox based on Graphical User Interfaces (GUIs) that we have developed to increase the usability of the ViewPoint EyeTracker (Arrington Research, Scottsdale, AZ, USA) in clinical ophthalmology practice. SacLab consists of four processing modules that enable the user to easily create visual stimuli tests (Test Designer), record saccadic eye movements (Data Recorder), analyze the recorded data to automatically extract saccadic parameters of clinical interest (Data Analyzer) and provide an aggregate analysis from multiple eye movements recordings (Saccade Analyzer), without requiring any programming effort by the user. A demo application of SacLab to carry out eye tracking tests for the analysis of horizontal saccades was reported. We tested the usability of SacLab toolbox with three ophthalmologists who had no programming experience; the ophthalmologists were briefly trained in the use of SacLab GUIs and were asked to perform the demo application. The toolbox gained an enthusiastic feedback from all the clinicians in terms of intuitiveness, ease of use and flexibility. Test creation and data processing were accomplished in 52±21s and 46±19s, respectively, using the SacLab GUIs. SacLab may represent a useful tool to ease the application of the ViewPoint EyeTracker system in clinical routine in ophthalmology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Beyond Classroom, Lab, Studio and Field

    NASA Astrophysics Data System (ADS)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  3. Advanced space program studies: Overall executive summary

    NASA Technical Reports Server (NTRS)

    Sitney, L. R.

    1974-01-01

    Studies were conducted to provide NASA with advanced planning analyses which relate integrated space program goals and options to credible technical capabilities, applications potential, and funding resources. The studies concentrated on the following subjects: (1) upper stage options for the space transportation system based on payload considerations, (2) space servicing and standardization of payloads, (3) payload operations, and (4) space transportation system economic analyses related to user charges and new space applications. A systems cost/performance model was developed to synthesize automated, unmanned spacecraft configurations based on the system requirements and a list of equipments at the assembly level.

  4. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  5. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  6. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  7. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  8. Cyberinfrastructure to Support Collaborative Research Within Small Ecology Labs

    NASA Astrophysics Data System (ADS)

    Laney, C.; Jaimes, A.; Cody, R. P.; Kassin, A.; Salayandia, L.; Tweedie, C. E.

    2011-12-01

    Increasingly, ecological research programs addressing complex challenges are driving technological innovations that allow the acquisition and analysis of data collected over larger spatial scales and finer temporal resolutions. Many research labs are shifting from deploying technicians or students into the field to setting up automated sensors. These sensors can cost less on an individual basis, provide continuous and reliable data collection, and allow researchers to spend more time analyzing data and testing hypotheses. They can provide an enormous amount of complex information about an ecosystem. However, the effort to manage, analyze, and disseminate that information can be daunting. Small labs unfamiliar with these efforts may find their capacity to publish at competitive rates hindered by information management. Such labs would be well served by an easy to manage cyberinfrastructure (CI) that is organized in a modular, plug-and-play design and is amenable to a wide variety of data types. Its functionality would permit addition of new sensors and perform automated data analysis and visualization. Such a system would conceivably enhance access to data from small labs through web services, thereby improving the representation of smaller labs in scientific syntheses and enhancing the spatial and temporal coverage of such efforts. We present a CI that is designed to meet the needs of a small but heavily instrumented research site located within the USDA ARS Jornada Experimental Range in the northern Chihuahuan Desert. This site was constructed and is operated by the Systems Ecology Lab at the University of Texas at El Paso (UTEP), a relatively small and young lab. Researchers at the site study land-atmosphere carbon, water, and energy fluxes at a mixed creosote (Larrea tridentata) - mesquite (Prosopis glandulosa) shrubland. The site includes an eddy covariance tower built to AmeriFlux and FLUXNET specifications, a robotic cart that measures hyperspectral

  9. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  10. Role of national labs in energy and environmental R & D: An industrial perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, N.

    1995-12-31

    The perceived role of national laboratories in energy and environmental research and development is examined from an industrial perspective. A series of tables are used to summarize issues primarily related to the automotive industry. Impacts of policy on energy, environment, society, and international competition are outlined. Advances and further needs in automotive efficiency and pollution control, and research roles for national labs and industry are also summarized. 6 tabs.

  11. [A design of simple ventilator control system based on LabVIEW].

    PubMed

    Pei, Baoqing; Xu, Shengwei; Li, Hui; Li, Deyu; Pei, Yidong; He, Haixing

    2011-01-01

    This paper designed a ventilator control system to control proportional valves and motors. It used LabVIEW to control the object mentioned above and design ,validate, evaluate arithmetic, and establish hardware in loop platform. There are two system' s hierarchies. The high layer was used to run non-real time program and the low layer was used to run real time program. The two layers communicated through TCP/IP net. The program can be divided into several modules, which can be expanded and maintained easily. And the harvest in the prototype designing can be seamlessly used to embedded products. From all above, this system was useful in employing OEM products.

  12. Designing post-graduate Master's degree programs: the advanced training program in Dental Functional Analysis and Therapy as one example

    PubMed Central

    Ratzmann, Anja; Ruge, Sebastian; Ostendorf, Kristin; Kordaß, Bernd

    2014-01-01

    Introduction: The decision to consolidate European higher education was reached by the Bologna Conference. Based on the Anglo-American system, a two-cycle degree program (Bachelor and Master) has been introduced. Subjects culminating in a state examination, such as Medicine and Dentistry, were excluded from this reform. Since the state examination is already comparable in its caliber to a Master’s degree in Medicine or Dentistry, only advanced Master’s degree programs with post-graduate specializations come into consideration for these subjects. In the field of dentistry numerous post-graduate study programs are increasingly coming into existence. Many different models and approaches are being pursued. Method: Since the 2004-2005 winter semester, the University of Greifswald has offered the Master’s degree program in Dental Functional Analysis and Therapy. Two and a half years in duration, this program is structured to allow program participation while working and targets licensed dentists who wish to attain certified skills for the future in state-of-the-art functional analysis and therapy. Aim: The design of this post-graduate program and the initial results of the evaluation by alumni are presented here. Conclusion: Our experiences show that the conceptual idea of an advanced Master’s program has proved successful. The program covers a specialty which leads to increased confidence in handling challenging patient cases. The sharing of experiences among colleagues was evaluated as being especially important. PMID:24872853

  13. Planning a Computer Lab: Considerations To Ensure Success.

    ERIC Educational Resources Information Center

    IALL Journal of Language Learning Technologies, 1994

    1994-01-01

    Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…

  14. Object positioning in storages of robotized workcells using LabVIEW Vision

    NASA Astrophysics Data System (ADS)

    Hryniewicz, P.; Banaś, W.; Sękala, A.; Gwiazda, A.; Foit, K.; Kost, G.

    2015-11-01

    During the manufacturing process, each performed task is previously developed and adapted to the conditions and the possibilities of the manufacturing plant. The production process is supervised by a team of specialists because any downtime causes great loss of time and hence financial loss. Sensors used in industry for tracking and supervision various stages of a production process make it much easier to maintain it continuous. One of groups of sensors used in industrial applications are non-contact sensors. This group includes: light barriers, optical sensors, rangefinders, vision systems, and ultrasonic sensors. Through to the rapid development of electronics the vision systems were widespread as the most flexible type of non-contact sensors. These systems consist of cameras, devices for data acquisition, devices for data analysis and specialized software. Vision systems work well as sensors that control the production process itself as well as the sensors that control the product quality level. The LabVIEW program as well as the LabVIEW Vision and LabVIEW Builder represent the application that enables program the informatics system intended to process and product quality control. The paper presents elaborated application for positioning elements in a robotized workcell. Basing on geometric parameters of manipulated object or on the basis of previously developed graphical pattern it is possible to determine the position of particular manipulated elements. This application could work in an automatic mode and in real time cooperating with the robot control system. It allows making the workcell functioning more autonomous.

  15. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR CLEANING: ARIZONA LAB DATA (UA-D-24.0)

    EPA Science Inventory

    The purpose of this SOP is to define the steps involved in cleaning the electronic data generated from data entry of the Arizona Lab Data forms. It applies to electronic data corresponding to the Arizona Lab Data forms scanned and verified by the data staff during the Arizona NH...

  16. "OpenLAB": A 2-Hour PCR-Based Practical for High School Students

    ERIC Educational Resources Information Center

    Bouakaze, Caroline; Eschbach, Judith; Fouquerel, Elise; Gasser, Isabelle; Kieffer, Emmanuelle; Krieger, Sophie; Milosevic, Sara; Saandi, Thoueiba; Florentz, Catherine; Marechal-Drouard, Laurence; Labouesse, Michel

    2010-01-01

    The Strasbourg University PhD school in Life and Health Sciences launched an initiative called "OpenLAB." This project was developed in an effort to help high school teenagers understand theoretical and abstract concepts in genetics. A second objective of this program is to help students in defining their future orientation and to…

  17. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    ERIC Educational Resources Information Center

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  18. TQM in a Computer Lab.

    ERIC Educational Resources Information Center

    Swanson, Dewey A.; Phillips, Julie A.

    At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…

  19. Acquisition: Navy Transition of Advanced Technology Programs to Military Applications

    DTIC Science & Technology

    2003-02-04

    The audit objective was to determine whether the Navy was successful in transitioning advanced technology projects to military applications...they relate to the audit objective. See Appendix A for a discussion of the audit scope and methodology, the review of the management control program, and prior coverage related to the audit objectives.

  20. Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer

    NASA Astrophysics Data System (ADS)

    Stryjewski, Wieslaw J.

    1991-08-01

    A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.

  1. Interactive program for analysis and design problems in advanced composites technology

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Swedlow, J. L.

    1971-01-01

    During the past year an experimental program in the fracture of advanced fiber composites has been completed. The experimental program has given direction to additional experimental and theoretical work. A synthesis program for designing low weight multifastener joints in composites is proposed, based on extensive analytical background. A number of failed joints have been thoroughly analyzed to evaluate the failure hypothesis used in the synthesis procedure. Finally, a new solution is reported for isotropic and anisotropic laminates using the boundary-integral method. The solution method offers significant savings of computer core and time for important problems.

  2. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    PubMed Central

    Degenhart, Alan D.; Kelly, John W.; Ashmore, Robin C.; Collinger, Jennifer L.; Tyler-Kabara, Elizabeth C.; Weber, Douglas J.; Wang, Wei

    2011-01-01

    This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development. PMID:21687575

  3. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.

    PubMed

    Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei

    2011-01-01

    This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  4. SDIO Producibility and Manufacturing Intelligent Processing Programs

    NASA Technical Reports Server (NTRS)

    Stottlemyer, Greg

    1992-01-01

    SDIO has to fashion a comprehensive strategy to insert the capability of an industrial base into ongoing design tradeoffs. This means that there is not only a need to determine if something can be made to the precision needed to meet system performance, but also what changes need to be made in that industry sector to develop a deterministic approach to fabrication precision components. Developing and introducing advanced production and quality control systems is part of this success. To address this situation, SDIO has developed the MODIL (Manufacturing Operations Development and Integration Labs) program. MODILs were developed into three areas: Survivable Optics, Electronics and Sensors, and Spacecraft Fabrication and Test.

  5. Design of an Incubator for Premature Infant Based on LabVIEW.

    PubMed

    Zhang, Lina; Zhou, Runjing

    2005-01-01

    This paper introduces the system structure, hardware circuits, control algorithms, and software program of the incubator for premature infant based on LabVIEW. The main advantages of this device are that preheating is less time than others, the capability of meeting of emergency is provided, control track of temperature and humidity are visible, operation is easy to clinical practice, and maintainability is possessed.

  6. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  7. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  8. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  9. Lab Streaming Layer Enabled Myo Data Collection Software User Manual

    DTIC Science & Technology

    2017-06-07

    time - series data over a local network. LSL handles the networking, time -synchronization, (near-) real- time access as well as, optionally, the... series data collection (e.g., brain activity, heart activity, muscle activity) using the LSL application programming interface (API). Time -synchronized...saved to a single extensible data format (XDF) file. Once the time - series data are collected in a Lab Recorder XDF file, users will be able to query

  10. Bell Helicopter Advanced Rotocraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Henry, Zachary S.

    1995-01-01

    Future rotorcraft transmissions require key emerging material and component technologies using advanced and innovative design practices in order to meet the requirements for a reduced weight to power ratio, a decreased noise level, and a substantially increased reliability. The specific goals for the future rotorcraft transmission when compared with a current state-of-the-art transmission (SOAT) are: (1) a 25 percent weight reduction; (2) a 10 dB reduction in the transmitted noise level; and (3) a system reliability of 5000 hours mean-time-between-removal (MTBR) for the transmission. This report summarizes the work conducted by Bell Helicopter Textron, Inc. to achieve these goals under the Advanced Rotorcraft Transmission (ART) program from 1988 to 1995. The reference aircraft selected by BHTI for the ART program was the Tactical Tiltrotor which is a 17,000 lb gross weight aircraft. A tradeoff study was conducted comparing the ART with a Selected SOAT. The results showed the ART to be 29 percent lighter and up to 13 dB quieter with a calculated MTBR in excess of 5000 hours. The results of the following high risk component and material tests are also presented: (1) sequential meshing high contact ratio planetary with cantilevered support posts; (2) thin dense chrome plated M50 NiL double row spherical roller planetary bearings; (3) reduced kinematic error and increased bending strength spiral bevel gears; (4) high temperature WE43 magnesium housing evaluation and coupon corrosion tests; (5) flexure fatigue tests of precision forged coupons simulating precision forged gear teeth; and (6) flexure fatigue tests of plasma carburized coupons simulating plasma carburized gear teeth.

  11. Continued advancement of the programming language HAL to an operational status

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The continued advancement of the programming language HAL to operational status is reported. It is demonstrated that the compiler itself can be written in HAL. A HAL-in-HAL experiment proves conclusively that HAL can be used successfully as a compiler implementation tool.

  12. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  13. Optics and optics-based technologies education with the benefit of LabVIEW

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  14. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  15. Clinical skills assessment of procedural and advanced communication skills: performance expectations of residency program directors.

    PubMed

    Langenau, Erik E; Zhang, Xiuyuan; Roberts, William L; DeChamplain, Andre F; Boulet, John R

    2012-01-01

    High stakes medical licensing programs are planning to augment and adapt current examinations to be relevant for a two-decision point model for licensure: entry into supervised practice and entry into unsupervised practice. Therefore, identifying which skills should be assessed at each decision point is critical for informing examination development, and gathering input from residency program directors is important. Using data from previously developed surveys and expert panels, a web-delivered survey was distributed to 3,443 residency program directors. For each of the 28 procedural and 18 advanced communication skills, program directors were asked which clinical skills should be assessed, by whom, when, and how. Descriptive statistics were collected, and Intraclass Correlations (ICC) were conducted to determine consistency across different specialties. Among 347 respondents, program directors reported that all advanced communication and some procedural tasks are important to assess. The following procedures were considered 'important' or 'extremely important' to assess: sterile technique (93.8%), advanced cardiovascular life support (ACLS) (91.1%), basic life support (BLS) (90.0%), interpretation of electrocardiogram (89.4%) and blood gas (88.7%). Program directors reported that most clinical skills should be assessed at the end of the first year of residency (or later) and not before graduation from medical school. A minority were considered important to assess prior to the start of residency training: demonstration of respectfulness (64%), sterile technique (67.2%), BLS (68.9%), ACLS (65.9%) and phlebotomy (63.5%). Results from this study support that assessing procedural skills such as cardiac resuscitation, sterile technique, and phlebotomy would be amenable to assessment at the end of medical school, but most procedural and advanced communications skills would be amenable to assessment at the end of the first year of residency training or later. Gathering

  16. Human Research Program Advanced Exercise Concepts (AEC) Overview

    NASA Technical Reports Server (NTRS)

    Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David

    2015-01-01

    Exercise countermeasures provide benefits that are crucial for successful human spaceflight, to mitigate the spaceflight physiological deconditioning which occurs during exposure to microgravity. The NASA Human Research Program (HRP) within the Human Exploration and Operations Mission Directorate (HEOMD) is managing next generation Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation to Technology Readiness Level (TRL) 7 (ground prototyping and flight demonstration) for all exploration mission profiles from Multi Purpose Crew Vehicle (MPCV) Exploration Missions (up to 21 day duration) to Mars Transit (up to 1000 day duration) missions. These validated and optimized exercise countermeasures systems will be provided to the ISS Program and MPCV Program for subsequent flight development and operations. The International Space Station (ISS) currently has three major pieces of operational exercise countermeasures hardware: the Advanced Resistive Exercise Device (ARED), the second-generation (T2) treadmill, and the cycle ergometer with vibration isolation system (CEVIS). This suite of exercise countermeasures hardware serves as a benchmark and is a vast improvement over previous generations of countermeasures hardware, providing both aerobic and resistive exercise for the crew. However, vehicle and resource constraints for future exploration missions beyond low Earth orbit will require that the exercise countermeasures hardware mass, volume, and power be minimized, while preserving the current ISS capabilities or even enhancing these exercise capabilities directed at mission specific physiological functional performance and medical standards requirements. Further, mission-specific considerations such as preservation of sensorimotor function, autonomous and adaptable operation, integration with medical data systems, rehabilitation, and in-flight monitoring and feedback are being developed for integration with the exercise

  17. LANGUAGE LABS--AN UPDATED REPORT.

    ERIC Educational Resources Information Center

    1963

    REPORTS FROM SEVERAL SCHOOL DISTRICTS ON THE USE OF AND PLANNING OF LANGUAGE LABORATORIES ARE PRESENTED. LABORATORIES SHOULD BE ARRANGED FOR FLEXIBLE USE. THE AVERAGE HIGH SCHOOL STUDENT CAN USE A LAB PROFITABLY FOR 20 TO 25 MINUTES. THERE ARE THREE DIFFERENT TYPES OF LANGUAGE LABORATORIES THAT ARE DESCRIBED. THE SATELLITE LAB IS DIVIDED BY A…

  18. Academic Pipeline and Futures Lab

    DTIC Science & Technology

    2016-02-01

    AFRL-RY-WP-TR-2015-0186 ACADEMIC PIPELINE AND FUTURES LAB Brian D. Rigling Wright State University FEBRUARY 2016...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) February 2016 Final 12 June 2009 – 30 September 2015 4. TITLE AND SUBTITLE ACADEMIC ...6 3 WSU ACADEMIC PIPELINE AND LAYERED SENSING FUTURES LAB (prepared by K

  19. Involving Volunteers in Your Advancement Programs. The Best of "CASE Currents."

    ERIC Educational Resources Information Center

    Smith, Virginia Carter, Ed.; Alberger, Patricia LaSalle, Ed.

    A compilation of the best articles from "CASE Currents" on involving volunteers in institutional advancement programs is presented. Overall topics include: management of volunteers, working with trustees (volunteers at the top), benefits of participation for volunteers, and involving volunteers in fund raising, public relations, student…

  20. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  1. Creating a lab to facilitate high school student engagement in authentic paleoclimate science practices

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Walsh, E.

    2012-12-01

    A solid understanding of timescales is crucial for any climate change discussion. This hands-on lab was designed as part of a dual-credit climate change course in which high school students can receive college credit. Using homemade ice cores, students have the opportunity to participate in scientific practices associated with collecting, processing, and interpreting temperature and CO2 data. Exploring millennial-scale cycles in ice core data and extending the CO2 record to the present allows students to discover timescales from an investigators perspective. The Ice Core Lab has been piloted in two high school classrooms and student engagement, and epistemological and conceptual understanding was evaluated using quantitative pre and post assessment surveys. The process of creating this lab involved a partnership between an education assessment professional, high school teachers, and University of Washington professors and graduate students in Oceanography, Earth and Space Sciences, Atmospheric Sciences and the Learning Sciences as part of the NASA Global Climate Change University of Washington in the High School program. This interdisciplinary collaboration led to the inception of the lab and was necessary to ensure that the lesson plan was pedagogically appropriate and scientifically accurate. The lab fits into a unit about natural variability and is paired with additional hands-on activities created by other graduate students that explore short-timescale temperature variations, Milankovitch cycles, isotopes, and other proxies. While the Ice Core Lab is intended to follow units that review the scientific process, global energy budget, and transport, it can be modified to fit any teaching platform.

  2. Towards a Manifesto for Living Lab Co-creation

    NASA Astrophysics Data System (ADS)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  3. Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells.

    PubMed

    Yu, Ling; Ng, Shu Rui; Xu, Yang; Dong, Hua; Wang, Ying Jun; Li, Chang Ming

    2013-08-21

    Circulating tumour cells (CTCs) are shed by primary tumours and are found in the peripheral blood of patients with metastatic cancers. Recent studies have shown that the number of CTCs corresponds with disease severity and prognosis. Therefore, detection and further functional analysis of CTCs are important for biomedical science, early diagnosis of cancer metastasis and tracking treatment efficacy in cancer patients, especially in point-of-care applications. Over the last few years, there has been an increasing shift towards not only capturing and detecting these rare cells, but also ensuring their viability for post-processing, such as cell culture and genetic analysis. High throughput lab-on-a-chip (LOC) has been fuelled up to process and analyse heterogeneous real patient samples while gaining profound insights for cancer biology. In this review, we highlight how miniaturisation strategies together with nanotechnologies have been used to advance LOC for capturing, separating, enriching and detecting different CTCs efficiently, while meeting the challenges of cell viability, high throughput multiplex or single-cell detection and post-processing. We begin this survey with an introduction to CTC biology, followed by description of the use of various materials, microstructures and nanostructures for design of LOC to achieve miniaturisation, as well as how various CTC capture or separation strategies can enhance cell capture and enrichment efficiencies, purity and viability. The significant progress of various nanotechnologies-based detection techniques to achieve high sensitivities and low detection limits for viable CTCs and/or to enable CTC post-processing are presented and the fundamental insights are also discussed. Finally, the challenges and perspectives of the technologies are enumerated.

  4. A prospective evaluation of an interdisciplinary nutrition–rehabilitation program for patients with advanced cancer

    PubMed Central

    Gagnon, B.; Murphy, J.; Eades, M.; Lemoignan, J.; Jelowicki, M.; Carney, S.; Amdouni, S.; Di Dio, P.; Chasen, M.; MacDonald, N.

    2013-01-01

    Background Cancer can affect many dimensions of a patient’s life, and in turn, it should be targeted using a multimodal approach. We tested the extent to which an interdisciplinary nutrition–rehabilitation program can improve the well-being of patients with advanced cancer. Methods Between January 10, 2007, and September 29, 2010, 188 patients with advanced cancer enrolled in the 10–12-week program. Body weight, physical function, symptom severity, fatigue dimensions, distress level, coping ability, and overall quality of life were assessed at the start and end of the program. Results Of the enrolled patients, 70% completed the program. Patients experienced strong improvements in the physical and activity dimensions of fatigue (effect sizes: 0.8–1.1). They also experienced moderate reductions in the severity of weakness, depression, nervousness, shortness of breath, and distress (effect sizes: 0.5–0.7), and moderate improvements in Six Minute Walk Test distance, maximal gait speed, coping ability, and quality of life (effect sizes: 0.5–0.7) Furthermore, 77% of patients either maintained or increased their body weight. Conclusions Interdisciplinary nutrition–rehabilitation can be advantageous for patients with advanced cancer and should be considered an integrated part of standard palliative care. PMID:24311946

  5. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The

  6. Current status of core and advanced adult gastrointestinal endoscopy training in Canada: Survey of existing accredited programs

    PubMed Central

    Xiong, Xin; Barkun, Alan N; Waschke, Kevin; Martel, Myriam

    2013-01-01

    OBJECTIVE: To determine the current status of core and advanced adult gastroenterology training in Canada. METHODS: A survey consisting of 20 questions pertaining to core and advanced endoscopy training was circulated to 14 accredited adult gastroenterology residency program directors. For continuous variables, median and range were analyzed; for categorical variables, percentage and associated 95% CIs were analyzed. RESULTS: All 14 programs responded to the survey. The median number of core trainees was six (range four to 16). The median (range) procedural volumes for gastroscopy, colonoscopy, percutaneous endoscopic gastrostomy and sigmoidoscopy, respectively, were 400 (150 to 1000), 325 (200 to 1500), 15 (zero to 250) and 60 (25 to 300). Eleven of 13 (84.6%) programs used endoscopy simulators in their curriculum. Eight of 14 programs (57%) provided a structured advanced endoscopy training fellowship. The majority (88%) offered training of combined endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasonography. The median number of positions offered yearly for advanced endoscopy fellowship was one (range one to three). The median (range) procedural volumes for ERCP, endoscopic ultrasonography and endoscopic mucosal resection, respectively, were 325 (200 to 750), 250 (80 to 400) and 20 (10 to 63). None of the current programs offered training in endoscopic submucosal dissection or natural orifice transluminal endoscopic surgery. CONCLUSION: Most accredited adult Canadian gastroenterology programs met the minimal procedural requirements recommended by the Canadian Association of Gastroenterology during core training. However, a more heterogeneous experience has been observed for advanced training. Additional studies would be required to validate and standardize evaluation tools used during gastroenterology curricula. PMID:23712301

  7. Current status of core and advanced adult gastrointestinal endoscopy training in Canada: Survey of existing accredited programs.

    PubMed

    Xiong, Xin; Barkun, Alan N; Waschke, Kevin; Martel, Myriam

    2013-01-01

    To determine the current status of core and advanced adult gastroenterology training in Canada. A survey consisting of 20 questions pertaining to core and advanced endoscopy training was circulated to 14 accredited adult gastroenterology residency program directors. For continuous variables, median and range were analyzed; for categorical variables, percentage and associated 95% CIs were analyzed. All 14 programs responded to the survey. The median number of core trainees was six (range four to 16). The median (range) procedural volumes for gastroscopy, colonoscopy, percutaneous endoscopic gastrostomy and sigmoidoscopy, respectively, were 400 (150 to 1000), 325 (200 to 1500), 15 (zero to 250) and 60 (25 to 300). Eleven of 13 (84.6%) programs used endoscopy simulators in their curriculum. Eight of 14 programs (57%) provided a structured advanced endoscopy training fellowship. The majority (88%) offered training of combined endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasonography. The median number of positions offered yearly for advanced endoscopy fellowship was one (range one to three). The median (range) procedural volumes for ERCP, endoscopic ultrasonography and endoscopic mucosal resection, respectively, were 325 (200 to 750), 250 (80 to 400) and 20 (10 to 63). None of the current programs offered training in endoscopic submucosal dissection or natural orifice transluminal endoscopic surgery. Most accredited adult Canadian gastroenterology programs met the minimal procedural requirements recommended by the Canadian Association of Gastroenterology during core training. However, a more heterogeneous experience has been observed for advanced training. Additional studies would be required to validate and standardize evaluation tools used during gastroenterology curricula.

  8. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  9. Career Advancement and Work Support Services on the Job: Implementing the Fort Worth Work Advancement and Support Center Program. Executive Summary

    ERIC Educational Resources Information Center

    Schultz, Caroline; Seith, David

    2011-01-01

    The Work Advancement and Support Center (WASC) program in Fort Worth was part of a demonstration that is testing innovative strategies to help increase the income of low-wage workers, who make up a large segment of the U.S. workforce. The program offered services to help workers stabilize their employment, improve their skills, and increase their…

  10. Science Lab Report Writing in Postsecondary Education: Mediating Teaching and Learning Strategies between Students and Instructors

    NASA Astrophysics Data System (ADS)

    Kalaskas, Anthony Bacaoat

    The lab report is a genre commonly assigned by lab instructors and written by science majors in undergraduate science programs. The teaching and learning of the lab report, however, is a complicated and complex process that both instructors and students regularly contend with. This thesis is a qualitative study that aims to mediate the mismatch between students and instructors by ascertaining their attitudes, beliefs, and values regarding lab report writing. In this way, this thesis may suggest changes to teaching and learning strategies that lead to an improvement of lab report writing done by students. Given that little research has been conducted in this area thus far, this thesis also serves as a pilot study. A literature review is first conducted on the history of the lab report to delineate its development since its inception into American postsecondary education in the late 19th century. Genre theory and Vygotsky's zone of proximal development (ZPD) serve as the theoretical lenses for this thesis. Surveys and interviews are conducted with biology majors and instructors in the Department of Biology at George Mason University. Univariate analysis and coding are applied to elucidate responses from participants. The findings suggest that students may lack the epistemological background to understand lab reports as a process of doing science. This thesis also finds that both instructors and students consider the lab report primarily as a pedagogical genre as opposed to an apprenticeship genre. Additionally, although instructors were found to have utilized an effective piecemeal teaching strategy, there remains a lack of empathy among instructors for students. Collectively, these findings suggest that instructors should modify teaching strategies to determine and address student weaknesses more directly.

  11. Advanced Transmission Components Investigation Program. Bearing and Seal Development.

    DTIC Science & Technology

    1980-08-01

    STATEMENT The purpose of the program was to evaluate a modified tapered roller bearing component incorporating a VASCO-X2 integral inner race and ribbed...cup for use on the spiral bevel input shaft of an advanced helicopter main transmission. The test results indicated that this bearing concept, with its...in future transmissions. The limited oil-off survivability testing conducted did not produce expected results; however, it shovged that this type of

  12. Differential workload calculation and its impact on lab science instruction at the community college level

    NASA Astrophysics Data System (ADS)

    Boyd, Beth Nichols

    The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based instruction, many community colleges assign less value to the time spent in science lab than in lecture in workload calculations. This discrepancy is inconsistent with both current state and nation-wide goals of science excellence and the standards set by the American Chemical Society (2009) and the American Association of Physics Teachers (2002). One implication of this differential lab-loading policy is that the science instructors must teach more hours per week to make the same workload as their colleagues in other disciplines which have no formal laboratory activities. Prior to this study, there was no aggregate data regarding the extent of this policy at the community college level nor of its possible impact upon instruction. The input of full-time two-year college members of four different professional science organizations was solicited and from their responses, it is clear that differential loading of lab hours is common and widely variable. A majority of the respondents to this study had their hours in lab assigned less credit than their hours in lecture, with multiple perceived impacts upon lab preparation, assistance, revision, and follow-up activities. In combination with open-ended comments made by study participants, the results suggest that science instructors do perceive impacts upon their ability to teach science labs in a pedagogically current and challenging manner when their hours spent in lab instruction are counted for less than their hours in lecture. It is hoped that the information from this study will be used to implement improvements in the working conditions needed to advance science

  13. NASA Programs in Advanced Sensors and Measurement Technology for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    2004-01-01

    There are many challenges facing designers and operators of our next-generation aircraft in meeting the demands for efficiency, safety, and reliability which are will be imposed. This paper discusses aeronautical sensor requirements for a number of research and applications areas pertinent to the demands listed above. A brief overview will be given of aeronautical research measurements, along with a discussion of requirements for advanced technology. Also included will be descriptions of emerging sensors and instrumentation technology which may be exploited for enhanced research and operational capabilities. Finally, renewed emphasis of the National Aeronautics and Space Administration in advanced sensor and instrumentation technology development will be discussed, including project of technology advances over the next 5 years. Emphasis on NASA efforts to more actively advance the state-of-the-art in sensors and measurement techniques is timely in light of exciting new opportunities in airspace development and operation. An up-to-date summary of the measurement technology programs being established to respond to these opportunities is provided.

  14. Postdoctoral program guidelines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teich-McGoldrick, Stephanie; Miller, Andrew W.; Sava, Dorina Florentina

    2012-04-01

    We, the Postdoc Professional Development Program (PD2P) leadership team, wrote these postdoc guidelines to be a starting point for communication between new postdocs, their staff mentors, and their managers. These guidelines detail expectations and responsibilities of the three parties, as well as list relevant contacts. The purpose of the Postdoc Program is to bring in talented, creative people who enrich Sandia's environment by performing innovative R&D, as well as by stimulating intellectual curiosity and learning. Postdocs are temporary employees who come to Sandia for career development and advancement reasons. In general, the postdoc term is 1 year, renewable up tomore » five times for a total of six years. However, center practices may vary; check with your manager. At term, a postdoc may apply for a staff position at Sandia or choose to move to university, industry or another lab. It is our vision that those who leave become long-term collaborators and advocates whose relationships with Sandia have a positive effect upon our national constituency.« less

  15. Labs: 1987.

    ERIC Educational Resources Information Center

    Igelsrud, Don, Ed.

    1988-01-01

    This article presents a variety of topics discussed in this column and at a biology teachers' workshop concerning the quality and value of lab techniques used for teaching high school biology. Topics included are Drosophila salivary glands, sea urchins, innovations, dyes and networking. (CW)

  16. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    -486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510

  17. Report from the banding lab

    USGS Publications Warehouse

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  18. NPL scoops £25m for advanced metrology centre

    NASA Astrophysics Data System (ADS)

    Singh Chadha, Kulvinder

    2013-03-01

    The National Physical Laboratory (NPL) in Teddington, UK, is to receive £25m towards the construction of an Advanced Metrology Laboratory (AML) that will contain up to 20 labs and be complete by 2017.

  19. National Programs | FNLCR Staging

    Cancer.gov

    The Frederick National Lab (FNL) is a shared national resource that offers access to a suite of advanced biomedical technologies, provides selected science and technology services, and maintains vast repositories of research materials available to bi

  20. Biomass Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis,

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  1. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2017-12-09

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  2. Advancing Translational Research Through the NHLBI Gene Therapy Resource Program (GTRP)

    PubMed Central

    Benson, Janet; Cornetta, Kenneth; Diggins, Margaret; Johnston, Julie C.; Sepelak, Susan; Wang, Gensheng; Wilson, James M.; Wright, J. Fraser; Skarlatos, Sonia I.

    2013-01-01

    Abstract Translational research is a lengthy, complex, and necessary endeavor in order to bring basic science discoveries to clinical fruition. The NIH offers several programs to support translational research including an important resource established specifically for gene therapy researchers—the National Heart, Lung, and Blood Institute (NHLBI) Gene Therapy Resource Program (GTRP). This paper reviews the core components of the GTRP and describes how the GTRP provides researchers with resources that are critical to advancing investigational gene therapy products into clinical testing. PMID:23692378

  3. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  4. Human radiation studies: Remembering the early years. Oral history of Donner Lab Administrator Baird G. Whaley, August 15, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    Baird G. Whaley, Donner Lab Administrator, was interviewed by representatives of US DOE Office of Human Radiation Experiments (OHRE). The purpose of the interview was to capture the remembrances of Mr. Whaley concerning what he could relate on activities at the Donner Lab that pertain to the OHRE responsibilities. Following a brief biographical sketch, Mr. Whaley relates his experiences in administration at the LAB including funding activities, staffing concerns, intralaboraory politics, and remembrances of John Lawrence, John Gofman, Cornelius Tobias, Jim Born, Alex Margolis, B.V.A. Low- Beer, and Ed Alpen. Further patient care procedures for Donner Clinic Research Programs weremore » discussed.« less

  5. Comparison of College/Career Readiness Outcomes between the Advancement via Individual Determination (AVID) Program and the Traditional High School Academic Program

    ERIC Educational Resources Information Center

    Day, Sandra K.

    2012-01-01

    This study compared selected college/career readiness outcomes for students attending an urban high school who voluntarily participated in an academic support program, Advancement Via Individual Determination (AVID), to demographically similar/same school peers who completed the traditional academic program (TAP) of study. Grade point average,…

  6. Advanced Placement and International Baccalaureate Programs: A "Fit" for Gifted Learners?

    ERIC Educational Resources Information Center

    Hertberg-Davis, Holly; Callahan, Carolyn M.; Kyburg, Robin M.

    2006-01-01

    Although limited research exists on the appropriateness of Advanced Placement (AP) and International Baccalaureate (IB) Programs for gifted secondary learners, these courses serve as the primary methods of meeting the needs of gifted students in most high schools. This qualitative study employed a grounded theory approach to investigate how…

  7. Intellectual Estuaries: Connecting Learning and Creativity in Programs of Advanced Academics

    ERIC Educational Resources Information Center

    Beghetto, Ronald A.; Kaufman, James C.

    2009-01-01

    Academic learning and creativity should be overlapping goals that can be simultaneously pursued in programs of advanced academics. However, efforts aimed at nurturing creativity and academic learning sometimes are represented as two related but separate paths; this separation is unnecessary and can undermine the development of creative and…

  8. Programmed Instruction Manual for a New Solar and Energy Conservation Laboratory. Final Evaluation Report.

    ERIC Educational Resources Information Center

    State Univ. of New York, Farmingdale. Agricultural and Technical Coll.

    A programmed instruction course was developed, consisting of fifteen experiments encompassing eleven separate pieces of equipment operational in a solar and energy conservation lab. The programmed instruction manual for the lab was evaluated and revised during a workshop. This evaluation indicated that both the lab and manual are valuable tools…

  9. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  10. Integration of Vocational and Academic Curricula through the NSF Advanced Technological Education Program (ATE).

    ERIC Educational Resources Information Center

    Bailey, Thomas R.; Matsuzuka, Yukari

    A study examined the impact of the Advanced Technological Education (ATE) program on efforts in academic and vocational integration. A case study of 10 community colleges housing ATE-funded projects collected data through interviews with administrators, faculty, ATE program practitioners, and faculty and administrators at collaborating high…

  11. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  12. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  13. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  14. Evaluation of oral microbiology lab curriculum reform.

    PubMed

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  15. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  16. Innovation - A view from the Lab

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  17. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2003-07-21

    An ion thruster is removed from a vacuum chamber at NASA's Jet Propulsion Laboratory in Pasadena, California. The thruster, a spare engine from NASA's Deep Space 1 mission, with a designed life of 8,000 hours, ran for a record 30,352 hours (nearly 5 years) giving researchers the ability to observe its performance and wear at different power levels throughout the test. This information will be vital to future missions that use ion propulsion. Ion propulsion systems can be very lightweight, rurning on just a few grams of xenon gas a day. Xenon is the same gas that is found in photo flash bulbs. This fuel efficiency can lower launch vehicle costs. The successful Deep Space 1 mission featured the first use of an ion engine as the primary means of propulsion on a NASA spacecraft. NASA's next-generation ion propulsion efforts are implemented by the Marshall Space Flight Center. The program seeks to develop advanced propulsion technologies that will significantly reduce cost, mass, or travel times.

  18. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  19. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  20. English 291, 292, and 293--Advance Program: Man's Power with Words.

    ERIC Educational Resources Information Center

    Jefferson County Board of Education, Louisville, KY.

    For those students who qualify, the Advance Program offers an opportunity to follow a stimulating curriculum designed for the academically talented. This guide for ninth grade English was developed to broaden the student's skill and understanding of the history of the English language, composition, grammar, vocabulary development, and literature.…