Sample records for lab scale experiments

  1. Why do lab-scale experiments ever resemble geological scale patterning?

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Behrooz; Jones, Brandon C.; Stein, Jeremy L.; Shinbrot, Troy

    2017-11-01

    The Earth and other planets are abundant with curious and poorly understood surface patterns. Examples include sand dunes, periodic and aperiodic ridges and valleys, and networks of river and submarine channels. We make the minimalist proposition that the dominant mechanism governing these varied patterns is mass conservation: notwithstanding detailed particulars, the universal rule is mass conservation and there are only a finite number of surface patterns that can result from this process. To test this minimalist proposition, we perform experiments in a vertically vibrated bed of fine grains, and we show that every one of a wide variety of patterns seen in the laboratory is also seen in recorded geomorphologies. We explore a range of experimental driving frequencies and amplitudes, and we complement these experimental results with a non-local cellular automata model that reproduces the surface patterns seen using a minimalist approach that allows a free surface to deform subject to mass conservation and simple known forces such as gravity. These results suggest a common cause for the effectiveness of lab-scale models for geological scale patterning that otherwise ought to have no reasonable correspondence.

  2. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    USGS Publications Warehouse

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  3. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  4. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  5. Assessing the changes in E. coli levels and nutrient dynamics during vermicomposting of food waste under lab and field scale conditions.

    PubMed

    Cao, Wenlong; Vaddella, Venkata; Biswas, Sagor; Perkins, Katherine; Clay, Cameron; Wu, Tong; Zheng, Yawen; Ndegwa, Pius; Pandey, Pramod

    2016-11-01

    Vermicomposting (VC) has proven to be a promising method for treating garden, household, and municipal wastes. Although the VC has been used extensively for converting wastes into fertilizers, pathogens such as Escherichia coli (E. coli) survival during this process is not well documented. In this study, both lab and field scale experiments were conducted assessing the impacts of earthworms in reducing E. coli concentration during VC of food waste. In addition, other pertinent parameters such as temperature, carbon and nitrogen content, moisture content, pH, volatile solids, micronutrients (P, K, Ca, Mg, and S), and heavy metals (Zn, Mn, Fe, and Cu) were monitored during the study. The lab and field scale experiments were conducted for 107 and 103 days, respectively. The carbon to nitrogen ratio (C/N) decreased by 54 % in the lab scale study and by 36 % in the field study. Results showed that VC was not significantly effective in reducing E. coli levels in food waste under both lab and field scale settings. The carbon to nitrogen ratio (C/N) decreased by 54 % in the lab scale study and by 36 % in the field study.

  6. Lab and Pore-Scale Study of Low Permeable Soils Diffusional Tortuosity

    NASA Astrophysics Data System (ADS)

    Lekhov, V.; Pozdniakov, S. P.; Denisova, L.

    2016-12-01

    Diffusion plays important role in contaminant spreading in low permeable units. The effective diffusion coefficient of saturated porous medium depends on this coefficient in water, porosity and structural parameter of porous space - tortuosity. Theoretical models of relationship between porosity and diffusional tortuosity are usually derived for conceptual granular models of medium filled by solid particles of simple geometry. These models usually do not represent soils with complex microstructure. The empirical models, like as Archie's law, based on the experimental electrical conductivity data are mostly useful for practical applications. Such models contain empirical parameters that should be defined experimentally for given soil type. In this work, we compared tortuosity values obtained in lab-scale diffusional experiments and pore scale diffusion simulation for the studied soil microstructure and exanimated relationship between tortuosity and porosity. Samples for the study were taken from borehole cores of low-permeable silt-clay formation. Using the samples of 50 cm3 we performed lab scale diffusional experiments and estimated the lab-scale tortuosity. Next using these samples we studied the microstructure with X-ray microtomograph. Shooting performed on undisturbed microsamples of size 1,53 mm with a resolution ×300 (10243 vox). After binarization of each obtained 3-D structure, its spatial correlation analysis was performed. This analysis showed that the spatial correlation scale of the indicator variogram is considerably smaller than microsample length. Then there was the numerical simulation of the Laplace equation with binary coefficients for each microsamples. The total number of simulations at the finite-difference grid of 1753 cells was 3500. As a result the effective diffusion coefficient, tortuosity and porosity values were obtained for all studied microsamples. The results were analyzed in the form of graph of tortuosity versus porosity. The 6

  7. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    PubMed

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  8. The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Beussman, Douglas J.

    2007-01-01

    A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…

  9. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  10. Lab experiments are a major source of knowledge in the social sciences.

    PubMed

    Falk, Armin; Heckman, James J

    2009-10-23

    Laboratory experiments are a widely used methodology for advancing causal knowledge in the physical and life sciences. With the exception of psychology, the adoption of laboratory experiments has been much slower in the social sciences, although during the past two decades the use of lab experiments has accelerated. Nonetheless, there remains considerable resistance among social scientists who argue that lab experiments lack "realism" and generalizability. In this article, we discuss the advantages and limitations of laboratory social science experiments by comparing them to research based on nonexperimental data and to field experiments. We argue that many recent objections against lab experiments are misguided and that even more lab experiments should be conducted.

  11. From lab to full-scale ultrafiltration in microalgae harvesting

    NASA Astrophysics Data System (ADS)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  12. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Application of lab derived kinetic biodegradation parameters at the field scale

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.

    2003-04-01

    Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way

  14. Behavior of TiO₂ nanoparticles during incineration of solid paint waste: a lab-scale test.

    PubMed

    Massari, Andrea; Beggio, Marta; Hreglich, Sandro; Marin, Riccardo; Zuin, Stefano

    2014-10-01

    In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products' life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products. In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950°C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lab-Scale Stimulation Results on Surrogate Fused Silica Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Fernandez

    Lab-scale stimulation work on non-porous fused silica (similar mechanical properties to igneous rock) was performed using pure water, pure CO2 and water/CO2 mixtures to compare back to back fracturing performance of these fluids with PNNL's StimuFrac.

  16. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  17. KNMI DataLab experiences in serving data-driven innovations

    NASA Astrophysics Data System (ADS)

    Noteboom, Jan Willem; Sluiter, Raymond

    2016-04-01

    Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.

  18. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale.

    PubMed

    Combernoux, Nicolas; Schrive, Luc; Labed, Véronique; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2017-10-15

    The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and 137 Cs (radioactive). The scale up to a 2.6 m 2 spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. End-effects-regime in full scale and lab scale rocket nozzles

    NASA Astrophysics Data System (ADS)

    Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph

    2014-11-01

    Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.

  20. Teaching About Theory-Laden Observation to Secondary Students Through Manipulated Lab Inquiry Experience

    NASA Astrophysics Data System (ADS)

    Lau, Kwok-chi; Chan, Shi-lun

    2013-10-01

    This study seeks to develop and evaluate a modified lab inquiry approach to teaching about nature of science (NOS) to secondary students. Different from the extended, open-ended inquiry, this approach makes use of shorter lab inquiry activities in which one or several specific NOS aspects are manipulated deliberately so that students are compelled to experience and then reflect on these NOS aspects. In this study, to let students experience theory-laden observation, they were provided with different "theories" in order to bias their observations in the lab inquiry. Then, in the post-lab discussion, the teacher guided students to reflect on their own experience and explicitly taught about theory-ladenness. This study employs a quasi-experimental pretest-posttest design using the historical approach as the control group. The results show that the manipulated lab inquiry approach was much more effective than the historical approach in fostering students' theory-laden views, and it was even more effective when the two approaches were combined. Besides, the study also sought to examine the practical epistemological beliefs of students concerning theory-ladenness, but limited evidence could be found.

  1. Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana

    USGS Publications Warehouse

    Schneider, Davod C.; Walters, R.; Thrush, S.; Dayton, P.

    1997-01-01

    At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.

  2. Experience in Evaluating AAL Solutions in Living Labs

    PubMed Central

    Colomer, Juan Bautista Montalvá; Salvi, Dario; Cabrera-Umpierrez, Maria Fernanda; Arredondo, Maria Teresa; Abril, Patricia; Jimenez-Mixco, Viveca; García-Betances, Rebeca; Fioravanti, Alessio; Pastorino, Matteo; Cancela, Jorge; Medrano, Alejandro

    2014-01-01

    Ambient assisted living (AAL) is a complex field, where different technologies are integrated to offer solutions for the benefit of different stakeholders. Several evaluation techniques are commonly applied that tackle specific aspects of AAL; however, holistic evaluation approaches are lacking when addressing the needs of both developers and end-users. Living labs have been often used as real-life test and experimentation environments for co-designing AAL technologies and validating them with relevant stakeholders. During the last five years, we have been evaluating AAL systems and services in the framework of various research projects. This paper presents the lessons learned in this experience and proposes a set of harmonized guidelines to conduct evaluations in living labs. PMID:24763209

  3. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  4. A Remote Lab for Experiments with a Team of Mobile Robots

    PubMed Central

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-01-01

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab. PMID:25192316

  5. A remote lab for experiments with a team of mobile robots.

    PubMed

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-09-04

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab.

  6. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  7. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at

    Highlights: ► Current data on in situ aeration effects from the first Austrian full-scale case study. ► Data on lasting waste stabilisation after aeration completion. ► Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfullymore » applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below

  8. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach

  9. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to

  10. Perspectives on ecological research at the Outdoor StreamLab, a field-scale experimental stream

    NASA Astrophysics Data System (ADS)

    Merten, E. C.; Dieterman, D.; Kramarczuk, K.; Lightbody, A.; Orr, C. H.; Wellnitz, T.

    2009-12-01

    Artificial streams hold great promise for examining ecological processes. They lend themselves to manipulations of discharge, sediment load, water chemistry, and other parameters difficult or impossible to control in natural streams. However, artificial streams also have important limitations. In this presentation we describe insights gained from several ecological studies conducted at the St. Anthony Falls Laboratory’s Outdoor StreamLab, including, 1) short-term turbidity exposure effects on fish health, 2) macroinvertebrate grazing rates on periphyton as a function of velocity, 3) rates of macroinvertebrate colonization as related to velocity, and 4) fine-scale correlations of periphytic biomass with hydraulic conditions. Several lessons emerge from these initial attempts at ecological research in the Outdoor StreamLab. We have learned that the size, flow rate, substrate, water chemistry, and available colonization population of the artificial stream limit the kinds of organisms and types of ecological processes that can be examined and the types of experiments that can be run. We suggest that short-term biotic responses are best for study in a system of this type, and note that constant experiment maintenance is essential. Operating artificial streams to meet the needs of multiple researchers also presents challenges of scheduling, coordination, and conflict resolution. Although ecological research in artificial streams has considerable potential, the planning required is no less than that of traditional field studies.

  11. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute tomore » reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.« less

  12. RANS Simulation (Virtual Blade Model [VBM]) of Single Lab Scaled DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph

    2014-04-15

    Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.

  13. Hydrologic Process Regularization for Improved Geoelectrical Monitoring of a Lab-Scale Saline Tracer Experiment

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.

    2016-12-01

    Regularization stabilizes the geophysical imaging problem resulting from sparse and noisy measurements that render solutions unstable and non-unique. Conventional regularization constraints are, however, independent of the physics of the underlying process and often produce smoothed-out tomograms with mass underestimation. Cascaded time-lapse (CTL) is a widely used reconstruction technique for monitoring wherein a tomogram obtained from the background dataset is employed as starting model for the inversion of subsequent time-lapse datasets. In contrast, a proper orthogonal decomposition (POD)-constrained inversion framework enforces physics-based regularization based upon prior understanding of the expected evolution of state variables. The physics-based constraints are represented in the form of POD basis vectors. The basis vectors are constructed from numerically generated training images (TIs) that mimic the desired process. The target can be reconstructed from a small number of selected basis vectors, hence, there is a reduction in the number of inversion parameters compared to the full dimensional space. The inversion involves finding the optimal combination of the selected basis vectors conditioned on the geophysical measurements. We apply the algorithm to 2-D lab-scale saline transport experiments with electrical resistivity (ER) monitoring. We consider two transport scenarios with one and two mass injection points evolving into unimodal and bimodal plume morphologies, respectively. The unimodal plume is consistent with the assumptions underlying the generation of the TIs, whereas bimodality in plume morphology was not conceptualized. We compare difference tomograms retrieved from POD with those obtained from CTL. Qualitative comparisons of the difference tomograms with images of their corresponding dye plumes suggest that POD recovered more compact plumes in contrast to those of CTL. While mass recovery generally deteriorated with increasing number of time

  14. RANS Simulation (Rotating Reference Frame Model [RRF]) of Single Lab-Scaled DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph

    2014-04-15

    Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study taking advantage of the symmetry of lab-scaled DOE RM1 geometry, only half of the geometry is models using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in the near and far wake of the device at the desired operating conditions. The results of these simulations were validated against in-house experimental data. Please see the attached paper.

  15. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  16. Replacing textbook problems with lab experiences

    NASA Astrophysics Data System (ADS)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  17. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    ERIC Educational Resources Information Center

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  18. Teacher Support in Computer-Supported Lab Work: Bridging the Gap between Lab Experiments and Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Furberg, Anniken

    2016-01-01

    This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…

  19. Overview of the Fire Lab at Missoula Experiments (FLAME)

    Treesearch

    S. M. Kreidenweis; J. L. Collett; H. Moosmuller; W. P. Arnott; WeiMin Hao; W. C. Malm

    2010-01-01

    The Fire Lab at Missoula Experiments (FLAME) used a series of open biomass burns, conducted in 2006 and 2007 at the Forest Service Fire Science Laboratory in Missoula, MT, to characterize the physical, chemical and optical properties of biomass combustion emissions. Fuels were selected primarily based on their projected importance for emissions from prescribed and wild...

  20. (De)Constructing the Undergraduate Research Experience in an Environmental Geochemistry Lab (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, C. S.

    2013-12-01

    Maintaining a productive research lab at the undergraduate level requires a savvy combination of internal organization, high (but realistic) expectations, and adaptation of one's research interests into semester- and summer-length projects. Several key strategies can help achieve the goal of building a lab culture that both enriches students' academic experiences and advances one's own scholarly research and visibility. Foremost among these is the need to maintain momentum and preserve institutional knowledge in an environment where undergraduate students' lifetime in an individual lab may only last a year or two. Examples from the Environmental Geochemistry Lab at Chapman University (www.chapman.edu/envgeo) developed over several years and with 40+ undergraduate students will be presented which can be transferable to other faculty research labs in the earth sciences. Approaches to writing successful external research grant proposals at a primarily undergraduate institution (PUI) and strategies for both personal and institutional time management/savings will also be discussed, with a focus on new models at Chapman offered to further incentivize faculty involvement in undergraduate research.

  1. Measurement of α -particle quenching in LAB based scintillator in independent small-scale experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Krosigk, B.; Chen, M.; Hans, S.

    2016-02-29

    The α -particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, α -particles were produced in the scintillator via 12C(n,α) 9 Be reactions. In the second approach, the scintillator was loaded with 2 % of natSm providing an α-emitter, 147Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants 222Rn, 218Po and 214Po provided the α -particle signal. The behavior of the observed α -particle light outputs are in agreement with each casemore » successfully described by Birks’ law. The resulting Birks parameter kB ranges from (0.0066±0.0016) to (0.0076±0.0003) cm/MeV. In the first approach, the α -particle light response was measured simultaneously with the light response of recoil protons produced via neutron–proton elastic scattering. This enabled a first time a direct comparison of kB describing the proton and the α -particle response of LAB based scintillator. The observed kB values describing the two light response functions deviate by more than 5σ . The presented results are valuable for all current and future detectors, using LAB based scintillator as target, since they depend on an accurate knowledge of the scintillator response to different particles.« less

  2. The Immersive Virtual Reality Lab: Possibilities for Remote Experimental Manipulations of Autonomic Activity on a Large Scale.

    PubMed

    Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen

    2018-01-01

    There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing.

  3. The Immersive Virtual Reality Lab: Possibilities for Remote Experimental Manipulations of Autonomic Activity on a Large Scale

    PubMed Central

    Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen

    2018-01-01

    There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing. PMID:29867318

  4. One dimensional two-body collisions experiment based on LabVIEW interface with Arduino

    NASA Astrophysics Data System (ADS)

    Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai

    2017-09-01

    The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.

  5. Student-Designed Experiments: A Pedagogical Design for Introductory Science Labs

    ERIC Educational Resources Information Center

    Coker, Jeffrey Scott

    2017-01-01

    Despite numerous calls for science education to be driven by authentic investigation, many laboratory experiences continue to consist of disconnected weekly units during which students carry out instructions that lead to some predetermined finding. This study developed and evaluated a pedagogical design for introductory biology labs where students…

  6. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  7. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.

    PubMed

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-01

    Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21days (GP21) and respiration activity over 4days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due

  8. A LabVIEW based template for user created experiment automation.

    PubMed

    Kim, D J; Fisk, Z

    2012-12-01

    We have developed an expandable software template to automate user created experiments. The LabVIEW based template is easily modifiable to add together user created measurements, controls, and data logging with virtually any type of laboratory equipment. We use reentrant sequential selection to implement sequence script making it possible to wrap a long series of the user created experiments and execute them in sequence. Details of software structure and application examples for scanning probe microscope and automated transport experiments using custom built laboratory electronics and a cryostat are described.

  9. A Lab Experience to Illustrate the Physicochemical Principles of Detergency

    ERIC Educational Resources Information Center

    Poce-Fatou, J. A.; Bethencourt-Nunez, M.; Moreno, C.; Pinto-Ganfornina, J. J.; Moreno-Dorado, F. J.

    2008-01-01

    This article presents a lab experience to study detergency from a physicochemical point of view intended for undergraduate students. By means of a simple experimental device, we analyze the influence of the surfactant concentration in both distilled water and tap water. Our method is based on the measurement of diffuse reflectances of polyester…

  10. A study of energy-size relationship and wear rate in a lab-scale high pressure grinding rolls unit

    NASA Astrophysics Data System (ADS)

    Rashidi Dashtbayaz, Samira

    This study is focused on two independent topics of energy-size relationship and wear-rate measurements on a lab-scale high pressure grinding rolls (HPGR). The first part of this study has been aimed to investigate the influence of the operating parameters and the feed characteristics on the particle-bed breakage using four different ore samples in a 200 mm x 100 mm lab-scale HPGR. Additionally, multistage grinding, scale-up from a lab-scale HPGR, and prediction of the particle size distributions have been studied in detail. The results obtained from energy-size relationship studies help with better understanding of the factors contributing to more energy-efficient grinding. It will be shown that the energy efficiency of the two configurations of locked-cycle and open multipass is completely dependent on the ore properties. A test procedure to produce the scale-up data is presented. The comparison of the scale-up factors between the data obtained on the University of Utah lab-scale HPGR and the industrial machine at the Newmont Boddington plant confirmed the applicability of lab-scale machines for trade-off studies. The population balance model for the simulation of product size distributions has shown to work well with the breakage function estimated through tests performed on the HPGR at high rotational speed. Selection function has been estimated by back calculation of population balance model with the help of the experimental data. This is considered to be a major step towards advancing current research on the simulation of particle size distribution by using the HPGR machine for determining the breakage function. Developing a technique/setup to measure the wear rate of the HPGR rolls' surface is the objective of the second topic of this dissertation. A mockup was initially designed to assess the application of the linear displacement sensors for measuring the rolls' weight loss. Upon the analysis of that technique and considering the corresponding sources of

  11. Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments

    PubMed Central

    Fullagar, Wilfred K.; Uhlig, Jens; Mandal, Ujjwal; Kurunthu, Dharmalingam; El Nahhas, Amal; Tatsuno, Hideyuki; Honarfar, Alireza; Parnefjord Gustafsson, Fredrik; Sundström, Villy; Palosaari, Mikko R. J.; Kinnunen, Kimmo M.; Maasilta, Ilari J.; Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young Il; Swetz, Daniel S.; Ullom, Joel N.

    2017-01-01

    The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work. PMID:28396880

  12. Transfer of tracers and pesticides in lab scale wetland systems: the role of vegetation

    NASA Astrophysics Data System (ADS)

    Durst, R.; Imfeld, G.; Lange, J.

    2012-04-01

    Surface wetlands can collect contaminated runoff from urban or agricultural catchments and have intrinsic physical, chemical and biological retention and removal processes useful for mitigating contaminants, including pesticides, and thus limiting the contamination of aquatic ecosystems. Yet little is known about the transfer of pesticides between wetlands collecting pesticides runoff and groundwater, and the subsequent threat of groundwater contamination. In particular, the influence of wetland vegetation and related processes during pesticide transfer is largely unknown. Here we evaluate the transfer of the widely used herbicide Isoproturon (IPU) and the fungicide Metalaxyl (MTX) with that of Uranine (UR) and Sulphorhodamine (SRB) in a vegetated and a non-vegetated lab-scale wetland. UR and SRB had successfully served as a reference for pesticides in surface wetlands. We filled two 65 cm long and 15 cm diameter borosilicate columns with sediment cores from a wetland, one without and one with vegetation (Phragmites australis, Cav.). When a constant flow-through rate of 0.33 ml min-1 was reached, tracers and pesticides were injected simultaneously and continuously. The hydrological mass balance and tracer concentrations were measured daily at the outlet of the lab-scale wetland. Samples for pesticides and hydrochemical analyses were collected biweekly. The lab-scale wetlands were covered to limit evaporation and light decay of injected compounds. The reactive transfer of compounds in the vegetated and non-vegetated lab-scale wetland was compared based on breakthrough curves (BTC's) and model parameters of the lumped parameter model CXTFIT. The hydrologic balance revealed that the intensity of transpiration and hence plant activity in the lab-scale wetlands progressively decreased and then apparently ceased after about eight days following continuous pesticide injection. In this first phase, no significant difference in the hydrologic balances could be observed

  13. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    PubMed

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  14. CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugene Pasyuk

    2009-12-01

    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview ofmore » the experiment and its current status is presented.« less

  15. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  16. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  17. NBodyLab Simulation Experiments with GRAPE-6a AND MD-GRAPE2 Acceleration

    NASA Astrophysics Data System (ADS)

    Johnson, V.; Ates, A.

    2005-12-01

    NbodyLab is an astrophysical N-body simulation testbed for student research. It is accessible via a web interface and runs as a backend framework under Linux. NbodyLab can generate data models or perform star catalog lookups, transform input data sets, perform direct summation gravitational force calculations using a variety of integration schemes, and produce analysis and visualization output products. NEMO (Teuben 1994), a popular stellar dynamics toolbox, is used for some functions. NbodyLab integrators can optionally utilize two types of low-cost desktop supercomputer accelerators, the newly available GRAPE-6a (125 Gflops peak) and the MD-GRAPE2 (64-128 Gflops peak). The initial version of NBodyLab was presented at ADASS 2002. This paper summarizes software enhancements developed subsequently, focusing on GRAPE-6a related enhancements, and gives examples of computational experiments and astrophysical research, including star cluster and solar system studies, that can be conducted with the new testbed functionality.

  18. Simple Harmonics Motion experiment based on LabVIEW interface for Arduino

    NASA Astrophysics Data System (ADS)

    Tong-on, Anusorn; Saphet, Parinya; Thepnurat, Meechai

    2017-09-01

    In this work, we developed an affordable modern innovative physics lab apparatus. The ultrasonic sensor is used to measure the position of a mass attached on a spring as a function of time. The data acquisition system and control device were developed based on LabVIEW interface for Arduino UNO R3. The experiment was designed to explain wave propagation which is modeled by simple harmonic motion. The simple harmonic system (mass and spring) was observed and the motion can be realized using curve fitting to the wave equation in Mathematica. We found that the spring constants provided by Hooke’s law and the wave equation fit are 9.9402 and 9.1706 N/m, respectively.

  19. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  20. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  1. Effects of different nitrogen sources on the biogas production - a lab-scale investigation.

    PubMed

    Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul

    2012-12-20

    For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Relating triggering processes in lab experiments with earthquakes.

    NASA Astrophysics Data System (ADS)

    Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.

    2016-12-01

    Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence

  3. Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model

    NASA Astrophysics Data System (ADS)

    Dordevich, Milorad C. W.

    This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development

  4. Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs

    NASA Astrophysics Data System (ADS)

    Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy

    2010-10-01

    With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.

  5. Optically Isolated Control of the MOCHI LabJet High Power Pulsed Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Carroll, Evan; Quinley, Morgan; von der Linden, Jens; You, Setthivoine

    2014-10-01

    The MOCHI LabJet experiment designed to investigate the dynamics of astrophysical jets at the University of Washington, requires high energy pulsed power supplies for plasma generation and sustainment. Two 600 μ F, 10 kV DC, pulse forming, power supplies have been specifically developed for this application. For safe and convenient user operation, the power supplies are controlled remotely with optical isolation. Three input voltage signals are required for relay actuation, adjusting bank charging voltage, and to fire the experiment: long duration DC signals, long duration user adjustable DC signals and fast trigger pulses with < μ s rise times. These voltage signals are generated from National Instruments timing cards via LabVIEW and are converted to optical signals by coupling photodiodes with custom electronic circuits. At the experiment, the optical signals are converted back to usable voltage signals using custom circuits. These custom circuits and experimental set-up are presented. This work is supported by US DOE Grant DE-SC0010340.

  6. LabVIEW-based control and data acquisition system for cathodoluminescence experiments.

    PubMed

    Bok, J; Schauer, P

    2011-11-01

    Computer automation of cathodoluminescence (CL) experiments using equipment developed in our laboratory is described. The equipment provides various experiments for CL efficiency, CL spectra, and CL time response studies. The automation was realized utilizing the graphical programming environment LabVIEW. The developed application software with procedures for equipment control and data acquisition during various CL experiments is presented. As the measured CL data are distorted by technical limitations of the equipment, such as equipment spectral sensitivity and time response, data correction algorithms were incorporated into the procedures. Some examples of measured data corrections are presented. © 2011 American Institute of Physics

  7. Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Xintian; Tian, Hui; Yu, Nanjia; Cai, Guobiao

    2014-12-01

    The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.

  8. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  9. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  10. Model-based strategy for cell culture seed train layout verified at lab scale.

    PubMed

    Kern, Simon; Platas-Barradas, Oscar; Pörtner, Ralf; Frahm, Björn

    2016-08-01

    Cell culture seed trains-the generation of a sufficient viable cell number for the inoculation of the production scale bioreactor, starting from incubator scale-are time- and cost-intensive. Accordingly, a seed train offers potential for optimization regarding its layout and the corresponding proceedings. A tool has been developed to determine the optimal points in time for cell passaging from one scale into the next and it has been applied to two different cell lines at lab scale, AGE1.HN AAT and CHO-K1. For evaluation, experimental seed train realization has been evaluated in comparison to its layout. In case of the AGE1.HN AAT cell line, the results have also been compared to the formerly manually designed seed train. The tool provides the same seed train layout based on the data of only two batches.

  11. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin

    2011-01-30

    Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. GeneLab: Open Science For Exploration

    NASA Technical Reports Server (NTRS)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  13. Implementation of an Unequal Path Length, Heterodyne Interferometer on the MOCHI LabJet Experiment

    NASA Astrophysics Data System (ADS)

    Card, Alexander Harrison

    The MOCHI LabJet experiment aims to explore the stability of magnetic flux tubes through the medium of laboratory astrophysical plasmas. The boundary conditions of large gravitational bodies, namely accretion disks, are replicated and allowed to influence a plasma over short timescales. Observation of the plasma is enabled through use of a variety of fast diagnostics, including an unequal path length, heterodyne, quadrature phase differential interferometer, the development and implementation of which is described in detail. The LabJet gun, a triple-electrode planar plasma gun featuring azimuthally symmetric gas injection achieves a new, long-duration, highly-stabilized, jet plasma formation. The line-integrated density in this new LabJet formation is found to be ne = (6 +/- 3)x1020 [m-2]. By observing the axial expansion rate of the jet over multiple chord locations (all perpendicular to the propagation axis), the interferometer provides an Alfvén velocity measurement of vA = 41.3 +/- 5.4 [km/s], which at the jet density observed indicates an axial magnetic field strength of Bz = 0.15 +/- 0.04 [T]. Various other laboratory components are also detailed, such as a shot-based MDSplus data storage architecture implemented into the LabVIEW experiment control code, and the production and performance of ten fast neutral gas injection valves which when fired in unison provide a total particle inventory of (7.8 +/- 0.6)x1023 [HI particles].

  14. Incorporating the e-HIM[R] Virtual Lab into the Health Information Administration Professional Practice Experience

    ERIC Educational Resources Information Center

    Barefield, Amanda C.; Condon, Jim; McCuen, Charlotte; Sayles, Nanette B.

    2010-01-01

    This article will highlight the experiences of two baccalaureate Health Information Administration (HIA) programs in the adoption of the American Health Information Management Association's (AHIMA) e-HIM Virtual Laboratory (Virtual Lab) into the Professional Practice Experience (PPE). Information is provided describing the implementation of the…

  15. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  16. Science Lab: A Peer Approach.

    ERIC Educational Resources Information Center

    Ronca, Courtney C.

    The two goals of this program were to increase the number of classroom teachers using the lab and to increase the amount of time that the science lab was used. The solution strategy chosen was a combination of peer tutoring, orientation presentations, small group discovery experiments and activities, and individual science experiment stations. The…

  17. UBioLab: a web-laboratory for ubiquitous in-silico experiments.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo

    2012-07-09

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  18. UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.

    PubMed

    Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L

    2012-03-01

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  19. Lab-scaled model to evaluate odor and gas production from cattle confinement facilities with deep bedded packs

    USDA-ARS?s Scientific Manuscript database

    A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...

  20. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less

  1. RANS Simulation (Virtual Blade Model [VBM]) of Array of Three Coaxial Lab Scaled DOE RM1 MHK Turbine with 5D Spacing

    DOE Data Explorer

    Javaherchi, Teymour

    2016-06-08

    Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbines in a coaxial array is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of each device and structure of their turbulent far wake. The results of these simulations were validated against the developed in-house experimental data. Simulations for other turbine configurations are available upon request.

  2. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  3. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  4. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  5. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  8. The Effect of a Human Potential Lab Experience on Perceived Importance of Goals and Awareness of Strengths in Non-Traditional Aged Undergraduates

    ERIC Educational Resources Information Center

    Pickens, Bryon C.

    2013-01-01

    The purpose of this study was to examine the effect of a positively oriented group experience (human potential lab) on the awareness of personal strengths and perceived importance of goal setting in non-traditional aged undergraduates. The research questions that were posed were: 1) Does participation in the human potential lab experience increase…

  9. Scaling behavior in exclusive meson photoproduction from Jefferson Lab at large momentum transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Biplab

    2014-07-01

    With the availability of new high-statistics and wide-angle measurements for several exclusive non-πN meson photoproduction channels from Jefferson Lab, we examine the fundamental scaling law of 90° scattering in QCD that was originally derived in the high-energy perturbative limit. The data show scaling to be prominently visible even in the medium-energy domain of 2.5 GeV ≲√s≲2.84 GeV, where √s is the center-of-mass energy. While constituent quark exchange suffices for pseudoscalar mesons, additional gluon exchanges from higher Fock states of the hadronic wave functions appear be needed for vector-meson production. Finally, the case of the Φ(1020), where two-gluon exchanges are knownmore » to dominate, is especially illuminating.« less

  10. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  11. Supercharging Lessons with a Virtual Lab

    ERIC Educational Resources Information Center

    Stewart, Jefferson; Vincent, Daniel

    2013-01-01

    The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…

  12. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria.

    PubMed

    Nievas, Fiorela L; Bogino, Pablo C; Giordano, Walter

    2016-05-06

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  14. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  15. The Evaluation of Students' Written Reflection on the Learning of General Chemistry Lab Experiment

    ERIC Educational Resources Information Center

    Han, Ng Sook; Li, Ho Ket; Sin, Lee Choy; Sin, Keng Pei

    2014-01-01

    Reflective writing is often used to increase understanding and analytical ability. The lack of empirical evidence on the effect of reflective writing interventions on the learning of general chemistry lab experiment supports the examination of this concept. The central goal of this exploratory study was to evaluate the students' written…

  16. E-Labs - Learning with Authentic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, Marjorie G.; Wayne, Mitchell

    the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Webmore » browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the

  17. Time Trials--An AP Physics Challenge Lab

    ERIC Educational Resources Information Center

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  18. Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.

    PubMed

    Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A

    2017-11-21

    We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.

  19. Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles

    ERIC Educational Resources Information Center

    Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.

    2017-01-01

    Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…

  20. Transport of pesticides and artificial tracers in vertical-flow lab-scale wetlands

    NASA Astrophysics Data System (ADS)

    Durst, Romy; Imfeld, Gwenaël.; Lange, Jens

    2013-01-01

    Wetland systems can be hydrologically connected to a shallow aquifer and intercept upward flow of pesticide-contaminated water during groundwater discharge. However, pesticide transport and attenuation through wetland sediments (WSs) intercepting contaminated water is rarely evaluated quantitatively. The use of artificial tracers to evaluate pesticide transport and associated risks is a fairly new approach that requires evaluation and validation. Here we evaluate during 84 days the transport of two pesticides (i.e., isoproturon (IPU) and metalaxyl (MTX)) and three tracers (i.e., bromide (Br), uranine (UR), and sulforhodamine B (SRB)) in upward vertical-flow vegetated and nonvegetated lab-scale wetlands. The lab-scale wetlands were filled with outdoor WSs and were continuously supplied with tracers and the pesticide-contaminated water. The transport of IPU and UR was characterized by high solute recovery (approximately 80%) and low retardation compared to Br. The detection of desmethylisoproturon in the wetlands indicated IPU degradation. SRB showed larger retardation (>3) and lower recovery (approximately 60%) compared to Br, indicating that sorption controlled SRB transport. MTX was moderately retarded (approximately 1.5), and its load attenuation in the wetland reached 40%. In the vegetated wetland, preferential flow along the roots decreased interactions between solutes and sediments, resulting in larger pesticide and tracer recovery. Our results show that UR and IPU have similar transport characteristics under the tested subsurface-flow conditions, whereas SRB may serve as a proxy for less mobile and more persistent pesticides. Since UR and SRB are not significantly affected by degradation, their use as proxies for fast degrading pollutants may be limited. We anticipate our results to be a starting point for considering artificial tracers for investigating pesticide transport in environments at groundwater/surface-water interfaces.

  1. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  2. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    USDA-ARS?s Scientific Manuscript database

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  3. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  4. Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  5. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  6. MethLAB

    PubMed Central

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K

    2012-01-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798

  7. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  8. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  9. Experiences of citizen-based reporting of rainfall events using lab-generated videos

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Chacon, Juan

    2016-04-01

    Hydrologic studies rely on the availability of good-quality precipitation estimates. However, in remote areas of the world and particularly in developing countries, ground-based measurement networks are either sparse or nonexistent. This creates difficulties in the estimation of precipitation, which limits the development of hydrologic forecasting and early warning systems for these regions. The EC-FP7 WeSenseIt project aims at exploring the involvement of citizens in the observation of the water cycle with innovative sensor technologies, including mobile telephony. In particular, the project explores the use of a smartphone applications to facilitate the reporting water-related situations. Apart from the challenge of using such information for scientific purposes, the citizen engagement is one of the most important issues to address. To this end effortless methods for reporting need to be developed in order to involve as many people as possible in these experiments. A potential solution to overcome these drawbacks, consisting on lab-controlled rainfall videos have been produced to help mapping the extent and distribution of rainfall fields with minimum effort [1]. In addition, the quality of the collected rainfall information has also been studied [2] by means of different experiments with students. The present research shows the latest results of the application of this method and evaluates the experiences in some cases. [1] Alfonso, L., J. Chacón, and G. Peña-Castellanos (2015), Allowing Citizens to Effortlessly Become Rainfall Sensors, in 36th IAHR World Congress edited, The Hague, the Netherlands [2] Cortes-Arevalo, J., J. Chacón, L. Alfonso, and T. Bogaard (2015), Evaluating data quality collected by using a video rating scale to estimate and report rainfall intensity, in 36th IAHR World Congress edited, The Hague, the Netherlands

  10. Engineering Students' Experiences from Physics Group Work in Learning Labs

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm

    2014-01-01

    Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…

  11. Examining and contrasting the cognitive activities engaged in undergraduate research experiences and lab courses

    NASA Astrophysics Data System (ADS)

    Holmes, N. G.; Wieman, Carl E.

    2016-12-01

    While the positive outcomes of undergraduate research experiences (UREs) have been extensively categorized, the mechanisms for those outcomes are less understood. Through lightly structured focus group interviews, we have extracted the cognitive tasks that students identify as engaging in during their UREs. We also use their many comparative statements about their coursework, especially lab courses, to evaluate their experimental physics-related cognitive tasks in those environments. We find there are a number of cognitive tasks consistently encountered in physics UREs that are present in most experimental research. These are seldom encountered in lab or lecture courses, with some notable exceptions. Having time to reflect and fix or revise, and having a sense of autonomy, were both repeatedly cited as key enablers of the benefits of UREs. We also identify tasks encountered in actual experimental research that are not encountered in UREs. We use these findings to identify opportunities for better integration of the cognitive tasks in UREs and lab courses, as well as discussing the barriers that exist. This work responds to extensive calls for science education to better develop students' scientific skills and practices, as well as calls to expose more students to scientific research.

  12. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  13. Transferring experience labs for production engineering students to universities in newly industrialized countries

    NASA Astrophysics Data System (ADS)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  14. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    PubMed

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of the Level of Inquiry of Lab Experiments on General Chemistry Students' Written Reflections

    ERIC Educational Resources Information Center

    Xu, Haozhi; Talanquer, Vincente

    2013-01-01

    The central goal of this exploratory study was to characterize the effects of experiments involving different levels of inquiry on the nature of college students' written reflections about laboratory work. Data were collected in the form of individual lab reports written using a science writing heuristic template by a subset of the students…

  16. Ras Labs.-CASIS-ISS NL experiment for synthetic muscle: resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Sandberg, Eric; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles A.; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nordarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher; Froio, Danielle; Furlong, Cosme; Razavi, Payam; Valenza, Logan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie

    2016-04-01

    In anticipation of deep space travel, new materials are being explored to assist and relieve humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Ras Labs Synthetic Muscle - electroactive polymers (EAPs) that contract and expand at low voltages - which mimic the unique gentle-yet-strong nature of human tissue, is a potential asset to manned space travel through protective gear and human assist robotics and for unmanned space exploration through deep space. Generation 3 Synthetic Muscle was proven to be resistant to extreme temperatures, and there were indications that these materials may also be radiation resistant. The purpose of the Ras Labs-CASIS-ISS Experiment is to test the radiation resistivity of the third and fourth generation of these EAPs, as well as to make them even more radiation resistant or radiation hardened. On Earth, exposure of the Generation 3 and Generation 4 EAPs to a Cs-137 radiation source for 47.8 hours with a total dose of 305.931 kRad of gamma radiation was performed at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University, followed by pH, peroxide, Shore Hardness Durometry, and electroactivity testing to determine the inherent radiation resistivity of these contractile EAPs and to determine whether the EAPs could be made even more radiation resistant through the application of appropriate additives and coatings. The on Earth preliminary tests determined that selected Ras Labs EAPs were not only inherently radiation resistant, but with the appropriate coatings and additives, could be made even more radiation resistant. Gforce testing to over 10 G's was performed at US Army's ARDEC Labs, with excellent results, in preparation for space flight to the International Space Station National Laboratory (ISS-NL). Selected samples of Generation 3 and Generation 4 Synthetic Muscle™, with various additives and coatings, were launched to the ISS-NL on April

  17. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    PubMed Central

    Petigny, Loïc; Périno, Sandrine; Minuti, Matteo; Visinoni, Francesco; Wajsman, Joël; Chemat, Farid

    2014-01-01

    Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC) from non-Volatile Organic Compounds (NVOC) of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant. PMID:24776762

  18. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  19. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  20. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    NASA Astrophysics Data System (ADS)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  1. Data consistency checks for Jefferson Lab Experiment E00-002

    NASA Astrophysics Data System (ADS)

    Telfeyan, John; Niculescu, Gabriel; Niculescu, Ioana

    2006-10-01

    Jefferson Lab experiment E00-002 aims to measure inclusive electron-proton and electron-deuteron scattering cross section at low Q squared and moderately low Bjorken x. Data in this kinematic region will further our understanding of the transition between the perturbative and non-perturbative regimes of Quantum Chromodynamics (QCD). As part of the data analysis effort underway at James Madison University (JMU) a comprehensive set of checks and tests was implemented. These tests ensure the quality and consistency of the experimental data, as well as providing, where appropriate, correction factors between the experimental apparatus as used and its idealized computer-simulated representation. This contribution will outline this testing procedure as implemented in the JMU analysis, highlighting the most important features/results.

  2. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  3. Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.

    2017-09-01

    This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.

  4. Seeing an Old Lab in a New Light: Transforming a Traditional Optics Lab into Full Guided Inquiry

    ERIC Educational Resources Information Center

    Maley, Tim; Stoll, Will; Demir, Kadir

    2013-01-01

    This paper describes the authors' experiences transforming a "cookbook" lab into an inquiry-based investigation and the powerful effect the inquiry-oriented lab had on our students' understanding of lenses. We found the inquiry-oriented approach led to richer interactions between students as well as a deeper conceptual…

  5. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  6. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    PubMed

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste

  7. Application of Stereo Vision to the Reconnection Scaling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klarenbeek, Johnny; Sears, Jason A.; Gao, Kevin W.

    The measurement and simulation of the three-dimensional structure of magnetic reconnection in astrophysical and lab plasmas is a challenging problem. At Los Alamos National Laboratory we use the Reconnection Scaling Experiment (RSX) to model 3D magnetohydrodynamic (MHD) relaxation of plasma filled tubes. These magnetic flux tubes are called flux ropes. In RSX, the 3D structure of the flux ropes is explored with insertable probes. Stereo triangulation can be used to compute the 3D position of a probe from point correspondences in images from two calibrated cameras. While common applications of stereo triangulation include 3D scene reconstruction and robotics navigation, wemore » will investigate the novel application of stereo triangulation in plasma physics to aid reconstruction of 3D data for RSX plasmas. Several challenges will be explored and addressed, such as minimizing 3D reconstruction errors in stereo camera systems and dealing with point correspondence problems.« less

  8. The MØLLER experiment at Jefferson Lab: search for physics beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    van Oers, Willem T. H.

    2010-07-01

    The MO/LLER experiment at Jefferson Lab will measure the parity-violating analyzing power Az in the scattering of 11 GeV longitudinally polarized electrons from the atomic electrons in a liquid hydrogen target (Mo/ller scattering). In the Standard Model a non-zero Az is due to the interference of the electromagnetic amplitude and the weak neutral current amplitude, the latter mediated by the Z0 boson. Az is predicted to be 35.6 parts per billion (ppb) at the kinematics of the experiment. It is the objective of the experiment to measure Az to a precision of 0.73 ppb. This result would yield a measurement of the weak charge of the electron QWe to a fractional error of 2.3% at an average value Q2 of 0.0056 (GeV/c)2. This in turn will yield a determination of the weak mixing angle sin2θw with an uncertainty of ±0.00026(stat) ±0.00013(syst), comparable to the accuracy of the two best determinations at high energy colliders (at the Z0 pole). Consequently, the result could potentially influence the central value of this fundamental electroweak parameter, which is of critical importance in deciphering any signal of new physics that might be observed at the Large Hadron Collider (LHC). The measurement is sensitive to the interference of the electromagnetic amplitude with new neutral current amplitudes as weak as 10-3 GF from as yet unknown high energy dynamics, a level of sensitivity unlikely to be matched in any experiment measuring a flavor and CP conserving process in the next decade. This provides indirect access to new physics at multi-TeV scales in a manner complementary to direct searches at the LHC.

  9. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Brett D., E-mail: bdkeenan@ku.edu; Medvedev, Mikhail V.

    2015-11-15

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate themore » feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.« less

  10. Modifying Cookbook Labs.

    ERIC Educational Resources Information Center

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  11. Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes

    ERIC Educational Resources Information Center

    Baseya, J. M.; Francis, C. D.

    2011-01-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…

  12. Affordable Imaging Lab for Noninvasive Analysis of Biomass and Early Vigour in Cereal Crops

    PubMed Central

    2018-01-01

    Plant phenotyping by imaging allows automated analysis of plants for various morphological and physiological traits. In this work, we developed a low-cost RGB imaging phenotyping lab (LCP lab) for low-throughput imaging and analysis using affordable imaging equipment and freely available software. LCP lab comprising RGB imaging and analysis pipeline is set up and demonstrated with early vigour analysis in wheat. Using this lab, a few hundred pots can be photographed in a day and the pots are tracked with QR codes. The software pipeline for both imaging and analysis is built from freely available software. The LCP lab was evaluated for early vigour analysis of five wheat cultivars. A high coefficient of determination (R2 0.94) was obtained between the dry weight and the projected leaf area of 20-day-old wheat plants and R2 of 0.9 for the relative growth rate between 10 and 20 days of plant growth. Detailed description for setting up such a lab is provided together with custom scripts built for imaging and analysis. The LCP lab is an affordable alternative for analysis of cereal crops when access to a high-throughput phenotyping facility is unavailable or when the experiments require growing plants in highly controlled climate chambers. The protocols described in this work are useful for building affordable imaging system for small-scale research projects and for education. PMID:29850536

  13. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, J; Matrosov, S; Shupe, M

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phasemore » will begin nominally on 1 November 2010 and extend to approximately early April 2011.« less

  14. Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: Site investigation and lab-scale studies.

    PubMed

    Wang, Lei; Wu, Yinghong; Sun, Hongwen; Xu, Jian; Dai, Shugui

    2006-09-01

    Spatial distribution of nonylphenol polyethoxylates (NPEOs) and nonylphenol (NP) was investigated in a field study in Lanzhou Reach of the Yellow River. NPEOs and their metabolites were found in the river, with the maximum dissolved concentrations of 6.38 nmol/L for NPEOs, 0.19 nmol/L for nonylphenol ethoxy acetic acids (NPECs) and 0.79 nmol/L for NP, respectively. The maximum concentrations in the sediment and suspended particle samples were 1.50 and 5.09 nmol/g for NPEOs and NP, respectively. The effects of particles, light and microorganism on the dissipation of NPEOs in the river water were investigated based on lab-scale experiments. When natural particles were removed, 72% and 22% degradation of NPEOs were achieved at 120 h in non-sterile and sterile conditions with light, respectively. Different concentrations of NPECs were also observed in these experiments. When suspended particle matters (SPMs) were present, about 38-50% of NPEOs were sorbed to the particulate phase in only 1 h. As a result, the degradation of NPEOs and production of NPECs were inhibited. However, the combined sorption and degradation in the presence of SPMs resulted in lower dissolved NPEO concentrations than those in the absence of SPMs. Biodegradation was the most important pathway for NPEOs degradation in the river water, while NPECs seemed to be produced through both biological and abiological pathways.

  15. Traditional Labs + New Questions = Improved Student Performance.

    ERIC Educational Resources Information Center

    Rezba, Richard J.; And Others

    1992-01-01

    Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…

  16. Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments.

    PubMed

    Germine, Laura; Nakayama, Ken; Duchaine, Bradley C; Chabris, Christopher F; Chatterjee, Garga; Wilmer, Jeremy B

    2012-10-01

    With the increasing sophistication and ubiquity of the Internet, behavioral research is on the cusp of a revolution that will do for population sampling what the computer did for stimulus control and measurement. It remains a common assumption, however, that data from self-selected Web samples must involve a trade-off between participant numbers and data quality. Concerns about data quality are heightened for performance-based cognitive and perceptual measures, particularly those that are timed or that involve complex stimuli. In experiments run with uncompensated, anonymous participants whose motivation for participation is unknown, reduced conscientiousness or lack of focus could produce results that would be difficult to interpret due to decreased overall performance, increased variability of performance, or increased measurement noise. Here, we addressed the question of data quality across a range of cognitive and perceptual tests. For three key performance metrics-mean performance, performance variance, and internal reliability-the results from self-selected Web samples did not differ systematically from those obtained from traditionally recruited and/or lab-tested samples. These findings demonstrate that collecting data from uncompensated, anonymous, unsupervised, self-selected participants need not reduce data quality, even for demanding cognitive and perceptual experiments.

  17. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice

    PubMed Central

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W.; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior—genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)—influence students’ perceptions and understanding of scientific research and related science concepts. The study used pre and post surveys and a focus group protocol to compare students who conducted the research experiences in one of two sequences: genotyping before database and database before genotyping. Students rated the genotyping experiment to be more like real science than the database experiment, in spite of the fact that they associated more scientific tasks with the database experience than genotyping. Independent of the order of completing the labs, students showed gains in their understanding of science concepts after completion of the two experiences. There was little change in students’ attitudes toward science pre to post, as measured by the Scientific Attitude Inventory II. However, on the basis of their responses during focus groups, students developed more sophisticated views about the practices and nature of science after they had completed both research experiences, independent of the order in which they experienced them. PMID:28572181

  18. Towards a Flexible Language Lab for Community Colleges.

    ERIC Educational Resources Information Center

    Conway, Diana

    1992-01-01

    Suggestions are offered for ways to modify a typical community college language laboratory to serve diverse student needs. The discussion is based on experiences of Anchorage Community College, which modeled its lab on a learning resources center rather than a traditional lab. (LB)

  19. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  20. Genomics Education in Practice: Evaluation of a Mobile Lab Design

    ERIC Educational Resources Information Center

    Van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Buizer-Voskamp, Jacobine E.; Speksnijder, Annelies; Waarlo, Arend Jan

    2010-01-01

    Dutch genomics research centers have developed the "DNA labs on the road" to bridge the gap between modern genomics research practice and secondary-school curriculum in the Netherlands. These mobile DNA labs offer upper-secondary students the opportunity to experience genomics research through experiments with laboratory equipment that…

  1. Gene Expression Analysis: Teaching Students to Do 30,000 Experiments at Once with Microarray

    ERIC Educational Resources Information Center

    Carvalho, Felicia I.; Johns, Christopher; Gillespie, Marc E.

    2012-01-01

    Genome scale experiments routinely produce large data sets that require computational analysis, yet there are few student-based labs that illustrate the design and execution of these experiments. In order for students to understand and participate in the genomic world, teaching labs must be available where students generate and analyze large data…

  2. Latest results from FROST at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, Barry G.

    2014-06-01

    The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of a polarized photon beam incident on a polarized target in meson photoproduction experiments. At Jefferson Lab, a program of such measurements has made use of the Jefferson Lab FROzen Spin Target (FROST). An overview of preliminary results are presented.

  3. Lab-scale evaluation of aerated burial concept for treatment and emergency disposal of infectious animal carcasses.

    PubMed

    Koziel, Jacek A; Ahn, Heekwon; Glanville, Thomas D; Frana, Timothy S; van Leeuwen, J Hans; Nguyen, Lam T

    2018-06-01

    Nearly 55,000 outbreaks of animal disease were reported to the World Animal Health Information Database between 2005 and 2016. To suppress the spread of disease, large numbers of animal mortalities often must be disposed of quickly and are frequently buried on the farm where they were raised. While this method of emergency disposal is fast and relatively inexpensive, it also can have undesirable and lasting impacts (slow decay, concerns about groundwater contamination, pathogens re-emergence, and odor). Following the 2010 foot-and-mouth disease outbreak, the Republic of Korea's National Institute of Animal Science funded research on selected burial alternatives or modifications believed to have potential to reduce undesirable impacts of burial. One such modification involves the injection of air into the liquid degradation products from the 60-70% water from decomposing carcasses in lined burial trenches. Prior to prototype development in the field, a laboratory-scale study of aerated decomposition (AeD) of poultry carcasses was conducted to quantify improvements in time of carcass decomposition, reduction of potential groundwater pollutants in the liquid products of decomposition (since trench liners may ultimately leak), and reduction of odorous VOCs emitted during decomposition. Headspace gases also were monitored to determine the potential for using gaseous biomarkers in the aerated burial trench exhaust stream to monitor completion of the decomposition. Results of the lab-scale experiments show that the mass of chicken carcasses was reduced by 95.0 ± 0.9% within 3 months at mesophilic temperatures (vs. negligible reduction via mesophilic anaerobic digestion typical of trench burial) with concomitant reduction of biochemical oxygen demand (BOD; 99%), volatile suspended solids (VSS; 99%), total suspended solids (TSS; 99%), and total ammonia nitrogen (TAN; 98%) in the liquid digestate. At week #7 BOD and TSS in digestate met the U.S. EPA standards for

  4. Baseball Physics: A New Mechanics Lab

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  5. Use of Bratwurst Sausage as a Model Cadaver in Introductory Physics for the Life Sciences Lab Experiments

    NASA Astrophysics Data System (ADS)

    Sidebottom, David

    2015-09-01

    The general physics course that is taught in most departments as a service course for pre-med or pre-health students is undergoing a large shift in course content to better appeal to this group of learners. This revision also extends to the laboratory component, where more emphasis is being placed on teaching physics through biological examples. Here, two undergraduate-level lab experiments, one dealing with buoyancy and the other with heat transfer, are described. The two labs were designed specifically to appeal to pre-med students taking introductory physics, and their novelty arises from the use of a bratwurst sausage as a miniature model cadaver. Results suggest that the sausage provides a suitable approximation to the mass density and thermal properties of the human body.

  6. The Advanced Lab Course at the University of Houston

    NASA Astrophysics Data System (ADS)

    Forrest, Rebecca

    2009-04-01

    The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.

  7. Indicators for the use of robotic labs in basic biomedical research: a literature analysis

    PubMed Central

    2017-01-01

    Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the papers have at least one of these methods. This and our other results provide indications that robotic labs can serve as the foundation for performing many lab-based experiments. PMID:29134146

  8. Extruder scale-up assessment in the process of extrusion-spheronization: comparison of radial and axial systems by a design of experiments approach.

    PubMed

    Désiré, Amélie; Paillard, Bruno; Bougaret, Joël; Baron, Michel; Couarraze, Guy

    2013-02-01

    Scaling-up the extrusion-spheronization process involves the separate scale-up of each of the five process steps: dry mixing, granulation, extrusion, spheronization, and drying. The aim of the study was to compare two screw extrusion systems regarding their suitability for scaling-up. Two drug substances of high- and low-solubility in water were retained at different concentrations as formulation variables. Different spheronization times were tested. The productivity of the process was followed up using the extrusion rate and yield. Pellets were characterized by their size and shape, and by their structural and mechanical properties. A response surface design of experiments was built to evaluate the influence of the different variables and their interactions on each response, and to select the type of extrusion which provides the best results in terms of product quality, the one which shows less influence on the product after scale-up ("scalability") and when the formula used changes ("robustness"), and the one which allows the possibility to adjust pellet properties with spheronization variables ("flexibility"). Axial system showed the best characteristics in terms of product quality at lab and industrial scales, the best robustness at industrial scale, and the best scalability, by comparison with radial system. Axial system thus appeared as the easiest scaled-up system. Compared to lab scale, the conclusions observed at industrial scale were the same in terms of product quality, but different for robustness and flexibility, which confirmed the importance to test the systems at industrial scale before acquiring the equipment.

  9. Stream piracy in the Black Hills: A geomorphology lab exercise

    USGS Publications Warehouse

    Zaprowski, B.J.; Evenson, E.B.; Epstein, J.B.

    2002-01-01

    The Black Hills of South Dakota exhibits many fine examples of stream piracy that are very suitable for teaching geomorphology lab exercises. This lab goes beyond standard topographic map interpretation by using geologic maps, well logs, gravel provenance and other types of data to teach students about stream piracy. Using a step-by-step method in which the lab exercises ramp up in difficulty, students hone their skills in deductive reasoning and data assimilation. The first exercises deal with the identification of stream piracy at a variety of spatial scales and the lab culminates with an exercise on landscape evolution and drainage rearrangement.

  10. Lab-scale study on the application of In-Adit-Sulfate-Reducing System for AMD control.

    PubMed

    Ji, S W; Kim, S J

    2008-12-30

    In a study of the 29 operating passive systems for acid mine drainage (AMD) treatment, 19 systems showed various performance problems. Some systems showed very low efficiency even without visible leakage or overflow. Though systems show fairly good efficiency in metal removal (mainly iron) and pH control, sulfate removal rates were very low which indicates the possibility of very poor sulfate reductions by Sulfate Reducing Bacteria (SRB). As an alternative method, In-Adit-Sulfate-Reducing System (IASRS), the method of placing the SAPS inside the adit, to have temperature constant at about 15 degrees C, was suggested. Lab-scale model experiments of IASRS were carried out. The models 1 and 2 were run at 15 degrees C and 25 degrees C, respectively. The model 1 contained about a half of COD in the beginning of the operation than that of model 2. Metal removal ratios were higher than 90% in both systems. Both systems showed the sulfate removal ratios of 23% and 27%, respectively, which were still considerably low, even though higher than those of presently operating systems. However, since the synthetic AMD used was very low in pH (2.8) and very high in sulfate concentration, if some suggested modifications were applied to the standard design, it is presumed that the sulfate removal ratio would have increased.

  11. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  12. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  13. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice

    ERIC Educational Resources Information Center

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W.; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior--genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)--influence students' perceptions and understanding of scientific research and related science concepts. The study used pre and…

  14. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and

  15. Bacterial community structure of a lab-scale anammox membrane bioreactor.

    PubMed

    Gonzalez-Martinez, Alejandro; Osorio, F; Rodriguez-Sanchez, Alejandro; Martinez-Toledo, Maria Victoria; Gonzalez-Lopez, Jesus; Lotti, Tommaso; van Loosdrecht, M C M

    2015-01-01

    Autotrophic nitrogen removal technologies have proliferated through the last decade. Among these, a promising one is the membrane bioreactor (MBR) Anammox, which can achieve very high solids retention time and therefore sets a proper environment for the cultivation of anammox bacteria. In this sense, the MBR Anammox is an efficient technology for the treatment of effluents with low organic carbon and high ammonium concentrations once it has been treated under partial nitrification systems. A lab-scale MBR Anammox bioreactor has been built at the Technological University of Delft, The Netherlands and has been proven for efficient nitrogen removal and efficient cultivation of anammox bacteria. In this study, next-generation sequencing techniques have been used for the investigation of the bacterial communities of this MBR Anammox for the first time ever. A strong domination of Candidatus Brocadia bacterium and also the presence of a myriad of other microorganisms that have adapted to this environment were detected, suggesting that the MBR Anammox bioreactor might have a more complex microbial ecosystem that it has been thought. Among these, nitrate-reducing heterotrophs and primary producers, among others, were identified. Definition of the ecological roles of the OTUs identified through metagenomic analysis was discussed. © 2014 American Institute of Chemical Engineers.

  16. Love the Lab, Hate the Lab Report?

    ERIC Educational Resources Information Center

    Bjorn, Genevive

    2018-01-01

    In the author's large, urban high school, enrollment in a laboratory science is mandatory. While the student participation rate for lab activities is over 98%, the turn-in rate for traditional lab reports averages just 35% to 85%. Those students who don't produce a lab report miss a critical opportunity to improve their skills in scientific…

  17. Precision Compton polarimetry for the QWeak experiment at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouter Deconinck

    2011-10-01

    The Q Weak experiment, scheduled to run in 2010-2012 in Hall C at Jefferson Lab, will measure the parity-violating asymmetry in elastic electron-proton scattering at 1.1 GeV to determine the weak charge of the proton, Q{sub Weak}{sup p} = 1 - 4 sin{sup 2} {theta}{sub W}. The dominant experimental systematic uncertainty will be the knowledge of the electron beam polarization. With a new Compton polarimeter we aim to measure the beam polarization with a statistical precision of 1% in one hour and a systematic uncertainty of 1%. A low-gain Fabry-Perot cavity laser system provides the circularly polarized photons. The scatteredmore » electrons are detected in radiation-hard diamond strip detectors, and form the basis for a coincidence trigger using distributed logic boards. The photon detector uses a fast, undoped CsI crystal with simultaneous sampling and integrating read-out. Coincident events are used to cross-calibrate the photon and electron detectors.« less

  18. Personal Adult Learning Lab (Pall). Implications for Practice.

    ERIC Educational Resources Information Center

    Klippel, Judith A.; And Others

    The Personal Adult Learning Lab was establsiehd at the Georgia Center for Continuing Education (GCCE) at the University of Georgia to serve self-directed adult learners and conduct research on self-directed learning. The lab allows adult learners to design, conduct, and evaluate their personal learning experiences while proceeding at their own…

  19. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments

    PubMed Central

    Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying. PMID:28977023

  20. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments.

    PubMed

    de Farias-Martins, Fernando; Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying.

  1. The Living Labs: Innovation in Real-Life Settings

    ERIC Educational Resources Information Center

    Hawk, Nathan; Bartle, Gamin; Romine, Martha

    2012-01-01

    The living lab (LL) is an open innovation ecosystem serving to provide opportunities for local stakeholders to practice research and to experiment with meaningful improvements for cities and other organizations. Living labs aim at involving the user as a cocreator. In this article the relationship between the LLs and a variety of stakeholders is…

  2. Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale

    NASA Astrophysics Data System (ADS)

    Barrios, M. I.

    2013-12-01

    The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues

  3. Assembling proteomics data as a prerequisite for the analysis of large scale experiments

    PubMed Central

    Schmidt, Frank; Schmid, Monika; Thiede, Bernd; Pleißner, Klaus-Peter; Böhme, Martina; Jungblut, Peter R

    2009-01-01

    Background Despite the complete determination of the genome sequence of a huge number of bacteria, their proteomes remain relatively poorly defined. Beside new methods to increase the number of identified proteins new database applications are necessary to store and present results of large- scale proteomics experiments. Results In the present study, a database concept has been developed to address these issues and to offer complete information via a web interface. In our concept, the Oracle based data repository system SQL-LIMS plays the central role in the proteomics workflow and was applied to the proteomes of Mycobacterium tuberculosis, Helicobacter pylori, Salmonella typhimurium and protein complexes such as 20S proteasome. Technical operations of our proteomics labs were used as the standard for SQL-LIMS template creation. By means of a Java based data parser, post-processed data of different approaches, such as LC/ESI-MS, MALDI-MS and 2-D gel electrophoresis (2-DE), were stored in SQL-LIMS. A minimum set of the proteomics data were transferred in our public 2D-PAGE database using a Java based interface (Data Transfer Tool) with the requirements of the PEDRo standardization. Furthermore, the stored proteomics data were extractable out of SQL-LIMS via XML. Conclusion The Oracle based data repository system SQL-LIMS played the central role in the proteomics workflow concept. Technical operations of our proteomics labs were used as standards for SQL-LIMS templates. Using a Java based parser, post-processed data of different approaches such as LC/ESI-MS, MALDI-MS and 1-DE and 2-DE were stored in SQL-LIMS. Thus, unique data formats of different instruments were unified and stored in SQL-LIMS tables. Moreover, a unique submission identifier allowed fast access to all experimental data. This was the main advantage compared to multi software solutions, especially if personnel fluctuations are high. Moreover, large scale and high-throughput experiments must be managed

  4. The Processing of Human Emotional Faces by Pet and Lab Dogs: Evidence for Lateralization and Experience Effects

    PubMed Central

    Barber, Anjuli L. A.; Randi, Dania; Müller, Corsin A.; Huber, Ludwig

    2016-01-01

    From all non-human animals dogs are very likely the best decoders of human behavior. In addition to a high sensitivity to human attentive status and to ostensive cues, they are able to distinguish between individual human faces and even between human facial expressions. However, so far little is known about how they process human faces and to what extent this is influenced by experience. Here we present an eye-tracking study with dogs emanating from two different living environments and varying experience with humans: pet and lab dogs. The dogs were shown pictures of familiar and unfamiliar human faces expressing four different emotions. The results, extracted from several different eye-tracking measurements, revealed pronounced differences in the face processing of pet and lab dogs, thus indicating an influence of the amount of exposure to humans. In addition, there was some evidence for the influences of both, the familiarity and the emotional expression of the face, and strong evidence for a left gaze bias. These findings, together with recent evidence for the dog's ability to discriminate human facial expressions, indicate that dogs are sensitive to some emotions expressed in human faces. PMID:27074009

  5. Problem Solvers: MathLab's Design Brings Professional Learning into the Classroom

    ERIC Educational Resources Information Center

    Morales, Sara; Sainz, Terri

    2017-01-01

    Imagine teachers, administrators, and university mathematicians and staff learning together in a lab setting where students are excited about attending a week-long summer math event because they are at the forefront of the experience. Piloted in three New Mexico classrooms during summer 2014, MathLab expanded into 17 lab settings over six…

  6. Networking Labs in the Online Environment: Indicators for Success

    ERIC Educational Resources Information Center

    Lahoud, Hilmi A.; Krichen, Jack P.

    2010-01-01

    Several techniques have been used to provide hands-on educational experiences to online learners, including remote labs, simulation software, and virtual labs, which offer a more structured environment, including simulations and scheduled asynchronous access to physical resources. This exploratory study investigated how these methods can be used…

  7. Clay and Shale Permeability at Lab to Regional Scale

    NASA Astrophysics Data System (ADS)

    Neuzil, C.

    2017-12-01

    Because clays, shales, and other clay-rich media tend to be only poorly permeable, and are laterally extensive and voluminous, they play key roles in problems as diverse as groundwater supply, waste confinement, exploitation of conventional and unconventional oil and gas, and deformation and failure in the crust. Clay and shale permeability is a crucial but often highly uncertain analysis parameter; direct measurements are challenging, error-prone, and - perhaps most importantly - provide information only at quite small scales. Fortunately, there has been a dramatic increase in clay and shale permeability data from sources that include scientific ocean drilling, nuclear waste repository research, groundwater resource studies, liquid waste and CO2 sequestration, and oil and gas research. The effect of lithology as well as porosity on matrix permeability can now be examined and permeability - scale relations are becoming discernable. A significant number of large-scale permeability estimates have been obtained by inverse methods that essentially treat large-scale flow systems as natural experiments. They suggest surprisingly little scale-dependence in clay and shale permeabilities in subsiding basins and accretionary complexes. Stable continental settings present a different picture; as depths increase beyond 1 km, scale dependence mostly disappears even over the largest areas. At depths less than 1 km, secondary permeability is not always present over areas of 1 - 10 km2, but always evident for areas in excess of about 103 km2. Transmissive fractures have been observed in very low porosity (< 0.03) shales in these settings, but the cause of scale dependence in other cases is unclear; it may reflect time-dependent, or "dynamic" conditions, including irreversible and ongoing changes imposed on subsurface flow systems by human activities.

  8. Lab notebooks as scientific communication: Investigating development from undergraduate courses to graduate research

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob T.; Lewandowski, H. J.

    2016-12-01

    In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered "best practice" for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely, physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.

  9. Teaching about Theory-Laden Observation to Secondary Students through Manipulated Lab Inquiry Experience

    ERIC Educational Resources Information Center

    Lau, Kwok-chi; Chan, Shi-lun

    2013-01-01

    This study seeks to develop and evaluate a modified lab inquiry approach to teaching about nature of science (NOS) to secondary students. Different from the extended, open-ended inquiry, this approach makes use of shorter lab inquiry activities in which one or several specific NOS aspects are manipulated deliberately so that students are compelled…

  10. NASA GeneLab Concept of Operations

    NASA Technical Reports Server (NTRS)

    Thompson, Terri; Gibbs, Kristina; Rask, Jon; Coughlan, Joseph; Smith, Jeffrey

    2014-01-01

    NASA's GeneLab aims to greatly increase the number of scientists that are using data from space biology investigations on board ISS, emphasizing a systems biology approach to the science. When completed, GeneLab will provide the integrated software and hardware infrastructure, analytical tools and reference datasets for an assortment of model organisms. GeneLab will also provide an environment for scientists to collaborate thereby increasing the possibility for data to be reused for future experimentation. To maximize the value of data from life science experiments performed in space and to make the most advantageous use of the remaining ISS research window, GeneLab will apply an open access approach to conducting spaceflight experiments by generating, and sharing the datasets derived from these biological studies in space.Onboard the ISS, a wide variety of model organisms will be studied and returned to Earth for analysis. Laboratories on the ground will analyze these samples and provide genomic, transcriptomic, metabolomic and proteomic data. Upon receipt, NASA will conduct data quality control tasks and format raw data returned from the omics centers into standardized, annotated information sets that can be readily searched and linked to spaceflight metadata. Once prepared, the biological datasets, as well as any analysis completed, will be made public through the GeneLab Space Bioinformatics System webb as edportal. These efforts will support a collaborative research environment for spaceflight studies that will closely resemble environments created by the Department of Energy (DOE), National Center for Biotechnology Information (NCBI), and other institutions in additional areas of study, such as cancer and environmental biology. The results will allow for comparative analyses that will help scientists around the world take a major leap forward in understanding the effect of microgravity, radiation, and other aspects of the space environment on model organisms

  11. Transforming the advanced lab: Part I - Learning goals

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.

    2012-02-01

    Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).

  12. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  13. Research and Teaching. Effects of a Research-Based Ecology Lab Course: A Study of Nonvolunteer Achievement, Self-Confidence, and Perception of Lab Course Purpose

    ERIC Educational Resources Information Center

    Kloser, Matthew J.; Brownell, Sara E.; Shavelson, Richard J.; Fukami, Tadashi

    2013-01-01

    Undergraduate biology lab courses have long been criticized for engaging students in "cookbook" experiences in which students follow a given protocol to collect data that help answer a predetermined question. Recent reform documents in biology education have suggested that students should engage in lab courses that provide more authentic…

  14. Dynamically polarized target for the g {2/ p } and G {/E p } experiments at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Pierce, J.; Maxwell, J.; Keith, C.

    2014-01-01

    Recently, two experiments were concluded in Hall A at Jefferson Lab which utilized a newly assembled, solid, polarized hydrogen target. The primary components of the target are a new, high cooling power 4He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH3 at a temperature of 1 K and at fields of 2.5 and 5.0 tesla. Maximum polarizations of 55% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0°, 6°, and 90° with respect to the incident electron beam.

  15. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  16. Advanced teaching labs in physics - celebrating progress; challenges ahead

    NASA Astrophysics Data System (ADS)

    Peterson, Richard

    A few examples of optical physics experiments may help us first reflect on significant progress on how advanced lab initiatives may now be more effectively developed, discussed, and disseminated - as opposed to only 10 or 15 years back. Many cooperative developments of the last decade are having profound impacts on advanced lab workers and students. Central to these changes are the programs of the Advanced Laboratory Physics Association (ALPhA) (Immersions, BFY conferences), AAPT (advlab-l server, ComPADRE, apparatus competitions, summer workshops/sessions), APS (Reichert Award, FEd activities and sessions), and the Jonathan F. Reichert Foundation (ALPhA support and institution matched equipment grants for Immersion participants). Broad NSF support has helped undergird several of these initiatives. Two of the most significant challenges before this new advanced lab community are (a) to somehow enhance funding opportunities for teaching equipment and apparatus in an era of minimal NSF equipment support, and (b) to help develop a more complementary relationship between research-based advanced lab pedagogies and the development of fresh physics experiments that help enable the mentoring and experimental challenge of our students.

  17. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    NASA Astrophysics Data System (ADS)

    Holmes, N. G.; Bonn, D. A.

    2015-09-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation. In addition to teaching students how to use these skills, it is important for students to know when to use them so that they can use them autonomously. This requires, especially in the case of analytical skills, high levels of inquiry behaviors to reflect on data and iterate measurements, which students rarely do in lab experiments. Often, they perform lab experiments in a plug-and-chug frame, procedurally completing each activity with little to no sensemaking. An emphasis on obtaining true theoretical values or agreement on individual measurements also reinforces inauthentic behaviors such as retroactively inflating measurement uncertainties. This paper aims to offer a relatively simple pedagogical framework for engaging students authentically in experimentation and inquiry in physics labs.

  18. eComLab: remote laboratory platform

    NASA Astrophysics Data System (ADS)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  19. An Advanced Organometallic Lab Experiment with Biological Implications: Synthesis and Characterization of Fe[subscript 2](µ-S[subscript 2])(C0)[subscript 6

    ERIC Educational Resources Information Center

    Barrett, Jacob; Spentzos, Ariana; Works, Carmen

    2015-01-01

    The organometallic complex Fe[subscript 2](µ-S[subscript 2])(CO)[subscript 6] has interesting biological implications. The concepts of bio-organometallic chemistry are rarely discussed at the undergraduate level, but this experiment can start such a conversation and, in addition, teach valuable synthetic techniques. The lab experiment takes a…

  20. Space Life Sciences Lab

    NASA Image and Video Library

    2003-10-09

    The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  1. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  2. Experiences with Lab-on-a-chip Technology in Support of NASA Supported Research

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2003-01-01

    Under the auspices of the Microgravity Sciences and Application Department at Marshall Space Flight Center, we have custom designed and fabricated a lab-on-a-chip (LOC) device, along with Caliper Technologies, for macromolecular crystal growth. The chip has been designed to deliver specified proportions of up-to five various constituents to one of two growth wells (on-chip) for crystal growth. To date, we have grown crystals of thaumatin, glucose isomerase and appoferitin on the chip. The LOC approach offered many advantages that rendered it highly suitable for space based hardware to perform crystal growth on the International Space Station. The same hardware that was utilized for the crystal growth investigations, has also been used by researchers at Glenn Research Center to investigate aspects of microfluidic phenomenon associated with two-phase flow. Additionally, our LOCAD (Lab-on-a-chip Application Development) team has lent its support to Johnson Space Center s Modular Assay for Solar System Exploration project. At present, the LOCAD team is working on the design and build of a unique lab-on-a-chip breadboard control unit whose function is not commercially available. The breadboard can be used as a test bed for the development of chip size labs for environmental monitoring, crew health monitoring assays, extended flight pharmacological preparations, and many more areas. This unique control unit will be configured for local use and/or remote operation, via the Internet, by other NASA centers. The lab-on-a-chip control unit is being developed with the primary goal of meeting Agency level strategic goals.

  3. How Do You Like Your Science, Wet or Dry? How Two Lab Experiences Influence Student Understanding of Science Concepts and Perceptions of Authentic Scientific Practice.

    PubMed

    Munn, Maureen; Knuth, Randy; Van Horne, Katie; Shouse, Andrew W; Levias, Sheldon

    2017-01-01

    This study examines how two kinds of authentic research experiences related to smoking behavior-genotyping human DNA (wet lab) and using a database to test hypotheses about factors that affect smoking behavior (dry lab)-influence students' perceptions and understanding of scientific research and related science concepts. The study used pre and post surveys and a focus group protocol to compare students who conducted the research experiences in one of two sequences: genotyping before database and database before genotyping. Students rated the genotyping experiment to be more like real science than the database experiment, in spite of the fact that they associated more scientific tasks with the database experience than genotyping. Independent of the order of completing the labs, students showed gains in their understanding of science concepts after completion of the two experiences. There was little change in students' attitudes toward science pre to post, as measured by the Scientific Attitude Inventory II. However, on the basis of their responses during focus groups, students developed more sophisticated views about the practices and nature of science after they had completed both research experiences, independent of the order in which they experienced them. © 2017 M. Munn et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less

  5. Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent; Badman, Toby; Camsonne, Alexandre; Chen, Jian-ping; Cummings, Melissa; Gu, Chao; Huang, Min; Liu, Jie; Musson, John; Slifer, Karl; Sulkosky, Vincent; Ye, Yunxiu; Zhang, Jixie; Zielinski, Ryan

    2016-02-01

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.

  6. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  7. Turning a Common Lab Exercise into a Challenging Lab Experiment: Revisiting the Cart on an Inclined Track

    ERIC Educational Resources Information Center

    Amato, Joseph C.; Williams, Roger E.

    2010-01-01

    A common lab exercise in the introductory college physics course employs a low-friction cart and associated track to study the validity of Newton's second law. Yet for college students, especially those who have already encountered a good high school physics course, the exercise must seem a little pointless. These students have already learned to…

  8. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    PubMed

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  9. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Lane, S. J.; Kueppers, U.

    2015-09-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances ( 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs and

  10. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An investigation of the effects of relevant samples and a comparison of verification versus discovery based lab design

    NASA Astrophysics Data System (ADS)

    Rieben, James C., Jr.

    This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the

  12. RICH Detector for Jefferson Labs CLAS12

    NASA Astrophysics Data System (ADS)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  13. The Virtual Research Lab: Research Outcome Expectations, Research Knowledge, and the Graduate Student Experience

    ERIC Educational Resources Information Center

    Stadtlander, Lee; Giles, Martha; Sickel, Amy

    2013-01-01

    This paper examines the complexities of working with student researchers in a virtual lab setting, logistics, and methods to resolve issues. To demonstrate the feasibility of a virtual lab, a mixed-methods study consisting of quantitative surveys and qualitative data examined changes in doctoral students' confidence as measured by research outcome…

  14. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  15. SuperLab LT: Evaluation and Uses in Teaching Experimental Psychology

    ERIC Educational Resources Information Center

    Ragozzine, Frank

    2002-01-01

    I describe and evaluate SuperLab LT (Chase & Abboud, 1990), a software package that enables students to replicate classic experiments in cognitive psychology. I also discuss the package with respect to its uses in teaching an undergraduate course in Experimental Psychology. Although the package has minor flaws, SuperLab LT provides numerous…

  16. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fast laboratory-based micro-computed tomography for pore-scale research: Illustrative experiments and perspectives on the future

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Boone, Marijn A.; Boone, Matthieu N.; De Schryver, Thomas; Masschaele, Bert; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    Over the past decade, the wide-spread implementation of laboratory-based X-ray micro-computed tomography (micro-CT) scanners has revolutionized both the experimental and numerical research on pore-scale transport in geological materials. The availability of these scanners has opened up the possibility to image a rock's pore space in 3D almost routinely to many researchers. While challenges do persist in this field, we treat the next frontier in laboratory-based micro-CT scanning: in-situ, time-resolved imaging of dynamic processes. Extremely fast (even sub-second) micro-CT imaging has become possible at synchrotron facilities over the last few years, however, the restricted accessibility of synchrotrons limits the amount of experiments which can be performed. The much smaller X-ray flux in laboratory-based systems bounds the time resolution which can be attained at these facilities. Nevertheless, progress is being made to improve the quality of measurements performed on the sub-minute time scale. We illustrate this by presenting cutting-edge pore scale experiments visualizing two-phase flow and solute transport in real-time with a lab-based environmental micro-CT set-up. To outline the current state of this young field and its relevance to pore-scale transport research, we critically examine its current bottlenecks and their possible solutions, both on the hardware and the software level. Further developments in laboratory-based, time-resolved imaging could prove greatly beneficial to our understanding of transport behavior in geological materials and to the improvement of pore-scale modeling by providing valuable validation.

  18. Pilot Plants Enhance Brazosport Lab Courses.

    ERIC Educational Resources Information Center

    Krieger, James

    1986-01-01

    Describes an experiential lab program for a two-year college's chemical technology program. Discusses student experiences in six miniature pilot plants that represent the essential instrumentation and chemical processes found in the chemical industry. Recognizes the industries that helped implement the program. (TW)

  19. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    PubMed Central

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  20. An LED Solar Simulator for Student Labs

    ERIC Educational Resources Information Center

    González, Manuel I.

    2017-01-01

    Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen…

  1. Surfactant Adsorption: A Revised Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  2. Microbial community changes with decaying chloramine residuals in a lab-scale system.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Ginige, Maneesha P

    2013-09-01

    When chloramine is used as a disinfectant, managing an acceptable "residual" throughout the water distribution systems particularly once nitrification has set in is challenging. Managing chloramine decay prior to the onset of nitrification through effective control strategies is important and to-date the strategies developed around nitrification has been ineffective. This study aimed at developing a more holistic knowledge on how decaying chloramine and nitrification metabolites impact microbial communities in chloraminated systems. Five lab-scale reactors (connected in series) were operated to simulate a full-scale chloraminated distribution system. Culture independent techniques (cloning and qPCR) were used to characterise and quantify the mixed microbial communities in reactors maintaining a residual of high to low (2.18-0.03 mg/L). The study for the first time associates chloramine residuals and nitrification metabolites to different microbial communities. Bacterial classes Solibacteres, Nitrospira, Sphingobacteria and Betaproteobacteria dominated at low chloramine residuals whereas Actinobacteria and Gammaproteobacteria dominated at higher chloramine residuals. Prior to the onset of nitrification bacterial genera Pseudomonas, Methylobacterium and Sphingomonas were found to be dominant and Sphingomonas in particular increased with the onset of nitrification. Nitrosomonas urea, oligotropha, and two other novel ammonia-oxidizing bacteria were detected once the chloramine residuals had dropped below 0.65 mg/L. Additionally nitrification alone failed to explain chloramine decay rates observed in these reactors. The finding of this study is expected to re-direct the focus from nitrifiers to heterotrophic bacteria, which the authors believe could hold the key towards developing a control strategy that would enable better management of chloramine residuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Off to the (Earthworm) Races: A Quick and Flexible Lab Experiment for Introductory Zoology Courses.

    ERIC Educational Resources Information Center

    Switzer, Paul V.; Fritz, Ann H.

    2001-01-01

    Presents a hands-on, investigative lab activity for use in an introductory zoology course. Tests the behavioral hypothesis that substrate texture affects earthworm locomotor ability. Provides background information on earthworm locomotion followed by details of the lab exercise. (NB)

  4. Effects of Implementing a Hybrid Wet Lab and Online Module Lab Curriculum into a General Chemistry Course: Impacts on Student Performance and Engagement with the Chemistry Triplet

    ERIC Educational Resources Information Center

    Irby, Stefan M.; Borda, Emily J.; Haupt, Justin

    2018-01-01

    Here, we describe the implementation a hybrid general chemistry teaching laboratory curriculum that replaces a portion of a course's traditional "wet lab" experiences with online virtual lab modules. These modules intentionally utilize representations on all three levels of the chemistry triplet-macroscopic, submicroscopic, and symbolic.…

  5. Exploratory study of the acceptance of two individual practical classes with remote labs

    NASA Astrophysics Data System (ADS)

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-03-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.

  6. Investigation of lab-scale horizontal subsurface flow constructed wetlands treating industrial cork boiling wastewater.

    PubMed

    Gomes, Arlindo C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Stefanakis, Alexandros I

    2018-09-01

    The feasibility and treatment efficiency of horizontal subsurface flow constructed wetlands (HSFCW) was assessed for the first time for cork boiling wastewater (CBW) through laboratory experiments. CBW is known for its high content of phenolic compounds, complex composition of biorecalcitrant and toxic nature. Two lab-scale units, one planted with Phragmites australis (CWP) and one unplanted (CWC), were used to evaluate the removals of COD, BOD, total phenolic compounds (TPh) and decolourization over a 2.5-years monitoring period under Mediterranean climatic conditions. Seven organic and hydraulic loading rates ranging from 2.6 to 11.5 g COD/m 2 /d and 5.7-9.1 L/m 2 /d were tested under average hydraulic retention time (HRT) of 5 ± 1 days required due to the CWB limited biodegradability (i.e., BOD 5 /COD of 0.19). Average removals of the CWP exceeded those of the CWC and reached 74.6%, 91.7% and 69.1% for COD, BOD 5 and TPh, respectively, with respective mass removals rates up to 7.0, 1.7 and 0.5 (in g/m 2 /d). Decolourization was limited to 35%, since it mainly depends on physical processes rather than biodegradation. CBW concentration of nine phenolic compounds ranged from 1.2 to 38.4 mg/L (for the syringic and ellagic acids, respectively) in the raw CBW, with respective removals in the CWP unit ranging from 41.8 to 76.3%, higher than those in the control unit. Despite CBW high concentration of TPhs (average of 116.3 mg/L), the HSFCW reached organic load removals higher than those of conventional biological treatment methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Virtual lab demonstrations improve students' mastery of basic biology laboratory techniques.

    PubMed

    Maldarelli, Grace A; Hartmann, Erica M; Cummings, Patrick J; Horner, Robert D; Obom, Kristina M; Shingles, Richard; Pearlman, Rebecca S

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  8. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping

    2015-07-17

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less

  9. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglieri, M.

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for amore » $$\\sim$$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$$^{22}$$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $$\\chi$$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.« less

  10. Beam position reconstruction for the g2p experiment in Hall A at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent

    2015-11-03

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. We found that before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve themore » required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. Finally, the calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.« less

  11. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    ERIC Educational Resources Information Center

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  12. Baseball Physics: A New Mechanics Lab

    ERIC Educational Resources Information Center

    Wagoner, Kasey; Flanagan, Daniel

    2018-01-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in "The Physics Teacher," available on Professor Alan Nathan's website, and discussed in "Physics of Baseball & Softball"). We have developed a lab, for an introductory-level physics course, that…

  13. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands.

    PubMed

    A, Dan; Oka, Masao; Fujii, Yuta; Soda, Satoshi; Ishigaki, Tomonori; Machimura, Takashi; Ike, Michihiko

    2017-04-15

    Synthetic landfill leachate was treated using lab-scale vertical flow constructed wetlands (CWs) in sequencing batch modes to assess heavy metal removal efficiencies. The CWs filled with loamy soil and pumice stone were unplanted or planted with common reed (Phragmites australis) (Reed-CW) or common rush (Juncus effusus) (Rush-CW). Synthetic leachate contained acetate, propionate, humate, ammonium, and heavy metals. Common reed grew almost vigorously but common rush partly withered during the 8-month experiment. The CWs reduced the leachate volume effectively by evapotranspiration and removed easily degradable organic matter, color, and ammonium. Furthermore, the CWs demonstrated high removal amounts for heavy metals such as Zn, Cr, Ni, Cd, Fe, and Pb, but not Mn from leachate. The metal removal amounts in the CWs were low for high-strength leachate (influent concentration increased from one time to three times) or under short retention time (batch cycle shortened from 3days to 1day). The Rush-CW showed slightly lower removal amounts for Cr, Ni, Mn, and Cd, although the Reed-CW showed lower Mn removal amounts than the unplanted CW did. However, Cd, Cr, Pb, Ni, and Zn were highly accumulated in the upper soil layer in the planted CW by rhizofiltration with adsorption compared with unplanted CW, indicating that the emergent plants would be helpful for decreasing the dredging soil depth for the final removal of heavy metals. Although the emergent plants were minor sinks in comparison with soil, common rush had higher bioconcentration factors and translocation factors for heavy metals than common reed had. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Specialist's training for laparoscopic surgery in Wet-lab educational operating theatre].

    PubMed

    Khubezov, D A; Sazhin, V P; Ogoreltsev, A Yu; Puchkov, D K; Rodimov, S V; Ignatov, I S; Tazina, T V; Evsyukova, M A

    2018-01-01

    To develop system for students training in laparoscopic surgery by using of Wet-lab educational operating theatre. We have launched laparoscopic surgery teaching program for students of Ryazan State Medical University. This system includes several stages. At the first stage professional selection was carried out on 'dry' laparoscopic simulators among III-IV-year students of medical faculty. So, 10 people were selected. The second stage included theoretical and practical parts consisting of development of basic laparoscopic skills on 'dry' simulators. 5 students who scored the maximum points were admitted to the next stage. The third stage is working in Wet-lab operating theatre with a mentor. There were 10 sessions on 10 laboratory pigs. Final stage of our study compares two groups of participants: main group - 5 students who underwent above-described program and control group of 5 residents without experience for laparoscopic operations. The participants of the main group had significantly higher OSATS score compared with another group (20 vs. 10; p<0.05). Movements effectiveness estimated by measuring of movements trajectory total length was also higher in main group than in control group (6 vs. 20; p<0.05). Experts' subjective assessment according to 10-point scale was also higher for students than for interns (9 vs. 5, p<0.05). Participants in the main group required significantly less time to complete the task compared with the control group (40 vs. 90 minutes, p<0.05). Our experience has shown that training system with Wet-lab operating theatre is effective for quick and efficient training of medical students in main laparoscopic procedures. In our opinion, introduction of students into 'advanced' surgery from early age will make it possible to get finally highly professional specialists.

  15. Engaging with science: High school students in summer lab internships

    NASA Astrophysics Data System (ADS)

    Bequette, Marjorie Bullitt

    Years of research and rhetoric have suggested that students should be given the opportunity to work with practicing scientists as a way to develop more sophisticated ideas about the nature of science, yet little research about these experiences exists. This project uses a case study approach to examine the experience of eight high school students working part-time during one summer as research assistants in biomedical laboratories. The students completed small research studies under the supervision of scientist-mentors. This dissertation explores questions related to how these students learned to work in a lab, in what ways they grew to understand this scientific context, and how their own relationships with science changed. The goal of looking at these young adults' summer experiences in science labs is to make suggestions for three settings: programs like this one, where high school students work closely with scientists in lab settings; other programs where scientists and students work together; and science education more generally. Analysis of pre- and post-interviews with students, and extensive observations of their laboratory work, suggests that students develop new ideas about the culture of science and the day-to-day workings of the labs. These ideas hold potential power for the students, and other participants in both similar and different educational settings, as they prepare for lives as scientifically engaged adults.

  16. DOE EiR at Oakridge National Lab 2008/09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Michael

    2012-11-30

    This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting inmore » five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.« less

  17. Final Results from the Jefferson Lab Qweak Experiment

    NASA Astrophysics Data System (ADS)

    Smith, Gregory

    2017-09-01

    The Qweak collaboration has unblinded our final result. We briefly describe the e-> p elastic scattering experiment used to extract the asymmetries measured in the two distinct running periods which constituted the experiment. The precision obtained on the final combined asymmetry is +/- 9.3 ppb. Some of the backgrounds and corrections applied in the experiment will be explained and quantified. We then provide the results of several methods we have used to extract consistent values of the proton's weak charge QWp from our asymmetry measurements. We also present results for the strange and axial form factors obtained from a fit to existing parity-violating electron scattering data. In conjunction with existing atomic parity violation results on 133Cs we extract the vector weak quark couplings C1u and C1d. The latter are combined to obtain the neutron's weak charge. From the proton's weak charge we obtain a result for sin2θW at the energy scale of our experiment, a sensitive SM test of the running of sin2θW . We also show the mass reach for new beyond-the-Standard-Model physics obtained from our determination of the proton's weak charge and its uncertainty, and discuss sensitivity to specific models. This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-06OR23177, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the National Science Foundation (NSF).

  18. Scalable and Cost-Effective Assignment of Mobile Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience

    PubMed Central

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca; Ianniello, Raffaele

    2015-01-01

    Nowadays, sensor-rich smartphones potentially enable the harvesting of huge amounts of valuable sensing data in urban environments, by opportunistically involving citizens to play the role of mobile virtual sensors to cover Smart City areas of interest. This paper proposes an in-depth study of the challenging technical issues related to the efficient assignment of Mobile Crowd Sensing (MCS) data collection tasks to volunteers in a crowdsensing campaign. In particular, the paper originally describes how to increase the effectiveness of the proposed sensing campaigns through the inclusion of several new facilities, including accurate participant selection algorithms able to profile and predict user mobility patterns, gaming techniques, and timely geo-notification. The reported results show the feasibility of exploiting profiling trends/prediction techniques from volunteers’ behavior; moreover, they quantitatively compare different MCS task assignment strategies based on large-scale and real MCS data campaigns run in the ParticipAct living lab, an ongoing MCS real-world experiment that involved more than 170 students of the University of Bologna for more than one year. PMID:26263985

  19. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor.

    PubMed

    Wang, Yujia; Hu, Xiaomin; Jiang, Binhui; Song, Zhenhui; Ma, Yongguang

    2016-04-01

    In order to provide the comprehensive insight into the key microbial groups in anaerobic ammonium oxidation (anammox) process, high-throughput sequencing analysis has been used for the investigation of the bacterial communities of a lab-scale upflow anaerobic sludge bed (UASB) anammox bioreactor. Results revealed that 109 operational taxonomic units (OTUs; out of 14,820 reads) were identified and a domination of anammox bacteria of Candidatus Kuenenia stuttgartiensis (OTU474, 35.42 %), along with heterotrophs of Limnobacter sp. MED105 (OTU951, 14.98 %), Anerolinea thermophila UNI-1 (OTU465 and OTU833, 6.60 and 3.93 %), Azoarcus sp. B72 (OTU26, 9.47 %), and Ignavibacterium sp. JCM 16511 (OTU459, 8.33 %) were detected. Metabolic pathway analysis showed that Candidatus K. stuttgartiensis encountered gene defect in synthesizing a series of metabolic cofactors for growth, implying that K. stuttgartiensis is auxotrophic. Coincidentally, the other dominant species severally showed complete metabolic pathways with full set gene encoding to corresponding cofactors presented in the surrounding environment. Furthermore, it was likely that the survival of heterotrophs in the autotrophic system indicates the existence of a symbiotic and mutual relationship in anammox system.

  20. A new attempt using LabVIEW into a computational experiment of plasma focus device

    NASA Astrophysics Data System (ADS)

    Kim, Myungkyu

    2017-03-01

    The simulation program of plasma focus device based on S. Lee's model has been first developed since 30 years ago and it is widely used to date. Originally the program made by GWbasic language, and then modified by visual basic which was included in the Microsoft Excel. Using Excel well-known to researchers is a key advantage of this program. But it has disadvantages in displaying data in same graph, in slow calculation speed, and in displaying data and calculation of smaller time step. To overcome all these points, the LabVIEW that made by national instrument and based on graphical environment is used for simulation. Furthermore it is correlated with data acquisition of experiment, once experiment being the data is directly transferred to the simulation program and then analyzes and predicts for the next shot. The mass swept factor (fm) and current factor (fc) can be easily find out using this program. This paper describes the detail function and usage of the program and compares the results with the existing one.

  1. A Simple Inquiry-Based Lab for Teaching Osmosis

    ERIC Educational Resources Information Center

    Taylor, John R.

    2014-01-01

    This simple inquiry-based lab was designed to teach the principle of osmosis while also providing an experience for students to use the skills and practices commonly found in science. Students first design their own experiment using very basic equipment and supplies, which generally results in mixed, but mostly poor, outcomes. Classroom "talk…

  2. Scaled experiments of explosions in cavities

    DOE PAGES

    Grun, J.; Cranch, G. A.; Lunsford, R.; ...

    2016-05-11

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt 1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less

  3. From big data analysis in the cloud to robotic pot drumming: tales from the Met Office Informatics Lab

    NASA Astrophysics Data System (ADS)

    Robinson, Niall; Tomlinson, Jacob; Prudden, Rachel; Hilson, Alex; Arribas, Alberto

    2017-04-01

    The Met Office Informatics Lab is a small multidisciplinary team which sits between science, technology and design. Our mission is simply "to make Met Office data useful" - a deliberately broad objective. Our prototypes often trial cutting edge technologies, and so far have included projects such as virtual reality data visualisation in the web browser, bots and natural language interfaces, and artificially intelligent weather warnings. In this talk we focus on our latest project, Jade, a big data analysis platform in the cloud. It is a powerful, flexible and simple to use implementation which makes extensive use of technologies such as Jupyter, Dask, containerisation, Infrastructure as Code, and auto-scaling. Crucially, Jade is flexible enough to be used for a diverse set of applications: it can present weather forecast information to meteorologists and allow climate scientists to analyse big data sets, but it is also effective for analysing non-geospatial data. As well as making data useful, the Informatics Lab also trials new working practises. In this presentation, we will talk about our experience of making a group like the Lab successful.

  4. Kinematic Labs with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  5. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  6. LabPatch, an acquisition and analysis program for patch-clamp electrophysiology.

    PubMed

    Robinson, T; Thomsen, L; Huizinga, J D

    2000-05-01

    An acquisition and analysis program, "LabPatch," has been developed for use in patch-clamp research. LabPatch controls any patch-clamp amplifier, acquires and records data, runs voltage protocols, plots and analyzes data, and connects to spreadsheet and database programs. Controls within LabPatch are grouped by function on one screen, much like an oscilloscope front panel. The software is mouse driven, so that the user need only point and click. Finally, the ability to copy data to other programs running in Windows 95/98, and the ability to keep track of experiments using a database, make LabPatch extremely versatile. The system requirements include Windows 95/98, at least a 100-MHz processor and 16 MB RAM, a data acquisition card, digital-to-analog converter, and a patch-clamp amplifier. LabPatch is available free of charge at http://www.fhs.mcmaster.ca/huizinga/.

  7. Characterization of an Autotrophic Nitrogen-Removing Biofilm from a Highly Loaded Lab-Scale Rotating Biological Contactor

    PubMed Central

    Pynaert, Kris; Smets, Barth F.; Wyffels, Stijn; Beheydt, Daan; Siciliano, Steven D.; Verstraete, Willy

    2003-01-01

    In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of NH4+-N g of volatile suspended solids [VSS]−1 day−1, respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS−1 day−1). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH4+ wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought

  8. Reaction time effects in lab- versus Web-based research: Experimental evidence.

    PubMed

    Hilbig, Benjamin E

    2016-12-01

    Although Web-based research is now commonplace, it continues to spur skepticism from reviewers and editors, especially whenever reaction times are of primary interest. Such persistent preconceptions are based on arguments referring to increased variation, the limits of certain software and technologies, and a noteworthy lack of comparisons (between Web and lab) in fully randomized experiments. To provide a critical test, participants were randomly assigned to complete a lexical decision task either (a) in the lab using standard experimental software (E-Prime), (b) in the lab using a browser-based version (written in HTML and JavaScript), or (c) via the Web using the same browser-based version. The classical word frequency effect was typical in size and corresponded to a very large effect in all three conditions. There was no indication that the Web- or browser-based data collection was in any way inferior. In fact, if anything, a larger effect was obtained in the browser-based conditions than in the condition relying on standard experimental software. No differences between Web and lab (within the browser-based conditions) could be observed, thus disconfirming any substantial influence of increased technical or situational variation. In summary, the present experiment contradicts the still common preconception that reaction time effects of only a few hundred milliseconds cannot be detected in Web experiments.

  9. TangoLab-2 Card Troubleshooting

    NASA Image and Video Library

    2017-10-17

    iss053e105442 (Oct. 17, 2017) --- Flight Engineer Mark Vande Hei swaps out a payload card from the TangoLab-1 facility and places into the TangoLab-2 facility. TangoLab provides a standardized platform and open architecture for experimental modules called CubeLabs. CubeLab modules may be developed for use in 3-dimensional tissue and cell cultures.

  10. Solar photocatalitycal treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products.

    PubMed

    Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Peñuela, Gustavo

    2011-07-15

    In this work the TiO(2) solar-photocatalytical degradation of the pesticide carbofuran (CBF) in water, at lab and pilot scale, was studied. At lab scale the evaluation of CBF concentration (14-282 μmol L(-1)) showed that the system followed a Langmuir-Hinshelwood kinetics type. TiO(2) concentration (0.05-2 g L(-1)) and initial pH (3-9) were also evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, initial pH 7.60 and 1.43 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of substrate, chemical oxygen demand, dissolved organic carbon, toxicity and organics by-products were evaluated. In the pilot scale tests, using direct sunlight, 55 mg L(-1) of CBF in a commercial formulation was eliminated after 420 min; while after 900 min of treatment 80% of toxicity (1/E(50) on Vibrium Fischeri), 80% of chemical oxygen demand and 60% of dissolved organic carbon were removed. The analysis and evolution of five CBF by-products, as well the evaluation of the treatment in the presence of isopropanol or using acetonitrile as a solvent suggest that the degradation is mainly carried out by OH radical attack. Finally, a schema depicting the main degradation pathway is proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Gaza, Ramona; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nodarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher T.; Froio, Danielle; Valenza, Logan; Poirier, Catherine; Sinkler, Charles; Corl, Dylan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie

    2017-04-01

    In anticipation of deep space travel, new materials are being explored to assist and relieve humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Ras Labs Synthetic Muscle™ - electroactive polymers (EAPs) that contract and expand at low voltages - which mimic the unique gentle-yet-strong nature of human tissue, is a potential asset to manned space travel through protective gear and human assist robotics and for unmanned space exploration through deep space. Gen 3 Synthetic Muscle™ was proven to be resistant to extreme temperatures, and there were indications that these materials would also be radiation resistant. The purpose of the Ras Labs-CASIS-ISS Experiment was to test the radiation resistivity of the third and fourth generation of these EAPs, as well as to make them even more radiation resistant. On Earth, exposure of the Generation 3 and Generation 4 EAPs to a Cs-137 radiation source for 47.8 hours with a total dose of 305.931 kRad of gamma radiation was performed at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University, followed by pH, peroxide, Shore Hardness durometer, and electroactivity testing to determine the inherent radiation resistivity of these contractile EAPs, and to determine whether the EAPs could be made even more radiation resistant through the application of appropriate additives and coatings. The on Earth preliminary tests determined that selected Ras Labs EAPs were not only inherently radiation resistant, but with the appropriate coatings and additives, could be made even more radiation resistant. G-force testing to over 10 G's was performed at US Army's ARDEC Labs, with excellent results, in preparation for space flight to the International Space Station National Laboratory (ISS-NL). Selected samples of Generation 3 and Generation 4 Synthetic Muscle™, with various additives and coatings, were launched to the ISS-NL on April 14, 2015 on the

  12. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    PubMed

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-06-01

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  13. An analysis of high school students' perceptions and academic performance in laboratory experiences

    NASA Astrophysics Data System (ADS)

    Mirchin, Robert Douglas

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be

  14. A Constructivist Cloud Lab.

    ERIC Educational Resources Information Center

    Emery, Dave

    1996-01-01

    Describes a lab involving a cloud formation activity that uses the constructivist learning model to get students more involved in creating the lab. Enables students to develop a greater understanding of the concepts involved and more interest in the lab's outcomes. (JRH)

  15. Observation of Flame Stabilized at a Hydrogen-Turbojet-Engine Injector Installed into a Lab-Scale Combustion Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi

    A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.

  16. LabSkills

    ERIC Educational Resources Information Center

    O'Brien, Nick

    2010-01-01

    This article describes LabSkills, a revolutionary teaching tool to improve practical science in schools. LabSkills offers the chance to help improve the exposure that the average Key Stage 5 (age 16-19) student has to practical work. This is a huge area for development being highlighted by universities who are seeing a worryingly growing trend in…

  17. The target vacuum storage facility at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Neveling, R.; Kheswa, N. Y.; Papka, P.

    2018-05-01

    A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.

  18. Small Particles in Cirrus (SPartICus) and Storm Peak Lab Validation Experiment (StormVEx) Science Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Gerald

    The Small Particles in Cirrus (SPartICus) campaign took place from January through June, 2011 and the Storm Peak Lab Cloud Property Validation Experiment (StormVEx) took place from November, 2011 through April, 2012. The PI of this project, Dr. Gerald Mace, had the privilege to be the lead on both of these campaigns. The essence of the project that we report on here was to conduct preliminary work that was necessary to bring the field data sets to a point where they could be used for their intended science purposes

  19. Attack of the Killer Fungus: A Hypothesis-Driven Lab Module †

    PubMed Central

    Sato, Brian K.

    2013-01-01

    Discovery-driven experiments in undergraduate laboratory courses have been shown to increase student learning and critical thinking abilities. To this end, a lab module involving worm capture by a nematophagous fungus was developed. The goals of this module are to enhance scientific understanding of the regulation of worm capture by soil-dwelling fungi and for students to attain a set of established learning goals, including the ability to develop a testable hypothesis and search for primary literature for data analysis, among others. Students in a ten-week majors lab course completed the lab module and generated novel data as well as data that agrees with the published literature. In addition, learning gains were achieved as seen through a pre-module and post-module test, student self-assessment, class exam, and lab report. Overall, this lab module enables students to become active participants in the scientific method while contributing to the understanding of an ecologically relevant model organism. PMID:24358387

  20. Developing the Cyber Victimization Experiences and Cyberbullying Behaviors Scales.

    PubMed

    Betts, Lucy R; Spenser, Karin A

    2017-01-01

    The reported prevalence rates of cyber victimization experiences and cyberbullying behaviors vary. Part of this variation is likely due to the diverse definitions and operationalizations of the constructs adopted in previous research and the lack of psychometrically robust measures. Through 2 studies, the authors developed (Study 1) and evaluated (Study 2) the cyber victimization experiences and cyberbullying behaviors scales. Participants in Study 1 were 393 (122 boys, 171 girls) and in Study 2 were 345 (153 boys, 192 girls) 11-15-year-olds who completed measures of cyber victimization experiences, cyberbullying behaviors, face-to-face victimization experiences, face-to-face bullying behaviors, and social desirability. The 3-factor cyber victimization experiences scale comprised threat, shared images, and personal attack. The 3-factor cyberbullying behaviors scale comprised sharing images, gossip, and personal attack. Both scales demonstrated acceptable internal consistency and convergent validity.

  1. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel

    2018-06-01

    The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.

  2. Deposition and transport of Pseudomonas aeruginosa in porous media: lab-scale experiments and model analysis.

    PubMed

    Kwon, Kyu-Sang; Kim, Song-Bae; Choi, Nag-Choul; Kim, Dong-Ju; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2013-01-01

    In this study, the deposition and transport of Pseudomonas aeruginosa on sandy porous materials have been investigated under static and dynamic flow conditions. For the static experiments, both equilibrium and kinetic batch tests were performed at a 1:3 and 3:1 soil:solution ratio. The batch data were analysed to quantify the deposition parameters under static conditions. Column tests were performed for dynamic flow experiments with KCl solution and bacteria suspended in (1) deionized water, (2) mineral salt medium (MSM) and (3) surfactant + MSM. The equilibrium distribution coefficient (K(d)) was larger at a 1:3 (2.43 mL g(-1)) than that at a 3:1 (0.28 mL g(-1)) soil:solution ratio. Kinetic batch experiments showed that the reversible deposition rate coefficient (k(att)) and the release rate coefficient (k(det)) at a soil:solution ratio of 3:1 were larger than those at a 1:3 ratio. Column experiments showed that an increase in ionic strength resulted in a decrease in peak concentration of bacteria, mass recovery and tailing of the bacterial breakthrough curve (BTC) and that the presence of surfactant enhanced the movement of bacteria through quartz sand, giving increased mass recovery and tailing. Deposition parameters under dynamic condition were determined by fitting BTCs to four different transport models, (1) kinetic reversible, (2) two-site, (3) kinetic irreversible and (4) kinetic reversible and irreversible models. Among these models, Model 4 was more suitable than the others since it includes the irreversible sorption term directly related to the mass loss of bacteria observed in the column experiment. Applicability of the parameters obtained from the batch experiments to simulate the column breakthrough data is evaluated.

  3. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - Results of laboratory scale experiments.

    PubMed

    Durán-Álvarez, J C; Prado, B; González, D; Sánchez, Y; Jiménez-Cisneros, B

    2015-12-15

    Lab-scale photolysis, biodegradation and transport experiments were carried out for naproxen, carbamazepine and triclosan in soil, wastewater and surface water from a region where untreated wastewater is used for agricultural irrigation. Results showed that both photolysis and biodegradation occurred for the three emerging pollutants in the tested matrices as follows: triclosan>naproxen>carbamazepine. The highest photolysis rate for the three pollutants was obtained in experiments using surface water, while biodegradation rates were higher in wastewater and soil than in surface water. Carbamazepine showed to be recalcitrant to biodegradation both in soil and water; although photolysis occurred at a higher level than biodegradation, this compound was poorly degraded by natural processes. Transport experiments showed that naproxen was the most mobile compound through the first 30cm of the soil profile; conversely, the mobility of carbamazepine and triclosan through the soil was delayed. Biodegradation of target pollutants occurred within soil columns during transport experiments. Triclosan was not detected either in leachates or the soil in columns, suggesting its complete biodegradation. Data of these experiments can be used to develop more reliable fate-on-the-field and environmental risk assessment studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dynamically polarized target for the g p 2 and G p E experiments at Jefferson Lab

    DOE PAGES

    Pierce, J.; Maxwell, J.; Badman, T.; ...

    2013-12-16

    We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power 4 He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH 3 at a temperature of 1 K and at fields of 2.5 and 5.0 Tesla. The performance of the target material in the electron beam under these conditions will be discussed. The maximum polarizations of 28% and 95% were obtained at those fields, respectively. To satisfy themore » requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 degrees with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.« less

  5. The Impact of Elections on Cooperation: Evidence from a Lab-in-the-Field Experiment in Uganda

    PubMed Central

    Grossman, Guy; Baldassarri, Delia

    2013-01-01

    Communities often rely on sanctioning to induce public goods contributions. Past studies focus on how external agencies or peer sanctioning induce cooperation. In this article, we focus instead on the role played by centralized authorities, internal to the community. Combining “lab-in-the-field” experiments with observational data on 1,541 Ugandan farmers from 50 communities, we demonstrate the positive effect of internal centralized sanctioning authorities on cooperative behavior. We also show that the size of this effect depends on the political process by which authority is granted: subjects electing leaders contribute more to public goods than subjects who were assigned leaders through a lottery. To test the ecological validity of our findings, we relate farmers’ behavior in the experiment to their level of cooperation in their community organization. We show that deference to authority in the controlled setting predicts cooperative behavior in the farmers’ natural environment, in which they face a similar social dilemma. PMID:23729913

  6. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  7. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  8. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    ERIC Educational Resources Information Center

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  9. The NASA Langley Isolator Dynamics Research Lab

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

    2010-01-01

    The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

  10. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  11. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    NASA Astrophysics Data System (ADS)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  12. Potential for geophysical experiments in large scale tests.

    USGS Publications Warehouse

    Dieterich, J.H.

    1981-01-01

    Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author

  13. Development of Guided Inquiry-Based Student Lab Worksheet on the Making of Pineapple Flavoring

    NASA Astrophysics Data System (ADS)

    Dwiyanti, G.; Suryatna, A.; Taibah, I.

    2017-02-01

    The aim of this research was to develop guided inquiry based student lab worksheet on making pineapple flavour and knowing the quality of worksheet that is being developed. Research methods that is being conducted is research and development that is limited by a preliminary studies (literature studies, field surveys, and preparation of the initial product) and development of the model (within limited testing). The results from analyze the books sources and fields survey showed that the characteristic of esterification lab worksheet that currently available still in the direct instruction form (cookbook). The optimization result of making pineapple flavour experiment that was conducted are the ethanol volume 3 mL, butyric acid volume 2 mL, sulfuric acid 5 drops, saturated NaHCO3 solution volume 9 mL, and temperature of heating was 80 °C. The characteristic of guided inquiry based student lab worksheet that was developed contained phenomenon and instructions that suitable with inquiry stages to guide the students in doing the experiment of making pineapple flavour. The evaluation of designated teachers and lecturers of the developed student worksheet were very good (96,08%). Lab-experiment feasibility achieved by using guided inquiry based student lab worksheets that is being developed based on the inquiry stages that conducted by student were found very good (97,50%) and accomplishment based on students’ answer of the tasks in the worksheet were found very good (83,84%). Students’ responses of the experiments using the developed worksheet are found very good (81,84%).

  14. Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.

    PubMed

    Lang, Stacey

    2012-01-01

    The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.

  15. Teaching about Nature of Science through Short Lab Activities in Hong Kong Classroom

    ERIC Educational Resources Information Center

    Lau, Kwok-chi

    2017-01-01

    The study evaluated the effectiveness of using short, school lab investigations to teach about the nature of science (NOS). A manipulated lab inquiry approach was used, which modified the investigations in ways that students were compelled to experience certain NOS aspects. An investigation about apple browning was used to teach about the…

  16. [Skills lab from the surgical point of view. Experiences from the Magdeburg Medical School--The University of Magdeburg].

    PubMed

    Reschke, K; Werwick, K; Mersson, L; Clasen, K; Urbach, D; Haß, H J; Meyer, F

    2013-10-01

    For the acquisition of practical skills, the separate learning atmosphere of a skills lab(oratory) is very suitable. Numerous educational objectives of surgical teaching can be pursued using phantoms, manikins or mutual training among students prior to real practical use during clinical traineeships or internships. This article provides a compact, systematic overview of the skills lab concept, based on published aspects in selected and relatively recent topic-related references from PubMed® including our own approaches, as well as comments and experiences with regard to its further development. In particular, the Magdeburg concept to use the local skills lab MAMBA for surgical teaching within the practical training is demonstrated, which has developed step by step from a basically pure bedside teaching and which includes student tutors in practical teaching in surgery. By founding the Magdeburg educational and training center options for a practical education, in particular, in surgery were created. The great majority of students accepted the conceptual idea and it has so far been well received. As a first step several well selected topics of practical training during human medical studies were increasingly taught by students who received a didactic course of instruction which also included aspects of the educational objectives. For the future tutorials led by students are planned going beyond the teaching contents of the practical courses and can, thus, lead to a networking with educational objectives of other disciplines. There are not only curricular but also facultative courses in MAMBA which have been steadily optimized since the beginning. This Magdeburg's concept is planned to be further developed for which there is enough room for development with regard to organizational aspects (personnel and room).

  17. Project-Based Learning in Education through an Undergraduate Lab Exercise

    ERIC Educational Resources Information Center

    Joye, Donald D.; Hoffman, Adam; Christie, Jacqueline; Brown, Mayo; Niemczyk, Jennifer

    2011-01-01

    Three undergraduate students functioned as teaching assistants in unit ops lab for their senior project, which included developing a purchased size exclusion chromatography experiment, supervising the running of this experiment, and assisting the junior students with their calculations. They also read the reports, graded them, and commented on…

  18. Fully On-line Introductory Physics with a Lab

    NASA Astrophysics Data System (ADS)

    Schatz, Michael

    We describe the development and implementation of a college-level introductory physics (mechanics) course and laboratory that is suited for both on-campus and on-line environments. The course emphasizes a ``Your World is Your Lab'' approach whereby students first examine and capture on video (using cellphones) motion in their immediate surroundings, and then use free, open-source software both to extract data from the video and to apply physics principles to build models that describe, predict, and visualize the observations. Each student reports findings by creating a video lab report and posting it online; these video lab reports are then distributed to the rest of the class for peer review. In this talk, we will discuss the student and instructor experiences in courses offered to three distinct audiences in different venues: (1) a Massively Open On-line Course (MOOC) for off-campus participants, (2) a flipped/blended course for on-campus students, and, most recently, (3) a fully-online course for off-campus students.

  19. Virtual Labs in proteomics: new E-learning tools.

    PubMed

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program

    NASA Technical Reports Server (NTRS)

    Lund, Gary K.; Starrett, William David; Jensen, Kent C.; McNeal, Curtis (Technical Monitor)

    2001-01-01

    As part of a NASA funded contract to develop and demonstrate a gas generator cycle hybrid rocket motor for upper stage space motor applications, the development and demonstration of a low sensitivity, high performance fuel composition was undertaken. The ultimate goal of the development program was to demonstrate successful hybrid operation (start, stop, throttling) of the fuel with high concentration (90+%) hydrogen peroxide. The formulation development and lab-scale testing of a simple DOT Class 1.4c gas generator propellant is described. Both forward injected center perforated and aft injected end burner hybrid combustion behavior were evaluated with gaseous oxygen and catalytically decomposed 90% hydrogen peroxide. Cross flow and static environments were found to yield profoundly different combustion behaviors, which were further governed by binder type, oxidizer level and, significantly, oxidizer particle size. Primary extinguishment was accomplished via manipulation of PDL behavior and oxidizer turndown, which is enhanced with the hydrogen peroxide system. Laboratory scale combustor results compared very well with 11-inch and 24-inch sub-scale test results with 90% hydrogen peroxide.

  1. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland.

    PubMed

    Li, Jianan; Zhou, Qizhi; Campos, Luiza C

    2017-12-01

    Greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland (CW) was employed for removing four emerging pharmaceuticals and personal care products (PPCPs) (i.e. DEET, paracetamol, caffeine and triclosan). Orthogonal design was used to test the effect of light intensity, aeration, E.coli abundance and plant biomass on the target compounds. Synthetic wastewater contaminated with the target compounds at concentration of 25 μg/L was prepared, and both batch and continuous flow experiments were conducted. Up to 100% removals were achieved for paracetamol (PAR), caffeine (CAF) and tricolsan (TCS) while the highest removal for DEET was 32.2% in batch tests. Based on orthogonal Duncan analysis, high light intensity (240 μmolmm -2 s -1 ), full aeration, high plant biomass (1.00 kg/m 2 ) and high E.coli abundance (1.0 × 10 6  CFU/100 mL) favoured elimination of the PPCPs. Batch verification test achieved removals of 17.1%, 98.8%, 96.4% and 95.4% for DEET, PAR, CAF and TCS respectively. Continuous flow tests with CW only and CW followed by stabilization tank (CW-ST) were carried out. Final removals of the PPCP contaminants were 32.6%, 97.7%, 98.0% and 100% for DEET, PAR, CAF and TCS, respectively, by CW system alone, while 43.3%, 97.5%, 98.2% and 100%, respectively, were achieved by CW-ST system. By adding the ST tank, PPCP concentrations decreased significantly faster (p < 0.05) compared with continuous flow CW alone. In addition, after removing aerators during continuous flow CW experiments, the treatment systems presented good stability for the PPCP removals. CW-ST showed better chemical oxygen demand (COD) and total organic carbon (TOC) removals (89.3%, 91.2%, respectively) than CW only (79.4%, 85.2%, respectively). However, poor DEET removal (<50%) and high E.coli abundance (up to 1.7 log increase) in the final treated water indicated further treatment processes may be required. Statistical analysis showed significant correlations

  2. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab

    PubMed Central

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-01-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468

  3. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    PubMed

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  4. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  5. In Situ Teaching: Fusing Labs & Lectures in Undergraduate Science Courses to Enhance Immersion in Scientific Research

    PubMed Central

    Round, Jennifer; Lom, Barbara

    2015-01-01

    Undergraduate courses in the life sciences at most colleges and universities are traditionally composed of two or three weekly sessions in a classroom supplemented with a weekly three-hour session in a laboratory. We have found that many undergraduates can have difficulty making connections and/or transferring knowledge between lab activities and lecture material. Consequently, we are actively developing ways to decrease the physical and intellectual divides between lecture and lab to help students make more direct links between what they learn in the classroom and what they learn in the lab. In this article we discuss our experiences teaching fused laboratory biology courses that intentionally blurred the distinctions between lab and lecture to provide undergraduates with immersive experiences in science that promote discovery and understanding. PMID:26240531

  6. Adolescent bariatric surgery program characteristics: the Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study experience.

    PubMed

    Michalsky, Marc P; Inge, Thomas H; Teich, Steven; Eneli, Ihuoma; Miller, Rosemary; Brandt, Mary L; Helmrath, Michael; Harmon, Carroll M; Zeller, Meg H; Jenkins, Todd M; Courcoulas, Anita; Buncher, Ralph C

    2014-02-01

    The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Data were obtained from the Teen-LABS database, and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. All centers had extensive multidisciplinary involvement in the assessment, pre-operative education, and post-operative management of adolescents undergoing WLS. Eligibility criteria and pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well-developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. The composition of clinical team and institutional resources is consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. © 2013 Published by Elsevier Inc.

  7. Adolescent Bariatric Surgery Program Characteristics: The Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study Experience

    PubMed Central

    Michalsky, M.P.; Inge, T.H.; Teich, S.; Eneli, I.; Miller, R.; Brandt, M.L.; Helmrath, M.; Harmon, C.M.; Zeller, M.H.; Jenkins, T.M.; Courcoulas, A.; Buncher, C.R.

    2013-01-01

    Background The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Methods Data were obtained from the Teen-LABS database and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. Results All centers had extensive multidisciplinary involvement in the assessment, preoperative education and post-operative management of adolescents undergoing WLS. Eligibility criteria, pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. Conclusions The composition of clinical team and institutional resources are consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. PMID:24491361

  8. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  9. Three Pedagogical Approaches to Introductory Physics Labs and Their Effects on Student Learning Outcomes

    ERIC Educational Resources Information Center

    Chambers, Timothy

    2014-01-01

    This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through…

  10. Information Literacy in the Lab: Graduate Teaching Experiences in First-Year Biology

    ERIC Educational Resources Information Center

    Lantz, Catherine

    2016-01-01

    The author interviewed 10 graduate teaching assistants leading lab sessions for first-year biology about how they introduce students to scientific literature. Qualitative data analysis of the interview transcripts revealed that both first-year students and graduate teaching assistants (many of whom are first-year teachers) struggle with…

  11. An LED solar simulator for student labs

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-05-01

    Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen simulators has been performed. It is found that LED light offers lower levels of irradiance, but much better performance in terms of module output for a given irradiance.

  12. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  13. Astronomy for Everyone: Harvard's Move Toward an All-Inclusive Astronomy Lab and Telescope

    NASA Astrophysics Data System (ADS)

    Bieryla, Allyson

    2016-01-01

    Harvard University has a growing astronomy program that offers various courses to the undergraduate concentrators, secondaries and non-majors. Many of the courses involve labs that use the 16-inch DFM Clay Telescope for night-time observations and the heliostat for observing the Sun. The goal is to proactively adapt the lab and telescope facilities to accommodate all students with disabilities. The current focus is converting the labs to accommodate visually impaired students. Using tactile images and sound, the intention is to create an experience equivalent to that of a student with full sight.

  14. QuickEval: a web application for psychometric scaling experiments

    NASA Astrophysics Data System (ADS)

    Van Ngo, Khai; Storvik, Jehans J.; Dokkeberg, Christopher A.; Farup, Ivar; Pedersen, Marius

    2015-01-01

    QuickEval is a web application for carrying out psychometric scaling experiments. It offers the possibility of running controlled experiments in a laboratory, or large scale experiment over the web for people all over the world. It is a unique one of a kind web application, and it is a software needed in the image quality field. It is also, to the best of knowledge, the first software that supports the three most common scaling methods; paired comparison, rank order, and category judgement. It is also the first software to support rank order. Hopefully, a side effect of this newly created software is that it will lower the threshold to perform psychometric experiments, improve the quality of the experiments being carried out, make it easier to reproduce experiments, and increase research on image quality both in academia and industry. The web application is available at www.colourlab.no/quickeval.

  15. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    PubMed

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-09-01

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  17. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    NASA Astrophysics Data System (ADS)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  18. The College of Charleston's 400-Student Observational Lab Program

    NASA Astrophysics Data System (ADS)

    True, C. M.

    2006-06-01

    For over thirty years the College of Charleston has been teaching a year-long introductory astronomy course incorporating a mandatory 3 hour lab. Despite our location in a very light polluted, coastal, high humidity, and often cloudy metropolitan area we have emphasized observational activities as much as possible. To accommodate our population of between 300-400 students per semester, we have 28 8-inch Celestron Telescopes and 25 GPS capable 8-inch Meade LX-200 telescopes. Finally, we have a 16 DFM adjacent to our rooftop observing decks. For indoor activities we have access to 42 computers running a variety of astronomy education software. Some of the computer activities are based on the Starry Night software (Backyard and Pro), the CLEA software from Gettysburg College, and Spectrum Explorer from Boston University. Additionally, we have labs involving cratering, eclipses and phases, coordinate systems with celestial globes, the inverse square law, spectroscopy and spectral classification, as well as others. In this presentation we will discuss the difficulties in managing a program of this size. We have approximately 14 lab sections a week. The lab manager's task involves coordinating 8-10 lab instructors and the same number of undergraduate teaching assistants as well as trying to maintain a coherent experience between the labs and lecture sections. Our lab manuals are produced locally with yearly updates. Samples from the manuals will be available. This program has been developed by a large number of College of Charleston astronomy faculty, including Don Drost, Bob Dukes, Chris Fragile, Tim Giblin, Jon Hakkila, Bill Kubinec, Lee Lindner, Jim Neff, Laura Penny, Al Rainis, Terry Richardson, and D. J. Williams, as well as adjunct and visiting faculty Bill Baird, Kevin Bourque, Ethan Denault, Kwayera Davis, Francie Halter, and Alan Johnson. Part of this work has been funded by NSF DUE grants to the College of Charleston.

  19. Online Lab Books for Supervision of Project Students

    ERIC Educational Resources Information Center

    Badge, J. L.; Badge, R. M.

    2009-01-01

    In this article, the authors report a case study where Blackboard's wiki function was used to create electronic lab books for the supervision of undergraduate students completing laboratory based research projects. This successful experiment in supervision using electronic notebooks provided a searchable record of student work and a permanent…

  20. Treatment of sanitary landfill leachates in a lab-scale gradual concentric chamber (GCC) reactor.

    PubMed

    Mendoza, Lourdes; Verstraete, Willy; Carballa, Marta

    2010-03-01

    Sanitary landfill leachates are a major environmental problem in South American countries where sanitary landfills are still constructed and appropriate designs for the treatment of these leachates remain problematic. The performance of a lab-scale Gradual Concentric Chamber (GCC) reactor for leachates treatment is presented in this study. Two types of sanitary landfill residuals were evaluated, one directly collected from the garbage trucks (JGL), with high organic strength (84 g COD/l) and the second one, a 6-month-generated leachate (YL) collected from the lagoon of the sanitary landfill in Quito, Ecuador, with an organic strength of 66 g COD/l. Different operational parameters, such as organic loading rate (OLR), temperature, recycling and aeration, were tested. The GCC reactor was found to be a robust technology to treat these high-strength streams with organic matter removal efficiencies higher than 65%. The best performance of the reactors (COD removal efficiencies of 75-80%) was obtained at a Hydraulic Retention Time (HRT) of around 20 h and at 35 degrees C, with an applied OLR up to 70 and 100 g COD/l per day. Overall, the GCC reactor concept appears worth to be further developed for the treatment of leachates in low-income countries.

  1. Energy performance evaluation of ultrasonic pretreatment of organic solid waste in a pilot-scale digester.

    PubMed

    Rasapoor, Mazdak; Adl, Mehrdad; Baroutian, Saeid; Iranshahi, Zeynab; Pazouki, Mohammad

    2018-04-30

    It has been proven that ultrasonic pretreatment (UP) has positive effect on biogas generation from previous lab-scale studies. However, that is not always the case in larger scale processes. The purpose of this study was to evaluate the effectiveness of UP to biogas generation in terms of anaerobic digestion process and energy efficiency. Parameters including total solids (TS) and ultrasonic treatment operational parameters of organic solid waste (OSW) resulted from our past lab scale UP studies were applied in this study. OSW with 6-10% TS was treated using a lab-scale ultrasonic processor using various power densities (0.2-0.6 W/mL) at different time periods up to 30 min. Results of lab scale confirmed that OSW with 6% TS sonicated with 0.2 W/mL power density in 30 min gave the best outcome for the pilot scale experiment. To simulate the condition of an actual scale, in addition to energy analysis, two different organic loading rates (OLR), namely 500 and 1500 gVS/m 3 day were examined. The pilot digester was fed with OSW with or without the pretreatment based on the aforementioned specifications. The results showed that UP effectively improves biogas generation in terms of quantity and quality (CH 4 /CO 2 ). Furthermore, it decreases the time to reach the maximum cumulative biogas volume comparing to the untreated feed. The key achievement of this research has confirmed that although the relative increase in the energy gain by the influence of UP was more remarkable under the 500 gVS/m 3 day OLR, energy analysis showed a better energy gain and energy benefit as well as jumping in biogas yield up to 80% for UP treated OSW under 1500 gVS/m 3 day OLR. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Graduate student training and creating new physics labs for biology students, killing two birds with one stone.

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2001-03-01

    At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.

  3. Lab Report Blues

    ERIC Educational Resources Information Center

    Diaz, Andrew

    2004-01-01

    For middle school students, writing a formal lab report can be challenging. For middle level teachers, reading students lab reports can be overwhelming. After grading report after report with incomplete procedures, incorrect graphs, and missing conclusions, the author's frustration level was at an all-time high. Ready to try anything, he thought,…

  4. Reforming Cookbook Labs

    ERIC Educational Resources Information Center

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  5. Chemical Analysis of Drinking Water Concentrates in the Four Lab Study

    EPA Science Inventory

    The purpose of the Four Lab study was to evaluate potential health effects from exposure to disinfection by-products (DBPs). Unchlorinated water taken from a full-scale drinking water treatment plant was concentrated and chlorinated to form DBPs. Both the unchlorinated (control...

  6. Poster Presentations: Turning a Lab of the Week into a Culminating Experience

    ERIC Educational Resources Information Center

    Logan, Jennifer L.; Quin~ones, Rosalynn; Sunderland, Deborah P.

    2015-01-01

    An assignment incorporating posters into a second-year analytical chemistry lab is described. Students work in groups and are assigned one of the application-themed weekly laboratories as a topic. Course data acquired for these weekly laboratories are compiled into spreadsheets that the poster group then analyzes to present in an on-campus poster…

  7. SEAS Classroom to Sea Labs: New Directions for Ridge 2000 Communitywide Education Outreach

    NASA Astrophysics Data System (ADS)

    Goehring, L.

    2005-12-01

    Lessons learned from the two year SEAS pilot program emphasize that student participation in deep-sea research is an important motivator in student learning. Further, SEAS students experience a paradigm shift in understanding evidence-based reasoning and the process of scientific discovery. At the same time, we have learned that fostering authentic student investigations within the confines of the academic year is challenging and only fits classrooms with some academic flexibility. As a result, this year, SEAS will focus on the new Classroom to Sea Lab as a means to help foster student inquiry in the secondary school science classroom. The Classroom to Sea Lab invites student participation in deep-sea research but does so without requiring students to identify and propose suitable sea-going experiments. Classroom to Sea labs are designed to feature current deep-sea research, and emphasize critical skills in laboratory techniques, data collection and analysis, and scientific reporting. Labs are conducted in the classroom (by students) and at sea (by scientists for the students), resulting in parallel datasets for comparison. Labs also feature the work of practicing scientists. An annual Classroom to Sea Report Fair invites students to summarize their findings and submit written analyses for scientist feedback and prizes, emphasizing the importance of communications skills in science. This year, the SEAS program will feature the Shallow-water vs. Deep-sea Vent Mussel Classroom to Sea lab. In this lab, students explore differences in mussel anatomy and feeding strategies, and understand how chemosynthetic symbionts function in this animal. The lab instructs students to dissect shallow-water mussels and measure the proportion of gill tissue to total body tissue. Students are also instructed to download a dataset of vent mussel measurements and compare average proportions. Finally, students are invited to submit their analyses of the lab to the on-line Report Fair

  8. Scaling and design of landslide and debris-flow experiments

    USGS Publications Warehouse

    Iverson, Richard M.

    2015-01-01

    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  9. First results on GlioLab/GlioSat Precursors Missions

    NASA Astrophysics Data System (ADS)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  10. Enhancing pre-service physics teachers' creative thinking skills through HOT lab design

    NASA Astrophysics Data System (ADS)

    Malik, Adam; Setiawan, Agus; Suhandi, Andi; Permanasari, Anna

    2017-08-01

    A research on the implementation of HOT (Higher Order Thinking) Laboratory has been carried out. This research is aimed to compare increasing of creative thinking skills of pre-service physics teachers who receive physics lesson with HOT Lab and with verification lab for the topic of electric circuit. This research used a quasi-experiment methods with control group pretest-posttest design. The subject of the research is 40 Physics Education pre-service physics teachers of UIN Sunan Gunung Djati Bandung. Research samples were selected by class random sampling technique. Data on pre-service physics teachers' creative thinking skills were collected using test of creative thinking skills in the form of essay. The results of the research reveal that average of N-gain of creative thinking skills are <0,69> for pre-service physics teachers who received lesson with HOT Lab design and <0,39> for pre-service physics teachers who received lesson with verification lab, respectively. Therefore, we conclude that application of HOT Lab design is more effective to increase creative thinking skills in the lesson of electric circuit.

  11. Experimental Investigation of the Influence of Small Scale Geological Heterogeneity on Capillary Trapping of CO2 Using Engineered Beadpacks

    NASA Astrophysics Data System (ADS)

    Ganesan Krishnamurthy, P.; Trevisan, L.; Meckel, T. A.

    2017-12-01

    During geologic CO2 sequestration, most of the storage domain far from the injection sites is likely to be dominated by buoyancy and capillary forces. Under such flow regimes, small scale geological heterogeneities have been shown to dampen plume migration rates and cause trapping beneath capillary barriers. To understand the impact of such heterogeneities on CO2 trapping processes experimentally, many core-scale and lab scale flow studies have been conducted. Reservoir cores are limited by the scale of investigation possible and most lab experiments are conducted in macroheterogeneous media constructed by arranging homogeneous units to represent heterogeneity. However, most natural sedimentary facies display heterogeneity at a hierarchy of scales, and heterogeneity at the mesoscale (mm to decimeters) goes unrepresented in laboratory experiments due to the difficulty in reproducibility. This work presents results from buoyancy driven migration experiments conducted at the meter scale using glass beads packed in a quasi 2D glass cell and complementary reduced physics simulations. We demonstrate a novel automated technique to build beadpacks with 2D heterogeneous sedimentary features in a reproducible manner. A fluid pair that mimics the phase density and viscosity contrasts, and interfacial tension of CO2-Brine at reservoir pressures and temperatures is employed for the flow experiments. Light transmission technique is used for visualization, and to calibrate and quantify saturation of the trapped non-wetting fluid during the experiments. Invasion Percolation is used to simulate the buoyancy driven flow. With the ability to generate different types of heterogeneous structures in a reproducible manner, and by comparing experiments and simulations, a systematic investigation of the effect of heterogeneity on capillary trapping becomes possible.

  12. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  13. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  14. SenseLab

    PubMed Central

    Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.

    2009-01-01

    This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162

  15. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  16. Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes.

    PubMed

    Brandstätter, Christian; Laner, David; Fellner, Johann

    2015-09-01

    Nitrogen emissions from municipal solid waste (MSW) landfills occur primarily via leachate, where they pose a long-term pollution problem in the form of ammonium. In-situ aeration was proposed as a remediation measure to mitigate nitrogenous landfill emissions, turning the anaerobic environment to anoxic and subsequently aerobic. As in-depth studies of the nitrogen cycle during landfill aeration had been largely missing, it was the aim of this work to establish a detailed nitrogen balance for aerobic and anaerobic degradation of landfilled MSW based on lab-scale experiments, and also investigating the effect of different water regimes on nitrogen transformation during aeration. Six landfill simulation reactors were operated in duplicate under different conditions: aerated wet (with water addition and recirculation), aerated dry (without water addition) and anaerobic (wet). The results showed that more than 78 % of the initial total nitrogen (TNinit) remained in the solids in all set ups, with the highest nitrogen losses achieved with water addition during aeration. In this case, gaseous nitrogen losses (as N2 due to denitrification) amounted up to 16.6 % of TNinit and around 4 % of TNinit was discharged via leachate. The aerated dry set-up showed lower denitrification rates (2.6-8.8 % of TNinit was released as N2), but was associated with the highest N2O emissions (3.8-3.9 % of TNinit). For the anaerobic treatment the main pathway of nitrogen discharge was the leachate, where NH4 accounted for around 8 % of TNinit. These findings provide the basis for improved management strategies to enhance nitrogen removal during in-situ aeration of old landfills.

  17. Real Science: MIT Reality Show Tracks Experiences, Frustrations of Chemistry Lab Students

    ERIC Educational Resources Information Center

    Cooper, Kenneth J.

    2012-01-01

    A reality show about a college course--a chemistry class no less? That's what "ChemLab Boot Camp" is. The 14-part series of short videos is being released one episode at a time on the online learning site of the Massachusetts Institute of Technology. The novel show follows a diverse group of 14 freshmen as they struggle to master the…

  18. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    NASA Astrophysics Data System (ADS)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p < .001; Home Chemicals lab t(114) = 8.585, p < .001; Water Use lab, t(116) = 6.657, p < .001; Trees and Carbon lab, t(113) = 9.921, p < .001; Stratospheric Ozone lab, t(112) =12.974, p < .001; Renewable Energy lab, t(115) = 7.369, p < .001. The end of the course Scientific Skills quiz revealed statistically significant improvements, t(112) = 8.221, p < .001. The results of the two surveys showed a statistically significant improvement on student Scientific Self-Confidence because of lab completion, t(114) = 3.015, p < .05. Because age and gender were available, regression models were developed. The results indicated weak multiple correlation coefficients and were not statistically significant at alpha = .05. Evidence suggests that labs play a positive role in a student's academic success. It is recommended that lab experiences be included in all online Environmental Science

  19. Reflections on Teaching in a Wireless Laptop Lab

    ERIC Educational Resources Information Center

    Beasley, William; Dobda, Kathyanne W.; Wang, Lih-Ching Chen

    2005-01-01

    In recent years laptop computers have become increasingly popular in educational settings; wireless connectivity is a more recent development which is only now being fully explored, and which has led to the creation of the "wireless laptop lab." In this article, the authors share some of the experiences and concerns that they have encountered…

  20. Micro-Bubble Experiments at the Van de Graaff Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less

  1. Overcoming hurdles in translating visual search research between the lab and the field.

    PubMed

    Clark, Kait; Cain, Matthew S; Adamo, Stephen H; Mitroff, Stephen R

    2012-01-01

    Research in visual search can be vital to improving performance in careers such as radiology and airport security screening. In these applied, or "field," searches, accuracy is critical, and misses are potentially fatal; however, despite the importance of performing optimally, radiological and airport security searches are nevertheless flawed. Extensive basic research in visual search has revealed cognitive mechanisms responsible for successful visual search as well as a variety of factors that tend to inhibit or improve performance. Ideally, the knowledge gained from such laboratory-based research could be directly applied to field searches, but several obstacles stand in the way of straightforward translation; the tightly controlled visual searches performed in the lab can be drastically different from field searches. For example, they can differ in terms of the nature of the stimuli, the environment in which the search is taking place, and the experience and characteristics of the searchers themselves. The goal of this chapter is to discuss these differences and how they can present hurdles to translating lab-based research to field-based searches. Specifically, most search tasks in the lab entail searching for only one target per trial, and the targets occur relatively frequently, but field searches may contain an unknown and unlimited number of targets, and the occurrence of targets can be rare. Additionally, participants in lab-based search experiments often perform under neutral conditions and have no formal training or experience in search tasks; conversely, career searchers may be influenced by the motivation to perform well or anxiety about missing a target, and they have undergone formal training and accumulated significant experience searching. This chapter discusses recent work that has investigated the impacts of these differences to determine how each factor can influence search performance. Knowledge gained from the scientific exploration of search

  2. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  3. Quantification of Fine-grained Sediment Concentration in the Aquatic Environment Using Optical and Acoustic Sensors: Insight from Lab Experiments

    NASA Astrophysics Data System (ADS)

    Xu, K.; Champagne, B. N.

    2017-12-01

    The transport of sediment in the coastal zone and continental shelf is highly impacted by fluvial and oceanographic dynamics. In Louisiana, the Mississippi River delivers a bulk of water, sediment, and nutrients to the coast. However, coastal land loss highlights the importance of the sediment deposited at the mouth of the river. Sediment is the foundation to build land and suspended sediment concentration (SSC) tracks the delivery, deposition, and erosion of sediment. On a more applicable scale, variables such as SSC can be used to calculate sediment transport flux, an important parameter for projects such as sediment diversions and barrier island restoration. In order to rely on suspended sediment concentration (SSC) as continuous data, lab experiments are needed to establish the relationship between turbidity and SSC. Factors such as sensor type (optical or acoustic) and grain size (coarse or fine) can greatly impact the estimated SSC. In this study, fine-grained sediment was collected from multiple sites in coastal Louisiana and used to calibrate both optical backscatter (OBS) and acoustic backscatter (ABS) sensors to establish the relationship between sensor type and accuracy of the SSC estimation. Multiple grain-size analyses using a Laser Diffraction Particle Size Analyzer helped determine the effects of sensor accuracy regarding grain size. The results of these experiments were combined in order to establish the calibration curves of SSC. Our results indicated that the OBS-3A sensor's turbidity data were more correlated with the SSC than the OBS-5+'s data. Possible explanations for this could be due to differences between the instruments' measuring ranges and their sensitivity to various grain sizes. This technology development has a broad impact to the studies of sediment delivery, transport, and deposition in multiple types of coastal protection and restoration projects.

  4. Using hot lab to increase pre-service physics teacher’s critical thinking skills related to the topic of RLC circuit

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Samsudin, A.; Safitri, D.; Lisdiani, S. A. S.; Sapriadil, S.; Hermita, N.

    2018-05-01

    This research purposes to explore the used of Higher Order Thinking Laboratory (HOT-Lab) in enhancing the critical thinking skills of pre-service teachers related to the topic of Resistors, Inductors, Capacitor (RLC circuit). This study utilised a quasi-experiment method with Pretest-Posttest Control Group design. The sample of the study was 60 students that were divided into two groups covering in experiment and control group, consists of 30 students. The instrument for measuring critical thinking skills is essay test. Data has been analyzed using normalized gain average, effect size, and t-test. The results show that students’ critical thinking skills using the HOT Lab are higher than the verification lab. Using HOT-lab was implemented in the form of activity in the laboratory can improve high-order thinking skills. Hence, it was concluded that the use of HOT Lab had a greater impact on improving students’ critical thinking skills on RLC topic. Finally, HOT Lab can be used for other physics topics.

  5. EarthLabs Meet Sister Corita Kent

    NASA Astrophysics Data System (ADS)

    Quartini, E.; Ellins, K. K.; Cavitte, M. G.; Thirumalai, K.; Ledley, T. S.; Haddad, N.; Lynds, S. E.

    2013-12-01

    The EarthLabs project provides a framework to enhance high school students' climate literacy and awareness of climate change. The project provides climate science curriculum and teacher professional development, followed by research on students' learning as teachers implement EarthLabs climate modules in the classroom. The professional development targets high school teachers whose professional growth is structured around exposure to current climate science research, data observation collection and analysis. During summer workshops in Texas and Mississippi, teachers work through the laboratories, experiments, and hand-on activities developed for their students. In summer 2013, three graduate students from the University of Texas at Austin Institute for Geophysics with expertise in climate science participated in two weeklong workshops. The graduate students partnered with exemplary teacher leaders to provide scientific content and lead the EarthLabs learning activities. As an experiment, we integrated a visit to the Blanton Museum and an associated activity in order to motivate participants to think creatively, as well as analytically, about science. This exercise was inspired by the work and educational philosophy of Sister Corita Kent. During the visit to the Blanton Museum, we steered participants towards specific works of art pre-selected to emphasize aspects of the climate of Texas and to draw participants' attention to ways in which artists convey different concepts. For example, artists use of color, lines, and symbols conjure emotional responses to imagery in the viewer. The second part of the exercise asked participants to choose a climate message and to convey this through a collage. We encouraged participants to combine their experience at the museum with examples of Sister Corita Kent's artwork. We gave them simple guidelines for the project based on techniques and teaching of Sister Corita Kent. Evaluation results reveal that participants enjoyed the

  6. Enhancing Communication Skills of Pre-service Physics Teacher through HOT Lab Related to Electric Circuit

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Dirgantara, Y.; Yuniarti, H.; Sapriadil, S.; Hermita, N.

    2018-01-01

    This study aimed to investigate the improvement to pre-service teacher’s communication skills through Higher Order Thinking Laboratory (HOT Lab) on electric circuit topic. This research used the quasi-experiment method with pretest-posttest control group design. Research subjects were 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The sample was chosen by random sampling technique. Students’ communication skill data collected using a communication skills test instruments-essays form and observations sheets. The results showed that pre-service teacher communication skills using HOT Lab were higher than verification lab. Student’s communication skills in groups using HOT Lab were not influenced by gender. Communication skills could increase due to HOT Lab based on problems solving that can develop communication through hands-on activities. Therefore, the conclusion of this research shows the application of HOT Lab is more effective than the verification lab to improve communication skills of pre-service teachers in electric circuit topic and gender is not related to a person’s communication skills.

  7. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  8. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  9. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors

    PubMed Central

    Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P

    2015-01-01

    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. PMID:25874592

  10. Prediction of percutaneous absorption in human using three-dimensional human cultured epidermis LabCyte EPI-MODEL.

    PubMed

    Hikima, Tomohiro; Kaneda, Noriaki; Matsuo, Kyouhei; Tojo, Kakuji

    2012-01-01

    The objective of this study is to establish a relationship of the skin penetration parameters between the three-dimensional cultured human epidermis LabCyte EPI-MODEL (LabCyte) and hairless mouse (HLM) skin penetration in vitro and to predict the skin penetration and plasma concentration profile in human. The skin penetration experiments through LabCyte and HLM skin were investigated using 19 drugs that have a different molecular weight and lipophilicity. The penetration flux for LabCyte reached 30 times larger at maximum than that for HLM skin. The human data can be estimated from the in silico approach with the diffusion coefficient (D), the partition coefficient (K) and the skin surface concentration (C) of drugs by assuming the bi-layer skin model for both LabCyte and HLM skin. The human skin penetration of β-estradiol, prednisolone, testosterone and ethynylestradiol was well agreed between the simulated profiles and in vitro experimental data. Plasma concentration profiles of β-estradiol in human were also simulated and well agreed with the clinical data. The present alternative method may decrease human or animal skin experiment for in vitro skin penetration.

  11. Take a Trip Around a 3D Printing Lab (360)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing has changed the way the world thinks about manufacture and design. Scientists and researchers at Lawrence Livermore National Lab are using a number of 3D printing processes to experiment with unique combinations of plastic, metal, and ceramics.

  12. Optics and optics-based technologies education with the benefit of LabVIEW

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  13. America's Lab Report: Investigations in High School Science

    ERIC Educational Resources Information Center

    Singer, Susan R., Ed.; Hilton, Margaret L., Ed.; Schweingruber, Heidi A., Ed.

    2005-01-01

    Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation s high schools as a context for learning…

  14. A Lab with a View: American Postdocs Abroad

    ERIC Educational Resources Information Center

    Gladfelter, Amy

    2002-01-01

    As recently as the early 1970s, a postdoctoral research experience overseas was a valued part of training for a U.S. biologist aspiring to an academic position. Not only did the U.S. scientists benefit educationally from participating in different laboratory and cultural systems, but labs outside the United States were enriched by the ideas,…

  15. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18822 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  16. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18818 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  17. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18811 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  18. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    ERIC Educational Resources Information Center

    Haagen-Schuetzenhoefer, Claudia

    2012-01-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…

  19. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    NASA Astrophysics Data System (ADS)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  20. The Rise of the Super Experiment

    ERIC Educational Resources Information Center

    Stamper, John C.; Lomas, Derek; Ching, Dixie; Ritter, Steve; Koedinger, Kenneth R.; Steinhart, Jonathan

    2012-01-01

    Traditional experimental paradigms have focused on executing experiments in a lab setting and eventually moving successful findings to larger experiments in the field. However, data from field experiments can also be used to inform new lab experiments. Now, with the advent of large student populations using internet-based learning software, online…

  1. Peers at work: Evidence from the lab

    PubMed Central

    Oosterbeek, Hessel; Sonnemans, Joep

    2018-01-01

    This paper reports the results of a lab experiment designed to study the role of observability for peer effects in the setting of a simple production task. In our experiment, participants in the role of workers engage in a team real-effort task. We vary whether they can observe, or be observed by, one of their co-workers. In contrast to earlier findings from the field, we find no evidence that low-productivity workers perform better when they are observed by high-productivity co-workers. Instead, our results imply that peer effects in our experiment are heterogeneous, with some workers reciprocating a high-productivity co-worker but others taking the opportunity to free ride. PMID:29408863

  2. Spaceport Processing System Development Lab

    NASA Technical Reports Server (NTRS)

    Dorsey, Michael

    2013-01-01

    The Spaceport Processing System Development Lab (SPSDL), developed and maintained by the Systems Hardware and Engineering Branch (NE-C4), is a development lab with its own private/restricted networks. A private/restricted network is a network with restricted or no communication with other networks. This allows users from different groups to work on their own projects in their own configured environment without interfering with others utilizing their resources in the lab. The different networks being used in the lab have no way to talk with each other due to the way they are configured, so how a user configures his software, operating system, or the equipment doesn't interfere or carry over on any of the other networks in the lab. The SPSDL is available for any project in KSC that is in need of a lab environment. My job in the SPSDL was to assist in maintaining the lab to make sure it's accessible for users. This includes, but is not limited to, making sure the computers in the lab are properly running and patched with updated hardware/software. In addition to this, I also was to assist users who had issues in utilizing the resources in the lab, which may include helping to configure a restricted network for their own environment. All of this was to ensure workers were able to use the SPSDL to work on their projects without difficulty which would in turn, benefit the work done throughout KSC. When I wasn't working in the SPSDL, I would instead help other coworkers with smaller tasks which included, but wasn't limited to, the proper disposal, moving of, or search for essential equipment. I also, during the free time I had, used NASA's resources to increase my knowledge and skills in a variety of subjects related to my major as a computer engineer, particularly in UNIX, Networking, and Embedded Systems.

  3. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  4. Weighing Photons Using Bathroom Scales: A Thought Experiment

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Jay Orear, in his introductory physics text, defined the weight of a person as the reading one gets when standing on a (properly calibrated) bathroom scale. Here we will use Jay's definition of weight in a thought experiment to measure the weight of a photon. The thought experiment uses the results of the Pound-Rebka-Snider experiments, Compton…

  5. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    ERIC Educational Resources Information Center

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  6. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  7. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  8. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    PubMed

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. User recruitment, training, and support at NOAO Data Lab

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Fitzpatrick, Michael J.; NOAO Data Lab

    2018-06-01

    The NOAO Data Lab (datalab.noao.edu) is a fully-fledged science data & analysis platform. However, simply building a science platform is notenough to declare it a success. Like any such system built for users, it needs actual users who see enough value in it to be willing toovercome the inertia of registering an account, studying the documentation, working through examples, and ultimately attempting tosolve their own science problems using the platform. The NOAO Data Lab has been open to users since June 2016. In this past year we haveregistered hundreds of users and improved the system, not least through the interaction with and feedback from our users. The posterwill delineate our efforts to recruit new users through conference presentations, platform demos and user workshops, and what we do toassure that users experience their first steps and their learning process with Data Lab as easy, competent, and inspiring. It will alsopresent our efforts in user retention and user support, from a human-staffed helpdesk, to one-on-one sessions, to regular"bring-your-own-problem (BYOP)" in-house sessions with interested users.

  10. Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field

    NASA Astrophysics Data System (ADS)

    King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio

    2017-04-01

    This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.

  11. Small-Scale Experiments.10-gallon drum experiment summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or tomore » validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.« less

  12. A hierarchical examination of methane uptake: field patterns, lab physiology, community composition and biogeography

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Koyama, A.; Johnson, N. G.; Webb, C. T.

    2015-12-01

    Scaling problems abound in biogeochemistry. At the finest scale, soil microbes experience habitats and environmental changes that affect the chemical transformations of interest. We collect the DNA of these organisms from sites across landscapes and note differences in who is there, and we seek to evaluate why group membership changes in space (biogeography) and why activity rates change over time (physiology). The goal of efforts at finer scales is often to better predict patterns at larger scales. We conducted such a hierarchical examination of methane uptake in the Great Plains grasslands of North America, gathering data from 22 plots at 8 field locations, scattered from South Dakota to New Mexico and Colorado to Kansas. Our work provides insight into methanotroph biogeochemistry at all of these scales. For example, we found that methane uptake rates vary mostly due to the methanotroph activity, and less so due to diffusivity. A combination of field and lab observations reveal that methanotroph communities differ in their sensitivity to soil moisture and to ammonium (an inhibitor of methanotrophy). Examination of methanotroph community composition reveals tantalizing patterns in composition, dominance and richness across sites, that appears to be structured by patterns of precipitation and soil texture. We anticipate that greater synthesis of these hierarchical findings will paint a richer picture of methanotroph life and enable improved prediction of methane uptake at regional scales.

  13. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    ERIC Educational Resources Information Center

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  14. How "Discover the COSMOS", "PATHWAY", "Go-Lab" and "Inspiring Science Education" are changing the science education in European high schools

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, Christine

    2014-04-01

    It has been noted by various reports that during recent years, there has been an alarming decline in young people's interest for science studies and mathematics. Since it is believed that the traditional teaching methods often fail to foster positive attitudes towards learning science, the European Commission has made intensive efforts to promote science education in schools though new methods based on the inquiry methodology of learning: questions, search and answers. This should be coupled to laboratories and hands-on experience which should be structured and scaffolded in a pedagogically meaningful way. "PATHWAY", "Discover the COSMOS" and "ISE" have been providing the lesson plans and the best practices for teachers and students and "Go-lab" is working towards an integrated set up of on-line labs for large scale use in science education. In the next sections some concrete examples which aim to bring the High Energy Physics (HEP) frontier research to schools will be given.

  15. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  16. Effectiveness of e-Lab Use in Science Teaching at the Omani Schools

    ERIC Educational Resources Information Center

    Al Musawi, A.; Ambusaidi, A.; Al-Balushi, S.; Al-Balushi, K.

    2015-01-01

    Computer and information technology can be used so that students can individually, in groups, or by electronic demonstration experiment and draw conclusion for the required activities in an electronic form in what is now called "e-lab". It enables students to conduct experiments more flexibly and in an interactive way using multimedia.…

  17. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  18. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    NASA Astrophysics Data System (ADS)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  19. The Tri-lab Tantalum Strength Consortium

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn G.; Arsenlis, Thomas A.; Austin, Ryan; Barton, Nathan R.; Benage, John F.; Bronkhorst, Curt A.; Brown, Justin L.; Brown, Staci L.; Buttler, William T.; Shen, Shuh-Rong; Dattelbaum, Dana M.; Fensin, Sayu J.; Gray, George T., III; Lane, J. Matthew D.; Lim, Hojun; Luscher, D. J.; Mattsson, Thomas R.; McNabb, Dennis P.; Remington, Bruce A.; Park, Hye-Sook; Prisbrey, Shon T.; Prime, Michael B.; Scharff, Robert J.; Schraad, Mark W.; Sun, Amy C.

    2017-06-01

    A Tri-lab consortium of experimentalists and theorists at SNL, LLNL, and LANL is joining forces to better understand tantalum strength across an unprecedented range of loading conditions. The team is collecting and comparing tantalum strength data from Hopkinson bar, Taylor cylinder, guns, Z, Omega and the NIF. These experiments, all using Ta from a single lot, span pressures from tenths to hundreds of GPa and strain rates from 103 to 107. New experiments are underway to provide more overlap between the platforms. The experiments are being simulated with a variety of models in order to determine which processes are important under which conditions. The presentation will show results to date. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  20. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    ERIC Educational Resources Information Center

    Holmes, N. G.; Bonn, D. A.

    2015-01-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and…

  1. Dr. Monaco Examines Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  2. Developing Nontraditional Biology Labs to Challenge Students & Enhance Learning

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla E.; Movahedzadeh, Farahnaz

    2013-01-01

    Laboratory experience and skills are not only essential for success in science studies, but are the most exciting and rewarding aspects of science for students. As a result, many biology teachers have become critical of the efficacy of cookbook-type laboratory activities as well as the purposes, practices, and learning outcomes of lab experiments…

  3. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    NASA Astrophysics Data System (ADS)

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-02-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.

  4. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors.

    PubMed

    Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P

    2015-05-01

    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the 'paradox of enrichment' which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  6. Arduino: a low-cost multipurpose lab equipment.

    PubMed

    D'Ausilio, Alessandro

    2012-06-01

    Typical experiments in psychological and neurophysiological settings often require the accurate control of multiple input and output signals. These signals are often generated or recorded via computer software and/or external dedicated hardware. Dedicated hardware is usually very expensive and requires additional software to control its behavior. In the present article, I present some accuracy tests on a low-cost and open-source I/O board (Arduino family) that may be useful in many lab environments. One of the strengths of Arduinos is the possibility they afford to load the experimental script on the board's memory and let it run without interfacing with computers or external software, thus granting complete independence, portability, and accuracy. Furthermore, a large community has arisen around the Arduino idea and offers many hardware add-ons and hundreds of free scripts for different projects. Accuracy tests show that Arduino boards may be an inexpensive tool for many psychological and neurophysiological labs.

  7. Breaking Out of the Lab

    PubMed Central

    Maier, Jürgen; Hampe, J. Felix; Jahn, Nico

    2016-01-01

    Real-time response (RTR) measurement is an important technique for analyzing human processing of electronic media stimuli. Although it has been demonstrated that RTR data are reliable and internally valid, some argue that they lack external validity. The reason for this is that RTR measurement is restricted to a laboratory environment due to its technical requirements. This paper introduces a smartphone app that 1) captures real-time responses using the dial technique and 2) provides a solution for one of the most important problems in RTR measurement, the (automatic) synchronization of RTR data. In addition, it explores the reliability and validity of mobile RTR measurement by comparing the real-time reactions of two samples of young and well-educated voters to the 2013 German televised debate. Whereas the first sample participated in a classical laboratory study, the second sample was equipped with our mobile RTR system and watched the debate at home. Results indicate that the mobile RTR system yields similar results to the lab-based RTR measurement, providing evidence that laboratory studies using RTR are externally valid. In particular, the argument that the artificial reception situation creates artificial results has to be questioned. In addition, we conclude that RTR measurement outside the lab is possible. Hence, mobile RTR opens the door for large-scale studies to better understand the processing and impact of electronic media content. PMID:27274577

  8. Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2014-12-01

    We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.

  9. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    NASA Astrophysics Data System (ADS)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  10. Human radiation studies: Remembering the early years. Oral history of Donner Lab Administrator Baird G. Whaley, August 15, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    Baird G. Whaley, Donner Lab Administrator, was interviewed by representatives of US DOE Office of Human Radiation Experiments (OHRE). The purpose of the interview was to capture the remembrances of Mr. Whaley concerning what he could relate on activities at the Donner Lab that pertain to the OHRE responsibilities. Following a brief biographical sketch, Mr. Whaley relates his experiences in administration at the LAB including funding activities, staffing concerns, intralaboraory politics, and remembrances of John Lawrence, John Gofman, Cornelius Tobias, Jim Born, Alex Margolis, B.V.A. Low- Beer, and Ed Alpen. Further patient care procedures for Donner Clinic Research Programs weremore » discussed.« less

  11. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  12. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    PubMed

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  13. Recommendations for the use of notebooks in upper-division physics lab courses

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob T.; Lewandowski, H. J.

    2018-01-01

    The use of lab notebooks for scientific documentation is a ubiquitous part of physics research. However, it is common for undergraduate physics laboratory courses not to emphasize the development of documentation skills, despite the fact that such courses are some of the earliest opportunities for students to start engaging in this practice. One potential impediment to the inclusion of explicit documentation training is that it may be unclear to instructors which features of authentic documentation practice are efficacious to teach and how to incorporate these features into the lab class environment. In this work, we outline some of the salient features of authentic documentation, informed by interviews with physics researchers, and provide recommendations for how these can be incorporated into the lab curriculum. We do not focus on structural details or templates for notebooks. Instead, we address holistic considerations for the purpose of scientific documentation that can guide students to develop their own documentation style. While taking into consideration all the aspects that can help improve students' documentation, it is also important to consider the design of the lab activities themselves. Students should have experience with implementing these authentic features of documentation during lab activities in order for them to find practice with documentation beneficial.

  14. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  15. NOT Another Lab Report

    ERIC Educational Resources Information Center

    Ende, Fred

    2012-01-01

    Ask students to name the aspects of science class they enjoy most, and working on labs will undoubtedly be mentioned. What often won't be included, however, is writing lab reports. For many students, the process of exploration and data collection is paramount, while the explanation and analysis of findings often takes a backseat. After all, if…

  16. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  17. Jefferson Lab Experimental Hall C

    NASA Astrophysics Data System (ADS)

    Carlini, Roger D.

    1996-10-01

    Jefferson Lab's Hall C went into initial operation in November 1995. The hall has a short orbit spectrometer (SOS) for short-lived particles such as pions and kaons and a high-momentum spectrometer (HMS) usually used for electrons. The SOS can also be used for protons. The HMS can range to 7 GeV/c. Both the SOS and HMS have typical resolutions of (10-3). Experiments for this hall range from measuring the neutron electric form factor, to color transparency, to creating strange nuclei. This paper will present the optical capabilities of the spectrometers, the parameters of the detection systems, and the overall beam line characteristics of the hall as determined from the results from the recent physics experiments along with the upcoming experimental schedule. Additional information is available at URL http://www.cebaf.gov/hallc.html.

  18. Impact of scaling on the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic thanmore » glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.« less

  19. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  1. Chip in a lab: Microfluidics for next generation life science research

    PubMed Central

    Streets, Aaron M.; Huang, Yanyi

    2013-01-01

    Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research. PMID:23460772

  2. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  3. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    PubMed

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  4. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  5. Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment.

    PubMed

    Capodici, Marco; Avona, Alessia; Laudicina, Vito Armando; Viviani, Gaspare

    2018-07-15

    Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO 3 - removal and N 2 O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO 3 - concentrations (30, 50, 75mgNO 3 -NL -1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO 2 - ) and nitrous oxide (N 2 O). In particular, it was observed that N 2 O production represent only a small fraction of removed NO 3 - during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%). Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  7. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum.

    PubMed

    Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  8. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    NASA Astrophysics Data System (ADS)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  9. Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol

    ERIC Educational Resources Information Center

    Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R.

    2007-01-01

    An ozonolysis experiment, suitable for undergraduate organic chemistry lab, is presented. Ozonolysis of eugenol (clove oil), followed by reductive workup furnishes an aldehyde that is easily identified by its NMR and IR spectra. Ozone (3-5% in oxygen) is produced using an easily built generator. (Contains 2 figures and 1 scheme.)

  10. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  11. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  12. An explorative study of experiences of healthcare providers posing as simulated care receivers in a 'care-ethical' lab.

    PubMed

    Vanlaere, Linus; Timmermann, Madeleine; Stevens, Marleen; Gastmans, Chris

    2012-01-01

    In recent approaches to ethics, the personal involvement of health care providers and their empathy are perceived as important elements of an overall ethical ability. Experiential working methods are used in ethics education to foster, inter alia, empathy. In 2008, the care-ethics lab 'sTimul' was founded in Flanders, Belgium, to provide training that focuses on improving care providers' ethical abilities through experiential working simulations. The curriculum of sTimul focuses on empathy sessions, aimed at care providers' empathic skills. The present study provides better insight into how experiential learning specifically targets the empathic abilities of care providers. Providing contrasting experiences that affect the care providers' self-reflection seems a crucial element in this study. Further research is needed to provide more insight into how empathy leads to long-term changes in behaviour.

  13. Stereotactic radiosurgery for trigeminal neuralgia utilizing the BrainLAB Novalis system.

    PubMed

    Zahra, Hadi; Teh, Bin S; Paulino, Arnold C; Yoshor, Daniel; Trask, Todd; Baskin, David; Butler, E Brian

    2009-12-01

    Stereotactic radiosurgery (SRS) is one of the least invasive treatments for trigeminal neuralgia (TN). To date, most reports have been about Cobalt-based treatments (i.e., Gamma Knife) with limited data on image-guided stereotactic linear accelerator treatments. We describe our initial experience of using BrainLAB Novalis stereotactic system for the radiosurgical treatment of TN. A total of 20 patients were treated between July 2004 and February 2007. Each SRS procedure was performed using the BrainLAB Novalis System. Thin cuts MRI images of 1.5 mm thickness were acquired and fused with the simulation CT of each patient. Majority of the patients received a maximum dose of 90 Gy. The median brainstem dose to 1.0 cc and 0.1 cc was 2.3 Gy and 13.5 Gy, respectively. In addition, specially acquired three-dimensional fast imaging sequence employing steady-state acquisition (FIESTA) MRI was utilized to improve target delineation of the trigeminal proximal nerve root entry zone. Barrow Neurological Index (BNI) pain scale for TN was used for assessing treatment outcome. At a median follow-up time of 14.2 months, 19 patients (95%) reported at least some improvement in pain. Eight (40%) patients were completely pain-free and stopped all medications (BNI Grade I) while another 2 (10%) patients also stopped medications but reported occasional pain (BNI Grade II). Another 2 (10%) patients reported no pain and 7 (35%) patients only occasional pain while continuing medications, BNI Grade IIIA and IIIB, respectively. Median time to pain control was 8.5 days (range: 1-70 days). No patient reported severe pain, worsening pain or any pain not controlled on their previously taken medication. Intermittent or persistent facial numbness following treatments occurred in 35% of patients. No other complications were reported. Stereotactic radiosurgery using the BrainLAB Novalis system is a safe and effective treatment for TN. This information is important as more centers are obtaining image

  14. Inductance Scaling of a Helicoil Using ALEGRA

    DTIC Science & Technology

    2013-05-01

    HOUSKAMP 3 US ARMY RESEARCH LAB RDRL WMP E P BARTKOWSKI D HORNBAKER P SWOBODA 1 US ARMY RESEARCH LAB RDRL WMP F N GNIAZDOWSKI 1 US ARMY RESEARCH LAB RDRL...HAILL 1 UNIVERSITY OF ALABAMA AT BIRMINGHAM D LITTLEFIELD 1 DEFENSE RESEARCH AGENCY B JAMES 2 ENIG ASSOCIATES, INC. E ENIG D BENTZ 42 ...January 2012 Inductance Scaling of a Helicoil Using ALEGRA Robert Doney U.S. Army Research Laboratory ATTN: RDRL-WMP- D Aberdeen Proving Ground, MD 21005

  15. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  16. Quantifying the role that laboratory experiment sample scale has on observed material properties and mechanistic behaviors that cause well systems to fail

    NASA Astrophysics Data System (ADS)

    Huerta, N. J.; Fahrman, B.; Rod, K. A.; Fernandez, C. A.; Crandall, D.; Moore, J.

    2017-12-01

    Laboratory experiments provide a robust method to analyze well integrity. Experiments are relatively cheap, controlled, and repeatable. However, simplifying assumptions, apparatus limitations, and scaling are ubiquitous obstacles for translating results from the bench to the field. We focus on advancing the correlation between laboratory results and field conditions by characterizing how failure varies with specimen geometry using two experimental approaches. The first approach is designed to measure the shear bond strength between steel and cement in a down-scaled (< 3" diameter) well geometry. We use several cylindrical casing-cement-casing geometries that either mimic the scaling ratios found in the field or maximize the amount of metal and cement in the sample. We subject the samples to thermal shock cycles to simulate damage to the interfaces from operations. The bond was then measured via a push-out test. We found that not only did expected parameters, e.g. curing time, play a role in shear-bond strength but also that scaling of the geometry was important. The second approach is designed to observe failure of the well system due to pressure applied on the inside of a lab-scale (1.5" diameter) cylindrical casing-cement-rock geometry. The loading apparatus and sample are housed within an industrial X-ray CT scanner capable of imaging the system while under pressure. Radial tension cracks were observed in the cement after an applied internal pressure of 3000 psi and propagated through the cement and into the rock as pressure was increased. Based on our current suite of tests we find that the relationship between sample diameters and thicknesses is an important consideration when observing the strength and failure of well systems. The test results contribute to our knowledge of well system failure, evaluation and optimization of new cements, as well as the applicability of using scaled-down tests as a proxy for understanding field-scale conditions.

  17. Cyberinfrastructure to Support Collaborative Research Within Small Ecology Labs

    NASA Astrophysics Data System (ADS)

    Laney, C.; Jaimes, A.; Cody, R. P.; Kassin, A.; Salayandia, L.; Tweedie, C. E.

    2011-12-01

    Increasingly, ecological research programs addressing complex challenges are driving technological innovations that allow the acquisition and analysis of data collected over larger spatial scales and finer temporal resolutions. Many research labs are shifting from deploying technicians or students into the field to setting up automated sensors. These sensors can cost less on an individual basis, provide continuous and reliable data collection, and allow researchers to spend more time analyzing data and testing hypotheses. They can provide an enormous amount of complex information about an ecosystem. However, the effort to manage, analyze, and disseminate that information can be daunting. Small labs unfamiliar with these efforts may find their capacity to publish at competitive rates hindered by information management. Such labs would be well served by an easy to manage cyberinfrastructure (CI) that is organized in a modular, plug-and-play design and is amenable to a wide variety of data types. Its functionality would permit addition of new sensors and perform automated data analysis and visualization. Such a system would conceivably enhance access to data from small labs through web services, thereby improving the representation of smaller labs in scientific syntheses and enhancing the spatial and temporal coverage of such efforts. We present a CI that is designed to meet the needs of a small but heavily instrumented research site located within the USDA ARS Jornada Experimental Range in the northern Chihuahuan Desert. This site was constructed and is operated by the Systems Ecology Lab at the University of Texas at El Paso (UTEP), a relatively small and young lab. Researchers at the site study land-atmosphere carbon, water, and energy fluxes at a mixed creosote (Larrea tridentata) - mesquite (Prosopis glandulosa) shrubland. The site includes an eddy covariance tower built to AmeriFlux and FLUXNET specifications, a robotic cart that measures hyperspectral

  18. Pore-scale and continuum simulations of solute transport micromodel benchmark experiments

    DOE PAGES

    Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...

    2014-06-18

    Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics

  19. Impact of non-ionic surfactant on the long-term development of lab-scale-activated sludge bacterial communities.

    PubMed

    Lozada, Mariana; Basile, Laura; Erijman, Leonardo

    2007-01-01

    The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.

  20. Natural gas hydrate in sediments imaged by cryogenic SEM: Insights from lab experiments on synthetic hydrates as interpretive guides.

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Kirby, S. H.

    2006-12-01

    . Based on lab experiments, we believe the initial liquid product is frozen as a result of the local temperature reduction accompanying the endothermic dissociation reaction. The porous texture is then preserved by liquid nitrogen quenching. (5) Samples from both marine and permafrost environments also display closely juxtaposed regions of dense and porous hydrate and ice. Although the close association of these regions remains puzzling, lab tests verify that dense hydrate can exhibit such porous appearance along it's surface after even minor decomposition at cold conditions (below 273 K). In turn, companion experiments show that nanoporous hydrate anneals to a densely crystalline habit at conditions within the hydrate stability region above 273 K, suggesting that nanoporous gas hydrate is not stable at most in situ natural conditions.

  1. Exploratory Study of the Acceptance of Two Individual Practical Classes with Remote Labs

    ERIC Educational Resources Information Center

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-01-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote…

  2. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    PubMed

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  3. Gourmet Lab: The Scientific Principles Behind Your Favorite Foods

    ERIC Educational Resources Information Center

    Young, Sarah

    2011-01-01

    Hands-on, inquiry-based, and relevant to every student's life, "Gourmet Lab" serves up a full menu of activities for science teachers of grades 6-12. This collection of 15 hands-on experiments--each of which includes a full set of both student and teacher pages--challenges students to take on the role of scientist and chef, as they boil,…

  4. Williams works with LOCAD-PTS Experiment Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06773 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, sets up a video camera inside a flame resistant covering to film a chip during Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) Swab Operations in the Destiny laboratory of the International Space Station.

  5. The Infant Version of the Laboratory Temperament Assessment Battery (Lab-TAB): Measurement Properties and Implications for Concepts of Temperament

    PubMed Central

    Planalp, Elizabeth M.; Van Hulle, Carol; Gagne, Jeffrey R.; Goldsmith, H. Hill

    2017-01-01

    We describe large-sample research using the Infant Laboratory Temperament Assessment Battery (Lab-TAB; Goldsmith and Rothbart, 1996) in 1,076 infants at 6 and 12 months of age. The Lab-TAB was designed to assess temperament dimensions through a series of episodes that mimic everyday situations. Our goal is to provide guidelines for scoring Lab-TAB episodes to derive temperament composites. We also present a set of analyses examining mean differences and stability of temperament in early infancy, gender differences in infant temperament, as well as a validation of Lab-TAB episodes and composites with parent reported Infant Behavior Questionnaire (IBQ; Rothbart, 1981) scales. In general, laboratory observed temperament was only modestly related to parent reported temperament. However, temperament measures were significantly stable across time and several gender differences that align with previous research emerged. In sum, the Lab-TAB usefully assesses individual differences in infant emotionality. PMID:28596748

  6. Short Distance of Nuclei - Mining the Wealth of Existing Jefferson Lab Data - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, Lawrence; Kuhn, Sebastian

    Over the last fifteen years of operation, the Jefferson Lab CLAS Collaboration has performed many experiments using nuclear targets. Because the CLAS detector has a very large acceptance and because it used a very open (i.e., nonspecific) trigger, there is a vast amount of data on many different reaction channels yet to be analyzed. The goal of the Jefferson Lab Nuclear Data Mining grant was to (1) collect the data from nuclear target experiments using the CLAS detector, (2) collect the associated cuts and corrections used to analyze that data, (3) provide non-expert users with a software environment for easymore » analysis of the data, and (4) to search for interesting reaction signatures in the data. We formed the Jefferson Lab Nuclear Data Mining collaboration under the auspices of this grant. The collaboration successfully carried out all of our goals. Dr. Gavalian, the data mining scientist, created a remarkably user-friendly web-based interface to enable easy analysis of the nuclear-target data by non-experts. Data from many of the CLAS nuclear target experiments has been made available on servers at Old Dominion University. Many of the associated cuts and corrections have been incorporated into the data mining software. The data mining collaboration was extraordinarily successful in finding interesting reaction signatures in the data. Our paper Momentum sharing in imbalanced Fermi systems was published in Science. Several analyses of CLAS data are continuing and will result in papers after the end of the grant period. We have held several analysis workshops and have given many invited talks at international conferences and workshops related to the data mining initiative. Our initiative to maximize the impact of data collected with CLAS in the 6-GeV era was very successful. During the hiatus between the end of 6-GeV experiments and the beginning of 12-GeV experiments, our collaboration and the physics community at large benefited tremendously from the

  7. Lab on a Chip Application Development for Exploration

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2004-01-01

    At Marshall Space Flight Center a new capability has been established to aid the advancement of microfluidics for space flight monitoring systems. Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 & 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD's process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-devices can be created such as the development of a microfluidic system to aid in the search for life, past and present, on Mars. Particular indicators in the Martian soil can contain the direct evidence of life. But to extract the information from the soil and present it to the proper detectors requires multiple fluidic/chemical operations. This is where LOCAD is providing its unique abilities.

  8. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    PubMed

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top

  9. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates formore » consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  10. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  11. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  12. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    ERIC Educational Resources Information Center

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-01-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we…

  13. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo in its overhead passage down the Space Station Processing Facility. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  14. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  15. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    NASA Astrophysics Data System (ADS)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  16. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less

  17. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    PubMed

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier

  18. Improved LCI profile of LAB based on latest technology advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berna, J.L.; Renta, C.

    1995-12-31

    The first technology used to produce LAB was introduced in the early 60`s and since then a continuous optimization process has taken place on this highly competitive product on which additional cost effectiveness improvements became highly challenging. The latest technology introduced in the market (CEPSA {minus} UOP DETAL) based on a fixed bed alkylation process, has already been proved on a commercial scale. The simplicity of the new technology as compared to current ones, namely HF, has proven to be very effective in reducing substantially the impact due to several major components of the Life Cycle Inventory (LCI) in particularmore » the emissions of the overall operation. Additional improvements in other aspects like energy consumption are extremely difficult to achieve today as this parameter has already been highly optimized during the last two decades making in fact LAB a highly effective chemical in terms of energy requirements as well as on raw material consumption. The results of the first LCI of the new LAB technology indicate a reduction of CO process emissions to nearly 1/2 as compared to standard HF process as well as reduction in solid waste to 1/3 of the corresponding HF process. Important reductions have also been noticed on NOx emissions with the new technology.« less

  19. EMC effect for light nuclei: New results from Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji Daniel

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less

  20. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum†

    PubMed Central

    Shanks, Ryan A.; Robertson, Chuck L.; Haygood, Christian S.; Herdliksa, Anna M.; Herdliska, Heather R.; Lloyd, Steven A.

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads. PMID:28904647

  1. Planning a Computer Lab: Considerations To Ensure Success.

    ERIC Educational Resources Information Center

    IALL Journal of Language Learning Technologies, 1994

    1994-01-01

    Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…

  2. Using collaborative technologies in remote lab delivery systems for topics in automation

    NASA Astrophysics Data System (ADS)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  3. Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy.

    PubMed

    Hannemann, Jan; Poorter, Hendrik; Usadel, Björn; Bläsing, Oliver E; Finck, Alex; Tardieu, Francois; Atkin, Owen K; Pons, Thijs; Stitt, Mark; Gibon, Yves

    2009-09-01

    Data mining depends on the ability to access machine-readable metadata that describe genotypes, environmental conditions, and sampling times and strategy. This article presents Xeml Lab. The Xeml Interactive Designer provides an interactive graphical interface at which complex experiments can be designed, and concomitantly generates machine-readable metadata files. It uses a new eXtensible Mark-up Language (XML)-derived dialect termed XEML. Xeml Lab includes a new ontology for environmental conditions, called Xeml Environment Ontology. However, to provide versatility, it is designed to be generic and also accepts other commonly used ontology formats, including OBO and OWL. A review summarizing important environmental conditions that need to be controlled, monitored and captured as metadata is posted in a Wiki (http://www.codeplex.com/XeO) to promote community discussion. The usefulness of Xeml Lab is illustrated by two meta-analyses of a large set of experiments that were performed with Arabidopsis thaliana during 5 years. The first reveals sources of noise that affect measurements of metabolite levels and enzyme activities. The second shows that Arabidopsis maintains remarkably stable levels of sugars and amino acids across a wide range of photoperiod treatments, and that adjustment of starch turnover and the leaf protein content contribute to this metabolic homeostasis.

  4. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    ERIC Educational Resources Information Center

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  5. Audiovisual Speech Web-Lab: an Internet teaching and research laboratory.

    PubMed

    Gordon, M S; Rosenblum, L D

    2001-05-01

    Internet resources now enable laboratories to make full-length experiments available on line. A handful of existing web sites offer users the ability to participate in experiments and generate usable data. We have integrated this technology into a web site that also provides full discussion of the theoretical and methodological aspects of the experiments using text and simple interactive demonstrations. The content of the web site (http://www.psych.ucr.edu/avspeech/lab) concerns audiovisual speech perception and its relation to face perception. The site is designed to be useful for users of multiple interests and levels of expertise.

  6. TQM in a Computer Lab.

    ERIC Educational Resources Information Center

    Swanson, Dewey A.; Phillips, Julie A.

    At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  8. LIB LAB the Library Laboratory: hands-on multimedia science communication

    NASA Astrophysics Data System (ADS)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  9. Creating a lab to facilitate high school student engagement in authentic paleoclimate science practices

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Walsh, E.

    2012-12-01

    A solid understanding of timescales is crucial for any climate change discussion. This hands-on lab was designed as part of a dual-credit climate change course in which high school students can receive college credit. Using homemade ice cores, students have the opportunity to participate in scientific practices associated with collecting, processing, and interpreting temperature and CO2 data. Exploring millennial-scale cycles in ice core data and extending the CO2 record to the present allows students to discover timescales from an investigators perspective. The Ice Core Lab has been piloted in two high school classrooms and student engagement, and epistemological and conceptual understanding was evaluated using quantitative pre and post assessment surveys. The process of creating this lab involved a partnership between an education assessment professional, high school teachers, and University of Washington professors and graduate students in Oceanography, Earth and Space Sciences, Atmospheric Sciences and the Learning Sciences as part of the NASA Global Climate Change University of Washington in the High School program. This interdisciplinary collaboration led to the inception of the lab and was necessary to ensure that the lesson plan was pedagogically appropriate and scientifically accurate. The lab fits into a unit about natural variability and is paired with additional hands-on activities created by other graduate students that explore short-timescale temperature variations, Milankovitch cycles, isotopes, and other proxies. While the Ice Core Lab is intended to follow units that review the scientific process, global energy budget, and transport, it can be modified to fit any teaching platform.

  10. Operation of an aquatic worm reactor suitable for sludge reduction at large scale.

    PubMed

    Hendrickx, Tim L G; Elissen, Hellen H J; Temmink, Hardy; Buisman, Cees J N

    2011-10-15

    Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete Lumbriculus variegatus has been shown at small scale. For scaling up purposes, a new configuration of the reactor was designed, in which the worms were positioned horizontally in the carrier material. This was tested in a continuous experiment of 8 weeks where it treated all the waste sludge from a lab-scale activated sludge process. The results showed a higher worm growth rate compared to previous experiments with the old configuration, whilst nutrient release was similar. The new configuration has a low footprint and allows for easy aeration and faeces collection, thereby making it suitable for full scale application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Unique Approach to Hydraulic Characterization at an Underground Lab

    NASA Astrophysics Data System (ADS)

    Jones, T. L.; Wang, J. S.

    2009-12-01

    The Sanford Underground Laboratory is the interim lab for the future federally funded DUSEL (Deep Underground Science and Engineering Lab). The Sanford Lab took over the abandoned Homestake mine in Lead, SD. Over three hundred miles of drift, extending 8,000 feet below the surface, are now being used to house experiments in disciplines including physics, geology, and biology. The lab is situated in Precambrian metamorphic rocks intersected by Tertiary dike swarms. Three relevant geologic units are defined within the Precambrian rock system; all of which are interpreted to be metamorphosed igneous and sedimentary deposits. The Sanford Lab provides a unique environment to study several aspects of hydrogeology and hydrology; including geochemistry, hydraulic systems in fractured aquifers, and fluvial activity within mine workings. Aquifer characteristics housing the mine workings’ is important to define for future and present research at the underground lab. Outlined here is a unique approach to defining the matrix porosity within the fractured aquifer system. The Homestake mine was abandoned and the pump system keeping the mine dry was turned off in 2003. Over the course of the next five years the water level rose 3470 feet. Oxidation of iron from the water left a red staining on the submerged rocks. Hydrological observations are conducted on different levels throughout the Homestake facility as the water levels are lowered. Isolated air pockets and long stretches of unstained areas along the roof of drifts have been observed, together with less frequent occurrences of seepages. These observations are documented to supplement hydrological monitoring and testing with sensors. The sizes and widths of the trapped air pockets are indications of low permeability values and can be used to estimate the degree of heterogeneity along drifts. It is noted that sections of long stretches of trapped air have more delayed drainages, consistent with low effective permeability

  12. EPICS Channel Access Server for LabVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Alexander P.

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  13. Dancing Around My Technology Classroom Box (My Second RET Lab)

    ERIC Educational Resources Information Center

    Carter, Terry

    2010-01-01

    The laboratory the author had been assigned for his RET (Research Experience for Teachers) at Vanderbilt University is new and different from the one he had previously experienced. This summer he was assigned to the Microfluidics and Lab-on-a-chip laboratory to help research dielectrophoresis. As this is an emerging technology, there was not a lot…

  14. Using National Instruments LabVIEW[TM] Education Edition in Schools

    ERIC Educational Resources Information Center

    Butlin, Chris A.

    2011-01-01

    With the development of LabVIEW[TM] Education Edition schools can now provide experience of using this widely used software. Here, a few of the many applications that students aged around 11 years and over could develop are outlined in the resulting front panel screen displays and block diagrams showing the associated graphical programmes, plus a…

  15. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    . Collaboration and discussion among members of the EarthLabs team and partner teachers was instrumental to improving the quality of the EarthLabs modules and the professional development workshop. Furthermore, leading the workshop alongside other partner teachers gave me the confidence and experience to deliver professional development to my colleagues and introduce the newly developed EarthLabs modules to other teachers. In this session I will share my experiences and report on the successes, challenges, and lessons learned from being a part of the EarthLabs curriculum and professional development process.

  16. An introductory biology lab that uses enzyme histochemistry to teach students about skeletal muscle fiber types.

    PubMed

    Sweeney, Lauren J; Brodfuehrer, Peter D; Raughley, Beth L

    2004-12-01

    One important goal of introductory biology laboratory experiences is to engage students directly in all steps in the process of scientific discovery. Even when laboratory experiences are built on principles discussed in the classroom, students often do not adequately apply this background to interpretation of results they obtain in lab. This disconnect has been described at the level of medical education (4), so it should not be surprising that educators have struggled with this same phenomenon at the undergraduate level. We describe a new introductory biology lab that challenges students to make these connections. The lab utilizes enzyme histochemistry and morphological observations to draw conclusions about the composition of functionally different types of muscle fibers present in skeletal muscle. We report that students were not only successful at making these observations on a specific skeletal muscle, the gastrocnemius of the frog Rana pipiens, but that they were able to connect their results to the principles of fiber type differences that exist in skeletal muscles in all vertebrates.

  17. Probing the frontiers of particle physics with tabletop-scale experiments.

    PubMed

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  19. Experiments in mixed reality

    NASA Astrophysics Data System (ADS)

    Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark

    2010-01-01

    As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.

  20. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  1. A Positive Psychology Intervention in a Hindu Community: The Pilot Study of the Hero Lab Curriculum.

    PubMed

    Sundar, Siddhi; Qureshi, Adil; Galiatsatos, Panagis

    2016-12-01

    India has high rates of mental health issues among its youth and low-income communities experience a disproportionate amount of depression and suicide. Positive psychology, the act of promoting well-being, could be used as a tool to promote wellness and help improve the mental health of youth living in slum areas of India. A pilot positively psychology program, "The Hero Lab", was conducted in a migratory slum in Worli, Mumbai, with trained Hindu community leaders implementing the interventions toward at-risk Hindu youth. The curriculum's impact showed statistical improvement (p < 0.001) in happiness (General Happiness Scale from 11.24 ± 1.56 to 19.08 ± 3.32), grit (Grit Survey from 2.23 ± 0.34 to 3.24 ± 0.67), empathy (Toronto Empathy Questionnaire from 24.92 ± 3.27 to 41.96 ± 8.41), and gratitude (Gratitude Survey from 16.88 ± 3.47 to 27.98 ± 6.59). While a pilot study, the Hero Lab curriculum demonstrates that positive psychology interventions may be an important tool in improving mental health in at-risk children.

  2. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    NASA Astrophysics Data System (ADS)

    Chambers, Timothy

    This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to

  3. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present

    NASA Astrophysics Data System (ADS)

    Arble, Chris; Jia, Meng; Newberg, John T.

    2018-05-01

    Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.

  4. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  5. Improving Middle School Students’ Quantitative Literacy through Inquiry Lab and Group Investigation

    NASA Astrophysics Data System (ADS)

    Aisya, N. S. M.; Supriatno, B.; Saefudin; Anggraeni, S.

    2017-02-01

    The purpose of this study was to analyze the application of metacognitive strategies learning based Vee Diagram through Inquiry Lab and Group Investigation toward students’ quantitative literacy. This study compared two treatments on learning activity in middle school. The metacognitive strategies have applied to the content of environmental pollution at 7th grade. This study used a quantitative approach with quasi-experimental method. The research sample were the 7th grade students, involves 27 students in the experimental through Inquiry Lab and 27 students in the experimental through Group Investigation. The instruments that used in this research were pretest and posttest quantitative literacy skills, learning step observation sheets, and the questionnaire of teachers and students responses. As the result, N-gain average of pretest and posttest increased in both experimental groups. The average of posttest score was 61,11 for the Inquiry Lab and 54,01 to the Group Investigation. The average score of N-gain quantitative literacy skill of Inquiry Lab class was 0,492 and Group Investigation class was 0,426. Both classes of experiments showed an average N-gain in the medium category. The data has been analyzed statistically by using SPSS ver.23 and the results showed that although both the learning model can develop quantitative literacy, but there is not significantly different of improving students’ quantitative literacy between Inquiry Lab and Group Investigation in environmental pollution material.

  6. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    PubMed

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Global scale predictability of floods

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Gijsbers, Peter; Sperna Weiland, Frederiek

    2016-04-01

    Flood (and storm surge) forecasting at the continental and global scale has only become possible in recent years (Emmerton et al., 2016; Verlaan et al., 2015) due to the availability of meteorological forecast, global scale precipitation products and global scale hydrologic and hydrodynamic models. Deltares has setup GLOFFIS a research-oriented multi model operational flood forecasting system based on Delft-FEWS in an open experimental ICT facility called Id-Lab. In GLOFFIS both the W3RA and PCRGLOB-WB model are run in ensemble mode using GEFS and ECMWF-EPS (latency 2 days). GLOFFIS will be used for experiments into predictability of floods (and droughts) and their dependency on initial state estimation, meteorological forcing and the hydrologic model used. Here we present initial results of verification of the ensemble flood forecasts derived with the GLOFFIS system. Emmerton, R., Stephens, L., Pappenberger, F., Pagano, T., Weerts, A., Wood, A. Salamon, P., Brown, J., Hjerdt, N., Donnelly, C., Cloke, H. Continental and Global Scale Flood Forecasting Systems, WIREs Water (accepted), 2016 Verlaan M, De Kleermaeker S, Buckman L. GLOSSIS: Global storm surge forecasting and information system 2015, Australasian Coasts & Ports Conference, 15-18 September 2015,Auckland, New Zealand.

  8. LANGUAGE LABS--AN UPDATED REPORT.

    ERIC Educational Resources Information Center

    1963

    REPORTS FROM SEVERAL SCHOOL DISTRICTS ON THE USE OF AND PLANNING OF LANGUAGE LABORATORIES ARE PRESENTED. LABORATORIES SHOULD BE ARRANGED FOR FLEXIBLE USE. THE AVERAGE HIGH SCHOOL STUDENT CAN USE A LAB PROFITABLY FOR 20 TO 25 MINUTES. THERE ARE THREE DIFFERENT TYPES OF LANGUAGE LABORATORIES THAT ARE DESCRIBED. THE SATELLITE LAB IS DIVIDED BY A…

  9. Academic Pipeline and Futures Lab

    DTIC Science & Technology

    2016-02-01

    AFRL-RY-WP-TR-2015-0186 ACADEMIC PIPELINE AND FUTURES LAB Brian D. Rigling Wright State University FEBRUARY 2016...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) February 2016 Final 12 June 2009 – 30 September 2015 4. TITLE AND SUBTITLE ACADEMIC ...6 3 WSU ACADEMIC PIPELINE AND LAYERED SENSING FUTURES LAB (prepared by K

  10. Characterization of Magnetite Scale Formed in Naphthenic Acid Corrosion

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe; Nesic, Srdjan

    2017-02-01

    Naphthenic acid corrosion (NAC) is one of the major concerns for corrosion engineers in refineries. Traditionally, the iron sulfide (FeS) scale, formed when sulfur compounds in crudes corrode the metal, is expected to be protective and limit the NAC. Nevertheless, no relationship has been found between protectiveness and the characteristics of FeS scale. In this study, lab scale tests with model sulfur compounds and naphthenic acids replicated corrosive processes of refineries with real crude fractions behavior. The morphology and chemical composition of scales were analyzed with scanning electron microscopy and transmission electron microscopy. These high-resolution microscopy techniques revealed the presence of an iron oxide (Fe3O4 or magnetite) scale and discrete particulates on metal surfaces under FeS scales, especially on a low chrome steel. The presence of the iron oxide was correlated with the naphthenic acid activity during the experiments. It is postulated that the formation of the magnetite scale resulted from the decomposition of iron naphthenates at high temperatures. It is further postulated that a nano-particulate form of magnetite may be providing corrosion resistance.

  11. Creating context for the experiment record. User-defined metadata: investigations into metadata usage in the LabTrove ELN.

    PubMed

    Willoughby, Cerys; Bird, Colin L; Coles, Simon J; Frey, Jeremy G

    2014-12-22

    The drive toward more transparency in research, the growing willingness to make data openly available, and the reuse of data to maximize the return on research investment all increase the importance of being able to find information and make links to the underlying data. The use of metadata in Electronic Laboratory Notebooks (ELNs) to curate experiment data is an essential ingredient for facilitating discovery. The University of Southampton has developed a Web browser-based ELN that enables users to add their own metadata to notebook entries. A survey of these notebooks was completed to assess user behavior and patterns of metadata usage within ELNs, while user perceptions and expectations were gathered through interviews and user-testing activities within the community. The findings indicate that while some groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users are making little attempts to use it, thereby endangering their ability to recover data in the future. A survey of patterns of metadata use in these notebooks, together with feedback from the user community, indicated that while a few groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users adopt a "minimum required" approach to metadata. To investigate whether the patterns of metadata use in LabTrove were unusual, a series of surveys were undertaken to investigate metadata usage in a variety of platforms supporting user-defined metadata. These surveys also provided the opportunity to investigate whether interface designs in these other environments might inform strategies for encouraging metadata creation and more effective use of metadata in LabTrove.

  12. Towards a Manifesto for Living Lab Co-creation

    NASA Astrophysics Data System (ADS)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  13. PatternLab for proteomics 4.0: A one-stop shop for analyzing shotgun proteomic data

    PubMed Central

    Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V; Santos, Marlon D M; Fischer, Juliana S G; Aquino, Priscila F; Moresco, James J; Yates, John R; Barbosa, Valmir C

    2017-01-01

    PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for analyzing shotgun proteomic data. PatternLab contains modules for formatting sequence databases, performing peptide spectrum matching, statistically filtering and organizing shotgun proteomic data, extracting quantitative information from label-free and chemically labeled data, performing statistics for differential proteomics, displaying results in a variety of graphical formats, performing similarity-driven studies with de novo sequencing data, analyzing time-course experiments, and helping with the understanding of the biological significance of data in the light of the Gene Ontology. Here we describe PatternLab for proteomics 4.0, which closely knits together all of these modules in a self-contained environment, covering the principal aspects of proteomic data analysis as a freely available and easily installable software package. All updates to PatternLab, as well as all new features added to it, have been tested over the years on millions of mass spectra. PMID:26658470

  14. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- In its overhead passage down the Space Station Processing Facility, the U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo. Both are elements in the construction of the International Space Station. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  15. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  16. RatLab: an easy to use tool for place code simulations

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2013-01-01

    In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627

  17. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  18. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  19. Beyond Classroom, Lab, Studio and Field

    NASA Astrophysics Data System (ADS)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  20. Nitrification denitrification enhanced biological phosphorous removal (NDEBPR) occurs in a lab-scale alternating hypoxic/oxic membrane bioreactor.

    PubMed

    Sibag, Mark; Kim, Han-Seung

    2012-01-01

    Strict anaerobic or anoxic maintenance of the system and process susceptibility to low organic loading are major concerns in nitrification denitrification enhanced biological phosphorous removal (NDEBPR). The study has initiated NDEBPR in a lab-scale alternating hypoxic/oxic membrane bioreactor by developing an enhanced mixed microbial culture capable of removing 97±2% COD, 99±0.84% NH(3)-N, 90±3% TN, and 96±1% TP-PO(4)(3-) with 20-day SRT. The viable cells ranging from 1.6×10(8) to 2.0×10(8)cells/ml estimated from the total bacterial genomic DNA (6.43-7.83 μg DNA/ml) represented only 5% of the MLVSS indicating low microbial biomass concentration. Reducing the organic load from 1250 to 750 mg COD/ml as glucose did not deteriorate the effluent quality (3.77±1.0 mg N-TN/l; 0.08±0.24 mg NH(3)-N/l; and 0.32±0.10 mg PO(4)(3-)-P/l). These observations are characteristics of activated sludge that harbors denitrifying polyphosphate accumulating organisms (DPAOs). The results showed that NDEBPR can be achieved under alternating hypoxic/oxic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Shifting to an Inquiry-Based Experience

    ERIC Educational Resources Information Center

    Corder, Gregory; Slykhuis, Julie

    2011-01-01

    Teaching science with an inquiry-based approach can seem like an impossible challenge. However, it is achievable. One way to begin is by converting a cookbook-style lab (from the internet or a textbook) into an inquiry-based science experience. To convert a cookbook lab into an inquiry-based science experience, the authors propose the following…

  2. Lab-on-a-Chip Based Protein Crystallization

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  3. a Low-Cost Chirped-Pulse Fourier Transform Microwave Spectrometer for Undergraduate Physical Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Finneran, Ian; Blake, Geoffrey

    2014-06-01

    We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.

  4. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  5. Labs: 1987.

    ERIC Educational Resources Information Center

    Igelsrud, Don, Ed.

    1988-01-01

    This article presents a variety of topics discussed in this column and at a biology teachers' workshop concerning the quality and value of lab techniques used for teaching high school biology. Topics included are Drosophila salivary glands, sea urchins, innovations, dyes and networking. (CW)

  6. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    -486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510

  7. Report from the banding lab

    USGS Publications Warehouse

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  8. Searching for dark photon with positrons at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Marsicano, Luca

    2018-05-01

    The interest in the Dark Photon (A' or U) has recently grown, since it could act as a light mediator to a new sector of Dark Matter particles. In this paradigm, the electron-positron annihilation can rarely produce a γA' pair. Various experiments (e.g. PADME@LNF [1], VEPP-3 [2]) have been proposed to detect this process using positron beams impinging on fixed targets. In such experiments, the energy of the photon from the e+e-→ γA' process is measured with an electromagnetic calorimeter and the missing mass is computed (the A' interacts weakly with Standard Model matter so it can't be detected). However, the A' mass range that can be explored with this technique is limited by the accessible energy in the center of mass frame, which goes as the square root of the beam energy. The realization of a 11 GeV positron beam at Jefferson Lab would allow to search for A' masses up to ˜ 100 MeV, reaching unexplored regions of the A' parameter space. A preliminary study on the feasibility of a PADME-like experiment at Jefferson Lab has been carried out, assuming a 11 GeV positron beam with a ˜ 100 nA current. The achievable sensitivity was estimated, studying the main sources of background (positron bremsstrahlung, annihilation into 2 gammas) using CALCHEP [3] and GEANT4 [4] simulations.

  9. Toward Better Physics Labs for Future Biologists

    NASA Astrophysics Data System (ADS)

    Giannini, John; Moore, Kim; Losert, Wolfgang

    2014-03-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully developed and tested in two small test classes of students at the University of Maryland, College Park (UMD) in 2012-2013, and is currently being used on a wider scale. We have designed the laboratories to be taken accompanying a reformed course in the student's second year, with calculus, biology, and chemistry as prerequisites. This permits the laboratories to include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. One major focus of the laboratories is to introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories. Lab development procedures along with some preliminary student results from these two small test classes are discussed.

  10. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  11. Using Chem-Wiki to Increase Student Collaboration through Online Lab Reporting

    ERIC Educational Resources Information Center

    Elliott, Edward W., III; Fraiman, Ana

    2010-01-01

    The nature of laboratory work has changed in the past decade. One example is a shift from working individually or in pairs on single traditional verification experiments to working collaboratively in larger groups in inquiry and research-based laboratories, over extended periods in and outside of the lab. In this increased era of collaboration, we…

  12. The Floating Lab Research Project: An Approach to Evaluating Field Programs.

    ERIC Educational Resources Information Center

    Brody, Michael J.

    This report explains an evaluative study of the conceptual and affective development of students associated with the Floating Lab Program, an experiential field project sponsored by the University of New Hampshire and the Maine Sea Grant Program. The field program involved an opportunity for students to have hands-on experiences aboard a 65-foot…

  13. ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS

    NASA Image and Video Library

    2009-01-10

    ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  14. Chemistry Provision for Primary Pupils: The Experiences of 10 Years of Bristol ChemLabs Outreach

    ERIC Educational Resources Information Center

    Harrison, Timothy G.; Shallcross, Dudley E.

    2016-01-01

    Bristol ChemLabS, the UK's Centre for Excellence in Teaching and Learning in practical chemistry, delivers numerous outreach activity days per year for thousands of primary school pupils annually. These mainly comprise demonstration assemblies and hands on workshops for pupils in the main. The activities support the UK's Key Stage 2 science…

  15. Thinking Outside the Lab

    NASA Astrophysics Data System (ADS)

    Colter, Tabitha

    2017-01-01

    As an undergraduate physics major who spent 2015 deep in a quantum optics lab at Oak Ridge National Laboratory, I knew my 2016 experience with the House of Representatives Energy and Commerce Committee would be a completely new challenge. I have long had a passion for the bridge of communication between the technical and non-technical worlds but it was only through my AIP Mather internship this summer that I was able to see that passion come to life in the realm of science policy. Suddenly, I went from squeezing political philosophy classes into my packed schedule to witnessing the political process first-hand. I was thrilled to find that the skills of critical thinking and communicating complex issues I have developed throughout my training as a physicist were directly applicable to my work in Congress. Overall, my experience this summer has given me insight into the inner workings of the federal policy process, deepened my appreciation for the work of government employees to keep Congressional members informed on the pressing current issues, and exposed me to a whole range of alternative careers within science. AIP and SPS

  16. Lab-scale demonstration of recuperative thickening technology for enhanced biogas production and dewaterability in anaerobic digestion processes.

    PubMed

    Cobbledick, Jeffrey; Aubry, Nicholas; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2016-05-15

    There is growing interest in the use of high performance anaerobic digestion (AD) processes for the production of biogas at wastewater treatment facilities to offset the energy demands associated with wastewater treatment. Recuperative thickening (RT) is a promising technique which involves recycling a portion of the digested solids back to the incoming feed. In general there exists a significant number of knowledge gaps in the field of RT because the studies that have been conducted to date have almost exclusively occurred in pilot plant or full scale trials; this approach greatly limits the amount of process optimization that can be done in a given trial. In this work, a detailed and comprehensive study of RT was conducted at the lab scale; two custom designed digesters (capacity = 1.5 L) were operated in parallel with one acting as a 'control' digester and the other operating under a semi-batch RT mode. There was no significant change in biogas methane composition for the two digesters, however the RT digester had an average biogas productivity over two times higher than the control one. It was found that the recycling of the polymer flocculant back into the RT digester resulted in a significant improvement in dewatering performance. At the highest polymer concentration tested, the capillary suction time (CST) values for flocculated samples for the RT digester were over 6 times lower than the corresponding values for the control digester. Thus, there exists an opportunity to decrease the overall consumption of polymer flocculants through judicious selection of the dose of polymer flocculant that is used both for the thickening and end-stage dewatering steps in RT processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Statistical Analysis Experiment for Freshman Chemistry Lab.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Describes a laboratory experiment dissolving zinc from galvanized nails in which data can be gathered very quickly for statistical analysis. The data have sufficient significant figures and the experiment yields a nice distribution of random errors. Freshman students can gain an appreciation of the relationships between random error, number of…

  18. Evaluation of oral microbiology lab curriculum reform.

    PubMed

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  19. Live from the Moon ExoLab: EuroMoonMars Simulation at ESTEC 2017

    NASA Astrophysics Data System (ADS)

    Neklesa, A.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.

    2017-10-01

    Space enthusiasts simulated the landing on the Moon having pre-landed Habitat ExoHab, ExoLab 2.0, supported by the control centre on Earth. We give here the first-hand experience from a reporter (A.N.) who joined the space crew.

  20. In Defense of the National Labs and Big-Budget Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tappedmore » in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron

  1. Scaling Study of Reconnection Heating in Torus Plasma Merging Experiments

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi; Akimitsu, Moe; Sawada, Asuka; Cao, Qinghong; Koike, Hideya; Hatano, Hironori; Kaneda, Taishi; Tanabe, Hiroshi

    2017-10-01

    We have been investigating toroidal plasma merging and reconnection for high-power heating of spherical tokamak (ST) and field-reversed configuration (FRC), using TS-3 (ST, FRC: R =0.2m, 1985-), TS-4 (ST, FRC: R =0.5m, 2000-), UTST (ST: R =0.45m, 2008-) and MAST (ST: R =0.9m, 2000-) devices. The series of merging experiments made clear the promising scaling and characteristics of reconnection heating: (i) its ion heating energy that scales with square of the reconnecting magnetic field Brec, (ii) its energy loss lower than 10%, (iii) its ion heating energy (in the downstream) 10 time larger than its electron heating energy (at around X-point) and (iv) low dependence of ion heating on the guide (toroidal) field Bg. The Brec2-scalingwas obtained when the current sheet was compressed to the order of ion gyrodadius. When the sheet was insufficiently compressed, the measured ion temperature was lower than the scaling prediction. Based on this scaling, we realized significant ion heating up to 1.2keV in MAST after 2D elucidation of ion heating up to 250eV in TS-3 [3,4]. This promising scaling leads us to new high Brec reconnection heating experiments for future direct access to burning plasma: TS-U (2017-) in Univ. Tokyo and ST-40 in Tokamak Energy Inc. (2017-). This presentation reviews major progresses in those toroidal plasma merging experiments for physics and fusion applications of magnetic reconnection.

  2. Development of the Bullying and Health Experiences Scale

    PubMed Central

    2012-01-01

    Background Until recently, researchers have studied forms of bullying separately. For 40 years, research has looked at the traditional forms of bullying, including physical (eg, hitting), verbal (eg, threats), and social (eg, exclusion). Attention focused on cyberbullying in the early 2000s. Although accumulating research suggests that bullying has multiple negative effects for children who are targeted, these effects excluded cyberbullying from the definition of bullying. Objective This paper responds to the need for a multidimensional measure of the impact of various forms of bullying. We used a comprehensive definition of bullying, which includes all of its forms, to identify children who had been targeted or who had participated in bullying. We then examined various ways in which they were impacted. Methods We used an online method to administer 37 impact items to 377 (277 female, 100 male) children and youth, to develop and test the Bullying and Health Experience Scale. Results A principal components analysis of the bullying impact items with varimax rotation resulted in 8 factors with eigenvalues greater than one, explaining 68.0% of the variance. These scales include risk, relationships, anger, physical injury, drug use, anxiety, self-esteem, and eating problems, which represent many of the cognitive, psychological, and behavioral consequences of bullying. The Cronbach alpha coefficients for the 8 scales range from .73 to .90, indicating good inter-item consistency. Comparisons between the groups showed that children involved in bullying had significantly higher negative outcomes on all scales than children not involved in bullying. Conclusions The high Cronbach alpha values indicate that the 8 impact scales provide reliable scores. In addition, comparisons between the groups indicate that the 8 scales provide accurate scores, with more negative outcomes reported by children involved in bullying compared to those who are not involved in bullying. This

  3. Development of the bullying and health experiences scale.

    PubMed

    Beran, Tanya; Stanton, Lauren; Hetherington, Ross; Mishna, Faye; Shariff, Shaheen

    2012-11-09

    Until recently, researchers have studied forms of bullying separately. For 40 years, research has looked at the traditional forms of bullying, including physical (eg, hitting), verbal (eg, threats), and social (eg, exclusion). Attention focused on cyberbullying in the early 2000s. Although accumulating research suggests that bullying has multiple negative effects for children who are targeted, these effects excluded cyberbullying from the definition of bullying. This paper responds to the need for a multidimensional measure of the impact of various forms of bullying. We used a comprehensive definition of bullying, which includes all of its forms, to identify children who had been targeted or who had participated in bullying. We then examined various ways in which they were impacted. We used an online method to administer 37 impact items to 377 (277 female, 100 male) children and youth, to develop and test the Bullying and Health Experience Scale. A principal components analysis of the bullying impact items with varimax rotation resulted in 8 factors with eigenvalues greater than one, explaining 68.0% of the variance. These scales include risk, relationships, anger, physical injury, drug use, anxiety, self-esteem, and eating problems, which represent many of the cognitive, psychological, and behavioral consequences of bullying. The Cronbach alpha coefficients for the 8 scales range from .73 to .90, indicating good inter-item consistency. Comparisons between the groups showed that children involved in bullying had significantly higher negative outcomes on all scales than children not involved in bullying. The high Cronbach alpha values indicate that the 8 impact scales provide reliable scores. In addition, comparisons between the groups indicate that the 8 scales provide accurate scores, with more negative outcomes reported by children involved in bullying compared to those who are not involved in bullying. This evidence of reliability and validity indicates that

  4. Innovation - A view from the Lab

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  5. Recent lab-on-chip developments for novel drug discovery.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Nakajima, Mitsutoshi

    2017-07-01

    Microelectromechanical systems (MEMS) and micro total analysis systems (μTAS) revolutionized the biochemical and electronic industries, and this miniaturization process became a key driver for many markets. Now, it is a driving force for innovations in life sciences, diagnostics, analytical sciences, and chemistry, which are called 'lab-on-a-chip, (LOC)' devices. The use of these devices allows the development of fast, portable, and easy-to-use systems with a high level of functional integration for applications such as point-of-care diagnostics, forensics, the analysis of biomolecules, environmental or food analysis, and drug development. In this review, we report on the latest developments in fabrication methods and production methodologies to tailor LOC devices. A brief overview of scale-up strategies is also presented together with their potential applications in drug delivery and discovery. The impact of LOC devices on drug development and discovery has been extensively reviewed in the past. The current research focuses on fast and accurate detection of genomics, cell mutations and analysis, drug delivery, and discovery. The current research also differentiates the LOC devices into new terminology of microengineering, like organ-on-a-chip, stem cells-on-a-chip, human-on-a-chip, and body-on-a-chip. Key challenges will be the transfer of fabricated LOC devices from lab-scale to industrial large-scale production. Moreover, extensive toxicological studies are needed to justify the use of microfabricated drug delivery vehicles in biological systems. It will also be challenging to transfer the in vitro findings to suitable and promising in vivo models. WIREs Syst Biol Med 2017, 9:e1381. doi: 10.1002/wsbm.1381 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a

  7. LABS Foundational Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jerry

    2012-01-01

    They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.

  8. Biology Labs That Work: The Best of How-To-Do-Its.

    ERIC Educational Resources Information Center

    Moore, Randy, Ed.

    This book is a compilation of articles from the The American Biology Teacher journal that present biology labs that are safe, simple, dependable, economic, and diverse. Each activity can be used alone or as a starting point for helping students design follow-up experiments for in-depth study on a particular topic. Students must make keen…

  9. A Rasch scaling validation of a 'core' near-death experience.

    PubMed

    Lange, Rense; Greyson, Bruce; Houran, James

    2004-05-01

    For those with true near-death experiences (NDEs), Greyson's (1983, 1990) NDE Scale satisfactorily fits the Rasch rating scale model, thus yielding a unidimensional measure with interval-level scaling properties. With increasing intensity, NDEs reflect peace, joy and harmony, followed by insight and mystical or religious experiences, while the most intense NDEs involve an awareness of things occurring in a different place or time. The semantics of this variable are invariant across True-NDErs' gender, current age, age at time of NDE, and latency and intensity of the NDE, thus identifying NDEs as 'core' experiences whose meaning is unaffected by external variables, regardless of variations in NDEs' intensity. Significant qualitative and quantitative differences were observed between True-NDErs and other respondent groups, mostly revolving around the differential emphasis on paranormal/mystical/religious experiences vs. standard reactions to threat. The findings further suggest that False-Positive respondents reinterpret other profound psychological states as NDEs. Accordingly, the Rasch validation of the typology proposed by Greyson (1983) also provides new insights into previous research, including the possibility of embellishment over time (as indicated by the finding of positive, as well as negative, latency effects) and the potential roles of religious affiliation and religiosity (as indicated by the qualitative differences surrounding paranormal/mystical/religious issues).

  10. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  11. Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors

    PubMed Central

    Huang, Yue; Mason, Andrew J.

    2013-01-01

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616

  12. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  13. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  14. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A

  16. Scaled Eagle Nebula Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  17. Experiential Learning of Digital Communication Using LabVIEW

    ERIC Educational Resources Information Center

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  18. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  19. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  20. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    NASA Technical Reports Server (NTRS)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  1. Practical Physics Labs: A Resource Manual.

    ERIC Educational Resources Information Center

    Goodwin, Peter

    This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…

  2. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  3. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  4. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  5. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  6. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  7. The effect of group attachment and social position on prosocial behavior. Evidence from lab-in-the-field experiments.

    PubMed

    Baldassarri, Delia; Grossman, Guy

    2013-01-01

    Social life is regulated by norms of fairness that constrain selfish behavior. While a substantial body of scholarship on prosocial behavior has provided evidence of such norms, large inter- and intra-personal variation in prosocial behavior still needs to be explained. The article identifies two social-structural dimensions along which people's generosity varies systematically: group attachment and social position. We conducted lab-in-the-field experiments involving 2,597 members of producer organizations in rural Uganda. Using different variants of the dictator game, we demonstrate that group attachment positively affects prosocial behavior, and that this effect is not simply the by-product of the degree of proximity between individuals. Second, we show that occupying a formal position in an organization or community leads to greater generosity toward in-group members. Taken together, our findings show that prosocial behavior is not an invariant social trait; rather, it varies according to individuals' relative position in the social structure.

  8. The Effect of Group Attachment and Social Position on Prosocial Behavior. Evidence from Lab-in-the-Field Experiments

    PubMed Central

    Baldassarri, Delia; Grossman, Guy

    2013-01-01

    Social life is regulated by norms of fairness that constrain selfish behavior. While a substantial body of scholarship on prosocial behavior has provided evidence of such norms, large inter- and intra-personal variation in prosocial behavior still needs to be explained. The article identifies two social-structural dimensions along which people's generosity varies systematically: group attachment and social position. We conducted lab-in-the-field experiments involving 2,597 members of producer organizations in rural Uganda. Using different variants of the dictator game, we demonstrate that group attachment positively affects prosocial behavior, and that this effect is not simply the by-product of the degree of proximity between individuals. Second, we show that occupying a formal position in an organization or community leads to greater generosity toward in-group members. Taken together, our findings show that prosocial behavior is not an invariant social trait; rather, it varies according to individuals' relative position in the social structure. PMID:23555594

  9. Central Atlantic Lithosphere-Asthenosphere Boundary Study (CAL-LAB): Massive Coast effects in MT data

    NASA Astrophysics Data System (ADS)

    Reyes Ortega, V.; Constable, S.; Bassett, D.

    2017-12-01

    The Lithosphere-Asthenosphere Boundary (LAB) is the largest plate boundary on Earth yet is still poorly understood, with temperature, hydration, composition, melting, strain rate, and anisotropy all candidates to explain the location and behavior of this transition from convecting asthenosphere to rigid lithosphere. Electrical conductivity, estimated from magnetotelluric (MT) data and combined with seismic measurements, is increasingly being seen as a way to improve our understanding of the LAB. The Integrated LAB (iLAB) experiment brings together three institutions from three countries to collect MT data along with passive and active seismic data in the central equatorial Atlantic, over lithosphere from 0 to 80 My old. Thirty-nine seafloor MT instruments were deployed alongside ocean-bottom seismometers for over one year, and recorded data for 70 to 100 days before the batteries expired. Good quality MT responses were obtained from 10 to nearly 100,000 seconds period, but many sites exhibited up to -180 degree phase shifts at the highest frequencies. Forward modeling shows that this behavior is consistent with a coast effect from the African coastline 500-1500 kilometers away. The conductive mid-ocean ridge system modifies the coast effect for sites west of the ridge. Inverting these data for LAB geology in the presence of such a strong coast effect presents a considerable challenge.

  10. Technologies for autonomous integrated lab-on-chip systems for space missions

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.

    2016-11-01

    Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.

  11. Teaching Chemistry Lab Safety through Comics

    NASA Astrophysics Data System (ADS)

    di Raddo, Pasquale

    2006-04-01

    As a means for raising students' interest in aspects pertaining to chemistry lab safety, this article presents a novel approach to teaching this important subject. Comic book lab scenes that involve fictional characters familiar to many students are presented and discussed as to the safety concerns represented in those images. These are discussed in a safety prelab session. For the sake of comparison, students are then shown images taken from current chemistry journals of safety-conscious contemporary chemists at work in their labs. Finally the need to adhere to copyright regulations for the use of the images is discussed so as to increase students' awareness of academic honesty and copyright issues.

  12. An Investigation of the Effects of Relevant Samples and a Comparison of Verification versus Discovery Based Lab Design

    ERIC Educational Resources Information Center

    Rieben, James C., Jr.

    2010-01-01

    This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect…

  13. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    ERIC Educational Resources Information Center

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  14. Colour Association with Music Is Mediated by Emotion: Evidence from an Experiment Using a CIE Lab Interface and Interviews

    PubMed Central

    Lindborg, PerMagnus; Friberg, Anders K.

    2015-01-01

    Crossmodal associations may arise at neurological, perceptual, cognitive, or emotional levels of brain processing. Higher-level modal correspondences between musical timbre and visual colour have been previously investigated, though with limited sets of colour. We developed a novel response method that employs a tablet interface to navigate the CIE Lab colour space. The method was used in an experiment where 27 film music excerpts were presented to participants (n = 22) who continuously manipulated the colour and size of an on-screen patch to match the music. Analysis of the data replicated and extended earlier research, for example, that happy music was associated with yellow, music expressing anger with large red colour patches, and sad music with smaller patches towards dark blue. Correlation analysis suggested patterns of relationships between audio features and colour patch parameters. Using partial least squares regression, we tested models for predicting colour patch responses from audio features and ratings of perceived emotion in the music. Parsimonious models that included emotion robustly explained between 60% and 75% of the variation in each of the colour patch parameters, as measured by cross-validated R 2. To illuminate the quantitative findings, we performed a content analysis of structured spoken interviews with the participants. This provided further evidence of a significant emotion mediation mechanism, whereby people tended to match colour association with the perceived emotion in the music. The mixed method approach of our study gives strong evidence that emotion can mediate crossmodal association between music and visual colour. The CIE Lab interface promises to be a useful tool in perceptual ratings of music and other sounds. PMID:26642050

  15. Colour Association with Music Is Mediated by Emotion: Evidence from an Experiment Using a CIE Lab Interface and Interviews.

    PubMed

    Lindborg, PerMagnus; Friberg, Anders K

    2015-01-01

    Crossmodal associations may arise at neurological, perceptual, cognitive, or emotional levels of brain processing. Higher-level modal correspondences between musical timbre and visual colour have been previously investigated, though with limited sets of colour. We developed a novel response method that employs a tablet interface to navigate the CIE Lab colour space. The method was used in an experiment where 27 film music excerpts were presented to participants (n = 22) who continuously manipulated the colour and size of an on-screen patch to match the music. Analysis of the data replicated and extended earlier research, for example, that happy music was associated with yellow, music expressing anger with large red colour patches, and sad music with smaller patches towards dark blue. Correlation analysis suggested patterns of relationships between audio features and colour patch parameters. Using partial least squares regression, we tested models for predicting colour patch responses from audio features and ratings of perceived emotion in the music. Parsimonious models that included emotion robustly explained between 60% and 75% of the variation in each of the colour patch parameters, as measured by cross-validated R2. To illuminate the quantitative findings, we performed a content analysis of structured spoken interviews with the participants. This provided further evidence of a significant emotion mediation mechanism, whereby people tended to match colour association with the perceived emotion in the music. The mixed method approach of our study gives strong evidence that emotion can mediate crossmodal association between music and visual colour. The CIE Lab interface promises to be a useful tool in perceptual ratings of music and other sounds.

  16. Hydrogel Beads: The New Slime Lab?

    ERIC Educational Resources Information Center

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  17. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  18. An Introductory Biology Lab that Uses Enzyme Histochemistry to Teach Students about Skeletal Muscle Fiber Types

    ERIC Educational Resources Information Center

    Sweeney, Lauren J.; Brodfuehrer, Peter D.; Raughley, Beth L.

    2004-01-01

    One important goal of introductory biology laboratory experiences is to engage students directly in all steps in the process of scientific discovery. Even when laboratory experiences are built on principles discussed in the classroom, students often do not adequately apply this background to interpretation of results they obtain in lab. This…

  19. What's a Lab to Do During and After a Hurricane?

    PubMed

    Rodriguez, Fred; Selvaratnam, Rajeevan; Mann, Peggy; Kalariya, Rina; Petersen, John R

    2018-03-21

    Although laboratories may be able to rely on a comprehensive Hurricane Plan during a hurricane, alarming and unanticipated events frequently occur. To minimize disruption of lab operations, it is important to try to mitigate the impact of these unexpected events as quickly as possible, in the quest to minimize negative outcomes. In this article, we discuss approaches to dealing with unanticipated events during and after hurricanes, based on our personal experiences.

  20. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being