Sample records for lab virtual actor

  1. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  2. A Low-cost System for Generating Near-realistic Virtual Actors

    NASA Astrophysics Data System (ADS)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  3. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  4. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  5. Supercharging Lessons with a Virtual Lab

    ERIC Educational Resources Information Center

    Stewart, Jefferson; Vincent, Daniel

    2013-01-01

    The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…

  6. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  7. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2018-01-16

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  8. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  9. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  10. Virtual Labs in proteomics: new E-learning tools.

    PubMed

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Learning Science in a Virtual Reality Application: The Impacts of Animated-Virtual Actors' Visual Complexity

    ERIC Educational Resources Information Center

    Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken

    2010-01-01

    As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…

  12. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  13. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    PubMed

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  14. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    ERIC Educational Resources Information Center

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  15. Virtual Lab to Develop Achievement in Electronic Circuits for Hearing-Impaired Students

    ERIC Educational Resources Information Center

    Baladoh, S. M.; Elgamal, A. F.; Abas, H. A.

    2017-01-01

    This paper aims to report and discuss the use of a virtual lab for developing achievement in electronic circuits for hearing-impaired students. Results from a number of studies have proved that the virtual lab allowed students to build and test a wide variety of electronic circuits. The present study was implemented to investigate the…

  16. The Study on Virtual Medical Instrument based on LabVIEW.

    PubMed

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  17. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  18. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  19. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    NASA Astrophysics Data System (ADS)

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-02-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.

  20. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  1. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  2. The Virtual Research Lab: Research Outcome Expectations, Research Knowledge, and the Graduate Student Experience

    ERIC Educational Resources Information Center

    Stadtlander, Lee; Giles, Martha; Sickel, Amy

    2013-01-01

    This paper examines the complexities of working with student researchers in a virtual lab setting, logistics, and methods to resolve issues. To demonstrate the feasibility of a virtual lab, a mixed-methods study consisting of quantitative surveys and qualitative data examined changes in doctoral students' confidence as measured by research outcome…

  3. The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics

    ERIC Educational Resources Information Center

    White, Brian T.

    2012-01-01

    The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…

  4. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    ERIC Educational Resources Information Center

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  5. Comparing Physical, Virtual, and Hybrid Flipped Labs for General Education Biology

    ERIC Educational Resources Information Center

    Son, Ji Y.

    2016-01-01

    The purpose of this study was to examine the impact on learning, attitudes, and costs in a redesigned general education undergraduate biology course that implemented web-based virtual labs (VLs) to replace traditional physical labs (PLs). Over an academic year, two new modes of VL instruction were compared to the traditional PL offering: (1) all…

  6. Web-based e-learning and virtual lab of human-artificial immune system.

    PubMed

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.

  7. Utah Virtual Lab: JAVA interactivity for teaching science and statistics on line.

    PubMed

    Malloy, T E; Jensen, G C

    2001-05-01

    The Utah on-line Virtual Lab is a JAVA program run dynamically off a database. It is embedded in StatCenter (www.psych.utah.edu/learn/statsampler.html), an on-line collection of tools and text for teaching and learning statistics. Instructors author a statistical virtual reality that simulates theories and data in a specific research focus area by defining independent, predictor, and dependent variables and the relations among them. Students work in an on-line virtual environment to discover the principles of this simulated reality: They go to a library, read theoretical overviews and scientific puzzles, and then go to a lab, design a study, collect and analyze data, and write a report. Each student's design and data analysis decisions are computer-graded and recorded in a database; the written research report can be read by the instructor or by other students in peer groups simulating scientific conventions.

  8. National Security Implications of Virtual Currency: Examining the Potential for Non-state Actor Deployment

    DTIC Science & Technology

    2015-02-01

    Centralization . . . . . . . . . . . . . . . . . . . . . . 43 “Anonymity”: A Bitcoin Case Study...been a case of x National Security Implications of Virtual Currency such a non-state actor deployment; in this report, we aim to high- light...development of VCs may advance, including a gen- eral increased sophistication in cryptographic applications. More gen- erally, we make the case that the main

  9. ASK4Labs: A Web-Based Repository for Supporting Learning Design Driven Remote and Virtual Labs Recommendations

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Fiskilis, Stefanos; Sampson, Demetrios G.

    2014-01-01

    Over the past years, Remote and Virtual Labs (RVLs) have gained increased attention for their potential to support technology-enhanced science education by enabling science teachers to improve their day-to-day science teaching. Therefore, many educational institutions and scientific organizations have invested efforts for providing online access…

  10. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    NASA Technical Reports Server (NTRS)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  11. Incorporating the e-HIM[R] Virtual Lab into the Health Information Administration Professional Practice Experience

    ERIC Educational Resources Information Center

    Barefield, Amanda C.; Condon, Jim; McCuen, Charlotte; Sayles, Nanette B.

    2010-01-01

    This article will highlight the experiences of two baccalaureate Health Information Administration (HIA) programs in the adoption of the American Health Information Management Association's (AHIMA) e-HIM Virtual Laboratory (Virtual Lab) into the Professional Practice Experience (PPE). Information is provided describing the implementation of the…

  12. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  13. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  14. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  15. The Effects of Virtual Versus Physical Lab Manipulatives on Inquiry Skill Acquisition and Conceptual Understanding of Density

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.

  16. Research on Modeling Technology of Virtual Robot Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.

    2017-12-01

    Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.

  17. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    PubMed

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  18. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios

    PubMed Central

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260

  19. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    PubMed

    Makransky, Guido; Thisgaard, Malene Warming; Gadegaard, Helen

    2016-01-01

    To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment. The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology. Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  20. Virtual lab for learning equipment and treatment of experimental measurements of rainfall, runoff and erosion in small rural catchments

    NASA Astrophysics Data System (ADS)

    Ángel Bajo, José; Redel-Macías, María Dolores; Nichols, Mary; Pérez, Rafael; Bellido, Francisco; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    A virtual lab for learning to use devices and to treat experimental measurements of hydrological and erosive processes in small agricultural catchments was created to support the practical content of the subject Restoration of Forest Ecosystems of the Master of Forest Engineer (University of Cordoba). The objective was to build a virtual place representing a real site equipped to make measurements of rainfall, runoff and sediment concentration. The virtual lab included pictures, videos and explanations that facilitate learning. Moreover, some practical cases were proposed to apply the explained terms. The structure of menu consisted of: Experimental measurements in catchments; Gallery of videos; Equipment; Practical case; Glossary and Additional Information. Their contents were carefully carried out by professors and scientists of Hydrology and Electronics. The main advantages of the virtual lab were its compatibility with on-line platforms such as Moodle and the presentation of examples for the direct analysis as a basis for solving the proposed practical cases. It has been successfully used for two years and was well-values by the students due the opportunities offered by self-access learning tools. In addition, constraints associated with field trips such as logistical complexity and economic aspects are removed.

  1. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  2. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  3. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121056 (27 Aug. 2010) --- NASA astronaut Gregory H. Johnson, STS-134 pilot, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  4. Virtual Environment User Interfaces to Support RLV and Space Station Simulations in the ANVIL Virtual Reality Lab

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    1998-01-01

    Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.

  5. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121049 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (foreground), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  6. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121045 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (right), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. David Homan assisted Feustel. Photo credit: NASA or National Aeronautics and Space Administration

  7. Towards Competence-Based Learning Design Driven Remote and Virtual Labs Recommendations for Science Teachers

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Sergis, Stylianos; Sampson, Demetrios G.; Fyskilis, Stefanos

    2015-01-01

    Remote and virtual labs (RVLs) are widely used by science education teachers in their daily teaching practice. This has led to a plethora of RVLs that are offered with or without cost. In order to organise them and facilitate their search and findability, several RVL web-based repositories have been operated. As a result, a key open challenge is…

  8. The Immersive Virtual Reality Lab: Possibilities for Remote Experimental Manipulations of Autonomic Activity on a Large Scale.

    PubMed

    Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen

    2018-01-01

    There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing.

  9. The Immersive Virtual Reality Lab: Possibilities for Remote Experimental Manipulations of Autonomic Activity on a Large Scale

    PubMed Central

    Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen

    2018-01-01

    There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing. PMID:29867318

  10. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.

    PubMed

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-02-21

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  11. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW

    PubMed Central

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-01-01

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578

  12. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    ERIC Educational Resources Information Center

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-01-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…

  13. The "Virtual ChemLab" Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis

    ERIC Educational Resources Information Center

    Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard

    2005-01-01

    A set of sophisticated and realistic laboratory simulations is created for use in freshman- and sophomore-level chemistry classes and laboratories called 'Virtual ChemLab'. A detailed assessment of student responses is provided and the simulation's pedagogical utility is described using the organic simulation.

  14. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach

  15. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to

  16. Virtual Laboratories and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Hut, Piet

    2008-05-01

    Since we cannot put stars in a laboratory, astrophysicists had to wait till the invention of computers before becoming laboratory scientists. For half a century now, we have been conducting experiments in our virtual laboratories. However, we ourselves have remained behind the keyboard, with the screen of the monitor separating us from the world we are simulating. Recently, 3D on-line technology, developed first for games but now deployed in virtual worlds like Second Life, is beginning to make it possible for astrophysicists to enter their virtual labs themselves, in virtual form as avatars. This has several advantages, from new possibilities to explore the results of the simulations to a shared presence in a virtual lab with remote collaborators on different continents. I will report my experiences with the use of Qwaq Forums, a virtual world developed by a new company (see http://www.qwaq.com).

  17. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    ERIC Educational Resources Information Center

    Brinson, James R.

    2017-01-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to…

  18. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  19. OpenVirtualToxLab--a platform for generating and exchanging in silico toxicity data.

    PubMed

    Vedani, Angelo; Dobler, Max; Hu, Zhenquan; Smieško, Martin

    2015-01-22

    The VirtualToxLab is an in silico technology for estimating the toxic potential--endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity--of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of currently 16 proteins, known or suspected to trigger adverse effects: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The toxic potential of a compound--its ability to trigger adverse effects--is derived from its computed binding affinities toward these very proteins: the computationally demanding simulations are executed in client-server model on a Linux cluster of the University of Basel. The graphical-user interface supports all computer platforms, allows building and uploading molecular structures, inspecting and downloading the results and, most important, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. Access to the VirtualToxLab is available free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Can a virtual supermarket bring realism into the lab? Comparing shopping behavior using virtual and pictorial store representations to behavior in a physical store.

    PubMed

    van Herpen, Erica; van den Broek, Eva; van Trijp, Hans C M; Yu, Tian

    2016-12-01

    Immersive virtual reality techniques present new opportunities for research into consumer behavior. The current study examines whether the increased realism of a virtual store compared to pictorial (2D) stimuli elicits consumer behavior that is more in line with behavior in a physical store. We examine the number, variety, and type of products selected, amount of money spent, and responses to price promotions and shelf display, in three product categories (fruit & vegetables, milk, and biscuits). We find that virtual reality elicits behavior that is more similar to behavior in the physical store compared to the picture condition for the number of products selected (Milk: M store  = 1.19, M virtual  = 1.53, M pictures  = 2.58) and amount of money spent (Milk: M store  = 1.27, M virtual  = 1.53, M pictures  = 2.60 Euro), and for the selection of products from different areas of the shelf, both vertically (purchases from top shelves, milk and biscuits: P store  = 21.6%, P virtual  = 33.4%, P pictures  = 50.0%) and horizontally (purchase from left shelf, biscuits: P store  = 35.5%, P virtual  = 53.3%, P pictures  = 66.7%). This indicates that virtual reality can improve realism in responses to shelf allocation. Virtual reality was not able to diminish other differences between lab and physical store: participants bought more products and spent more money (for biscuits and fruit & vegetables), bought more national brands, and responded more strongly to price promotions in both virtual reality and pictorial representations than in the physical store. Implications for the use of virtual reality in studies of consumer food choice behavior as well as for future improvement of virtual reality techniques are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel; Dobler, Max

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptormore » γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.« less

  2. Towards a Metadata Schema for Characterizing Lesson Plans Supported by Virtual and Remote Labs in School Science Education

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.

    2015-01-01

    Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…

  3. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures.

    PubMed

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.

  4. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures

    PubMed Central

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611

  5. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and

  6. Meeting the Needs of Gifted and Talented Students: Case Study of a Virtual Learning Lab in a Rural Middle School

    ERIC Educational Resources Information Center

    Swan, Bonnie; Coulombe-Quach, Xuan-Lise; Huang, Angela; Godek, Jaime; Becker, Deborah; Zhou, Yan

    2015-01-01

    Researchers used case study methods to investigate a virtual learning lab (VLL) in a rural school district that was created in 2011 as a way to better meet the unique needs of exceptional students who are considered gifted. Data were collected through focus groups, classroom observations, interviews, and reviewing relevant documents. Topics…

  7. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    PubMed

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  8. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy

    PubMed Central

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted. PMID:22013388

  9. Use of 3D techniques for virtual production

    NASA Astrophysics Data System (ADS)

    Grau, Oliver; Price, Marc C.; Thomas, Graham A.

    2000-12-01

    Virtual production for broadcast is currently mainly used in the form of virtual studios, where the resulting media is a sequence of 2D images. With the steady increase of 3D computing power in home PCs and the technical progress in 3D display technology, the content industry is looking for new kinds of program material, which makes use of 3D technology. The applications range form analysis of sport scenes, 3DTV, up to the creation of fully immersive content. In a virtual studio a camera films one or more actors in a controlled environment. The pictures of the actors can be segmented very accurately in real time using chroma keying techniques. The isolated silhouette can be integrated into a new synthetic virtual environment using a studio mixer. The resulting shape description of the actors is 2D so far. For the realization of more sophisticated optical interactions of the actors with the virtual environment, such as occlusions and shadows, an object-based 3D description of scenes is needed. However, the requirements of shape accuracy, and the kind of representation, differ in accordance with the application. This contribution gives an overview of requirements and approaches for the generation of an object-based 3D description in various applications studied by the BBC R and D department. An enhanced Virtual Studio for 3D programs is proposed that covers a range of applications for virtual production.

  10. Virtual Labs vs. Remote Labs: Between Myth & Reality.

    ERIC Educational Resources Information Center

    Alhalabi, Bassem; Hamza, M. Khalid; Hsu, Sam; Romance, Nancy

    Many United States institutions of higher education have established Web-based educational environments that provide higher education curricula via the Internet and diverse modalities. Success has been limited primarily to virtual classrooms (real audio/video transmission) and/or test taking (online form filing). An extensive survey was carried…

  11. The Participatory Design of a (Today and) Future Digital Entomology Lab

    ERIC Educational Resources Information Center

    Hai-Jew, Shalin

    2011-01-01

    This article showcases a virtual interactive participatory design activity for building a digital entomology lab. Conceptualized as a virtual complement to a general entomology course at Kansas State University, the lab would allow learners to explore morphological aspects of insects--their various forms and functions--in order to understand…

  12. HTC Vive MeVisLab integration via OpenVR for medical applications

    PubMed Central

    Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-01-01

    Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840

  13. HTC Vive MeVisLab integration via OpenVR for medical applications.

    PubMed

    Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-01-01

    Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.

  14. National Lab Science Day | News

    Science.gov Websites

    Laboratory news From lab leadership Submit content - login required Provide feedback Subscribe to our officer at Fermilab, guided Secretary Moniz and members of the U.S. Senate and House on virtual tours of virtual tour Particle detector tours Collisions in 3-D DOE facilities Dark matter and dark energy Particle

  15. Governing Methods: Policy Innovation Labs, Design and Data Science in the Digital Governance of Education

    ERIC Educational Resources Information Center

    Williamson, Ben

    2015-01-01

    Policy innovation labs are emerging knowledge actors and technical experts in the governing of education. The article offers a historical and conceptual account of the organisational form of the policy innovation lab. Policy innovation labs are characterised by specific methods and techniques of design, data science, and digitisation in public…

  16. RANS Simulation (Virtual Blade Model [VBM]) of Single Lab Scaled DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph

    2014-04-15

    Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.

  17. Development of a virtual lab for practical eLearning in eHealth.

    PubMed

    Herzog, Juliane; Forjan, Mathias; Sauermann, Stefan; Mense, Alexander; Urbauer, Philipp

    2015-01-01

    In recent years an ongoing development in educational offers for professionals working in the field of eHealth has been observed. This education is increasingly offered in the form of eLearning courses. Furthermore, it can be seen that simulations are a valuable part to support the knowledge transfer. Based on the knowledge profiles defined for eHealth courses a virtual lab should be developed. For this purpose, a subset of skills and a use case is determined. After searching and evaluating appropriate simulating and testing tools six tools were chosen to implement the use case practically. Within an UML use case diagram the interaction between the tools and the user is represented. Initially tests have shown good results of the tools' feasibility. After an extensive testing phase the tools should be integrated in the eHealth eLearning courses.

  18. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  19. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  20. Optimized R functions for analysis of ecological community data using the R virtual laboratory (RvLab)

    PubMed Central

    Varsos, Constantinos; Patkos, Theodore; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos

    2016-01-01

    Abstract Background Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. New information In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological

  1. Optimized R functions for analysis of ecological community data using the R virtual laboratory (RvLab).

    PubMed

    Varsos, Constantinos; Patkos, Theodore; Oulas, Anastasis; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos

    2016-01-01

    Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data - Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on

  2. A workout for virtual bodybuilders (design issues for embodiment in multi-actor virtual environments)

    NASA Technical Reports Server (NTRS)

    Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave

    1994-01-01

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.

  3. STS-115 Vitual Lab Training

    NASA Image and Video Library

    2005-06-07

    JSC2005-E-21191 (7 June 2005) --- Astronaut Steven G. MacLean, STS-115 mission specialist representing the Canadian Space Agency, uses the virtual reality lab at the Johnson Space Center to train for his duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  4. STS-115 Vitual Lab Training

    NASA Image and Video Library

    2005-06-07

    JSC2005-E-21192 (7 June 2005) --- Astronauts Christopher J. Ferguson (left), STS-115 pilot, and Daniel C. Burbank, mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  5. White Paper for Virtual Control Room

    NASA Technical Reports Server (NTRS)

    Little, William; Tully-Hanson, Benjamin

    2015-01-01

    The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.

  6. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    PubMed

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  7. Inside Linden Lab

    ERIC Educational Resources Information Center

    Atkinson, Tom

    2008-01-01

    In this article, the author provides an overview of Second Life[trademark], or simply SL, which was developed at Linden Lab, a San Francisco-based corporation. SL is an online society within a threee-dimensional virtual world entirely built and owned by its residents, where they can explore, build, socialize and participate in their own economy.…

  8. Networking Labs in the Online Environment: Indicators for Success

    ERIC Educational Resources Information Center

    Lahoud, Hilmi A.; Krichen, Jack P.

    2010-01-01

    Several techniques have been used to provide hands-on educational experiences to online learners, including remote labs, simulation software, and virtual labs, which offer a more structured environment, including simulations and scheduled asynchronous access to physical resources. This exploratory study investigated how these methods can be used…

  9. Assessing Student Learning in a Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Wolf, T.

    2010-01-01

    Laboratory experience is a key factor in technical and scientific education. Virtual laboratories have been proposed to reduce cost and simplify maintenance of lab facilities while still providing students with access to real systems. It is important to determine if such virtual labs are still effective for student learning. In the assessment of a…

  10. The Virtual Tablet: Virtual Reality as a Control System

    NASA Technical Reports Server (NTRS)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  11. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  12. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  13. Sniffing Out Efficacy: Sniffy Lite, a Virtual Animal Lab

    ERIC Educational Resources Information Center

    Venneman, Sandy S.; Knowles, Laura, Ruth

    2005-01-01

    We investigated the benefits of using a virtual laboratory, Sniffy Lite CD-ROM (Alloway, Wilson, Graham, & Krames, 2000), as a supplemental teaching tool to present schedules of reinforcement in operant conditioning. Our results suggest that using the virtual laboratory significantly enhanced understanding. Students who used the virtual laboratory…

  14. A Computer Lab that Students Use but Never See

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2008-01-01

    North Carolina State University may never build another computer lab. Instead the university has installed racks of equipment in windowless rooms where students and professors never go. This article describes a project called the Virtual Computing Lab. Users enter it remotely from their own computers in dormitory rooms or libraries. They get all…

  15. From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs

    NASA Astrophysics Data System (ADS)

    Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan

    2014-07-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.

  16. On Scaffolding Adaptive Teaching Prompts within Virtual Labs

    ERIC Educational Resources Information Center

    Najjar, Mehdi

    2008-01-01

    Despite a growing development of virtual laboratories which use the advantages of multimedia and Internet for distance education, learning by means of such tutorial tools would be more effective if they were specifically tailored to each student needs. The virtual teaching process would be well adapted if an artificial tutor can identify the…

  17. INSA Virtual Labs: a new R+D framework for innovative space science and technology

    NASA Astrophysics Data System (ADS)

    Cardesin Moinelo, Alejandro; Sanchez Portal, Miguel

    2012-10-01

    The company INSA (Ingeniería y Servicios Aeroespaciales) has given support to ESA Scientific missions for more than 20 years and is one of the main companies present in the European Space Astronomy Centre (ESAC) in Madrid since its creation. INSA personnel at ESAC provide high level technical and scientific support to ESA for all Astronomy and Solar System missions. In order to improve and maintain the scientific and technical competences among the employees, a research group has been created with the name "INSA Virtual Labs". This group coordinates all the R+D activities carried out by INSA personnel at ESAC and aims to establish collaborations and improve synergies with other research groups, institutes and universities. This represents a great means to improve the visibility of these activities towards the scientific community and serves as breeding ground for new innovative ideas and future commercial products.

  18. Aerospace applications of virtual environment technology.

    PubMed

    Loftin, R B

    1996-11-01

    The uses of virtual environment technology in the space program are examined with emphasis on training for the Hubble Space Telescope Repair and Maintenance Mission in 1993. Project ScienceSpace at the Virtual Environment Technology Lab is discussed.

  19. Virtually the ultimate research lab.

    PubMed

    Kulik, Alexander

    2018-04-26

    Virtual reality (VR) can serve as a viable platform for psychological research. The real world with many uncontrolled variables can be masked to immerse participants in complex interactive environments that are under full experimental control. However, as any other laboratory setting, these simulations are not perceived equally to reality and they also afford different behaviour. We need a better understanding of these differences, which are often related to parameters of the technical setup, to support valid interpretations of experimental results. © 2018 The British Psychological Society.

  20. The StratusLab cloud distribution: Use-cases and support for scientific applications

    NASA Astrophysics Data System (ADS)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take

  1. Virtual lab demonstrations improve students' mastery of basic biology laboratory techniques.

    PubMed

    Maldarelli, Grace A; Hartmann, Erica M; Cummings, Patrick J; Horner, Robert D; Obom, Kristina M; Shingles, Richard; Pearlman, Rebecca S

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  2. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0

    PubMed Central

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results. PMID:19730752

  3. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    PubMed

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  4. Effects of Implementing a Hybrid Wet Lab and Online Module Lab Curriculum into a General Chemistry Course: Impacts on Student Performance and Engagement with the Chemistry Triplet

    ERIC Educational Resources Information Center

    Irby, Stefan M.; Borda, Emily J.; Haupt, Justin

    2018-01-01

    Here, we describe the implementation a hybrid general chemistry teaching laboratory curriculum that replaces a portion of a course's traditional "wet lab" experiences with online virtual lab modules. These modules intentionally utilize representations on all three levels of the chemistry triplet-macroscopic, submicroscopic, and symbolic.…

  5. Object Creation and Human Factors Evaluation for Virtual Environments

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1998-01-01

    The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.

  6. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  7. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00754 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  8. [Virtual microscopy in pathology teaching and postgraduate training (continuing education)].

    PubMed

    Sinn, H P; Andrulis, M; Mogler, C; Schirmacher, P

    2008-11-01

    As with conventional microscopy, virtual microscopy permits histological tissue sections to be viewed on a computer screen with a free choice of viewing areas and a wide range of magnifications. This, combined with the possibility of linking virtual microscopy to E-Learning courses, make virtual microscopy an ideal tool for teaching and postgraduate training in pathology. Uses of virtual microscopy in pathology teaching include blended learning with the presentation of digital teaching slides in the internet parallel to presentation in the histology lab, extending student access to histology slides beyond the lab. Other uses are student self-learning in the Internet, as well as the presentation of virtual slides in the classroom with or without replacing real microscopes. Successful integration of virtual microscopy depends on its embedding in the virtual classroom and the creation of interactive E-learning content. Applications derived from this include the use of virtual microscopy in video clips, podcasts, SCORM modules and the presentation of virtual microscopy using interactive whiteboards in the classroom.

  9. Virtual Computing Laboratories: A Case Study with Comparisons to Physical Computing Laboratories

    ERIC Educational Resources Information Center

    Burd, Stephen D.; Seazzu, Alessandro F.; Conway, Christopher

    2009-01-01

    Current technology enables schools to provide remote or virtual computing labs that can be implemented in multiple ways ranging from remote access to banks of dedicated workstations to sophisticated access to large-scale servers hosting virtualized workstations. This paper reports on the implementation of a specific lab using remote access to…

  10. ExperimentaLab: A Virtual Platform to Enhance Entrepreneurial Education through Training

    ERIC Educational Resources Information Center

    Iscaro, Valentina; Castaldi, Laura; Sepe, Enrica

    2017-01-01

    With a view to enhancing the entrepreneurial activity of universities, the authors explore the concepts and features of the "experimental lab", presenting it as an effective means of supporting entrepreneurial training programmes and helping students to turn ideas into actual start-ups. In this context, the term experimental lab refers…

  11. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00748 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, prepares to use specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  12. Designing communication and remote controlling of virtual instrument network system

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  13. Ames Lab 101: C6: Virtual Engineering

    ScienceCinema

    McCorkle, Doug

    2018-01-01

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  14. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  15. Action adaptation during natural unfolding social scenes influences action recognition and inferences made about actor beliefs.

    PubMed

    Keefe, Bruce D; Wincenciak, Joanna; Jellema, Tjeerd; Ward, James W; Barraclough, Nick E

    2016-07-01

    When observing another individual's actions, we can both recognize their actions and infer their beliefs concerning the physical and social environment. The extent to which visual adaptation influences action recognition and conceptually later stages of processing involved in deriving the belief state of the actor remains unknown. To explore this we used virtual reality (life-size photorealistic actors presented in stereoscopic three dimensions) to see how visual adaptation influences the perception of individuals in naturally unfolding social scenes at increasingly higher levels of action understanding. We presented scenes in which one actor picked up boxes (of varying number and weight), after which a second actor picked up a single box. Adaptation to the first actor's behavior systematically changed perception of the second actor. Aftereffects increased with the duration of the first actor's behavior, declined exponentially over time, and were independent of view direction. Inferences about the second actor's expectation of box weight were also distorted by adaptation to the first actor. Distortions in action recognition and actor expectations did not, however, extend across different actions, indicating that adaptation is not acting at an action-independent abstract level but rather at an action-dependent level. We conclude that although adaptation influences more complex inferences about belief states of individuals, this is likely to be a result of adaptation at an earlier action recognition stage rather than adaptation operating at a higher, more abstract level in mentalizing or simulation systems.

  16. The Effectiveness of Using Virtual Laboratories to Teach Computer Networking Skills in Zambia

    ERIC Educational Resources Information Center

    Lampi, Evans

    2013-01-01

    The effectiveness of using virtual labs to train students in computer networking skills, when real equipment is limited or unavailable, is uncertain. The purpose of this study was to determine the effectiveness of using virtual labs to train students in the acquisition of computer network configuration and troubleshooting skills. The study was…

  17. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study.

    PubMed

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.

  18. Teaching Web Security Using Portable Virtual Labs

    ERIC Educational Resources Information Center

    Chen, Li-Chiou; Tao, Lixin

    2012-01-01

    We have developed a tool called Secure WEb dEvelopment Teaching (SWEET) to introduce security concepts and practices for web application development. This tool provides introductory tutorials, teaching modules utilizing virtualized hands-on exercises, and project ideas in web application security. In addition, the tool provides pre-configured…

  19. Air-condition Control System of Weaving Workshop Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Song, Jian

    The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.

  20. RANS Simulation (Virtual Blade Model [VBM]) of Array of Three Coaxial Lab Scaled DOE RM1 MHK Turbine with 5D Spacing

    DOE Data Explorer

    Javaherchi, Teymour

    2016-06-08

    Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbines in a coaxial array is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of each device and structure of their turbulent far wake. The results of these simulations were validated against the developed in-house experimental data. Simulations for other turbine configurations are available upon request.

  1. Teaching computer interfacing with virtual instruments in an object-oriented language.

    PubMed Central

    Gulotta, M

    1995-01-01

    LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361

  2. Teaching computer interfacing with virtual instruments in an object-oriented language.

    PubMed

    Gulotta, M

    1995-11-01

    LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.

  3. Quality Improvement in Virtual Higher Education: A Grounded Theory Approach

    ERIC Educational Resources Information Center

    Mahdiuon, Rouhollah; Masoumi, Davoud; Farasatkhah, Maghsoud

    2017-01-01

    The article aims to explore the attributes of quality and quality improvement including the process and specific actions associated with these attributes--that contribute enhancing quality in Iranian Virtual Higher Education (VHE) institutions. A total of 16 interviews were conducted with experts and key actors in Iranian virtual higher education.…

  4. Virtual Specimens

    NASA Astrophysics Data System (ADS)

    de Paor, D. G.

    2009-12-01

    Virtual Field Trips have been around almost as long as the Worldwide Web itself yet virtual explorers do not generally return to their desktops with folders full of virtual hand specimens. Collection of real specimens on fields trips for later analysis in the lab (or at least in the pub) has been an important part of classical field geoscience education and research for generations but concern for the landscape and for preservation of key outcrops from wanton destruction has lead to many restrictions. One of the author’s favorite outcrops was recently vandalized presumably by a geologist who felt the need to bash some of the world’s most spectacular buckle folds with a rock sledge. It is not surprising, therefore, that geologists sometimes leave fragile localities out of field trip itineraries. Once analyzed, most specimens repose in drawers or bins, never to be seen again. Some end up in teaching collections but recent pedagogical research shows that undergraduate students have difficulty relating specimens both to their collection location and ultimate provenance in the lithosphere. Virtual specimens can be created using 3D modeling software and imported into virtual globes such as Google Earth (GE) where, they may be linked to virtual field trip stops or restored to their source localities on the paleo-globe. Sensitive localities may be protected by placemark approximation. The GE application program interface (API) has a distinct advantage over the stand-alone GE application when it comes to viewing and manipulating virtual specimens. When instances of the virtual globe are embedded in web pages using the GE plug-in, Collada models of specimens can be manipulated with javascript controls residing in the enclosing HTML, permitting specimens to be magnified, rotated in 3D, and sliced. Associated analytical data may be linked into javascript and localities for comparison at various points on the globe referenced by ‘fetching’ KML. Virtual specimens open up

  5. 3D-Lab: a collaborative web-based platform for molecular modeling.

    PubMed

    Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas

    2016-09-01

    The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.

  6. Adding Automatic Evaluation to Interactive Virtual Labs

    ERIC Educational Resources Information Center

    Farias, Gonzalo; Muñoz de la Peña, David; Gómez-Estern, Fabio; De la Torre, Luis; Sánchez, Carlos; Dormido, Sebastián

    2016-01-01

    Automatic evaluation is a challenging field that has been addressed by the academic community in order to reduce the assessment workload. In this work we present a new element for the authoring tool Easy Java Simulations (EJS). This element, which is named automatic evaluation element (AEE), provides automatic evaluation to virtual and remote…

  7. ICCE/ICCAI 2000 Full & Short Papers (Virtual Lab/Classroom/School).

    ERIC Educational Resources Information Center

    2000

    This document contains the following full and short papers on virtual laboratories, classrooms, and schools from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple…

  8. Exploring the changing learning environment of the gross anatomy lab.

    PubMed

    Hopkins, Robin; Regehr, Glenn; Wilson, Timothy D

    2011-07-01

    The objective of this study was to assess the impact of virtual models and prosected specimens in the context of the gross anatomy lab. In 2009, student volunteers from an undergraduate anatomy class were randomly assigned to study groups in one of three learning conditions. All groups studied the muscles of mastication and completed identical learning objectives during a 45-minute lab. All groups were provided with two reference atlases. Groups were distinguished by the type of primary tools they were provided: gross prosections, three-dimensional stereoscopic computer model, or both resources. The facilitator kept observational field notes. A prepost multiple-choice knowledge test was administered to evaluate students' learning. No significant effect of the laboratory models was demonstrated between groups on the prepost assessment of knowledge. Recurring observations included students' tendency to revert to individual memorization prior to the posttest, rotation of models to match views in the provided atlas, and dissemination of groups into smaller working units. The use of virtual lab resources seemed to influence the social context and learning environment of the anatomy lab. As computer-based learning methods are implemented and studied, they must be evaluated beyond their impact on knowledge gain to consider the effect technology has on students' social development.

  9. Photographic coverage of STS-112 during EVA 3 in VR Lab.

    NASA Image and Video Library

    2002-08-21

    JSC2002-E-34622 (21 August 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements.

  10. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study

    PubMed Central

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) “true/false” SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved “true” zones could determine the corrosion rate in any of the zones. PMID:23691434

  11. Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks

    PubMed Central

    Mahjoub, Reem K.; Elleithy, Khaled

    2017-01-01

    The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation. PMID:28420102

  12. Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks.

    PubMed

    Mahjoub, Reem K; Elleithy, Khaled

    2017-04-14

    The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation.

  13. STS-109 Crew Training in VR Lab, Building 9

    NASA Image and Video Library

    2001-08-08

    JSC2001-E-24452 (8 August 2001) --- Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at the Johnson Space Center (JSC) to train for some of their duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties during the fourth Hubble Space Telescope (HST) servicing mission.

  14. Virtualization in education: Information Security lab in your hands

    NASA Astrophysics Data System (ADS)

    Karlov, A. A.

    2016-09-01

    The growing demand for qualified specialists in advanced information technologies poses serious challenges to the education and training of young personnel for science, industry and social problems. Virtualization as a way to isolate the user from the physical characteristics of computing resources (processors, servers, operating systems, networks, applications, etc.), has, in particular, an enormous influence in the field of education, increasing its efficiency, reducing the cost, making it more widely and readily available. The study of Information Security of computer systems is considered as an example of use of virtualization in education.

  15. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    ERIC Educational Resources Information Center

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  16. Intelligent Motion and Interaction Within Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  17. Moral actor, selfish agent.

    PubMed

    Frimer, Jeremy A; Schaefer, Nicola K; Oakes, Harrison

    2014-05-01

    People are motivated to behave selfishly while appearing moral. This tension gives rise to 2 divergently motivated selves. The actor-the watched self-tends to be moral; the agent-the self as executor-tends to be selfish. Three studies present direct evidence of the actor's and agent's distinct motives. To recruit the self-as-actor, we asked people to rate the importance of various goals. To recruit the self-as-agent, we asked people to describe their goals verbally. In Study 1, actors claimed their goals were equally about helping the self and others (viz., moral); agents claimed their goals were primarily about helping the self (viz., selfish). This disparity was evident in both individualist and collectivist cultures, attesting to the universality of the selfish agent. Study 2 compared actors' and agents' motives to those of people role-playing highly prosocial or selfish exemplars. In content (Study 2a) and in the impressions they made on an outside observer (Study 2b), actors' motives were similar to those of the prosocial role-players, whereas agents' motives were similar to those of the selfish role-players. Study 3 accounted for the difference between the actor and agent: Participants claimed that their agent's motives were the more realistic and that their actor's motives were the more idealistic. The selfish agent/moral actor duality may account for why implicit and explicit measures of the same construct diverge, and why feeling watched brings out the better angels of human nature.

  18. Reconfigurable virtual electrowetting channels.

    PubMed

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  19. Embodied collaboration support system for 3D shape evaluation in virtual space

    NASA Astrophysics Data System (ADS)

    Okubo, Masashi; Watanabe, Tomio

    2005-12-01

    Collaboration mainly consists of two tasks; one is each partner's task that is performed by the individual, the other is communication with each other. Both of them are very important objectives for all the collaboration support system. In this paper, a collaboration support system for 3D shape evaluation in virtual space is proposed on the basis of both studies in 3D shape evaluation and communication support in virtual space. The proposed system provides the two viewpoints for each task. One is the viewpoint of back side of user's own avatar for the smooth communication. The other is that of avatar's eye for 3D shape evaluation. Switching the viewpoints satisfies the task conditions for 3D shape evaluation and communication. The system basically consists of PC, HMD and magnetic sensors, and users can share the embodied interaction by observing interaction between their avatars in virtual space. However, the HMD and magnetic sensors, which are put on the users, would restrict the nonverbal communication. Then, we have tried to compensate the loss of nodding of partner's avatar by introducing the speech-driven embodied interactive actor InterActor. Sensory evaluation by paired comparison of 3D shapes in the collaborative situation in virtual space and in real space and the questionnaire are performed. The result demonstrates the effectiveness of InterActor's nodding in the collaborative situation.

  20. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39090 (18 October 2001) --- Cosmonaut Valeri G. Korzun, Expedition Five mission commander representing Rosaviakosmos, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements.

  1. STS-126 crew during preflight VR LAB MSS EVA2 training

    NASA Image and Video Library

    2008-04-14

    JSC2008-E-033771 (14 April 2008) --- Astronaut Eric A. Boe, STS-126 pilot, uses the virtual reality lab in the Space Vehicle Mockup Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  3. Laparoscopic baseline ability assessment by virtual reality.

    PubMed

    Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M

    2005-02-01

    Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P < 0.05) correlation between 11 of 16 possible relationships between the virtual reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.

  4. Effect of Virtual Analytical Chemistry Laboratory on Enhancing Student Research Skills and Practices

    ERIC Educational Resources Information Center

    Bortnik, Boris; Stozhko, Natalia; Pervukhina, Irina; Tchernysheva, Albina; Belysheva, Galina

    2017-01-01

    This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory…

  5. Is There a Second Life for Virtual Worlds?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2011-01-01

    Just a few years ago, virtual worlds were credited with the power to transform the universe. Used since the late 1990s in military and medical applications, virtual worlds first gained mainstream media attention when Linden Lab released Second Life in 2003. While other worlds, including open source environments, have launched since then (examples…

  6. The World's the Limit in the Virtual High School.

    ERIC Educational Resources Information Center

    Berman, Sheldon; Tinker, Robert

    1997-01-01

    Assisted by a U.S. Department of Education Technology Innovation Challenge Grant, the Hudson (Massachusetts) Public Schools, the Concord Consortium Educational Technology Lab, and 30 collaborating high schools across the nation have developed a virtual high school over the Internet. Through Internet-based courses, Virtual High School significantly…

  7. Vision-based navigation in a dynamic environment for virtual human

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu

    2004-06-01

    Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.

  8. LabVIEW Interface for PCI-SpaceWire Interface Card

    NASA Technical Reports Server (NTRS)

    Lux, James; Loya, Frank; Bachmann, Alex

    2005-01-01

    This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.

  9. Incorporating a collaborative web-based virtual laboratory in an undergraduate bioinformatics course.

    PubMed

    Weisman, David

    2010-01-01

    Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  10. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.

    PubMed

    Chalil Madathil, Kapil; Greenstein, Joel S

    2017-11-01

    Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual

  11. The need of a multi-actor perspective to understand expectations from virtual presence: managing elderly homecare informatics.

    PubMed

    Mettler, Tobias; Vimarlund, Vivian

    2011-12-01

    Different studies have analysed a wide range of use cases and scenarios for using IT-based services in homecare settings for elderly people. In most instances, the impact of such services has been studied using a one-dimensional approach, either focusing on the benefits for the patient or health service provider. The objective of this contribution is to explore a model for identifying and understanding outcomes of IT-based homecare services from a multi-actor perspective. In order to better understand the state of the art in homecare informatics, we conducted a literature review. We use experiences from previous research in the area of informatics to develop the proposed model. The proposed model consists of four core activities 'identify involved actors', 'understand consequences', 'clarify contingencies', 'take corrective actions', and one additional activity 'brainstorming IT use'. The primary goal of innovating organisations, processes and services in homecare informatics today, is to offer continued care, better decision support both to practitioners and patients, as well as effective distribution of resources. A multi-actor analysis perspective is needed to understand utility determination for the involved stakeholders.

  12. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    ERIC Educational Resources Information Center

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  13. Photographic coverage of STS-112 during EVA 3 in VR Lab.

    NASA Image and Video Library

    2002-08-21

    JSC2002-E-34625 (21 Aug. 2002) --- Astronaut Sandra H. Magnus (left), STS-112 mission specialist, uses the virtual reality lab at NASA?s Johnson Space Center (JSC) to train for her duties aboard the space shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements. Lead SSRMS instructor Elizabeth C. Bloomer assisted Magnus. Astronaut Ellen Ochoa (standing) looks on. Photo credit: NASA

  14. ESIP Lab: Supporting Development of Earth Sciences Cyberinfrastructure through Innovation Commons

    NASA Astrophysics Data System (ADS)

    Burgess, A. B.; Robinson, E.

    2017-12-01

    The Earth Science Information Partners (ESIP) is an open, networked community that brings together science, data and information technology practitioners from across sectors. Participation in ESIP is beneficial because it provides an intellectual commons to expose, gather and enhance in-house capabilities in support of an organization's own mandate. Recently, ESIP has begun to explore piloting activities that have worked in the U.S. in other countries as a way to facilitate international collaboration and cross-pollination. The newly formed ESIP Lab realizes the commons concept by providing a virtual place to come up with with new solutions through facilitated ideation, take that idea to a low stakes development environment and potentially fail, but if successful, expose developing technology to domain experts through a technology evaluation process. The Lab does this by supporting and funding solution-oriented projects that have discrete development periods and associated budgets across organizations and agencies. In addition, the Lab provides access to AWS cloud computing resources, travel support, virtual and in-person collaborative platform for distributed groups and exposure to the ESIP community as an expert pool. This cycle of ideation to incubation to evaluation and ultimately adoption or infusion of Earth sciences cyberinfrastructure empowers the scientific community and has spawned a variety of developments like community-led ontology portals, ideas for W3C prov standard improvement and an evaluation framework that pushes technology forward and aides in infusion. The Lab is one of these concepts that could be implemented in other countries and the outputs of the Lab would be shared as a commons and available across traditional borders. This presentation will share the methods and the outcomes of the Lab and seed ideas for adoption internationally.

  15. Software platform virtualization in chemistry research and university teaching.

    PubMed

    Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver

    2009-11-16

    Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.

  16. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39082 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.

  17. Changing learning with new interactive and media-rich instruction environments: virtual labs case study report.

    PubMed

    Huang, Camillan

    2003-01-01

    Technology has created a new dimension for visual teaching and learning with web-delivered interactive media. The Virtual Labs Project has embraced this technology with instructional design and evaluation methodologies behind the simPHYSIO suite of simulation-based, online interactive teaching modules in physiology for the Stanford students. In addition, simPHYSIO provides the convenience of anytime web-access and a modular structure that allows for personalization and customization of the learning material. This innovative tool provides a solid delivery and pedagogical backbone that can be applied to developing an interactive simulation-based training tool for the use and management of the Picture Archiving and Communication System (PACS) image information system. The disparity in the knowledge between health and IT professionals can be bridged by providing convenient modular teaching tools to fill the gaps in knowledge. An innovative teaching method in the whole PACS is deemed necessary for its successful implementation and operation since it has become widely distributed with many interfaces, components, and customizations. This paper will discuss the techniques for developing an interactive-based teaching tool, a case study of its implementation, and a perspective for applying this approach to an online PACS training tool. Copyright 2002 Elsevier Science Ltd.

  18. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    NASA Astrophysics Data System (ADS)

    Mejías Borrero, A.; Andújar Márquez, J. M.

    2012-10-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL

  19. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic

  20. A virtual computer lab for distance biomedical technology education.

    PubMed

    Locatis, Craig; Vega, Anibal; Bhagwat, Medha; Liu, Wei-Li; Conde, Jose

    2008-03-13

    The National Library of Medicine's National Center for Biotechnology Information offers mini-courses which entail applying concepts in biochemistry and genetics to search genomics databases and other information sources. They are highly interactive and involve use of 3D molecular visualization software that can be computationally taxing. Methods were devised to offer the courses at a distance so as to provide as much functionality of a computer lab as possible, the venue where they are normally taught. The methods, which can be employed with varied videoconferencing technology and desktop sharing software, were used to deliver mini-courses at a distance in pilot applications where students could see demonstrations by the instructor and the instructor could observe and interact with students working at their remote desktops. Student ratings of the learning experience and comments to open ended questions were similar to those when the courses are offered face to face. The real time interaction and the instructor's ability to access student desktops from a distance in order to provide individual assistance and feedback were considered invaluable. The technologies and methods mimic much of the functionality of computer labs and may be usefully applied in any context where content changes frequently, training needs to be offered on complex computer applications at a distance in real time, and where it is necessary for the instructor to monitor students as they work.

  1. Software platform virtualization in chemistry research and university teaching

    PubMed Central

    2009-01-01

    Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997

  2. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  3. You're a What? Voice Actor

    ERIC Educational Resources Information Center

    Liming, Drew

    2009-01-01

    This article talks about voice actors and features Tony Oliver, a professional voice actor. Voice actors help to bring one's favorite cartoon and video game characters to life. They also do voice-overs for radio and television commercials and movie trailers. These actors use the sound of their voice to sell a character's emotions--or an advertised…

  4. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214346 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  5. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214328 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  6. Comparison of student achievement among two science laboratory types: traditional and virtual

    NASA Astrophysics Data System (ADS)

    Reese, Mary Celeste

    Technology has changed almost every aspect of our daily lives. It is not surprising then that technology has made its way into the classroom. More and more educators are utilizing technological resources in creative ways with the intent to enhance learning, including using virtual laboratories in the sciences in place of the "traditional" science laboratories. This has generated much discussion as to the influence on student achievement when online learning replaces the face-to-face contact between instructor and student. The purpose of this study was to discern differences in achievement of two laboratory instruction types: virtual laboratory and a traditional laboratory. Results of this study indicate statistical significant differences in student achievement defined by averages on quiz scores in virtual labs compared with traditional face-to-face laboratories and traditional laboratories result in greater student learning gains than virtual labs. Lecture exam averages were also greater for students enrolled in the traditional laboratories compared to students enrolled in the virtual laboratories. To account for possible differences in ability among students, a potential extraneous variable, GPA and ACT scores were used as covariates.

  7. TraitEnactments as Density Distributions: The Role of Actors, Situations, and Observers in Explaining Stability and Variability

    PubMed Central

    Fleeson, William; Law, Mary Kate

    2015-01-01

    The purposes of this paper were to determine (i)whether the high consistency of individual differences in average aggregated behavior is due to actors’ personalities or to consistency in the situations those actors encounter; and(ii)whether the surprisingly high within-person variability in trait enactment is a real phenomenon corroborated by observers, or merely in individuals’ heads. Although traits are supposed to describe what individuals are like in everyday life, little evidence exists about the enactment of trait content in everyday life. Past experience-sampling studies have found both highly variable and highly consistent trait enactment, but were restricted to self-report data and to naturally occurring situations. The current study used experience-sampling in controlled lab environments with 97 targets and 183 observers to address these shortcomings. Targets attended hour-long lab sessions 20x each and observers rated targets’ behavior. Parameters of distributions were highly consistent (r’s ~ .80), revealing that actors were responsible for consistency, not situations. Nonetheless, observer ratings revealed that most variability in trait enactment was within-person, confirming that even when people put it on the line in ways that affect others, they still varied rapidly in the traits they enacted. In the face of two historically vexing objections to traits, this paper supports the density distributions model of traits and argues that trait conceptualizations must accommodate large within-person variability. PMID:26348598

  8. Experiments in mixed reality

    NASA Astrophysics Data System (ADS)

    Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark

    2010-01-01

    As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.

  9. The Learning Gains and Student Perceptions of a Second Life Virtual Lab

    ERIC Educational Resources Information Center

    Cobb, Stephanie; Heaney, Rose; Corcoran, Olivia; Henderson-Begg, Stephanie

    2009-01-01

    This study examines students' reactions to the virtual biosciences laboratory developed in Second Life[R] (SL) at the University of East London. Final year undergraduates and masters students studying biotechnology took part in a trial of a virtual Polymerase Chain Reaction (PCR) experiment in Second Life and evaluated their experience by…

  10. Virtual Worlds: A New Opportunity for People with Lifelong Disability?

    ERIC Educational Resources Information Center

    Stendal, Karen; Balandin, Susan; Molka-Danielsen, Judith

    2011-01-01

    Virtual worlds, such as Second Life[R], are the latest star in the online communication sky. Created by Linden Lab, Second Life is a three-dimensional environment that provides a context for avatars to communicate and socialise with other avatars in a variety of settings (Bell, 2009). Virtual worlds have been used to train people with intellectual…

  11. Virtual reality welder training

    NASA Astrophysics Data System (ADS)

    White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.

    2010-01-01

    This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.

  12. A nested virtualization tool for information technology practical education.

    PubMed

    Pérez, Carlos; Orduña, Juan M; Soriano, Francisco R

    2016-01-01

    A common problem of some information technology courses is the difficulty of providing practical exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in security and computer network courses. This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, comprising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been used in different teaching environments. The results show that this tool makes it possible to perform demos, labs and practical exercises, greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce classroom activities, as well as the students' autonomous work.

  13. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39083 (18 October 2001) --- Astronaut Franklin R. Chang-Diaz, STS-111 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Endeavour. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  14. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39085 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, astronaut Peggy A. Whitson, Expedition Five flight engineer, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.

  15. Virtual reality applications in robotic simulations

    NASA Technical Reports Server (NTRS)

    Homan, David J.; Gott, Charles J.; Goza, S. Michael

    1994-01-01

    Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.

  16. Teaching Physics to Deaf College Students in a 3-D Virtual Lab

    ERIC Educational Resources Information Center

    Robinson, Vicki

    2013-01-01

    Virtual worlds are used in many educational and business applications. At the National Technical Institute for the Deaf at Rochester Institute of Technology (NTID/RIT), deaf college students are introduced to the virtual world of Second Life, which is a 3-D immersive, interactive environment, accessed through computer software. NTID students use…

  17. Design of virtual display and testing system for moving mass electromechanical actuator

    NASA Astrophysics Data System (ADS)

    Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng

    2015-12-01

    Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.

  18. STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.

    NASA Image and Video Library

    2005-05-06

    JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.

  19. On-line interactive virtual experiments on nanoscience

    NASA Astrophysics Data System (ADS)

    Kadar, Manuella; Ileana, Ioan; Hutanu, Constantin

    2009-01-01

    This paper is an overview on the next generation web which allows students to experience virtual experiments on nano science, physics devices, processes and processing equipment. Virtual reality is used to support a real university lab in which a student can experiment real lab sessions. The web material is presented in an intuitive and highly visual 3D form that is accessible to a diverse group of students. Such type of laboratory provides opportunities for professional and practical education for a wide range of users. The expensive equipment and apparatuses that build the experimental stage in a particular standard laboratory is used to create virtual educational research laboratories. Students learn how to prepare the apparatuses and facilities for the experiment. The online experiments metadata schema is the format for describing online experiments, much like the schema behind a library catalogue used to describe the books in a library. As an online experiment is a special kind of learning object, one specifies its schema as an extension to an established metadata schema for learning objects. The content of the courses, metainformation as well as readings and user data are saved on the server in a database as XML objects.

  20. STS-133 crew training in VR Lab with replacement crew member Steve Bowen

    NASA Image and Video Library

    2011-01-24

    JSC2011-E-006293 (24 Jan. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214321 (25 Sept. 2009) --- NASA astronauts James P. Dutton Jr., STS-131 pilot; and Stephanie Wilson, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. The Virtual Genetics Lab: A Freely-Available Open-Source Genetics Simulation

    ERIC Educational Resources Information Center

    White, Brian; Bolker, Ethan; Koolar, Nikunj; Ma, Wei; Maw, Naing Naing; Yu, Chung Ying

    2007-01-01

    This lab is a computer simulation of transmission genetics. It presents students with a genetic phenomenon--the inheritance of a randomly--selected trait. The students' task is to determine how this trait is inherited by designing their own crosses and analyzing the results produced by the software.

  3. Virtual Doppelgangers: Psychological Effects of Avatars Who Ignore Their Owners

    NASA Astrophysics Data System (ADS)

    Bailenson, Jeremy N.; Segovia, Kathryn Y.

    For a decade, the Virtual Human Interaction Lab has been creating doppelgangers, virtual versions of the self, for research purposes. This chapter considers how humans may be affected by confrontation with virtual versions of themselves, on the basis of well-established psychological theories, including social cognitive theory (social learning theory), media richness theory (information richness theory), and self-perception theory. Experiments carried out in the Lab, and informed by these theories, have explored such notable topics as health communication, marketing, and false memories. The findings of one series of studies suggest that doppelgangerscan show the rewards of exercise and proper eating habits, changing people's health-related behavior as a result. Other studies showed that doppelgangers are powerful marketing agents and can be used in advertisements to create favorable brand impressions among consumers. Other research documented that children have difficulty in distinguishing between an actual memory elicited by a physical world event and a false memory elicited by mental image or doppelganger.

  4. [Actor as a simulated patient in medical education at the University of Pécs].

    PubMed

    Koppán, Ágnes; Eklicsné Lepenye, Katalin; Halász, Renáta; Sebők, Judit; Szemán, Eszter; Németh, Zsuzsanna; Rendeki, Szilárd

    2017-07-01

    Medical training in the 21st century faces simulation-based education as one of the challenges that efficiently contributes to clinical skills development while moderating the burden on the clinicians and patients alike. The University of Pécs, Medical School has launched a simulation program in the MediSkillsLab based on history taking with actors to improve patient interviewing communication skills. This new program was inspired by experiences gathered in previous medical language teaching and integrates the method of the "Standardized Patient Program". The method has been applied in America since the 1960s. This is the first time the program has been introduced in Hungary and implemented in an interdisciplinary design, where medical specialists, linguists, actor-patients and medical students collaborate to improve professional, language and communicative competence of the students. A course like this has its pivotal role in the medical training, and as a result more efficient and patient-oriented communication may take place at the clinical setting. Orv Hetil. 2017; 158(26): 1022-1027.

  5. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    NASA Astrophysics Data System (ADS)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  6. GEARS a 3D Virtual Learning Environment and Virtual Social and Educational World Used in Online Secondary Schools

    ERIC Educational Resources Information Center

    Barkand, Jonathan; Kush, Joseph

    2009-01-01

    Virtual Learning Environments (VLEs) are becoming increasingly popular in online education environments and have multiple pedagogical advantages over more traditional approaches to education. VLEs include 3D worlds where students can engage in simulated learning activities such as Second Life. According to Claudia L'Amoreaux at Linden Lab, "at…

  7. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks.

    PubMed

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-10-27

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor's mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.

  8. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  9. A Study on Learning Effect among Different Learning Styles in a Web-Based Lab of Science for Elementary School Students

    ERIC Educational Resources Information Center

    Sun, Koun-tem; Lin, Yuan-cheng; Yu, Chia-jui

    2008-01-01

    The purpose of this study is to explore the learning effect related to different learning styles in a Web-based virtual science laboratory for elementary school students. The online virtual lab allows teachers to integrate information and communication technology (ICT) into science lessons. The results of this experimental teaching method…

  10. The photoelectric effect and study of the diffraction of light: Two new experiments in UNILabs virtual and remote laboratories network

    NASA Astrophysics Data System (ADS)

    Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián

    2016-05-01

    This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.

  11. AnimatLab: a 3D graphics environment for neuromechanical simulations.

    PubMed

    Cofer, David; Cymbalyuk, Gennady; Reid, James; Zhu, Ying; Heitler, William J; Edwards, Donald H

    2010-03-30

    The nervous systems of animals evolved to exert dynamic control of behavior in response to the needs of the animal and changing signals from the environment. To understand the mechanisms of dynamic control requires a means of predicting how individual neural and body elements will interact to produce the performance of the entire system. AnimatLab is a software tool that provides an approach to this problem through computer simulation. AnimatLab enables a computational model of an animal's body to be constructed from simple building blocks, situated in a virtual 3D world subject to the laws of physics, and controlled by the activity of a multicellular, multicompartment neural circuit. Sensor receptors on the body surface and inside the body respond to external and internal signals and then excite central neurons, while motor neurons activate Hill muscle models that span the joints and generate movement. AnimatLab provides a common neuromechanical simulation environment in which to construct and test models of any skeletal animal, vertebrate or invertebrate. The use of AnimatLab is demonstrated in a neuromechanical simulation of human arm flexion and the myotactic and contact-withdrawal reflexes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. ThinkSpace: Spatial Thinking in Middle School Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Udomprasert, Patricia S.; Goodman, Alyssa A.; Plummer, Julia; Sadler, Philip M.; Johnson, Erin; Sunbury, Susan; Zhang, Helen; Dussault, Mary E.

    2016-01-01

    Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. Mounting evidence also shows that spatial skills are malleable, i.e., they can be improved through training. We report early work from a new project that will build on this research to create a series of middle schools science labs called "Thinking Spatially about the Universe" (ThinkSpace), in which students will use a blend of physical and virtual models (in WorldWide Telescope) to explore complex 3-dimensional phenomena in space science. In the three-year ThinkSpace labs project, astronomers, technologists, and education researchers are collaborating to create and test a suite of three labs designed to improve learners' spatial abilities through studies of: 1) Moon phases and eclipses; 2) planetary systems around stars other than the Sun; and 3.) celestial motions within the broader universe. The research program will determine which elements in the labs will best promote improvement of spatial skills within activities that emphasize disciplinary core ideas; and how best to optimize interactive dynamic visualizations to maximize student understanding.

  13. Foreign language learning in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawver, D.M.; Stansfield, S.

    This overview presents current research at Sandia National Laboratories in the Virtual Reality and Intelligent Simulation Lab. Into an existing distributed VR environment which we have been developing, and which provides shared immersion for multiple users, we are adding virtual actor support. The virtual actor support we are adding to this environment is intended to provide semi-autonomous actors, with oversight and high-level guiding control by a director/user, and to allow the overall action to be driven by a scenario. We present an overview of the environment into which our virtual actors will be added in Section 3, and discuss themore » direction of the Virtual Actor research itself in Section 4. We will briefly review related work in Section 2. First however we need to place the research in the context of what motivates it. The motivation for our construction of this environment, and the line of research associated with it, is based on a long-term program of providing support, through simulation, for situational training, by which we mean a type of training in which students learn to handle multiple situations or scenarios. In these situations, the student may encounter events ranging from the routine occurance to the rare emergency. Indeed, the appeal of such training systems is that they could allow the student to experience and develop effective responses for situations they would otherwise have no opportunity to practice, until they happened to encounter an actual occurance. Examples of the type of students for this kind of training would be security forces or emergency response forces. An example of the type of training scenario we would like to support is given in Section 4.2.« less

  15. What Happens in a Virtual World Has a Real-World Impact, a Scholar Finds

    ERIC Educational Resources Information Center

    Foster, Andrea L.

    2008-01-01

    Forget the pills, hypnosis, and meditation. Losing weight or boosting self-confidence can be achieved by adopting an avatar and living in virtual reality, says Jeremy N. Bailenson, an assistant professor of communications at Stanford University. As the director of Stanford's Virtual Human Interaction Lab, Mr. Bailenson has explored ways that…

  16. Cloud-Based Virtual Laboratory for Network Security Education

    ERIC Educational Resources Information Center

    Xu, Le; Huang, Dijiang; Tsai, Wei-Tek

    2014-01-01

    Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…

  17. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    NASA Astrophysics Data System (ADS)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  18. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170892 (1 Oct. 2010) --- NASA astronaut Alvin Drew, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  19. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170897 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  20. Evaluation of the Use of a Virtual Patient on Student Competence and Confidence in Performing Simulated Clinic Visits.

    PubMed

    Taglieri, Catherine A; Crosby, Steven J; Zimmerman, Kristin; Schneider, Tulip; Patel, Dhiren K

    2017-06-01

    Objective. To assess the effect of incorporating virtual patient activities in a pharmacy skills lab on student competence and confidence when conducting real-time comprehensive clinic visits with mock patients. Methods. Students were randomly assigned to a control or intervention group. The control group completed the clinic visit prior to completing virtual patient activities. The intervention group completed the virtual patient activities prior to the clinic visit. Student proficiency was evaluated in the mock lab. All students completed additional exercises with the virtual patient and were subsequently assessed. Student impressions were assessed via a pre- and post-experience survey. Results. Student performance conducting clinic visits was higher in the intervention group compared to the control group. Overall student performance continued to improve in the subsequent module. There was no change in student confidence from pre- to post-experience. Student rating of the ease of use and realistic simulation of the virtual patient increased; however, student rating of the helpfulness of the virtual patient decreased. Despite student rating of the helpfulness of the virtual patient program, student performance improved. Conclusion. Virtual patient activities enhanced student performance during mock clinic visits. Students felt the virtual patient realistically simulated a real patient. Virtual patients may provide additional learning opportunities for students.

  1. Multi-threaded integration of HTC-Vive and MeVisLab

    NASA Astrophysics Data System (ADS)

    Gunacker, Simon; Gall, Markus; Schmalstieg, Dieter; Egger, Jan

    2018-03-01

    This work presents how Virtual Reality (VR) can easily be integrated into medical applications via a plugin for a medical image processing framework called MeVisLab. A multi-threaded plugin has been developed using OpenVR, a VR library that can be used for developing vendor and platform independent VR applications. The plugin is tested using the HTC Vive, a head-mounted display developed by HTC and Valve Corporation.

  2. Designing for Problem-Based Learning in a Collaborative STEM Lab: A Case Study

    ERIC Educational Resources Information Center

    Estes, Michele D.; Liu, Juhong; Zha, Shenghua; Reedy, Kim

    2014-01-01

    Higher education institutions are using virtual telepresence systems to engage in collaborative course redesign and research projects. These systems hold promise and challenge for inter-institutional work in STEM areas. This paper describes a case study involving two universities in the 4-VA consortium, and the redesign of a shared STEM lab. The…

  3. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170885 (1 Oct. 2010) --- NASA astronauts Alvin Drew (left) and Tim Kopra, both STS-133 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  4. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170871 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration

  5. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170873 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration

  6. Virtual automation.

    PubMed

    Casis, E; Garrido, A; Uranga, B; Vives, A; Zufiaurre, C

    2001-01-01

    Total laboratory automation (TLA) can be substituted in mid-size laboratories by a computer sample workflow control (virtual automation). Such a solution has been implemented in our laboratory using PSM, software developed in cooperation with Roche Diagnostics (Barcelona, Spain), to this purpose. This software is connected to the online analyzers and to the laboratory information system and is able to control and direct the samples working as an intermediate station. The only difference with TLA is the replacement of transport belts by personnel of the laboratory. The implementation of this virtual automation system has allowed us the achievement of the main advantages of TLA: workload increase (64%) with reduction in the cost per test (43%), significant reduction in the number of biochemistry primary tubes (from 8 to 2), less aliquoting (from 600 to 100 samples/day), automation of functional testing, drastic reduction of preanalytical errors (from 11.7 to 0.4% of the tubes) and better total response time for both inpatients (from up to 48 hours to up to 4 hours) and outpatients (from up to 10 days to up to 48 hours). As an additional advantage, virtual automation could be implemented without hardware investment and significant headcount reduction (15% in our lab).

  7. Changing Power Actors in a Midwestern Community.

    ERIC Educational Resources Information Center

    Tait, John L.; And Others

    A longitudinal study was made of Prairie City, Iowa wherein the personal and social characteristics of the 1962 power actor pool were compared with characteristics of the 1973 power actor pool to test the hypothesis that: the personal and social characteristics of power actors will not change significantly over time. Procedures for identifying…

  8. Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer

    NASA Astrophysics Data System (ADS)

    Stryjewski, Wieslaw J.

    1991-08-01

    A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.

  9. Recognition profile of emotions in natural and virtual faces.

    PubMed

    Dyck, Miriam; Winbeck, Maren; Leiberg, Susanne; Chen, Yuhan; Gur, Ruben C; Gur, Rurben C; Mathiak, Klaus

    2008-01-01

    Computer-generated virtual faces become increasingly realistic including the simulation of emotional expressions. These faces can be used as well-controlled, realistic and dynamic stimuli in emotion research. However, the validity of virtual facial expressions in comparison to natural emotion displays still needs to be shown for the different emotions and different age groups. Thirty-two healthy volunteers between the age of 20 and 60 rated pictures of natural human faces and faces of virtual characters (avatars) with respect to the expressed emotions: happiness, sadness, anger, fear, disgust, and neutral. Results indicate that virtual emotions were recognized comparable to natural ones. Recognition differences in virtual and natural faces depended on specific emotions: whereas disgust was difficult to convey with the current avatar technology, virtual sadness and fear achieved better recognition results than natural faces. Furthermore, emotion recognition rates decreased for virtual but not natural faces in participants over the age of 40. This specific age effect suggests that media exposure has an influence on emotion recognition. Virtual and natural facial displays of emotion may be equally effective. Improved technology (e.g. better modelling of the naso-labial area) may lead to even better results as compared to trained actors. Due to the ease with which virtual human faces can be animated and manipulated, validated artificial emotional expressions will be of major relevance in future research and therapeutic applications.

  10. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  11. Virtual Learning Environments as Sociomaterial Agents in the Network of Teaching Practice

    ERIC Educational Resources Information Center

    Johannesen, Monica; Erstad, Ola; Habib, Laurence

    2012-01-01

    This article presents findings related to the sociomaterial agency of educators and their practice in Norwegian education. Using actor-network theory, we ask how Virtual Learning Environments (VLEs) negotiate the agency of educators and how they shape their teaching practice. Since the same kinds of VLE tools have been widely implemented…

  12. Hybrid Reality Lab Capabilities - Video 2

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2016-01-01

    Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created

  13. Integration of the HTC Vive into the medical platform MeVisLab

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Gall, Markus; Wallner, Jürgen; de Almeida Germano Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-03-01

    Virtual Reality (VR) is an immersive technology that replicates an environment via computer-simulated reality. VR gets a lot of attention in computer games but has also great potential in other areas, like the medical domain. Examples are planning, simulations and training of medical interventions, like for facial surgeries where an aesthetic outcome is important. However, importing medical data into VR devices is not trivial, especially when a direct connection and visualization from your own application is needed. Furthermore, most researcher don't build their medical applications from scratch, rather they use platforms, like MeVisLab, Slicer or MITK. The platforms have in common that they integrate and build upon on libraries like ITK and VTK, further providing a more convenient graphical interface to them for the user. In this contribution, we demonstrate the usage of a VR device for medical data under MeVisLab. Therefore, we integrated the OpenVR library into MeVisLab as an own module. This enables the direct and uncomplicated usage of head mounted displays, like the HTC Vive under MeVisLab. Summarized, medical data from other MeVisLab modules can directly be connected per drag-and-drop to our VR module and will be rendered inside the HTC Vive for an immersive inspection.

  14. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    ERIC Educational Resources Information Center

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  15. Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.

    PubMed

    Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P

    2004-01-01

    The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.

  16. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks †

    PubMed Central

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-01-01

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay. PMID:29077017

  17. [Application of virtual instrumentation technique in toxicological studies].

    PubMed

    Moczko, Jerzy A

    2005-01-01

    Research investigations require frequently direct connection of measuring equipment to the computer. Virtual instrumentation technique considerably facilitates programming of sophisticated acquisition-and-analysis procedures. In standard approach these two steps are performed subsequently with separate software tools. The acquired data are transfered with export / import procedures of particular program to the another one which executes next step of analysis. The described procedure is cumbersome, time consuming and may be potential source of the errors. In 1987 National Instruments Corporation introduced LabVIEW language based on the concept of graphical programming. Contrary to conventional textual languages it allows the researcher to concentrate on the resolved problem and omit all syntactical rules. Programs developed in LabVIEW are called as virtual instruments (VI) and are portable among different computer platforms as PCs, Macintoshes, Sun SPARCstations, Concurrent PowerMAX stations, HP PA/RISK workstations. This flexibility warrants that the programs prepared for one particular platform would be also appropriate to another one. In presented paper basic principles of connection of research equipment to computer systems were described.

  18. Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory

    NASA Image and Video Library

    2006-09-25

    JSC2006-E-41640 (25 Sept. 2006) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.

  19. Virtual Physics Laboratory Application Based on the Android Smartphone to Improve Learning Independence and Conceptual Understanding

    ERIC Educational Resources Information Center

    Arista, Fitra Suci; Kuswanto, Heru

    2018-01-01

    The research study concerned here was to: (1) produce a virtual physics laboratory application to be called ViPhyLab by using the Android smartphone as basis; (2) determine the appropriateness and quality of the virtual physics laboratory application that had been developed; and (3) describe the improvement in learning independence and conceptual…

  20. Love the Lab, Hate the Lab Report?

    ERIC Educational Resources Information Center

    Bjorn, Genevive

    2018-01-01

    In the author's large, urban high school, enrollment in a laboratory science is mandatory. While the student participation rate for lab activities is over 98%, the turn-in rate for traditional lab reports averages just 35% to 85%. Those students who don't produce a lab report miss a critical opportunity to improve their skills in scientific…

  1. Bad Actors Criticality Assessment for Pipeline system

    NASA Astrophysics Data System (ADS)

    Nasir, Meseret; Chong, Kit wee; Osman, Sabtuni; Siaw Khur, Wee

    2015-04-01

    Failure of a pipeline system could bring huge economic loss. In order to mitigate such catastrophic loss, it is required to evaluate and rank the impact of each bad actor of the pipeline system. In this study, bad actors are known as the root causes or any potential factor leading to the system downtime. Fault Tree Analysis (FTA) is used to analyze the probability of occurrence for each bad actor. Bimbaum's Importance and criticality measure (BICM) is also employed to rank the impact of each bad actor on the pipeline system failure. The results demonstrate that internal corrosion; external corrosion and construction damage are critical and highly contribute to the pipeline system failure with 48.0%, 12.4% and 6.0% respectively. Thus, a minor improvement in internal corrosion; external corrosion and construction damage would bring significant changes in the pipeline system performance and reliability. These results could also be useful to develop efficient maintenance strategy by identifying the critical bad actors.

  2. Use of actors as standardized psychiatric patients.

    PubMed

    Keltner, Norman L; Grant, Joan S; McLernon, Dennis

    2011-05-01

    Using actors in simulation provides opportunities for immersive, interactive, and reflective experiences to improve health care professionals' clinical expertise and practice. These experiences facilitate the development of enhanced critical thinking, problem-solving, and communication skills without risks to patients. This article discusses how to integrate actors and students into simulated experiences. Examples are provided using mental health simulations with actors as standardized psychiatric patients. Copyright 2011, SLACK Incorporated.

  3. Voice disorders in actors.

    PubMed

    Lerner, Michael Z; Paskhover, Boris; Acton, Lynn; Young, Nwanmegha

    2013-11-01

    The purpose of this study was to investigate the prevalence of vocal pathology among first-year acting students. A retrospective review of 30 first-year graduate-level drama students between 2009 and 2011 was performed. Stroboscopy, Voice Handicap Index-10 questionnaires, and acoustic measures were analyzed. The prevalence of incomplete glottal closure, laryngeal hyperfunction, and decreased mucosal wave was 62%, 59%, and 55%, respectively. Laryngoscopic findings consistent with laryngopharyngeal reflux (LPR) were demonstrated in 48% of subjects. Subgroup analysis of laryngeal hyperfunctioning (HF) and nonhyperfunctioning drama students revealed an increased prevalence of all videostroboscopic abnormalities in the HF group. The increased prevalence of LPR stigmata in HF actors reached statistical significance (P = 0.04). The vocal demands of actors are unique, requiring the effective use of volume, pitch control, and endurance. This is the first study that systematically analyzes the prevalence of vocal pathology in actors. This study will continue throughout their education, anticipating that our feedback along with their vocal training will improve outcomes. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  4. Recognition Profile of Emotions in Natural and Virtual Faces

    PubMed Central

    Dyck, Miriam; Winbeck, Maren; Leiberg, Susanne; Chen, Yuhan; Gur, Rurben C.; Mathiak, Klaus

    2008-01-01

    Background Computer-generated virtual faces become increasingly realistic including the simulation of emotional expressions. These faces can be used as well-controlled, realistic and dynamic stimuli in emotion research. However, the validity of virtual facial expressions in comparison to natural emotion displays still needs to be shown for the different emotions and different age groups. Methodology/Principal Findings Thirty-two healthy volunteers between the age of 20 and 60 rated pictures of natural human faces and faces of virtual characters (avatars) with respect to the expressed emotions: happiness, sadness, anger, fear, disgust, and neutral. Results indicate that virtual emotions were recognized comparable to natural ones. Recognition differences in virtual and natural faces depended on specific emotions: whereas disgust was difficult to convey with the current avatar technology, virtual sadness and fear achieved better recognition results than natural faces. Furthermore, emotion recognition rates decreased for virtual but not natural faces in participants over the age of 40. This specific age effect suggests that media exposure has an influence on emotion recognition. Conclusions/Significance Virtual and natural facial displays of emotion may be equally effective. Improved technology (e.g. better modelling of the naso-labial area) may lead to even better results as compared to trained actors. Due to the ease with which virtual human faces can be animated and manipulated, validated artificial emotional expressions will be of major relevance in future research and therapeutic applications. PMID:18985152

  5. A comparison of the effectiveness of virtual and traditional dissection on learning frog anatomy in high school

    NASA Astrophysics Data System (ADS)

    Montgomery, Laura

    This study examined the effectiveness of a virtual frog dissection software program titled Cyber Ed Dissection Series as compared to a traditional frog dissection in relation to student achievement. The study sample consisted of eighty-four general ability level students attending a mid sized, suburban high school in Southern New Jersey. Students were divided into three groups: traditional dissectors, virtual dissectors, and a choice group. Each group of students took a pretest before beginning a unit on amphibians and upon its completion took a posttest consisting of general knowledge questions. Additionally, a lab practicum test (where students were required to identify organs and organ functions in actual specimens) was administered at the completion of the amphibian unit. Resulting test scores of the posttests and lab practicum tests were analyzed based on whether students dissected traditionally or virtually. Results indicate that there was no significant difference between traditional dissectors and virtual dissectors on the general knowledge test posttest, but there was a significant difference on the lab practicum test. This difference was further explored and analyzed in relation to gender, grade level, and ethnicity. In regard to these three variables, no significant differences between related sub-groups were noted. Responses to an open-ended question regarding the reasons the members of the choice group chose a particular method of dissection are also presented.

  6. Innovative research on the group teaching mode based on the LabVIEW virtual environment

    NASA Astrophysics Data System (ADS)

    Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia

    2017-08-01

    This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.

  7. Multicultural Monologues for Young Actors. The Young Actors Series.

    ERIC Educational Resources Information Center

    Slaight, Craig, Ed.; Sharrar, Jack, Ed.

    This book presents 62 monologue selections from diverse cultures for young actors to perform. The book's selections offer "quality literature by significant writers." Some of the writers represented in the book are George C. Wolfe, Miguel Pinero, Lorraine Hansberry, Amiri Baraka (LeRoi Jones), John M. Synge, Yukio Mishima, Reynolds…

  8. Virtual Laboratories to Achieve Higher-Order Learning in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Gooseff, M. N.; Toto, R.

    2009-12-01

    Bloom’s higher-order cognitive skills (analysis, evaluation, and synthesis) are recognized as necessary in engineering education, yet these are difficult to achieve in traditional lecture formats. Laboratory components supplement traditional lectures in an effort to emphasize active learning and provide higher-order challenges, but these laboratories are often subject to the constraints of (a) increasing student enrollment, (b) limited funding for operational, maintenance, and instructional expenses and (c) increasing demands on undergraduate student credit requirements. Here, we present results from a pilot project implementing virtual (or online) laboratory experiences as an alternative to a traditional laboratory experience in Fluid Mechanics, a required third year course. Students and faculty were surveyed to identify the topics that were most difficult, and virtual laboratory and design components developed to supplement lecture material. Each laboratory includes a traditional lab component, requiring student analysis and evaluation. The lab concludes with a design exercise, which imposes additional problem constraints and allows students to apply their laboratory observations to a real-world situation.

  9. Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory

    NASA Image and Video Library

    2006-09-25

    JSC2006-E-41641 (25 Sept. 2006) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.

  10. Pulse!!: a model for research and development of virtual-reality learning in military medical education and training.

    PubMed

    Dunne, James R; McDonald, Claudia L

    2010-07-01

    Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.

  11. Interactive virtual optical laboratories

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  12. Virtual Labs (Science Gateways) as platforms for Free and Open Source Science

    NASA Astrophysics Data System (ADS)

    Lescinsky, David; Car, Nicholas; Fraser, Ryan; Friedrich, Carsten; Kemp, Carina; Squire, Geoffrey

    2016-04-01

    The Free and Open Source Software (FOSS) movement promotes community engagement in software development, as well as provides access to a range of sophisticated technologies that would be prohibitively expensive if obtained commercially. However, as geoinformatics and eResearch tools and services become more dispersed, it becomes more complicated to identify and interface between the many required components. Virtual Laboratories (VLs, also known as Science Gateways) simplify the management and coordination of these components by providing a platform linking many, if not all, of the steps in particular scientific processes. These enable scientists to focus on their science, rather than the underlying supporting technologies. We describe a modular, open source, VL infrastructure that can be reconfigured to create VLs for a wide range of disciplines. Development of this infrastructure has been led by CSIRO in collaboration with Geoscience Australia and the National Computational Infrastructure (NCI) with support from the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS). Initially, the infrastructure was developed to support the Virtual Geophysical Laboratory (VGL), and has subsequently been repurposed to create the Virtual Hazards Impact and Risk Laboratory (VHIRL) and the reconfigured Australian National Virtual Geophysics Laboratory (ANVGL). During each step of development, new capabilities and services have been added and/or enhanced. We plan on continuing to follow this model using a shared, community code base. The VL platform facilitates transparent and reproducible science by providing access to both the data and methodologies used during scientific investigations. This is further enhanced by the ability to set up and run investigations using computational resources accessed through the VL. Data is accessed using registries pointing to catalogues within public data repositories (notably including the

  13. Noise and Vibration Risk Prevention Virtual Web for Ubiquitous Training

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Cubero-Atienza, Antonio J.; Martínez-Valle, José Miguel; Pedrós-Pérez, Gerardo; del Pilar Martínez-Jiménez, María

    2015-01-01

    This paper describes a new Web portal offering experimental labs for ubiquitous training of university engineering students in work-related risk prevention. The Web-accessible computer program simulates the noise and machine vibrations met in the work environment, in a series of virtual laboratories that mimic an actual laboratory and provide the…

  14. RatLab: an easy to use tool for place code simulations

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2013-01-01

    In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627

  15. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  16. Compositional schedulability analysis of real-time actor-based systems.

    PubMed

    Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan

    2017-01-01

    We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.

  17. Virtual Reality Simulator Systems in Robotic Surgical Training.

    PubMed

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  18. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170877 (1 Oct. 2010) --- A large monitor is featured in this image during STS-133 crew members? training activities in the virtual reality laboratory in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  19. A LabVIEW based template for user created experiment automation.

    PubMed

    Kim, D J; Fisk, Z

    2012-12-01

    We have developed an expandable software template to automate user created experiments. The LabVIEW based template is easily modifiable to add together user created measurements, controls, and data logging with virtually any type of laboratory equipment. We use reentrant sequential selection to implement sequence script making it possible to wrap a long series of the user created experiments and execute them in sequence. Details of software structure and application examples for scanning probe microscope and automated transport experiments using custom built laboratory electronics and a cryostat are described.

  20. ACToR: Aggregated Computational Toxicology Resource (T)

    EPA Science Inventory

    The EPA Aggregated Computational Toxicology Resource (ACToR) is a set of databases compiling information on chemicals in the environment from a large number of public and in-house EPA sources. ACToR has 3 main goals: (1) The serve as a repository of public toxicology information ...

  1. Virtual Reality and Online Databases: Will "Look and Feel" Literally Mean "Look" and "Feel"? [and]"Online" Interviews Dr. Thomas A. Furness III, Virtual Reality Pioneer.

    ERIC Educational Resources Information Center

    Miller, Carmen

    1992-01-01

    The first of two articles discusses virtual reality (VR) and online databases; the second one reports on an interview with Thomas A. Furness III, who defines VR and explains work at the Human Interface Technology Laboratory (HIT). Sidebars contain a glossary of VR terms and a conversation with Toni Emerson, the HIT lab's librarian. (LRW)

  2. Identifying Key Actors in Heterogeneous Networks

    DTIC Science & Technology

    2017-11-29

    analysis (SNA) and game theory (GT) to improve accuracy for detecting significant or “powerful” actors within a total actor space when both resource...coalesce in order to achieve a desired outcome. Cooperative game theory (CGT) models of coalition formation are based on two limiting assumptions: that...demonstration of a new approach for synthesizing social network analysis and game theory. The ultimate goal of this research agenda is to generalize

  3. A standardized set of 3-D objects for virtual reality research and applications.

    PubMed

    Peeters, David

    2018-06-01

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  4. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  5. ACToR - Aggregated Computational Toxicology Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judson, Richard; Richard, Ann; Dix, David

    2008-11-15

    ACToR (Aggregated Computational Toxicology Resource) is a database and set of software applications that bring into one central location many types and sources of data on environmental chemicals. Currently, the ACToR chemical database contains information on chemical structure, in vitro bioassays and in vivo toxicology assays derived from more than 150 sources including the U.S. Environmental Protection Agency (EPA), Centers for Disease Control (CDC), U.S. Food and Drug Administration (FDA), National Institutes of Health (NIH), state agencies, corresponding government agencies in Canada, Europe and Japan, universities, the World Health Organization (WHO) and non-governmental organizations (NGOs). At the EPA National Centermore » for Computational Toxicology, ACToR helps manage large data sets being used in a high-throughput environmental chemical screening and prioritization program called ToxCast{sup TM}.« less

  6. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  7. A New PC and LabVIEW Package Based System for Electrochemical Investigations.

    PubMed

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-03-15

    The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.

  8. Development of and Feedback on a Fully Automated Virtual Reality System for Online Training in Weight Management Skills

    PubMed Central

    Spitalnick, Josh S.; Hadley, Wendy; Bond, Dale S.; Wing, Rena R.

    2014-01-01

    Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. PMID:25367014

  9. Efficient model learning methods for actor-critic control.

    PubMed

    Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik

    2012-06-01

    We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.

  10. A false dichotomy? Mental illness and lone-actor terrorism.

    PubMed

    Corner, Emily; Gill, Paul

    2015-02-01

    We test whether significant differences in mental illness exist in a matched sample of lone- and group-based terrorists. We then test whether there are distinct behavioral differences between lone-actor terrorists with and without mental illness. We then stratify our sample across a range of diagnoses and again test whether significant differences exist. We conduct a series of bivariate, multivariate, and multinomial statistical tests using a unique dataset of 119 lone-actor terrorists and a matched sample of group-based terrorists. The odds of a lone-actor terrorist having a mental illness is 13.49 times higher than the odds of a group actor having a mental illness. Lone actors who were mentally ill were 18.07 times more likely to have a spouse or partner who was involved in a wider movement than those without a history of mental illness. Those with a mental illness were more likely to have a proximate upcoming life change, more likely to have been a recent victim of prejudice, and experienced proximate and chronic stress. The results identify behaviors and traits that security agencies can utilize to monitor and prevent lone-actor terrorism events. The correlated behaviors provide an image of how risk can crystalize within the individual offender and that our understanding of lone-actor terrorism should be multivariate in nature.

  11. Using attractiveness model for actors ranking in social media networks.

    PubMed

    Qasem, Ziyaad; Jansen, Marc; Hecking, Tobias; Hoppe, H Ulrich

    2017-01-01

    Influential actors detection in social media such as Twitter or Facebook can play a major role in gathering opinions on particular topics, improving the marketing efficiency, predicting the trends, etc. This work aims to extend our formally defined T measure to present a new measure aiming to recognize the actor's influence by the strength of attracting new important actors into a networked community. Therefore, we propose a model of the actor's influence based on the attractiveness of the actor in relation to the number of other attractors with whom he/she has established connections over time. Using an empirically collected social network for the underlying graph, we have applied the above-mentioned measure of influence in order to determine optimal seeds in a simulation of influence maximization. We study our extended measure in the context of information diffusion because this measure is based on a model of actors who attract others to be active members in a community. This corresponds to the idea of the IC simulation model which is used to identify the most important spreaders in a set of actors.

  12. Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3

    NASA Astrophysics Data System (ADS)

    Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.

    2014-12-01

    The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.

  13. GeoMapApp Learning Activities: A Virtual Lab Environment for Student-Centred Engagement with Geoscience Data

    NASA Astrophysics Data System (ADS)

    Kluge, S.; Goodwillie, A. M.

    2012-12-01

    As STEM learning requirements enter the mainstream, there is benefit to providing the tools necessary for students to engage with research-quality geoscience data in a cutting-edge, easy-to-use map-based interface. Funded with an NSF GeoEd award, GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) are being created to help in that endeavour. GeoMapApp Learning Activities offer step-by-step instructions within a guided inquiry approach that enables students to dictate the pace of learning. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; an educator's annotated worksheet containing teaching tips, additional content and suggestions for further work; and, quizzes for use before and after the activity to assess learning. Examples of activities so far created involve calculation and analysis of the rate of seafloor spreading; compilation of present-day evidence for huge ancient landslides on the seafloor around the Hawaiian islands; a study of radiometrically-dated volcanic rocks to help understand the concept of hotspots; and, the optimisation of contours as a means to aid visualisation of 3-D data sets on a computer screen. The activities are designed for students at the introductory undergraduate, community college and high school levels, and present a virtual lab-like environment to expose students to content and concepts typically found in those educational settings. The activities can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is reduced thus allowing students to spend more time analysing and understanding geoscience data, content and concepts. Each activity is freely available through the SERC-Carleton web site.

  14. Developing design principles for a Virtual Hospice: improving access to care.

    PubMed

    Taylor, Andrea; French, Tara; Raman, Sneha

    2018-03-01

    Providing access to hospice services will become increasingly difficult due to the pressures of an ageing population and limited resources. To help address this challenge, a small number of services called Virtual Hospice have been established. This paper presents early-stage design work on a Virtual Hospice to improve access to services provided by a hospice (Highland Hospice) serving a largely remote and rural population in Scotland, UK. The study was structured as a series of Experience Labs with Highland Hospice staff, healthcare professionals and patients. Experience Labs employ a participatory design approach where participants are placed at the centre of the design process, helping to ensure that the resultant service meets their needs. Data from the Experience Labs were analysed using qualitative thematic analysis and design analysis. A number of themes and barriers to accessing Highland Hospice services were identified. In response, an initial set of seven design principles was developed. Design principles are high-level guidelines that are used to improve prioritisation and decision making during the design process by ensuring alignment with research insights. The design principles were piloted with a group of stakeholders and gained positive feedback. The design principles are intended to guide the ongoing development of the Highland Hospice Virtual Hospice. However, the challenges faced by Highland Hospice in delivering services in a largely remote and rural setting are not unique. The design principles, encompassing digital and non-digital guidelines, or the design approach could be applied by other hospices in the UK or overseas. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Recollection and unitization in associating actors with extrinsic and intrinsic motions.

    PubMed

    Kersten, Alan W; Earles, Julie L; Berger, Johanna D

    2015-04-01

    Four experiments provide evidence for a distinction between 2 different kinds of motion representations. Extrinsic motions involve the path of an object with respect to an external frame of reference. Intrinsic motions involve the relative motions of the parts of an object. This research suggests that intrinsic motions are represented conjointly with information about the identities of the actors who perform them, whereas extrinsic motions are represented separately from identity information. Experiment 1 demonstrated that participants remembered which actor had performed a particular intrinsic motion better than they remembered which actor had performed a particular extrinsic motion. Experiment 2 replicated this effect with incidental encoding of actor information, suggesting that encoding intrinsic motions leads one to automatically encode identity information. The results of Experiments 3 and 4 were fit by Yonelinas's (1999) source-memory model to quantify the contributions of familiarity and recollection to memory for the actors who carried out the intrinsic and extrinsic motions. Successful performance with extrinsic motion items in Experiment 3 required participants to remember in which scene contexts an actor had appeared, whereas successful performance in Experiment 4 required participants to remember the exact path taken by an actor in each scene. In both experiments, discrimination of old and new combinations of actors and extrinsic motions relied strongly on recollection, suggesting independent but associated representations of actors and extrinsic motions. In contrast, participants discriminated old and new combinations of actors and intrinsic motions primarily on the basis of familiarity, suggesting unitized representations of actors and intrinsic motions. (c) 2015 APA, all rights reserved).

  16. Objective structured clinical interview training using a virtual human patient.

    PubMed

    Parsons, Thomas D; Kenny, Patrick; Ntuen, Celestine A; Pataki, Caroly S; Pato, Michele T; Rizzo, Albert A; St-George, Cheryl; Sugar, Jeffery

    2008-01-01

    Effective interview skills are a core competency for psychiatry residents and developing psychotherapists. Although schools commonly make use of standardized patients to teach interview skills, the diversity of the scenarios standardized patients can characterize is limited by availability of human actors. Further, there is the economic concern related to the time and money needed to train standardized patients. Perhaps most damaging is the "standardization" of standardized patients -- will they in fact consistently proffer psychometrically reliable and valid interactions with the training clinicians. Virtual Human Agent (VHA) technology has evolved to a point where researchers may begin developing mental health applications that make use of virtual reality patients. The work presented here is a preliminary attempt at what we believe to be a large application area. Herein we describe an ongoing study of our virtual patients (VP). We present an approach that allows novice mental health clinicians to conduct an interview with a virtual character that emulates an adolescent male with conduct disorder. This study illustrates the ways in which a variety of core research components developed at the University of Southern California facilitates the rapid development of mental health applications.

  17. Web-Based Virtual Laboratory for Food Analysis Course

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Khoerunnisa, I.; Sugiarti, Y.

    2018-02-01

    Implementation of learning on food analysis course in Program Study of Agro-industrial Technology Education faced problems. These problems include the availability of space and tools in the laboratory that is not comparable with the number of students also lack of interactive learning tools. On the other hand, the information technology literacy of students is quite high as well the internet network is quite easily accessible on campus. This is a challenge as well as opportunities in the development of learning media that can help optimize learning in the laboratory. This study aims to develop web-based virtual laboratory as one of the alternative learning media in food analysis course. This research is R & D (research and development) which refers to Borg & Gall model. The results showed that assessment’s expert of web-based virtual labs developed, in terms of software engineering aspects; visual communication; material relevance; usefulness and language used, is feasible as learning media. The results of the scaled test and wide-scale test show that students strongly agree with the development of web based virtual laboratory. The response of student to this virtual laboratory was positive. Suggestions from students provided further opportunities for improvement web based virtual laboratory and should be considered for further research.

  18. Path scheduling for multiple mobile actors in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Trapasiya, Samir D.; Soni, Himanshu B.

    2017-05-01

    In wireless sensor network (WSN), energy is the main constraint. In this work we have addressed this issue for single as well as multiple mobile sensor actor network. In this work, we have proposed Rendezvous Point Selection Scheme (RPSS) in which Rendezvous Nodes are selected by set covering problem approach and from that, Rendezvous Points are selected in a way to reduce the tour length. The mobile actors tour is scheduled to pass through those Rendezvous Points as per Travelling Salesman Problem (TSP). We have also proposed novel rendezvous node rotation scheme for fair utilisation of all the nodes. We have compared RPSS with Stationery Actor scheme as well as RD-VT, RD-VT-SMT and WRP-SMT for performance metrics like energy consumption, network lifetime, route length and found the better outcome in all the cases for single actor. We have also applied RPSS for multiple mobile actor case like Multi-Actor Single Depot (MASD) termination and Multi-Actor Multiple Depot (MAMD) termination and observed by extensive simulation that MAMD saves the network energy in optimised way and enhance network lifetime compared to all other schemes.

  19. ACToR – Aggregated Computational Toxicology Resource ...

    EPA Pesticide Factsheets

    This presentation reviews the US EPAs reaction to the challenge of the NRC on the future of toxicity testing through the development of the ACTor Project and the ToxRef database. This presentation reviews the US EPAs reaction to the challenge of the NRC on the future of toxicity testing through the development of the ACTor Project and the ToxRef database.

  20. A Remote Lab for Experiments with a Team of Mobile Robots

    PubMed Central

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-01-01

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab. PMID:25192316

  1. A remote lab for experiments with a team of mobile robots.

    PubMed

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-09-04

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab.

  2. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    ERIC Educational Resources Information Center

    Simon, Nicole A.

    2013-01-01

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…

  3. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    PubMed

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  4. E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV

    DOE PAGES

    Defurne, M.; Amaryan, M.; Aniol, K. A.; ...

    2015-11-03

    We present final results on the photon electroproduction (more » $$\\vec{e}p\\rightarrow ep\\gamma$$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Results of the $Q^2$- and $$x_B$$-dependences of both the helicity-dependent and helicity-independent cross sections are discussed. The $Q^2$-dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS$^2$ term to the photon electroproduction cross section. The necessity to include higher-twist corrections in order to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this study represent the final set of experimental results from E00-110, superseding the previous publication.« less

  5. A New PC and LabVIEW Package Based System for Electrochemical Investigations

    PubMed Central

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-01-01

    The paper describes a new PC and LabVIEW software package based system for electrochemical research. An overview of well known electrochemical methods, such as potential measurements, galvanostatic and potentiostatic method, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of investigated electrochemical cell, a measurement and control system was developed, based on a PC P4. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of authors own research. The software platform for desired measurement methods is LabVIEW 8.2 package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with commercially available system and ORCAD simulation. PMID:27879794

  6. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.

    PubMed

    Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A

    2016-01-01

    In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.

  7. Development of and feedback on a fully automated virtual reality system for online training in weight management skills.

    PubMed

    Thomas, J Graham; Spitalnick, Josh S; Hadley, Wendy; Bond, Dale S; Wing, Rena R

    2015-01-01

    Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. © 2014 Diabetes Technology Society.

  8. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121053 (27 Aug. 2010) --- NASA astronaut Greg Chamitoff, STS-134 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  9. ACToR: Aggregated Computational Toxicology Resource (T) ...

    EPA Pesticide Factsheets

    The EPA Aggregated Computational Toxicology Resource (ACToR) is a set of databases compiling information on chemicals in the environment from a large number of public and in-house EPA sources. ACToR has 3 main goals: (1) The serve as a repository of public toxicology information on chemicals of interest to the EPA, and in particular to be a central source for the testing data on all chemicals regulated by all EPA programs; (2) To be a source of in vivo training data sets for building in vitro to in vivo computational models; (3) To serve as a central source of chemical structure and identity information for the ToxCastTM and Tox21 programs. There are 4 main databases, all linked through a common set of chemical information and a common structure linking chemicals to assay data: the public ACToR system (available at http://actor.epa.gov), the ToxMiner database holding ToxCast and Tox21 data, along with results form statistical analyses on these data; the Tox21 chemical repository which is managing the ordering and sample tracking process for the larger Tox21 project; and the public version of ToxRefDB. The public ACToR system contains information on ~500K compounds with toxicology, exposure and chemical property information from >400 public sources. The web site is visited by ~1,000 unique users per month and generates ~1,000 page requests per day on average. The databases are built on open source technology, which has allowed us to export them to a number of col

  10. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  11. Dynamically allocated virtual clustering management system

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin; Cannata, Jess

    2013-05-01

    The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.

  12. Supporting Teachers' Technological Pedagogical Content Knowledge of Fractions through Co-Designing a Virtual Manipulative

    ERIC Educational Resources Information Center

    Hansen, Alice; Mavrikis, Manolis; Geraniou, Eirini

    2016-01-01

    This study explores the impact that co-designing a virtual manipulative, Fractions Lab, had on teachers' professional development. Tapping into an existing community of practice of mathematics specialist teachers, the study identifies how a cooperative enquiry approach utilising workshops and school-based visits challenged 23 competent primary…

  13. Making Sense of Students' Actions in an Open-Ended Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Gal, Ya'akov; Uzan, Oriel; Belford, Robert; Karabinos, Michael; Yaron, David

    2015-01-01

    A process for analyzing log files collected from open-ended learning environments is developed and tested on a virtual lab problem involving reaction stoichiometry. The process utilizes a set of visualization tools that, by grouping student actions in a hierarchical manner, helps experts make sense of the linear list of student actions recorded in…

  14. [Singing formant analysis of KunQu actors in their mutation and grown-up].

    PubMed

    Zhu, Mei; Zhang, Dao-Xing; Liu, Yong-Xiang; Yang, Xiao-ju

    2005-04-01

    To compare the singing formant differences between successful opera actors and non-successful opera actors during their adolescence period, and to compare the same index between adolescence and adult period of successful actors. From 1985 to 1986, the author had 21 adolescent actors' voice recorded, all of them were from Beijing KunQu opera troupe. In 2000, all the 21 subjects had their voice recorded and singing formant (Fs) analyzed by using computer and sound spectrograph, 7 of them had become adult actors, others quitted their actors career after adolescents period. Successful actors have obvious Fs, and stronger acoustic energy; successful actors had weaker Fs value during adolescence period than during adult period (t = 2. 9600, P < 0.05). Fs's presence and its acoustic energy were important to evaluate adolescent actors future locality potential.

  15. Body height and occupational success for actors and actresses.

    PubMed

    Stieger, Stefan; Burger, Christoph

    2010-08-01

    The association of body height with occupational success has been frequently studied, with previous research mainly finding a positive effect among men and positive or null effects among women. Occupational success has almost exclusively been measured so far by short-term success variables (e.g., annual income). In the present study, the relationship of success and height was examined in a group of actors and actresses using a large online database about movies (Internet Movie Database) where heights of actors and actresses are stated. The number of roles played in movies and television series during each actor's lifetime was used as a measure of long-term occupational success. No height effect was found for male actors but a significant negative effect was found for actresses, even after controlling for possible confounding influences (age and birth year). Compared to the general population, actors and actresses were significantly taller; however, actresses who were shorter than average were more likely to achieve greater occupational success, in terms of being featured in more movies.

  16. The moral sense of humanitarian actors: an empirical exploration.

    PubMed

    Rességuier, Anaïs

    2018-01-01

    This paper examines humanitarianism's moral positioning above private and political interests to save lives and alleviate suffering. It does not aim to assess the legitimacy of this stance, but rather to probe the way in which humanitarian actors relate to this moral dimension in their everyday work. It investigates empirically humanitarian ethics from the perspective of humanitarian actors, drawing on interviews conducted in Beirut, Lebanon, in 2014. As it is exploratory, three key conceptual innovations were required. The first of these is the introduction of the tools developed to consider a neglected reality: humanitarian actors' 'moral sense' vis-à-vis the humanitarian sector's 'moral culture'. Second, the study shows how the sector's moral culture is structured around the notion of 'concern for persons in need'. Third, it analyses the way in which the sector and its actors handle the asymmetrical relationships encountered daily. Ultimately this paper seeks to valorise humanitarian actors' creativity in their common practices and explore potential challenges to it. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  17. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121058 (27 Aug. 2010) --- NASA astronauts Michael Fincke (foreground) and Greg Chamitoff, both STS-134 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  18. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121052 (27 Aug. 2010) --- NASA astronauts Michael Fincke (foreground) and Greg Chamitoff, both STS-134 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  19. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121055 (27 Aug. 2010) --- NASA astronauts Michael Fincke (right) and Greg Chamitoff, both STS-134 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  20. Development, Implementation, and Assessment of General Chemistry Lab Experiments Performed in the Virtual World of Second Life

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Keeney-Kennicutt, Wendy; Fowler, Debra; Macik, Maria

    2017-01-01

    Virtual worlds are a potential medium for teaching college-level chemistry laboratory courses. To determine the feasibility of conducting chemistry experiments in such an environment, undergraduate students performed two experiments in the immersive virtual world of Second Life (SL) as part of their regular General Chemistry 2 laboratory course.…

  1. Framework and Implications of Virtual Neurorobotics

    PubMed Central

    Goodman, Philip H.; Zou, Quan; Dascalu, Sergiu-Mihai

    2008-01-01

    Despite decades of societal investment in artificial learning systems, truly “intelligent” systems have yet to be realized. These traditional models are based on input-output pattern optimization and/or cognitive production rule modeling. One response has been social robotics, using the interaction of human and robot to capture important cognitive dynamics such as cooperation and emotion; to date, these systems still incorporate traditional learning algorithms. More recently, investigators are focusing on the core assumptions of the brain “algorithm” itself—trying to replicate uniquely “neuromorphic” dynamics such as action potential spiking and synaptic learning. Only now are large-scale neuromorphic models becoming feasible, due to the availability of powerful supercomputers and an expanding supply of parameters derived from research into the brain's interdependent electrophysiological, metabolomic and genomic networks. Personal computer technology has also led to the acceptance of computer-generated humanoid images, or “avatars”, to represent intelligent actors in virtual realities. In a recent paper, we proposed a method of virtual neurorobotics (VNR) in which the approaches above (social-emotional robotics, neuromorphic brain architectures, and virtual reality projection) are hybridized to rapidly forward-engineer and develop increasingly complex, intrinsically intelligent systems. In this paper, we synthesize our research and related work in the field and provide a framework for VNR, with wider implications for research and practical applications. PMID:18982115

  2. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  3. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    NASA Astrophysics Data System (ADS)

    Corsi, Gianluca

    2011-12-01

    programs, with emphasis on open-ended inquiries, and adoption of online tools to enhance hands-on experiences, such as virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  4. ACToR A Aggregated Computational Toxicology Resource ...

    EPA Pesticide Factsheets

    We are developing the ACToR system (Aggregated Computational Toxicology Resource) to serve as a repository for a variety of types of chemical, biological and toxicological data that can be used for predictive modeling of chemical toxicology. We are developing the ACToR system (Aggregated Computational Toxicology Resource) to serve as a repository for a variety of types of chemical, biological and toxicological data that can be used for predictive modeling of chemical toxicology.

  5. Distributed virtual environment for emergency medical training

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.; Garcia, Brian W.; Godsell-Stytz, Gayl M.

    1997-07-01

    paper we report on our prototype VER system and its distributed system architecture for an emergency department distributed virtual environment for emergency medical staff training. The virtual environment enables emergency department physicians and staff to develop their diagnostic and treatment skills using the virtual tools they need to perform diagnostic and treatment tasks. Virtual human imagery, and real-time virtual human response are used to create the virtual patient and present a scenario. Patient vital signs are available to the emergency department team as they manage the virtual case. The work reported here consists of the system architectures we developed for the distributed components of the virtual emergency room. The architectures we describe consist of the network level architecture as well as the software architecture for each actor within the virtual emergency room. We describe the role of distributed interactive simulation and other enabling technologies within the virtual emergency room project.

  6. Cyber Event Artifact Investigation Training in a Virtual Environment

    DTIC Science & Technology

    2017-12-01

    Rolling Box) and several Windows versions with few patches, often having only the 1st Service Pack. We selected a WinOS VM for our Training and...or services are currently in use by that account. In the Training Lab, the suspicious (i.e., attacker created) account is viewable from the login...ARTIFACT INVESTIGATION TRAINING IN A VIRTUAL ENVIRONMENT by Simone M. Mims Tye R. Wylkynsone December 2017 Thesis Advisor: J.D. Fulp Second

  7. Examining the Real Merits of the Virtual Microscope

    NASA Astrophysics Data System (ADS)

    Hennessy, Ronan; Meere, Pat; Ho, Timsie; Menuge, Julian; Tyrrell, Shane; Kamber, Balz; Higgs, Bettie; Kelley, Simon

    2017-04-01

    The Geoscience e-Laboratory (GeoLAB) project is a cooperative digital petrological microscopy technology enhanced learning (TEL) resource development project involving the four main university geoscience teaching centres in Ireland. Collaborating with the Open University (UK), a new digital library of petrographic thin sections has been added to the Virtual Microscope for Earth Sciences (VMfES) online repository. The collection was compiled with a view to introducing high-quality samples to teaching programmes in a manner that hitherto was limited by sample and microscope availability and cost and the temporal limits of laboratory access. The project has proceeded to explore the pedagogical implications of using the Virtual Microscope in teaching programmes. Online assessments and self-guided exercises developed using applications such as Google Forms have been introduced into programmes at each centre, and complimented by tutorial and interactive videos designed to support self-guided learning. The GeoLab project is reporting on the pedagogical implications of providing students with unimpeded access to high-quality petrographic learning resources during the term of semester and in advance of student assessments. Additionally, the project is collating data on the perceptions of both teachers and learners to using online learning media in mineralogy and petrology programmes, and if there are benefits therein to the more traditional styles of petrology and microscopy teaching and learning.

  8. Gender-Specific Covariations between Competencies, Interest and Effort during Science Learning in Virtual Environments

    PubMed Central

    Christophel, Eva; Schnotz, Wolfgang

    2017-01-01

    Women are still underrepresented in engineering courses although some German universities offer separate women’s engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners’ mental effort decreased

  9. Gender-Specific Covariations between Competencies, Interest and Effort during Science Learning in Virtual Environments.

    PubMed

    Christophel, Eva; Schnotz, Wolfgang

    2017-01-01

    Women are still underrepresented in engineering courses although some German universities offer separate women's engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners' mental effort decreased if

  10. Influential Spheres: Examining Actors' Perceptions of Education Governance

    ERIC Educational Resources Information Center

    Thier, Michael; Smith, Joanna; Pitts, Christine; Anderson, Ross

    2016-01-01

    Many layers of education governance press upon U.S. schools, so we separated state actors into those internal to and those external to the system. In the process, we unpacked the traditional state-local dichotomy. Using interview data (n = 45) from six case-study states, we analyzed local leaders', state-internal actors', and state-external…

  11. [A focused sound field measurement system by LabVIEW].

    PubMed

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  12. Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth

    2009-01-01

    This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments"…

  13. Implementation of Virtualization Oriented Architecture: A Healthcare Industry Case Study

    NASA Astrophysics Data System (ADS)

    Rao, G. Subrahmanya Vrk; Parthasarathi, Jinka; Karthik, Sundararaman; Rao, Gvn Appa; Ganesan, Suresh

    This paper presents a Virtualization Oriented Architecture (VOA) and an implementation of VOA for Hridaya - a Telemedicine initiative. Hadoop Compute cloud was established at our labs and jobs which require a massive computing capability such as ECG signal analysis were submitted and the study is presented in this current paper. VOA takes advantage of inexpensive community PCs and provides added advantages such as Fault Tolerance, Scalability, Performance, High Availability.

  14. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  15. Kinematic Labs with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  16. MethLAB

    PubMed Central

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K

    2012-01-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798

  17. Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models

    PubMed Central

    Snijders, Tom A.B.; Steglich, Christian E.G.

    2014-01-01

    Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578

  18. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    PubMed

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  19. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    PubMed Central

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538

  20. Bombing alone: tracing the motivations and antecedent behaviors of lone-actor terrorists,.

    PubMed

    Gill, Paul; Horgan, John; Deckert, Paige

    2014-03-01

    This article analyzes the sociodemographic network characteristics and antecedent behaviors of 119 lone-actor terrorists. This marks a departure from existing analyses by largely focusing upon behavioral aspects of each offender. This article also examines whether lone-actor terrorists differ based on their ideologies or network connectivity. The analysis leads to seven conclusions. There was no uniform profile identified. In the time leading up to most lone-actor terrorist events, other people generally knew about the offender's grievance, extremist ideology, views, and/or intent to engage in violence. A wide range of activities and experiences preceded lone actors' plots or events. Many but not all lone-actor terrorists were socially isolated. Lone-actor terrorists regularly engaged in a detectable and observable range of activities with a wider pressure group, social movement, or terrorist organization. Lone-actor terrorist events were rarely sudden and impulsive. There were distinguishable behavioral differences between subgroups. The implications for policy conclude this article. © 2013 American Academy of Forensic Sciences.

  1. Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)

    2001-01-01

    A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.

  2. Virtualization of Legacy Instrumentation Control Computers for Improved Reliability, Operational Life, and Management.

    PubMed

    Katz, Jonathan E

    2017-01-01

    Laboratories tend to be amenable environments for long-term reliable operation of scientific measurement equipment. Indeed, it is not uncommon to find equipment 5, 10, or even 20+ years old still being routinely used in labs. Unfortunately, the Achilles heel for many of these devices is the control/data acquisition computer. Often these computers run older operating systems (e.g., Windows XP) and, while they might only use standard network, USB or serial ports, they require proprietary software to be installed. Even if the original installation disks can be found, it is a burdensome process to reinstall and is fraught with "gotchas" that can derail the process-lost license keys, incompatible hardware, forgotten configuration settings, etc. If you have running legacy instrumentation, the computer is the ticking time bomb waiting to put a halt to your operation.In this chapter, I describe how to virtualize your currently running control computer. This virtualized computer "image" is easy to maintain, easy to back up and easy to redeploy. I have used this multiple times in my own lab to greatly improve the robustness of my legacy devices.After completing the steps in this chapter, you will have your original control computer as well as a virtual instance of that computer with all the software installed ready to control your hardware should your original computer ever be decommissioned.

  3. Astronauts Prepare for Mission With Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  4. TangoLab-2 Card Troubleshooting

    NASA Image and Video Library

    2017-10-17

    iss053e105442 (Oct. 17, 2017) --- Flight Engineer Mark Vande Hei swaps out a payload card from the TangoLab-1 facility and places into the TangoLab-2 facility. TangoLab provides a standardized platform and open architecture for experimental modules called CubeLabs. CubeLab modules may be developed for use in 3-dimensional tissue and cell cultures.

  5. Using Virtual Environments as Professional Development Tools for Pre-Service Teachers Seeking ESOL Endorsement

    ERIC Educational Resources Information Center

    Blankenship, Rebecca J.

    2010-01-01

    The purpose of this study was to investigate the potential use of Second Life (Linden Labs, 2004) and Skype (Skype Limited, 2009) as simulated virtual professional development tools for pre-service teachers seeking endorsement in teaching English as a Second Official Language (ESOL). Second Life is an avatar-based Internet program that allows…

  6. A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.

    2013-12-01

    Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS

  7. Postdecisional counterfactual thinking by actors and readers.

    PubMed

    Girotto, Vittorio; Ferrante, Donatella; Pighin, Stefania; Gonzalez, Michel

    2007-06-01

    How do individuals think counterfactually about the outcomes of their decisions? Most previous studies have investigated how readers think about fictional stories, rather than how actors think about events they have actually experienced. We assumed that differences in individuals' roles (actor vs. reader) can make different information available, which in turn can affect counterfactual thinking. Hence, we predicted an effect of role on postdecisional counterfactual thinking. Reporting the results of eight studies, we show that readers undo the negative outcome of a story by undoing the protagonist's choice to tackle a given problem, rather than the protagonist's unsuccessful attempt to solve it. But actors who make the same choice and experience the same negative outcome as the protagonist undo this outcome by altering features of the problem. We also show that this effect does not depend on motivational factors. These results contradict current accounts of counterfactual thinking and demonstrate the necessity of investigating the counterfactual thoughts of individuals in varied roles.

  8. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  9. Classroom virtual lab experiments as teaching tools for explaining how we understand planetary processes

    NASA Astrophysics Data System (ADS)

    Hill, C. N.; Schools, H.; Research Team Members

    2012-12-01

    This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.

  10. A Constructivist Cloud Lab.

    ERIC Educational Resources Information Center

    Emery, Dave

    1996-01-01

    Describes a lab involving a cloud formation activity that uses the constructivist learning model to get students more involved in creating the lab. Enables students to develop a greater understanding of the concepts involved and more interest in the lab's outcomes. (JRH)

  11. Construal level and free will beliefs shape perceptions of actors' proximal and distal intent

    PubMed Central

    Plaks, Jason E.; Robinson, Jeffrey S.

    2015-01-01

    Two components of lay observers' calculus of moral judgment are proximal intent (the actor's mind is focused on performing the action) and distal intent (the actor's mind is focused on the broader goal). What causes observers to prioritize one form of intent over the other? The authors observed whether construal level (Studies 1–2) and beliefs about free will (Studies 3–4) would influence participants' sensitivity to the actor's proximal vs. distal intent. In four studies, participants read scenarios in which the actor's proximal and distal intent were independently manipulated. In Study 1, when only distal intent was present in the actor's mind, participants rated the psychologically distant actor more responsible than the psychologically near actor. In Study 2, when only distal intent was in the actor's mind, participants with a chronic high level of action identification rated the actor more responsible than did those with a low level of action identification. In both studies, when only proximal intent was in the actor's mind, construal level did not predict judgments of responsibility. In Study 3, when only proximal intent was present in the actor's mind, the more participants believed in free will, the more they rated the actor responsible. When only distal intent was in the actor's mind, free will belief did not influence ratings of responsibility. In Study 4, the same pattern emerged when free will/determinism beliefs were manipulated and the actor performed a positive (life-saving) act. The authors discuss how these results shed new light on the literatures on moral reasoning and psycho-legal theory. PMID:26106352

  12. Optimizing students’ scientific communication skills through higher order thinking virtual laboratory (HOTVL)

    NASA Astrophysics Data System (ADS)

    Sapriadil, S.; Setiawan, A.; Suhandi, A.; Malik, A.; Safitri, D.; Lisdiani, S. A. S.; Hermita, N.

    2018-05-01

    Communication skill is one skill that is very needed in this 21st century. Preparing and teaching this skill in teaching physics is relatively important. The focus of this research is to optimizing of students’ scientific communication skills after the applied higher order thinking virtual laboratory (HOTVL) on topic electric circuit. This research then employed experimental study particularly posttest-only control group design. The subject in this research involved thirty senior high school students which were taken using purposive sampling. A sample of seventy (70) students participated in the research. An equivalent number of thirty five (35) students were assigned to the control and experimental group. The results of this study found that students using higher order thinking virtual laboratory (HOTVL) in laboratory activities had higher scientific communication skills than students who used the verification virtual lab.

  13. LabSkills

    ERIC Educational Resources Information Center

    O'Brien, Nick

    2010-01-01

    This article describes LabSkills, a revolutionary teaching tool to improve practical science in schools. LabSkills offers the chance to help improve the exposure that the average Key Stage 5 (age 16-19) student has to practical work. This is a huge area for development being highlighted by universities who are seeing a worryingly growing trend in…

  14. Balancing influence between actors in healthcare decision making.

    PubMed

    Kaplan, Robert M; Babad, Yair M

    2011-04-19

    Healthcare costs in most developed countries are not clearly linked to better patient and public health outcomes, but are rather associated with service delivery orientation. In the U.S. this has resulted in large variation in healthcare availability and use, increased cost, reduced employer participation in health insurance programs, and reduced overall population health outcomes. Recent U.S. healthcare reform legislation addresses only some of these issues. Other countries face similar healthcare issues. A major goal of healthcare is to enhance patient health outcomes. This objective is not realized in many countries because incentives and structures are currently not aligned for maximizing population health. The misalignment occurs because of the competing interests between "actors" in healthcare. In a simplified model these are individuals motivated to enhance their own health; enterprises (including a mix of nonprofit, for profit and government providers, payers, and suppliers, etc.) motivated by profit, political, organizational and other forces; and government which often acts in the conflicting roles of a healthcare payer and provider in addition to its role as the representative and protector of the people. An imbalance exists between the actors, due to the resources and information control of the enterprise and government actors relative to the individual and the public. Failure to use effective preventive interventions is perhaps the best example of the misalignment of incentives. We consider the current Pareto efficient balance between the actors in relation to the Pareto frontier, and show that a significant change in the healthcare market requires major changes in the utilities of the enterprise and government actors. A variety of actions are necessary for maximizing population health within the constraints of available resources and the current balance between the actors. These actions include improved transparency of all aspects of medical decision

  15. Balancing influence between actors in healthcare decision making

    PubMed Central

    2011-01-01

    Background Healthcare costs in most developed countries are not clearly linked to better patient and public health outcomes, but are rather associated with service delivery orientation. In the U.S. this has resulted in large variation in healthcare availability and use, increased cost, reduced employer participation in health insurance programs, and reduced overall population health outcomes. Recent U.S. healthcare reform legislation addresses only some of these issues. Other countries face similar healthcare issues. Discussion A major goal of healthcare is to enhance patient health outcomes. This objective is not realized in many countries because incentives and structures are currently not aligned for maximizing population health. The misalignment occurs because of the competing interests between "actors" in healthcare. In a simplified model these are individuals motivated to enhance their own health; enterprises (including a mix of nonprofit, for profit and government providers, payers, and suppliers, etc.) motivated by profit, political, organizational and other forces; and government which often acts in the conflicting roles of a healthcare payer and provider in addition to its role as the representative and protector of the people. An imbalance exists between the actors, due to the resources and information control of the enterprise and government actors relative to the individual and the public. Failure to use effective preventive interventions is perhaps the best example of the misalignment of incentives. We consider the current Pareto efficient balance between the actors in relation to the Pareto frontier, and show that a significant change in the healthcare market requires major changes in the utilities of the enterprise and government actors. Summary A variety of actions are necessary for maximizing population health within the constraints of available resources and the current balance between the actors. These actions include improved transparency of

  16. [Be in role. Examination of dissociative experiences of theatrical actors].

    PubMed

    Docsa, Viktória Pálma; Szemán-Nagy, Anita

    2012-01-01

    In spite of the fact that acting makes great demands on the personality, there is lack of research dealing with the psychological status of actors. Resulted from their profession actors often experience dissociation, since absorption and changing of their identity is a routine task for them. They are acting on the stage, and they are acting in private. 36 theatrical actors completed the DISQ-H version of the Dissociation Questionnaire measuring four subscales: Identity Confusion, Amnesia, Loss of Control and Absorption. In order to understand their experiences deeper, nine actors were interviewed. The sample consisted of 21 men and 15 women and their ages ranged from 23 to 60. Higher ages implied longer career as an actor, thus the youngest subject had been working for 2 years, while the oldest one had been working for 39 years. DISQ-H total score results of the actors were significantly higher compared to the Hungarian standard scores. As we expected, the two non-pathological subscales (Loss of Control and Absorption) showed significant differences compared to the standard scores of the subscales. In the case of Identity Confusion subscale we found no significant differences, however the results indicate that the tendency observed emphasizes the importance of further research of this phenomenon. To sum up, dissociative experiences proved to be important elements of acting.

  17. From Ions to Bits - Developing the IT infrastructure around the CAMECA IMS 1280-HR SIMS lab at GFZ Potsdam

    NASA Astrophysics Data System (ADS)

    Galkin, A.; Klump, J.; Wiedenbeck, M.

    2012-04-01

    Secondary Ion Mass Spectrometers (SIMS) is an highly sensitive technique for analyzing the surfaces of solids and thin film samples, but has the major drawback that such instruments are both rare and expensive. The Virtual SIMS project aims to design, develop and operate the IT infrastructure around the CAMECA IMS 1280-HR SIMS at GFZ Potsdam. The system will cover the whole spectrum of the procedures in the lab - from the online application for measurement time, to the remote access to the instrument and finally the maintenance of the data for publishing and future re-use. A virtual lab infrastructure around the IMS 1280 will enable remote access to the instrument and make measurement time available to the broadest possible user community. Envisioned is that the IT infrastructure would consist of the following: web portal, data repository, sample repository, project management software, communication arrangements between the lab staff and distant researcher and remote access to the instruments. The web portal will handle online applications for the measurement time. The data from the experiments, the monitoring sensor logs and the lab logbook entries are to be stored and archived. Researchers will be able to access their data remotely in real time, thus imposing a user rights management strucuture. Also planned is that all samples and the standards will be assigned a unique International GeoSample Number (IGSN) and that the images of the samples will be stored and made accessible in addition to any additional documents which might be uploaded by the researcher. The project management application will schedule the application process, the measurements times, notifications and alerts. A video conference capability is forseen for communication between the Potsdam staff and the remote researcher. The remote access to the instruments requires a sophisticated client-server solution. This highly sensitive instrument has to be controlled in real-time with latencies

  18. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.

    PubMed

    Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-02-09

    Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.

  19. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation

    PubMed Central

    Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-01-01

    Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520

  20. Material Matters for Learning in Virtual Networks: A Case Study of a Professional Learning Programme Hosted in a Google+ Online Community

    ERIC Educational Resources Information Center

    Ackland, Aileen; Swinney, Ann

    2015-01-01

    In this paper, we draw on Actor-Network Theories (ANT) to explore how material components functioned to create gateways and barriers to a virtual learning network in the context of a professional development module in higher education. Students were practitioners engaged in family learning in different professional roles and contexts. The data…

  1. A Tutorial on Interfacing the Object Management Group (OMG) Data Distribution Service (DDS) with LabView

    NASA Technical Reports Server (NTRS)

    Smith, Kevin

    2011-01-01

    This tutorial will explain the concepts and steps for interfacing a National Instruments LabView virtual instrument (VI) running on a Windows platform with another computer via the Object Management Group (OMG) Data Distribution Service (DDS) as implemented by the Twin Oaks Computing CoreDX. This paper is for educational purposes only and therefore, the referenced source code will be simplistic and void of all error checking. Implementation will be accomplished using the C programming language.

  2. ACToR A Aggregated Computational Toxicology Resource (S) ...

    EPA Pesticide Factsheets

    We are developing the ACToR system (Aggregated Computational Toxicology Resource) to serve as a repository for a variety of types of chemical, biological and toxicological data that can be used for predictive modeling of chemical toxicology. We are developing the ACToR system (Aggregated Computational Toxicology Resource) to serve as a repository for a variety of types of chemical, biological and toxicological data that can be used for predictive modeling of chemical toxicology.

  3. Teaching Digital Natives: 3-D Virtual Science Lab in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Franklin, Teresa J.

    2008-01-01

    This paper presents the development of a 3-D virtual environment in Second Life for the delivery of standards-based science content for middle school students in the rural Appalachian region of Southeast Ohio. A mixed method approach in which quantitative results of improved student learning and qualitative observations of implementation within…

  4. Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.

    PubMed

    Lang, Stacey

    2012-01-01

    The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.

  5. (Virtual) Water-repellent Law? Why Legal Studies Should Be Brought Into the Virtual Water Debate

    NASA Astrophysics Data System (ADS)

    Turrini, Paolo

    2014-05-01

    Virtual water studies are a marvelous example of the much praised "interdisciplinary approach", efficaciously intertwining many threads woven by scholars of very diverse fields of research. After all, if water is an object of biological interest and the word "virtual" becomes especially significant in the framework of the international trade flows, why should agronomists and economists not work together? And, with them, hydrologists, environmental engineers, network analysis experts… either working side by side or, at least, following one another's steps. Browsing the relevant academic literature one may notice that a vast array of disciplines is dealing with the topic. As a consequence, it may come as a surprise that lawyers seem to have remained almost deaf to the charming call of virtual water. A social science thoroughly "social" even if sometimes deemed (also by its practitioners) akin to humanities - and for this reason not always timely in catching the hints by hard sciences - law has a lot to say about virtual water and its manifold aspects. And it is so, in my opinion, in at least two respects. First of all, legal provisions can be determinants of social facts no less than other types of norms, such as physical or economic laws. Law shapes the human behavior by giving incentives or establishing constraints to the conduct of virtually any kind of social actor, be they farmers needing to decide what to grow, entrepreneurs willing to invest in the water market, or governments requested to address their communities' problems. All of them will make their choices in consideration of the costs, opportunities, and limits set by a number of regulations. In the second place, and strictly connected with the first reason, law may offer some answers to the challenges that virtual water and, more in general, the water-food nexus bring with them. In fact, understanding the way legal provisions affect the taking of decisions in the water sector, one may try to devise

  6. Application of the actor model to large scale NDE data analysis

    NASA Astrophysics Data System (ADS)

    Coughlin, Chris

    2018-03-01

    The Actor model of concurrent computation discretizes a problem into a series of independent units or actors that interact only through the exchange of messages. Without direct coupling between individual components, an Actor-based system is inherently concurrent and fault-tolerant. These traits lend themselves to so-called "Big Data" applications in which the volume of data to analyze requires a distributed multi-system design. For a practical demonstration of the Actor computational model, a system was developed to assist with the automated analysis of Nondestructive Evaluation (NDE) datasets using the open source Myriad Data Reduction Framework. A machine learning model trained to detect damage in two-dimensional slices of C-Scan data was deployed in a streaming data processing pipeline. To demonstrate the flexibility of the Actor model, the pipeline was deployed on a local system and re-deployed as a distributed system without recompiling, reconfiguring, or restarting the running application.

  7. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  8. A comparative analysis of traditional and online lab science transfer courses in the rural community college

    NASA Astrophysics Data System (ADS)

    Scott, Andrea

    Through distance learning, the community college system has moved beyond geographical boundaries to serve all students and provide educational opportunities at a distance to individuals previously out of reach of the college community. With the inception of the Mississippi Virtual Community College (MSVCC) in January 2000, Mississippi's public community colleges have experienced unprecedented growth in online enrollments and online course offerings to include the laboratory sciences; however, transfer of online lab science courses are problematic for individuals who wish to gain admittance to Medical, Dental, and Pharmacy schools in Mississippi. Currently online lab science courses are not accepted for transfer for students seeking admission to Mississippi Medical, Dental, or Pharmacy schools. The need for this study, the statement of the problem, and the purpose of the study address transfer issues related to the transfer of online lab science courses in Mississippi and the impact of such on the student and community college. The study also addresses existing doubts regarding online course delivery as a viable method of lab science delivery. The purpose of the study was to investigate differences between online instructional delivery as compared to traditional face-to-face delivery with the following research questions to: (1) Investigate the perception of quality of online courses as compared to traditional face-to-face courses. (2) Investigate the difference in student performance in online transfer lab science courses as compared to student performance in traditional face-to-face lab science courses. The results of this 13 semester study show significant differences in both perception of quality and student performance between online instructional delivery as compared to traditional face-to-face delivery. The findings demonstrate a need for Mississippi Dental, Medical, and Pharmacy schools to reexamine the articulation agreement between IHL and Community and

  9. Development of a Virtual Tool for Learning Basic Organisation and Planning in Rural Engineering Projects

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-01-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…

  10. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    NASA Astrophysics Data System (ADS)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    2009 3-day videoconferencing event, 3 graduate students and the lab PI connected to nine, 7th grade life science classes (~300 students) using SKYPE. Each of the nine videoconferences lasted for ~50 minutes and included a mini-lab tour, a short presentation on the graduate students’ field and lab-based research activities, and interspersed question and answer sessions. Teachers are currently exploring ways they can further capitalize on the connection to the research lab and are writing up a “how to” guide for SKYPE lab to classroom videoconferencing. LHS has been evaluating this videoconference project to get feedback from the participants about the collaboration, the technology, and the format in order to improve the program in the future. The collaboration has now been turned over to the graduate students and teachers with little facilitation by COSEE CA staff. COSEE CA is applying the approach to other earth and ocean science topics by offering “Virtual Lab Tours” as a broader impact option.

  11. Virtual Project Management: Examining the Roles and Functions of Online Instructors in Creating Learning Applications with Value

    ERIC Educational Resources Information Center

    Barrett, Bob

    2012-01-01

    While many students and instructors are transitioning from the brick-and-mortar classrooms to virtual classrooms, labs, and simulations, this requires a higher-level of expertise, control, and perseverance by the instructor. Traditional methods of teaching, leading, managing, and organizing learn activities has changed in terms of the virtual…

  12. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  13. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  14. ACToR Chemical Structure processing using Open Source ...

    EPA Pesticide Factsheets

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  15. Professional Actors in the University Classroom

    ERIC Educational Resources Information Center

    Sharpham, John R.; Pritner, Calvin Lee

    1973-01-01

    A company of professional actors perform scenes from history, act in plays, and do improvisations and poetry readings in university classrooms. Describes Illinois State University's unique program for enlivening the humanities. (Author/JF)

  16. The Actor and His Body.

    ERIC Educational Resources Information Center

    Rubin, Lucille S., Ed.

    Fourteen brief articles deal with training actors to use their bodies effectively on stage. The articles discuss the following topics: the concept of succession-sequential movement (movement that passes through the body joint by joint); learning physical action through staged fight sequences; techniques of empty-handed combat; protecting students…

  17. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  18. Augmented Virtual Reality Laboratory

    NASA Technical Reports Server (NTRS)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  19. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.

    PubMed

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-05-28

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.

  20. Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks

    PubMed Central

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-01-01

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087

  1. Lone Actor Terrorist Attack Planning and Preparation: A Data-Driven Analysis.

    PubMed

    Schuurman, Bart; Bakker, Edwin; Gill, Paul; Bouhana, Noémie

    2017-10-23

    This article provides an in-depth assessment of lone actor terrorists' attack planning and preparation. A codebook of 198 variables related to different aspects of pre-attack behavior is applied to a sample of 55 lone actor terrorists. Data were drawn from open-source materials and complemented where possible with primary sources. Most lone actors are not highly lethal or surreptitious attackers. They are generally poor at maintaining operational security, leak their motivations and capabilities in numerous ways, and generally do so months and even years before an attack. Moreover, the "loneness" thought to define this type of terrorism is generally absent; most lone actors uphold social ties that are crucial to their adoption and maintenance of the motivation and capability to commit terrorist violence. The results offer concrete input for those working to detect and prevent this form of terrorism and argue for a re-evaluation of the "lone actor" concept. © 2017 The Authors. Journal of Forensic Sciences published by Wiley Periodicals, Inc. on behalf of American Academy of Forensic Sciences.

  2. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  3. Transnational corporations as 'keystone actors' in marine ecosystems.

    PubMed

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan

    2015-01-01

    Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems.

  4. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  5. Actor Interdependence in Collaborative Telelearning.

    ERIC Educational Resources Information Center

    Wasson, Barbara; Bourdeau, Jacqueline

    This paper presents a model of collaborative telelearning and describes how coordination theory has provided a framework for the analysis of actor (inter)dependencies in this scenario. The model is intended to inform the instructional design of learning scenarios, the technological design of the telelearning environment, and the design of…

  6. Constraint, Intelligence, and Control Hierarchy in Virtual Environments. Chapter 1

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.

    2007-01-01

    This paper seeks to deal directly with the question of what makes virtual actors and objects that are experienced in virtual environments seem real. (The term virtual reality, while more common in public usage, is an oxymoron; therefore virtual environment is the preferred term in this paper). Reality is difficult topic, treated for centuries in those sub-fields of philosophy called ontology- "of or relating to being or existence" and epistemology- "the study of the method and grounds of knowledge, especially with reference to its limits and validity" (both from Webster s, 1965). Advances in recent decades in the technologies of computers, sensors and graphics software have permitted human users to feel present or experience immersion in computer-generated virtual environments. This has motivated a keen interest in probing this phenomenon of presence and immersion not only philosophically but also psychologically and physiologically in terms of the parameters of the senses and sensory stimulation that correlate with the experience (Ellis, 1991). The pages of the journal Presence: Teleoperators and Virtual Environments have seen much discussion of what makes virtual environments seem real (see, e.g., Slater, 1999; Slater et al. 1994; Sheridan, 1992, 2000). Stephen Ellis, when organizing the meeting that motivated this paper, suggested to invited authors that "We may adopt as an organizing principle for the meeting that the genesis of apparently intelligent interaction arises from an upwelling of constraints determined by a hierarchy of lower levels of behavioral interaction. "My first reaction was "huh?" and my second was "yeah, that seems to make sense." Accordingly the paper seeks to explain from the author s viewpoint, why Ellis s hypothesis makes sense. What is the connection of "presence" or "immersion" of an observer in a virtual environment, to "constraints" and what types of constraints. What of "intelligent interaction," and is it the intelligence of the

  7. Matching safety to access: global actors and pharmacogovernance in Kenya- a case study.

    PubMed

    Moscou, Kathy; Kohler, Jillian C

    2017-03-23

    The Kenyan government has sought to address inadequacies in its National Pharmaceutical Policy and the Pharmacy and Poisons Board's (PPB) medicines governance by engaging with global actors (e.g. the World Health Organization). Policy actors have influenced the way pharmacovigilance is defined, how challenges are understood and which norms are requisite to address drug safety issues. In this paper, we investigate the relationship between specific modes of engagement among global (exogenous) and domestic actors at the national and sub-national level to identify the positive or negative effect on pharmacovigilance and pharmacogovernance in Kenya. Pharmacogovernance is defined as the manner in which governing structures; policy instruments; institutional authority (e.g., ability to act, implement and enforce norms, policies and processes) and resources are managed to promote societal interests for patient safety and protection from adverse drug reactions (ADRs). Qualitative research methods that included key informant interviews and document analysis, were employed to investigate the relationship between global actors' patterns of engagement with national actors and pharmacogovernance in Kenya. Global actors' influence on pharmacogovernance and pharmacovigilance priorities in Kenya (e.g., legislation and adverse drug reaction surveillance) was positively perceived by key informants. We found that global actors' engagement with state actors produced positive and negative outcomes. Engagement with the PPB and Ministry of Health (MOH) that was characterized as dependent (advocacy, empowerment, delegated) or interdependent (collaborative, cooperative, consultative) was mostly associated with positive outcomes e.g., capacity building; strengthening legislation and stakeholder coordination. Fragmentation (independent engagement) hindered risk communication between public, private, and NGO health programs. A framework for assessing pharmacogovernance would support policy

  8. Fieldwork Skills in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Craven, Benjamin; Lloyd, Geoffrey; Gordon, Clare; Houghton, Jacqueline; Morgan, Daniel

    2017-04-01

    Virtual reality has an increasingly significant role to play in teaching and research, but for geological applications realistic landscapes are required that contain sufficient detail to prove viable for investigation by both inquisitive students and critical researchers. To create such virtual landscapes, we combine DTM data with digitally modelled outcrops in the game engine Unity. Our current landscapes are fictional worlds, invented to focus on generation techniques and the strategic and spatial immersion within a digital environment. These have proved very successful in undergraduate teaching; however, we are now moving onto recreating real landscapes for more advanced teaching and research. The first of these is focussed on Rhoscolyn, situated within the Ynys Mon Geopark on Anglesey, UK. It is a popular area for both teaching and research in structural geology so has a wide usage demographic. The base of the model is created from DTM data, both 1 m LiDAR and 5 m GPS point data, and manipulated with QGIS before import to Unity. Substance is added to the world via models of architectural elements (e.g. walls and buildings) and appropriate flora and fauna, including sounds. Texturing of these models is performed using 25 cm aerial imagery and field photographs. Whilst such elements enhance immersion, it is the use of digital outcrop models that fully completes the experience. From fieldwork, we have a library of photogrammetric outcrops that can be modelled into 3D features using free (VisualSFM and MeshLab) and non-free (AgiSoft Photoscan) tools. These models are then refined and converted in Maya to create models for better insertion into the Unity environment. The finished product is a virtual landscape; a Rhoscolyn `world' that is sufficiently detailed to provide a base not only for geological teaching and training but also for geological research. Additionally, the `Rhoscolyn World' represents a significant tool for those students who are unable to attend

  9. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    NASA Astrophysics Data System (ADS)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  10. From big data analysis in the cloud to robotic pot drumming: tales from the Met Office Informatics Lab

    NASA Astrophysics Data System (ADS)

    Robinson, Niall; Tomlinson, Jacob; Prudden, Rachel; Hilson, Alex; Arribas, Alberto

    2017-04-01

    The Met Office Informatics Lab is a small multidisciplinary team which sits between science, technology and design. Our mission is simply "to make Met Office data useful" - a deliberately broad objective. Our prototypes often trial cutting edge technologies, and so far have included projects such as virtual reality data visualisation in the web browser, bots and natural language interfaces, and artificially intelligent weather warnings. In this talk we focus on our latest project, Jade, a big data analysis platform in the cloud. It is a powerful, flexible and simple to use implementation which makes extensive use of technologies such as Jupyter, Dask, containerisation, Infrastructure as Code, and auto-scaling. Crucially, Jade is flexible enough to be used for a diverse set of applications: it can present weather forecast information to meteorologists and allow climate scientists to analyse big data sets, but it is also effective for analysing non-geospatial data. As well as making data useful, the Informatics Lab also trials new working practises. In this presentation, we will talk about our experience of making a group like the Lab successful.

  11. Teaching, Learning, and Leading: Preparing Teachers as Educational Policy Actors

    ERIC Educational Resources Information Center

    Heineke, Amy J.; Ryan, Ann Marie; Tocci, Charles

    2015-01-01

    Within the current federal, state, and local contexts of educational reform, teachers must be recognized as central actors in policy work, but rarely do we explicitly consider preparing teachers to become policy actors. Understanding these implications for teacher education, we investigate teacher candidates' learning of the complexity and…

  12. Training students with patient actors improves communication: a pilot study.

    PubMed

    Anderson, Heather A; Young, Jack; Marrelli, Danica; Black, Rudolph; Lambreghts, Kimberly; Twa, Michael D

    2014-01-01

    Effective patient communication is correlated with better health outcomes and patient satisfaction, but is challenging to train, particularly with difficult clinical scenarios such as loss of sight. In this pilot study, we evaluated the use of simulated patient encounters with actors to train optometric students. Students were recorded during encounters with actors and assigned to an enrichment group performing five interactions with instructor feedback (n = 6) or a no-enrichment group performing two interactions without feedback (n = 4). Student performance on first and last encounters was scored with (1) subjective rating of performance change using a visual analog scale (anchors: much worse/much better), (2) yes/no response: Would you recommend this doctor to a friend/relative?, and (3) average score on questions from the American Board of Internal Medicine (ABIM) assessment of doctor communication skills. Three clinical instructors, masked to student group assignments and the order of patient encounters they viewed, provided scores in addition to self-evaluation by students and patient-actors. Using the visual analog scale, students who received enrichment were rated more improved than the no-enrichment group by masked examiners (+18 vs. -11% p = 0.04) and self-evaluation (+79 vs. +27% p = 0.009), but not by actors (+31 vs. +43%). The proportion of students recommended significantly increased following enrichment for masked examiners (61% vs. 94%; p < 0.001), but not actors (100 vs. 83%). Average ABIM assessment scores were not significantly different by any rating group: masked instructors, actors, or self-ratings. The findings of this study suggest five simulated patient encounters with feedback result in measurable improvement in student-patient communication skills as rated by masked examiners.

  13. Defining the global health system and systematically mapping its network of actors.

    PubMed

    Hoffman, Steven J; Cole, Clarke B

    2018-04-17

    The global health system has faced significant expansion over the past few decades, including continued increase in both the number and diversity of actors operating within it. However, without a stronger understanding of what the global health system encompasses, coordination of actors and resources to address today's global health challenges will not be possible. This study presents a conceptually sound and operational definition of the global health system. Importantly, this definition can be applied in practice to facilitate analysis of the system. The study tested the analytical helpfulness of this definition through a network mapping exercise, whereby the interconnected nature of websites representing actors in the global health system was studied. Using a systematic methodology and related search functions, 203 global health actors were identified, representing the largest and most transparent list of its kind to date. Identified global health actors were characterized and the structure of their social network revealed intriguing patterns in relationships among actors. These findings provide a foundation for future inquiries into the global health system's structure and dynamics that are critical if we are to better coordinate system activities and ensure successful response to our most pressing global health challenges.

  14. False recollection of the role played by an actor in an event

    PubMed Central

    Earles, Julie L.; Upshaw, Christin

    2013-01-01

    Two experiments demonstrated that eyewitnesses more frequently associate an actor with the actions of another person when those two people had appeared together in the same event, rather than in different events. This greater likelihood of binding an actor with the actions of another person from the same event was associated with high-confidence recognition judgments and “remember” responses in a remember–know task, suggesting that viewing an actor together with the actions of another person led participants to falsely recollect having seen that actor perform those actions. An analysis of age differences provided evidence that familiarity also contributed to false recognition independently of a false-recollection mechanism. In particular, older adults were more likely than young adults to falsely recognize a novel conjunction of a familiar actor and action, regardless of whether that actor and action were from the same or from different events. Older adults’ elevated rate of false recognition was associated with intermediate confidence levels, suggesting that it stemmed from increased reliance on familiarity rather than from false recollection. The implications of these results are discussed for theories of conjunction errors in memory and of unconscious transference in eyewitness testimony. PMID:23722927

  15. Lab Report Blues

    ERIC Educational Resources Information Center

    Diaz, Andrew

    2004-01-01

    For middle school students, writing a formal lab report can be challenging. For middle level teachers, reading students lab reports can be overwhelming. After grading report after report with incomplete procedures, incorrect graphs, and missing conclusions, the author's frustration level was at an all-time high. Ready to try anything, he thought,…

  16. Reforming Cookbook Labs

    ERIC Educational Resources Information Center

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  17. Smart communication with LabView

    NASA Astrophysics Data System (ADS)

    Iov, Cǎtǎlin J.; Diaconu, Bogdan; Hnatiuc, Mihaela

    2016-12-01

    The population alarm systems do not represent a new concept. Since hundreds of years ago the man used either smoke signals generated from certain upper locations, visible from long distance, getting through acoustic systems placed on high buildings, until now when mass-media channels extended the possibilities by the television and radio. However, either one of those mentioned above requested the individual to be located at the alarming moment in the area of action of the alarm. Otherwise, the message has no efficiency. This limitation is currently solved by additional communication channels such as the internet and the mobile networks. Messages are now able to be sent to the mobile screen, and the user can reply to messages either by using the short message service (SMS) or by emailing to someone, to a server, to a center. From the general pattern of alarming the population on certain events, the medical applications represent a very important field. Messages are sent from the patient to a central medical center and back to the patient. This paper focuses on the value that virtual tools developed with LabVIEW brings to us.

  18. Emotional labor actors: a latent profile analysis of emotional labor strategies.

    PubMed

    Gabriel, Allison S; Daniels, Michael A; Diefendorff, James M; Greguras, Gary J

    2015-05-01

    Research on emotional labor focuses on how employees utilize 2 main regulation strategies-surface acting (i.e., faking one's felt emotions) and deep acting (i.e., attempting to feel required emotions)-to adhere to emotional expectations of their jobs. To date, researchers largely have considered how each strategy functions to predict outcomes in isolation. However, this variable-centered perspective ignores the possibility that there are subpopulations of employees who may differ in their combined use of surface and deep acting. To address this issue, we conducted 2 studies that examined surface acting and deep acting from a person-centered perspective. Using latent profile analysis, we identified 5 emotional labor profiles-non-actors, low actors, surface actors, deep actors, and regulators-and found that these actor profiles were distinguished by several emotional labor antecedents (positive affectivity, negative affectivity, display rules, customer orientation, and emotion demands-abilities fit) and differentially predicted employee outcomes (emotional exhaustion, job satisfaction, and felt inauthenticity). Our results reveal new insights into the nature of emotion regulation in emotional labor contexts and how different employees may characteristically use distinct combinations of emotion regulation strategies to manage their emotional expressions at work. (c) 2015 APA, all rights reserved.

  19. Cognitively Central Actors and Their Personal Networks in an Energy Efficiency Training Program

    ERIC Educational Resources Information Center

    Hytönen, Kaisa; Palonen, Tuire; Hakkarainen, Kai

    2014-01-01

    This article aims to examine cognitively central actors and their personal networks in the emerging field of energy efficiency. Cognitively central actors are frequently sought for professional advice by other actors and, therefore, they are positioned in the middle of a social network. They often are important knowledge resources, especially in…

  20. Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces.

    PubMed

    Culbertson, Heather; Kuchenbecker, Katherine J

    2017-01-01

    Interacting with physical objects through a tool elicits tactile and kinesthetic sensations that comprise your haptic impression of the object. These cues, however, are largely missing from interactions with virtual objects, yielding an unrealistic user experience. This article evaluates the realism of virtual surfaces rendered using haptic models constructed from data recorded during interactions with real surfaces. The models include three components: surface friction, tapping transients, and texture vibrations. We render the virtual surfaces on a SensAble Phantom Omni haptic interface augmented with a Tactile Labs Haptuator for vibration output. We conducted a human-subject study to assess the realism of these virtual surfaces and the importance of the three model components. Following a perceptual discrepancy paradigm, subjects compared each of 15 real surfaces to a full rendering of the same surface plus versions missing each model component. The realism improvement achieved by including friction, tapping, or texture in the rendering was found to directly relate to the intensity of the surface's property in that domain (slipperiness, hardness, or roughness). A subsequent analysis of forces and vibrations measured during interactions with virtual surfaces indicated that the Omni's inherent mechanical properties corrupted the user's haptic experience, decreasing realism of the virtual surface.

  1. Two-actor conflict with time delay: A dynamical model

    NASA Astrophysics Data System (ADS)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  2. Generalized parton distributions from deep virtual compton scattering at CLAS

    DOE PAGES

    Guidal, M.

    2010-04-24

    Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less

  3. Virtual Interactive Classroom: A New Technology for Distance Learning Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Babula, Maria

    1999-01-01

    The Virtual Interactive Classroom (VIC) allows Internet users, specifically students, to remotely control and access data from scientific equipment. This is a significant advantage to school systems that cannot afford experimental equipment, have Internet access, and are seeking to improve science and math scores with current resources. A VIC Development Lab was established at Lewis to demonstrate that scientific equipment can be controlled by remote users over the Internet. Current projects include a wind tunnel, a room camera, a science table, and a microscope.

  4. Breaking into the Business: Experiences of Actors with Disabilities in the Entertainment Industry

    ERIC Educational Resources Information Center

    Raynor, Olivia; Hayward, Katharine

    2009-01-01

    The pursuit of an acting career is a difficult one for anybody. However, studies have yet to factor how disability affects casting opportunities. This study describes the employment of actors with disabilities, along with the unique barriers they encounter in the audition and casting process. Actors with disabilities from the Screen Actors Guild…

  5. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  6. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  7. Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models

    ERIC Educational Resources Information Center

    Snijders, Tom A. B.; Steglich, Christian E. G.

    2015-01-01

    Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of…

  8. Sacred Shock: Student Actors on Anti-Bullying Improvisation and Impact of Self-Rehearsal

    ERIC Educational Resources Information Center

    Gilman, Sharlene Elinor

    2017-01-01

    This article describes responses of a group of adolescent student actors and actor alumni involved in anti-bullying skits arising from a critical case study of the Tolerance Troupe from a small rural and suburban borough in Pennsylvania. Seventeen active members and 19 actor alumni participated in semi-structured interviews focusing on what the…

  9. SenseLab

    PubMed Central

    Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.

    2009-01-01

    This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162

  10. The Development of Virtual Laboratory Using ICT for Physics in Senior High School

    NASA Astrophysics Data System (ADS)

    Masril, M.; Hidayati, H.; Darvina, Y.

    2018-04-01

    One of the problems found in the implementation of the curriculum in 2013 is not all competency skills can be performed well. Therefore, to overcome these problems, virtual laboratory designed to improve the mastery of concepts of physics. One of the design objectives virtual laboratories is to improve the quality of education and learning in physics in high school. The method used in this study is a research method development four D model with the definition phase, design phase, development phase, and dissemination phase. Research has reached the stage of development and has been tested valid specialist. The instrument used in the research is a questionnaire consisting of: 1) the material substance; 2) The display of visual communication; 3) instructional design; 4) the use of software; and 5) Linguistic. The research results is validity in general has been a very good category (85.6), so that the design of virtual labs designed can already be used in high school.

  11. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  12. Transnationalisation within School Education:The Interconnection between Actors, Structures and Mechanisms

    ERIC Educational Resources Information Center

    Schneider, Claudia

    2017-01-01

    The current literature of school education, transnationalisation and migration explores actors, structures and social mechanisms, however, tends to focus on these analytical levels separately. This article advocates a more explicit analysis of the interconnections of structures, actors and mechanisms within and across schools and wider national…

  13. A call for virtual experiments: accelerating the scientific process.

    PubMed

    Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar

    2015-01-01

    Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Data-Oriented Astrophysics at NOAO: The Science Archive & The Data Lab

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie; NOAO Data Lab, NOAO Science Archive

    2018-06-01

    As we keep progressing into an era of increasingly large astronomy datasets, NOAO’s data-oriented mission is growing in prominence. The NOAO Science Archive, which captures and processes the pixel data from mountaintops in Chile and Arizona, now contains holdings at Petabyte scales. Working at the intersection of astronomy and data science, the main goal of the NOAO Data Lab is to provide users with a suite of tools to work close to this data, the catalogs derived from them, as well as externally provided datasets, and thus optimize the scientific productivity of the astronomy community. These tools and services include databases, query tools, virtual storage space, workflows through our Jupyter Notebook server, and scripted analysis. We currently host datasets from NOAO facilities such as the Dark Energy Survey (DES), the DESI imaging Legacy Surveys (LS), the Dark Energy Camera Plane Survey (DECaPS), and the nearly all-sky NOAO Source Catalog (NSC). We are further preparing for large spectroscopy datasets such as DESI. After a brief overview of the Science Archive, the Data Lab and datasets, I will briefly showcase scientific applications showing use of our data holdings. Lastly, I will describe our vision for future developments as we tackle the next technical and scientific challenges.

  15. Virtual Cultural Landscape Laboratory Based on Internet GIS Technology

    NASA Astrophysics Data System (ADS)

    Bill, R.

    2012-07-01

    In recent years the transfer of old documents (books, paintings, maps etc.) from analogue to digital form has gained enormous importance. Numerous interventions are concentrated in the digitalisation of library collections, but also commercial companies like Microsoft or Google try to convert large analogue stocks such as books, paintings, etc. in digital form. Data in digital form can be much easier made accessible to a large user community, especially to the interested scientific community. The aim of the described research project is to set up a virtual research environment for interdisciplinary research focusing on the landscape of the historical Mecklenburg in the north-east of Germany. Georeferenced old maps from 1786 and 1890 covering complete Mecklenburg should be combined with current geo-information, satellite and aerial imagery to support spatio-temporal research aspects in different scales in space (regional 1:200,000 to local 1:25.000) and time (nearly 250 years in three time steps, the last 30 years also in three time slices). The Virtual Laboratory for Cultural Landscape Research (VKLandLab) is designed and developed by the Chair of Geodesy and Geoinformatics, hosted at the Computing Centre (ITMZ) and linked to the Digital Library (UB) at Rostock University. VKLandLab includes new developments such as wikis, blogs, data tagging, etc. and proven components already integrated in various data-related infrastructures such as InternetGIS, data repositories and authentication structures. The focus is to build a data-related infrastructure and a work platform that supports students as well as researchers from different disciplines in their research in space and time.

  16. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    ERIC Educational Resources Information Center

    Haagen-Schuetzenhoefer, Claudia

    2012-01-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…

  17. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  18. Bombing Alone: Tracing the Motivations and Antecedent Behaviors of Lone-Actor Terrorists*,†,‡

    PubMed Central

    Gill, Paul; Horgan, John; Deckert, Paige

    2014-01-01

    This article analyzes the sociodemographic network characteristics and antecedent behaviors of 119 lone-actor terrorists. This marks a departure from existing analyses by largely focusing upon behavioral aspects of each offender. This article also examines whether lone-actor terrorists differ based on their ideologies or network connectivity. The analysis leads to seven conclusions. There was no uniform profile identified. In the time leading up to most lone-actor terrorist events, other people generally knew about the offender’s grievance, extremist ideology, views, and/or intent to engage in violence. A wide range of activities and experiences preceded lone actors’ plots or events. Many but not all lone-actor terrorists were socially isolated. Lone-actor terrorists regularly engaged in a detectable and observable range of activities with a wider pressure group, social movement, or terrorist organization. Lone-actor terrorist events were rarely sudden and impulsive. There were distinguishable behavioral differences between subgroups. The implications for policy conclude this article. PMID:24313297

  19. A Study of High School Students' Performance of a Chemistry Experiment within the Virtual World of Second Life

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Scott, Matthew; Wong, Deborah

    2014-01-01

    A small group of high school students performed a virtual laboratory experiment in Second Life that mimicked a real experiment in both its appearance and procedure. Lab report grades were equivalent to report grades for hands-on experiments, and the quality of students' results was similar. Results of an attitudinal survey show that students…

  20. Programmable lab-on-a-chip system for single cell analysis

    NASA Astrophysics Data System (ADS)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  1. Spaceport Processing System Development Lab

    NASA Technical Reports Server (NTRS)

    Dorsey, Michael

    2013-01-01

    The Spaceport Processing System Development Lab (SPSDL), developed and maintained by the Systems Hardware and Engineering Branch (NE-C4), is a development lab with its own private/restricted networks. A private/restricted network is a network with restricted or no communication with other networks. This allows users from different groups to work on their own projects in their own configured environment without interfering with others utilizing their resources in the lab. The different networks being used in the lab have no way to talk with each other due to the way they are configured, so how a user configures his software, operating system, or the equipment doesn't interfere or carry over on any of the other networks in the lab. The SPSDL is available for any project in KSC that is in need of a lab environment. My job in the SPSDL was to assist in maintaining the lab to make sure it's accessible for users. This includes, but is not limited to, making sure the computers in the lab are properly running and patched with updated hardware/software. In addition to this, I also was to assist users who had issues in utilizing the resources in the lab, which may include helping to configure a restricted network for their own environment. All of this was to ensure workers were able to use the SPSDL to work on their projects without difficulty which would in turn, benefit the work done throughout KSC. When I wasn't working in the SPSDL, I would instead help other coworkers with smaller tasks which included, but wasn't limited to, the proper disposal, moving of, or search for essential equipment. I also, during the free time I had, used NASA's resources to increase my knowledge and skills in a variety of subjects related to my major as a computer engineer, particularly in UNIX, Networking, and Embedded Systems.

  2. Up the ANTe: Understanding Entrepreneurial Leadership Learning through Actor-Network Theory

    ERIC Educational Resources Information Center

    Smith, Sue; Kempster, Steve; Barnes, Stewart

    2017-01-01

    This article explores the role of educators in supporting the development of entrepreneurial leadership learning by creating peer learning networks of owner-managers of small businesses. Using actor-network theory, the authors think through the process of constructing and maintaining a peer learning network (conceived of as an actor-network) and…

  3. Who Needs What? Some Thoughts on the Possibility of Using Psychology in Actor Training.

    ERIC Educational Resources Information Center

    Vulova, Marina

    2001-01-01

    Contends that the aim of professional actor training is to reveal and develop an actor's individuality. Proposes that the responsibility of drama teachers is to lead training in such away that students feel accepted, understood, and respected. Proposes that psychodrama is the most appropriate method for student and professional actors' personal…

  4. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors.

    PubMed

    Wen, Tanya; Hsieh, Shulan

    2015-01-01

    Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor's response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human.

  5. The influence of socio cultural dynamics on convergence communication of aquaculture agribusiness actors

    NASA Astrophysics Data System (ADS)

    Oktavia, Y.

    2018-03-01

    This research aims to: (1) Analyze the level of socio-cultural dynamics of agibusiness aquaculture actors. (2) Analyze the influence of socio-cultural dynamics on convergence communication of capacity development of aquaculture agribusiness actors.Data was collected by questionnaire and interview of group members on agribusiness. Data analyze was done by descriptive and inferential statistics with using SEM method. The result of descriptive statistics on 284 agribusiness members showed that: Socio-cultural dynamics of agibusiness aquaculture actors was in low category, as shown by lack of the role of customary institutions and quality of local leadership.The communication convergence is significantly and positively influenced by the communication behavior of agribusiness actors in access information.

  6. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  7. Student self-reported communication skills, knowledge and confidence across standardised patient, virtual and traditional clinical learning environments.

    PubMed

    Quail, Michelle; Brundage, Shelley B; Spitalnick, Josh; Allen, Peter J; Beilby, Janet

    2016-02-27

    Advanced communication skills are vital for allied health professionals, yet students often have limited opportunities in which to develop them. The option of increasing clinical placement hours is unsustainable in a climate of constrained budgets, limited placement availability and increasing student numbers. Consequently, many educators are considering the potentials of alternative training methods, such as simulation. Simulations provide safe, repeatable and standardised learning environments in which students can practice a variety of clinical skills. This study investigated students' self-rated communication skill, knowledge, confidence and empathy across simulated and traditional learning environments. Undergraduate speech pathology students were randomly allocated to one of three communication partners with whom they engaged conversationally for up to 30 min: a patient in a nursing home (n = 21); an elderly trained patient actor (n = 22); or a virtual patient (n = 19). One week prior to, and again following the conversational interaction, participants completed measures of self-reported communication skill, knowledge and confidence (developed by the authors based on the Four Habit Coding Scheme), as well as the Jefferson Scale of Empathy - Health Professionals (student version). All three groups reported significantly higher communication knowledge, skills and confidence post-placement (Median d = .58), while the degree of change did not vary as a function of group membership (Median η (2)  < .01). In addition, only students interacting with a nursing home resident reported higher empathy after the placement. Students reported that conversing with the virtual patient was more challenging than conversing with a nursing home patient or actor, and students appeared to derive the same benefit from the experience. Participants self-reported higher communication skill, knowledge and confidence, though not empathy, following a brief placement

  8. ACToR A Aggregated Computational Toxicology Resource

    EPA Science Inventory

    We are developing the ACToR system (Aggregated Computational Toxicology Resource) to serve as a repository for a variety of types of chemical, biological and toxicological data that can be used for predictive modeling of chemical toxicology.

  9. When More Power Makes Actors Worse off: Turning a Profit in the American Economy

    ERIC Educational Resources Information Center

    Piskorski, Mikolaj Jan; Casciaro, Tiziana

    2006-01-01

    We propose a theory which predicts that an increase in an actor's relative power reduces the actor's rewards in high mutual dependence dyads. Our argument is based on the premise that higher relative power gives the more powerful actor a greater share of surplus, but it also reduces dyadic exchange frequency, which lowers the expected magnitude of…

  10. GeneLab: Open Science For Exploration

    NASA Technical Reports Server (NTRS)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  11. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  12. Characteristics of pornography film actors: self-report versus perceptions of college students.

    PubMed

    Griffith, James D; Hayworth, Michelle; Adams, Lea T; Mitchell, Sharon; Hart, Christian

    2013-05-01

    The assumed characteristics of individuals in the adult entertainment industry have been used to advocate positions for and against pornography. Although prior studies have investigated perceptions of porn actors, no data on the actual characteristics of this group exist. The present study compared the self-reports of 105 male and 177 female porn actors to the perceptions of 399 college students on childhood sexual abuse (CSA), self-esteem, work and non-work sexual behaviors, and safe sex issues. College students were asked to identify the characteristics associated with either a male or female porn star. College students provided underestimates for both female and male porn actors on self-esteem, age of first intercourse, lifetime number of partners outside of work, ideal experience in a romantic partner, concerns regarding sexually transmitted diseases (STDs), enjoyment of sex, and condom use during a first time sexual encounter, but overestimated earnings. Additional differences among male porn stars included an underestimate of the number of partners at work. For female porn stars, college students underestimated their enjoyment of work, the probability of catching an STD, and having unprotected sex. Although there were no significant differences on perceived rates of childhood abuse of porn actors, the incidence of CSA among the porn actor participants were within the ranges of the general population. The majority of college student stereotypes were not supported regarding the perceptions of porn actors. These findings were discussed within the context of attributing unfounded characteristics of individuals to an entire industry.

  13. Cognitive and neural plasticity in older adults’ prospective memory following training with the Virtual Week computer game

    PubMed Central

    Rose, Nathan S.; Rendell, Peter G.; Hering, Alexandra; Kliegel, Matthias; Bidelman, Gavin M.; Craik, Fergus I. M.

    2015-01-01

    Prospective memory (PM) – the ability to remember and successfully execute our intentions and planned activities – is critical for functional independence and declines with age, yet few studies have attempted to train PM in older adults. We developed a PM training program using the Virtual Week computer game. Trained participants played the game in 12, 1-h sessions over 1 month. Measures of neuropsychological functions, lab-based PM, event-related potentials (ERPs) during performance on a lab-based PM task, instrumental activities of daily living, and real-world PM were assessed before and after training. Performance was compared to both no-contact and active (music training) control groups. PM on the Virtual Week game dramatically improved following training relative to controls, suggesting PM plasticity is preserved in older adults. Relative to control participants, training did not produce reliable transfer to laboratory-based tasks, but was associated with a reduction of an ERP component (sustained negativity over occipito-parietal cortex) associated with processing PM cues, indicative of more automatic PM retrieval. Most importantly, training produced far transfer to real-world outcomes including improvements in performance on real-world PM and activities of daily living. Real-world gains were not observed in either control group. Our findings demonstrate that short-term training with the Virtual Week game produces cognitive and neural plasticity that may result in real-world benefits to supporting functional independence in older adulthood. PMID:26578936

  14. "Too Many Actors and Too Few Jobs": A Case for Curriculum Extension in UK Vocational Actor Training

    ERIC Educational Resources Information Center

    Wilkie, Ian

    2015-01-01

    This article questions the current situation for vocational acting training (VAT) in the UK. It aims to provide an update on the report into burgeoning provision of acting training (and the attempt to address subsequent high rates of actor unemployment) that was originally undertaken by the Calouste Gulbenkian Foundation (CGF, 1975) in their…

  15. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  16. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  17. Media actors' perceptions of their roles in reporting food incidents.

    PubMed

    Wilson, Annabelle M; Henderson, Julie; Coveney, John; Meyer, Samantha B; Webb, Trevor; Calnan, Michael; Caraher, Martin; Lloyd, Sue; McCullum, Dean; Elliott, Anthony; Ward, Paul R

    2014-12-18

    Previous research has shown that the media can play a role in shaping consumer perceptions during a public health crisis. In order for public health professionals to communicate well-informed health information to the media, it is important that they understand how media view their role in transmitting public health information to consumers and decide what information to present. This paper reports the perceptions of media actors from three countries about their role in reporting information during a food incident. This information is used to present ideas and suggestions for public health professionals working with media during food incidents. Thirty three semi-structured interviews with media actors from Australia, New Zealand and the United Kingdom were conducted and analysed thematically. Media actors were recruited via purposive sampling using a sampling strategy, from a variety of formats including newspaper, television, radio and online. Media actors said that during a food incident, they play two roles. First, they play a role in communicating information to consumers by acting as a conduit for information between the public and the relevant authorities. Second, they play a role as investigators by acting as a public watchdog. Media actors are an important source of consumer information during food incidents. Public health professionals can work with media by actively approaching them with information about food incidents; promoting to media that as public health professionals, they are best placed to provide the facts about food incidents; and by providing angles for further investigation and directing media to relevant and correct information to inform such investigations. Public health professionals who adapt how they work with media are more likely to influence media to portray messages that fit what they would like the public to know and that are in line with public health recommendations and enable consumers to engage in safe and health promoting

  18. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  19. NOT Another Lab Report

    ERIC Educational Resources Information Center

    Ende, Fred

    2012-01-01

    Ask students to name the aspects of science class they enjoy most, and working on labs will undoubtedly be mentioned. What often won't be included, however, is writing lab reports. For many students, the process of exploration and data collection is paramount, while the explanation and analysis of findings often takes a backseat. After all, if…

  20. Competing actors in the climate change arena in Mexico: A network analysis.

    PubMed

    Ortega Díaz, Araceli; Gutiérrez, Erika Casamadrid

    2018-06-01

    This paper analyzes the actors in the climate change arena and their influence in directing Mexico toward policies that decrease greenhouse gas emissions, such as the carbon tax and climate change law. The network analysis of the agreement of these laws and public policies in Mexico is a lesson for any country that is in the process of designing and adopting environmental laws. The research is performed using a network analysis that is derived from interviews with various main actors and a discourse analysis of the media. Results show that actors do not coordinate their efforts-they meet frequently but in different inter-ministerial commissions-and do not enforce the same policies. The actors in the industry have formed strong coalitions against the carbon tax and the General Law on Climate Change, whereas international institutions have formed coalitions that support these policies and laws. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  2. Technophiles to Newbies: The Challenge of Supporting Distributed Teams to Maintain Engagement in Virtual Worlds

    NASA Technical Reports Server (NTRS)

    Griffith, Karen

    2011-01-01

    The purpose of this paper is to look for links in a virtual trainee's interest and self-efficacy in a simulated event as it relates to their previous self-reported technical skill level. Ultimately, the idea would be to provide the right amount of support at the right place at the right time to set the conditions for maximum transfer of the skill sets to the work place. An anecdotal recap of a recent experiment of a medium-scale training event produced in a virtual world will provide examples for discussion. In July 2010, a virtual training event was produced for the Air Force Research Lab's Games for Team Training (GaMeTT) at the Patriot Exercise at Volk Field in Wisconsin. There were 29 EMEDS participants who completed the simulated OCO event using the OLIVE gaming engine. Approximately 25 avatars were present at any given time; including role players, observers, coordinators and participants.

  3. Formal Specification and Validation of a Hybrid Connectivity Restoration Algorithm for Wireless Sensor and Actor Networks †

    PubMed Central

    Imran, Muhammad; Zafar, Nazir Ahmad

    2012-01-01

    Maintaining inter-actor connectivity is extremely crucial in mission-critical applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly plan optimal coordinated responses to detected events. Failure of a critical actor partitions the inter-actor network into disjoint segments besides leaving a coverage hole, and thus hinders the network operation. This paper presents a Partitioning detection and Connectivity Restoration (PCR) algorithm to tolerate critical actor failure. As part of pre-failure planning, PCR determines critical/non-critical actors based on localized information and designates each critical node with an appropriate backup (preferably non-critical). The pre-designated backup detects the failure of its primary actor and initiates a post-failure recovery process that may involve coordinated multi-actor relocation. To prove the correctness, we construct a formal specification of PCR using Z notation. We model WSAN topology as a dynamic graph and transform PCR to corresponding formal specification using Z notation. Formal specification is analyzed and validated using the Z Eves tool. Moreover, we simulate the specification to quantitatively analyze the efficiency of PCR. Simulation results confirm the effectiveness of PCR and the results shown that it outperforms contemporary schemes found in the literature.

  4. Extended mind and after: socially extended mind and actor-network.

    PubMed

    Kono, Tetsuya

    2014-03-01

    The concept of extended mind has been impressively developed over the last 10 years by many philosophers and cognitive scientists. The extended mind thesis (EM) affirms that the mind is not simply ensconced inside the head, but extends to the whole system of brain-body-environment. Recently, some philosophers and psychologists try to adapt the idea of EM to the domain of social cognition research. Mind is socially extended (SEM). However, EM/SEM theory has problems to analyze the interactions among a subject and its surroundings with opposition, antagonism, or conflict; it also tends to think that the environment surrounding the subject is passive or static, and to neglect the power of non-human actants to direct and regulate the human subject. In these points, actor-network theory (ANT) proposed by Latour and Callon is more persuasive, while sharing some important ideas with EM/SEM theory. Actor-network is a hybrid community which is composed of a series of heterogeneous elements, animate and inanimate for a certain period of time. I shall conclude that EM/SEM could be best analyzed as a special case of actor-network. EM/SEM is a system which can be controlled by a human agent alone. In order to understand collective behavior, philosophy and psychology have to study the actor-network in which human individuals are situated.

  5. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  6. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  7. Launching a virtual decision lab: development and field-testing of a web-based patient decision support research platform.

    PubMed

    Hoffman, Aubri S; Llewellyn-Thomas, Hilary A; Tosteson, Anna N A; O'Connor, Annette M; Volk, Robert J; Tomek, Ivan M; Andrews, Steven B; Bartels, Stephen J

    2014-12-12

    Over 100 trials show that patient decision aids effectively improve patients' information comprehension and values-based decision making. However, gaps remain in our understanding of several fundamental and applied questions, particularly related to the design of interactive, personalized decision aids. This paper describes an interdisciplinary development process for, and early field testing of, a web-based patient decision support research platform, or virtual decision lab, to address these questions. An interdisciplinary stakeholder panel designed the web-based research platform with three components: a) an introduction to shared decision making, b) a web-based patient decision aid, and c) interactive data collection items. Iterative focus groups provided feedback on paper drafts and online prototypes. A field test assessed a) feasibility for using the research platform, in terms of recruitment, usage, and acceptability; and b) feasibility of using the web-based decision aid component, compared to performance of a videobooklet decision aid in clinical care. This interdisciplinary, theory-based, patient-centered design approach produced a prototype for field-testing in six months. Participants (n = 126) reported that: the decision aid component was easy to use (98%), information was clear (90%), the length was appropriate (100%), it was appropriately detailed (90%), and it held their interest (97%). They spent a mean of 36 minutes using the decision aid and 100% preferred using their home/library computer. Participants scored a mean of 75% correct on the Decision Quality, Knowledge Subscale, and 74 out of 100 on the Preparation for Decision Making Scale. Completing the web-based decision aid reduced mean Decisional Conflict scores from 31.1 to 19.5 (p < 0.01). Combining decision science and health informatics approaches facilitated rapid development of a web-based patient decision support research platform that was feasible for use in research studies in

  8. Virtual goods recommendations in virtual worlds.

    PubMed

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.

  9. Virtual Goods Recommendations in Virtual Worlds

    PubMed Central

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837

  10. Cone-beam micro-CT system based on LabVIEW software.

    PubMed

    Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen

    2008-09-01

    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.

  11. Network congestion control algorithm based on Actor-Critic reinforcement learning model

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2018-04-01

    Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.

  12. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors

    PubMed Central

    Wen, Tanya; Hsieh, Shulan

    2015-01-01

    Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor’s response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human. PMID:26388760

  13. Reading Educational Reform with Actor Network Theory: Fluid Spaces, Otherings, and Ambivalences

    ERIC Educational Resources Information Center

    Fenwick, Tara

    2011-01-01

    In considering two extended examples of educational reform efforts, this discussion traces relations that become visible through analytic approaches associated with actor-network theory (ANT). The strategy here is to present multiple readings of the two examples. The first reading adopts an ANT approach to follow ways that all actors--human and…

  14. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  15. Effect of Acting Experience on Emotion Expression and Recognition in Voice: Non-Actors Provide Better Stimuli than Expected.

    PubMed

    Jürgens, Rebecca; Grass, Annika; Drolet, Matthis; Fischer, Julia

    Both in the performative arts and in emotion research, professional actors are assumed to be capable of delivering emotions comparable to spontaneous emotional expressions. This study examines the effects of acting training on vocal emotion depiction and recognition. We predicted that professional actors express emotions in a more realistic fashion than non-professional actors. However, professional acting training may lead to a particular speech pattern; this might account for vocal expressions by actors that are less comparable to authentic samples than the ones by non-professional actors. We compared 80 emotional speech tokens from radio interviews with 80 re-enactments by professional and inexperienced actors, respectively. We analyzed recognition accuracies for emotion and authenticity ratings and compared the acoustic structure of the speech tokens. Both play-acted conditions yielded similar recognition accuracies and possessed more variable pitch contours than the spontaneous recordings. However, professional actors exhibited signs of different articulation patterns compared to non-trained speakers. Our results indicate that for emotion research, emotional expressions by professional actors are not better suited than those from non-actors.

  16. Virtually numbed: immersive video gaming alters real-life experience.

    PubMed

    Weger, Ulrich W; Loughnan, Stephen

    2014-04-01

    As actors in a highly mechanized environment, we are citizens of a world populated not only by fellow humans, but also by virtual characters (avatars). Does immersive video gaming, during which the player takes on the mantle of an avatar, prompt people to adopt the coldness and rigidity associated with robotic behavior and desensitize them to real-life experience? In one study, we correlated participants' reported video-gaming behavior with their emotional rigidity (as indicated by the number of paperclips that they removed from ice-cold water). In a second experiment, we manipulated immersive and nonimmersive gaming behavior and then likewise measured the extent of the participants' emotional rigidity. Both studies yielded reliable impacts, and thus suggest that immersion into a robotic viewpoint desensitizes people to real-life experiences in oneself and others.

  17. The key role of supply chain actors in groundwater irrigation development in North Africa

    NASA Astrophysics Data System (ADS)

    Lejars, Caroline; Daoudi, Ali; Amichi, Hichem

    2017-09-01

    The role played by supply chain actors in the rapid development of groundwater-based irrigated agriculture is analyzed. Agricultural groundwater use has increased tremendously in the past 50 years, leading to the decline of water tables. Groundwater use has enabled intensification of existing farming systems and ensured economic growth. This "groundwater economy" has been growing rapidly due to the initiative of farmers and the involvement of a wide range of supply chain actors, including suppliers of equipment, inputs retailers, and distributors of irrigated agricultural products. In North Africa, the actors in irrigated production chains often operate at the margin of public policies and are usually described as "informal", "unstructured", and as participating in "groundwater anarchy". This paper underlines the crucial role of supply chain actors in the development of groundwater irrigation, a role largely ignored by public policies and rarely studied. The analysis is based on three case studies in Morocco, Tunisia and Algeria, and focuses on the horticultural sub-sector, in particular on onions and tomatoes, which are irrigated high value crops. The study demonstrates that although supply chain actors are catalyzers of the expansion of groundwater irrigation, they could also become actors in adaptation to the declining water tables. Through their informal activities, they help reduce market risks, facilitate credit and access to subsidies, and disseminate innovation. The interest associated with making these actors visible to agricultural institutions is discussed, along with methods of getting them involved in the management of the resource on which they depend.

  18. Virtual Worlds for Virtual Organizing

    NASA Astrophysics Data System (ADS)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  19. Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder

    PubMed Central

    Smith, Matthew J.; Ginger, Emily; Wright, Katherine; Wright, Michael; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D.; Fleming, Michael F.

    2014-01-01

    The feasibility and efficacy of Virtual Reality Job Interview Training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n=16) or treatment as usual (TAU) (n=10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic training. Participants attended 90% of lab-based training sessions and found VR-JIT easy-to-use, enjoyable, and they felt prepared for future interviews. VR-JIT participants had greater improvement during live standardized job interview role-play performances than TAU participants (p=0.046). A similar pattern was observed for self-reported self-confidence at a trend level (p=0.060). VR-JIT simulation performance scores increased over time (R-Squared=0.83). Results indicate preliminary support for the feasibility and efficacy of VR-JIT, which can be administered using computer software or via the internet. PMID:24803366

  20. Exploring the Impact of TeachME™ Lab Virtual Classroom Teaching Simulation on Early Childhood Education Majors' Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Bautista, Nazan Uludag; Boone, William J.

    2015-01-01

    The purpose of this study was to investigate the impact of a mixed-reality teaching environment, called TeachME™ Lab (TML), on early childhood education majors' science teaching self-efficacy beliefs. Sixty-two preservice early childhood teachers participated in the study. Analysis of the quantitative (STEBI-b) and qualitative (journal entries)…

  1. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon.

    PubMed

    Godar, Javier; Gardner, Toby A; Tizado, E Jorge; Pacheco, Pablo

    2014-10-28

    Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000-7,000 km(2). We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km(2)) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km(2)) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68-85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies.

  2. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon

    PubMed Central

    Godar, Javier; Gardner, Toby A.; Tizado, E. Jorge

    2014-01-01

    Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000–7,000 km2. We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km2) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km2) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68–85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies. PMID:25313087

  3. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  4. "TEEB begins now": a virtual moment in the production of natural capital.

    PubMed

    MacDonald, Kenneth Iain; Corson, Catherine

    2012-01-01

    This article uses theories of virtualism to analyse the role of The Economics of Ecosystems and Biodiversity (TEEB) project in the production of natural capital. Presented at the 10th Conference of the Parties to the Convention on Biological Diversity, the project seeks to redress the ‘economic invisibility of nature’ by quantifying the value of ecosystems and biodiversity. This endeavour to put an economic value on ecosystems makes nature legible by abstracting it from social and ecological contexts and making it subject to, and productive of, new market devices. In reducing the complexity of ecological dynamics to idealized categories TEEB is driven by economic ideas and idealism, and, in claiming to be a quantitative force for morality, is engaged in the production of practices designed to conform the ‘real’ to the virtual. By rendering a ‘valued’ nature legible for key audiences, TEEB has mobilized a critical mass of support including modellers, policy makers and bankers. We argue that TEEB's rhetoric of crisis and value aligns capitalism with a new kind of ecological modernization in which ‘the market’ and market devices serve as key mechanisms to conform the real and the virtual. Using the case of TEEB, and drawing on data collected at COP10, we illustrate the importance of international meetings as key points where idealized models of biodiversity protection emerge, circulate and are negotiated, and as sites where actors are aligned and articulated with these idealized models in ways that begin further processes of conforming the real with the virtual and the realization of ‘natural capital’.

  5. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  6. Zika in Twitter: Temporal Variations of Locations, Actors, and Concepts

    PubMed Central

    Vraga, Emily; Lamprianidis, Georgios; Radzikowski, Jacek; Delamater, Paul L; Jacobsen, Kathryn H; Pfoser, Dieter; Croitoru, Arie; Crooks, Andrew

    2017-01-01

    Background The recent Zika outbreak witnessed the disease evolving from a regional health concern to a global epidemic. During this process, different communities across the globe became involved in Twitter, discussing the disease and key issues associated with it. This paper presents a study of this discussion in Twitter, at the nexus of location, actors, and concepts. Objective Our objective in this study was to demonstrate the significance of 3 types of events: location related, actor related, and concept related, for understanding how a public health emergency of international concern plays out in social media, and Twitter in particular. Accordingly, the study contributes to research efforts toward gaining insights on the mechanisms that drive participation, contributions, and interaction in this social media platform during a disease outbreak. Methods We collected 6,249,626 tweets referring to the Zika outbreak over a period of 12 weeks early in the outbreak (December 2015 through March 2016). We analyzed this data corpus in terms of its geographical footprint, the actors participating in the discourse, and emerging concepts associated with the issue. Data were visualized and evaluated with spatiotemporal and network analysis tools to capture the evolution of interest on the topic and to reveal connections between locations, actors, and concepts in the form of interaction networks. Results The spatiotemporal analysis of Twitter contributions reflects the spread of interest in Zika from its original hotspot in South America to North America and then across the globe. The Centers for Disease Control and World Health Organization had a prominent presence in social media discussions. Tweets about pregnancy and abortion increased as more information about this emerging infectious disease was presented to the public and public figures became involved in this. Conclusions The results of this study show the utility of analyzing temporal variations in the analytic

  7. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  8. [Governance in Guatemalan municipal development councils: an analysis of actors and power relationships].

    PubMed

    Flores, Walter; Gómez-Sánchez, Ismael

    2010-01-01

    Decentralisation and other public policies have created public spaces for participation in most Latin-American countries where community representatives, together with municipal authorities and other public functionaries, decide on social investment plans, including health services and infrastructure. The municipal development council system constitutes such public space in Guatemala. This study analysed such system's governance in a sample of 6 rural municipalities. A descriptive design was used, applying qualitative and quantitative techniques to study three central categories: the strategic actors, the rules of the game and power asymmetry levels amongst actors. The findings revealed inconsistencies amongst the actors who had to participate according to the legal framework and those actors who actually did so in practice. Divergent interests were also identified for participating which affected the possibility of reaching consensus during decision-making. Analysing the rules of the game led to identifying formal and non-formal mechanisms favouring some actors' ability to influence decisions. Analysing power asymmetry levels led to identifying that community representatives had fewer power resources than institutional representatives (local government and other government organisations). Community representatives also face different barriers blocking their participation and perceive a lesser capacity to influence decision-making. Existing barriers and fewer power resources experienced by community representatives reduce their abilities to influence decision-making in municipal development councils.

  9. ACToR A Aggregated Computational Toxicology Resource (S)

    EPA Science Inventory

    We are developing the ACToR system (Aggregated Computational Toxicology Resource) to serve as a repository for a variety of types of chemical, biological and toxicological data that can be used for predictive modeling of chemical toxicology.

  10. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  11. Planning a Computer Lab: Considerations To Ensure Success.

    ERIC Educational Resources Information Center

    IALL Journal of Language Learning Technologies, 1994

    1994-01-01

    Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…

  12. A Virtual Instrument System for Determining Sugar Degree of Honey

    PubMed Central

    Wu, Qijun; Gong, Xun

    2015-01-01

    This study established a LabVIEW-based virtual instrument system to measure optical activity through the communication of conventional optical instrument with computer via RS232 port. This system realized the functions for automatic acquisition, real-time display, data processing, results playback, and so forth. Therefore, it improved accuracy of the measurement results by avoiding the artificial operation, cumbersome data processing, and the artificial error in optical activity measurement. The system was applied to the analysis of the batch inspection on the sugar degree of honey. The results obtained were satisfying. Moreover, it showed advantages such as friendly man-machine dialogue, simple operation, and easily expanded functions. PMID:26504615

  13. TQM in a Computer Lab.

    ERIC Educational Resources Information Center

    Swanson, Dewey A.; Phillips, Julie A.

    At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…

  14. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  15. Virtual Exploration of Earth's Evolution

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  16. EPICS Channel Access Server for LabVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Alexander P.

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  17. Policy Actors: Doing Policy Work in Schools

    ERIC Educational Resources Information Center

    Ball, Stephen J.; Maguire, Meg; Braun, Annette; Hoskins, Kate

    2011-01-01

    This paper considers the "policy work" of teacher actors in schools. It focuses on the "problem of meaning" and offers a typology of roles and positions through which teachers engage with policy and with which policies get "enacted". It argues that "policy work" is made up of a set of complex and…

  18. ACToR - Aggregated Computational Toxicology Resource ...

    EPA Pesticide Factsheets

    There are too many uncharacterized environmental chemicals to test with current in vivo protocols. Develop predictive in vitro screening assays that can be used to prioritize chemicals for detailed testing. ToxCast program requires large amounts of data: In vitro assays (mainly generated by ToxCast program) and In vivo data to develop and validate predictive signatures ACToR is compiling both sets of data for use in predictive algorithms.

  19. Children's Moral Judgments as a Function of Intention, Damage, and an Actor's Physical Harm.

    ERIC Educational Resources Information Center

    Suls, Jerry; Kalle, Robert J.

    1979-01-01

    Examines children's moral judgments of story characters who accidently harm themselves. Children in kindergarten and in grades 3 and 5 rated actors in stories which varied in terms of intention, damage, and harm to the actor. (SS)

  20. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  1. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  2. Virtual Reality Job Interview Training for Individuals with Psychiatric Disabilities

    PubMed Central

    Smith, Matthew J.; Ginger, Emily J.; Wright, Michael; Wright, Katherine; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D.; Fleming, Michael F.

    2014-01-01

    Services are available to help support existing employment for individual with psychiatric disabilities; however, there is a gap in services targeting job interview skills that can help obtain employment. We assessed the feasibility and efficacy of Virtual Reality Job Interview Training (VR-JIT) in a randomized controlled trial. Participants were randomized to VR-JIT (n=25) or treatment as usual (TAU) (n=12) groups. VR-JIT consisted of 10 hours of simulated job interviews with a virtual character and didactic online training. Participants attended 95% of lab-based training sessions and found VR-JIT easy-to-use and felt prepared for future interviews. The VR-JIT group improved their job interview role-play performance (p<0.05) and self-confidence (p<0.05) between baseline and follow-up as compared to the TAU group. VR-JIT performance scores increased over time (R-Squared=0.65). VR-JIT demonstrated initial feasibility and efficacy at improving job interview skills and self-confidence. Future research may help clarify whether this intervention is efficacious in community-based settings. PMID:25099298

  3. Similarities and differences between eating disorders and obese patients in a virtual environment for normalizing eating patterns.

    PubMed

    Perpiñá, Conxa; Roncero, María

    2016-05-01

    Virtual reality has demonstrated promising results in the treatment of eating disorders (ED); however, few studies have examined its usefulness in treating obesity. The aim of this study was to compare ED and obese patients on their reality judgment of a virtual environment (VE) designed to normalize their eating pattern. A second objective was to study which variables predicted the reality of the experience of eating a virtual forbidden-fattening food. ED patients, obese patients, and a non-clinical group (N=62) experienced a non-immersive VE, and then completed reality judgment and presence measures. All participants rated the VE with similar scores for quality, interaction, engagement, and ecological validity; however, ED patients obtained the highest scores on emotional involvement, attention, reality judgment/presence, and negative effects. The obese group gave the lowest scores to reality judgment/presence, satisfaction and sense of physical space, and they held an intermediate position in the attribution of reality to virtually eating a "fattening" food. The palatability of a virtual food was predicted by attention capturing and belonging to the obese group, while the attribution of reality to the virtual eating was predicted by engagement and belonging to the ED group. This study offers preliminary results about the differential impact on ED and obese patients of the exposure to virtual food, and about the need to implement a VE that can be useful as a virtual lab for studying eating behavior and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Science Lab: A Peer Approach.

    ERIC Educational Resources Information Center

    Ronca, Courtney C.

    The two goals of this program were to increase the number of classroom teachers using the lab and to increase the amount of time that the science lab was used. The solution strategy chosen was a combination of peer tutoring, orientation presentations, small group discovery experiments and activities, and individual science experiment stations. The…

  5. LANGUAGE LABS--AN UPDATED REPORT.

    ERIC Educational Resources Information Center

    1963

    REPORTS FROM SEVERAL SCHOOL DISTRICTS ON THE USE OF AND PLANNING OF LANGUAGE LABORATORIES ARE PRESENTED. LABORATORIES SHOULD BE ARRANGED FOR FLEXIBLE USE. THE AVERAGE HIGH SCHOOL STUDENT CAN USE A LAB PROFITABLY FOR 20 TO 25 MINUTES. THERE ARE THREE DIFFERENT TYPES OF LANGUAGE LABORATORIES THAT ARE DESCRIBED. THE SATELLITE LAB IS DIVIDED BY A…

  6. Academic Pipeline and Futures Lab

    DTIC Science & Technology

    2016-02-01

    AFRL-RY-WP-TR-2015-0186 ACADEMIC PIPELINE AND FUTURES LAB Brian D. Rigling Wright State University FEBRUARY 2016...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) February 2016 Final 12 June 2009 – 30 September 2015 4. TITLE AND SUBTITLE ACADEMIC ...6 3 WSU ACADEMIC PIPELINE AND LAYERED SENSING FUTURES LAB (prepared by K

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  8. Towards a Manifesto for Living Lab Co-creation

    NASA Astrophysics Data System (ADS)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  9. Performance Analysis of an Actor-Based Distributed Simulation

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.

  10. Myself or someone like me: a review of the literature on the psychological well-being of child actors.

    PubMed

    Anderson, Leslie Margaret

    2011-09-01

    The number of child actors on television, in movies, and on stage has increased dramatically in recent years. While many regulations and laws are in place to protect the physical and financial well-being of these young performers, little attention has been given to their psychological health and the strength of their self-concepts. This paper reviews the literature related to child actors' psychological well-being and makes a case for future research into the topic. Available data are very limited but suggest that actors may have a weaker self-concept and more psychological concerns than people who are not actors, and that the personalities and behaviors actors display publically may be incorporated into their self-concepts. As a result, child actors appear to have unique psychological needs that should be addressed.

  11. Zika in Twitter: Temporal Variations of Locations, Actors, and Concepts.

    PubMed

    Stefanidis, Anthony; Vraga, Emily; Lamprianidis, Georgios; Radzikowski, Jacek; Delamater, Paul L; Jacobsen, Kathryn H; Pfoser, Dieter; Croitoru, Arie; Crooks, Andrew

    2017-04-20

    The recent Zika outbreak witnessed the disease evolving from a regional health concern to a global epidemic. During this process, different communities across the globe became involved in Twitter, discussing the disease and key issues associated with it. This paper presents a study of this discussion in Twitter, at the nexus of location, actors, and concepts. Our objective in this study was to demonstrate the significance of 3 types of events: location related, actor related, and concept related, for understanding how a public health emergency of international concern plays out in social media, and Twitter in particular. Accordingly, the study contributes to research efforts toward gaining insights on the mechanisms that drive participation, contributions, and interaction in this social media platform during a disease outbreak. We collected 6,249,626 tweets referring to the Zika outbreak over a period of 12 weeks early in the outbreak (December 2015 through March 2016). We analyzed this data corpus in terms of its geographical footprint, the actors participating in the discourse, and emerging concepts associated with the issue. Data were visualized and evaluated with spatiotemporal and network analysis tools to capture the evolution of interest on the topic and to reveal connections between locations, actors, and concepts in the form of interaction networks. The spatiotemporal analysis of Twitter contributions reflects the spread of interest in Zika from its original hotspot in South America to North America and then across the globe. The Centers for Disease Control and World Health Organization had a prominent presence in social media discussions. Tweets about pregnancy and abortion increased as more information about this emerging infectious disease was presented to the public and public figures became involved in this. The results of this study show the utility of analyzing temporal variations in the analytic triad of locations, actors, and concepts. This

  12. Searching for realism, structure and agency in Actor Network Theory.

    PubMed

    Elder-Vass, Dave

    2008-09-01

    Superficially, Actor Network Theory (ANT) and critical realism (CR) are radically opposed research traditions. Written from a realist perspective, this paper asks whether there might be a basis for finding common ground between these two traditions. It looks in turn at the questions of realism, structure, and agency, analysing the differences between the two perspectives and seeking to identify what each might learn from the other. Overall, the paper argues that there is a great deal that realists can learn from actor network theory; yet ANT remains stunted by its lack of a depth ontology. It fails to recognize the significance of mechanisms, and of their dependence on emergence, and thus lacks both dimensions of the depth that is characteristic of critical realism's ontology. This prevents ANT from recognizing the role and powers of social structure; but on the other hand, realists would do well to heed ANT's call for us to trace the connections through which structures are constantly made and remade. A lack of ontological depth also underpins ANT's practice of treating human and non-human actors symmetrically, yet this remains a valuable provocation to sociologists who neglect non-human entities entirely.

  13. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  14. Nonhumans Unbound: Actor-Network Theory and the Reconsideration of "Things" in Educational Foundations

    ERIC Educational Resources Information Center

    Waltz, Scott B.

    2006-01-01

    The aim of this paper is to call attention to the missing discourse of non-humans as social actors in the Social Foundations of Education. The paper outlines three common figuring metaphors that impede the adoption of such a theoretical discourse and shows how Actor-Network Theory (ANT), more recently developed in the nascent field of Science and…

  15. Labs: 1987.

    ERIC Educational Resources Information Center

    Igelsrud, Don, Ed.

    1988-01-01

    This article presents a variety of topics discussed in this column and at a biology teachers' workshop concerning the quality and value of lab techniques used for teaching high school biology. Topics included are Drosophila salivary glands, sea urchins, innovations, dyes and networking. (CW)

  16. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    -486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510

  17. Report from the banding lab

    USGS Publications Warehouse

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  18. Private actors, global health and learning the lessons of history.

    PubMed

    Youde, Jeremy

    2016-01-01

    Private business and philanthropic organizations have played a prominent role in the response to the Ebola outbreak in West Africa and the support of global health governance more broadly. While this involvement may appear to be novel or unprecedented, this article argues that this active role for private actors and philanthropies actually mirrors the historical experience of cross-border health governance in the first half of the twentieth century. By examining the experiences, roles and criticisms of the Rockefeller Foundation's International Health Division and the Bill and Melinda Gates Foundation, it is possible to identify potential opportunities for better cooperation between public and private actors in global health governance.

  19. International non-governmental actors in HIV/AIDS prevention in China.

    PubMed

    Wu, Feng Shi

    2005-01-01

    International non-governmental organizations were among the first international actors that responded to the emergence of AIDS crisis in China. Since 1994, the number of international non-governmental organizations and charitable foundations working in AIDS related issue areas in China has grown steadily and substantially. Despite their organizational differences, most of these non-governmental actors present the characteristics of independent mission, localized practice and diverse working focus. Even though they are constrained by financial and other factors compared with multilateral and bilateral official assistance agencies, they have still played a unique role in fighting against AIDS in China as technical experts, public educators, and civil society supporters.

  20. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  1. Virtual Reality and the Virtual Library.

    ERIC Educational Resources Information Center

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  2. TIMESERIESSTREAMING.VI: LabVIEW program for reliable data streaming of large analog time series

    NASA Astrophysics Data System (ADS)

    Czerwinski, Fabian; Oddershede, Lene B.

    2011-02-01

    With modern data acquisition devices that work fast and very precise, scientists often face the task of dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time has virtually no limitation. We explicitly show how to use the program to extract time series from two experiments: For a photodiode detection system that tracks the position of an optically trapped particle and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable, and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise quantification. Program summaryProgram title: TimeSeriesStreaming.VI Catalogue identifier: AEHT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 No. of bytes in distributed program, including test data, etc.: 63 259 Distribution format: tar.gz Programming language: LabVIEW ( http://www.ni.com/labview/) Computer: Any machine running LabVIEW 8.6 or higher Operating system: Windows XP and Windows 7 RAM: 60-360 Mbyte Classification: 3 Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have an efficient, reliable, and flexible program to perform data streaming of time series sampled with high frequencies and possibly for long time intervals. This type of data acquisition often produces very large amounts of data not easily streamed onto a computer hard disk using standard methods. Solution method: This LabVIEW program is developed to directly

  3. Empirical evaluation of a virtual laboratory approach to teach lactate dehydrogenase enzyme kinetics.

    PubMed

    Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman

    2016-06-01

    Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.

  4. Evaluation of oral microbiology lab curriculum reform.

    PubMed

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  5. A Virtual Circuits Lab

    ERIC Educational Resources Information Center

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  6. Innovation - A view from the Lab

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  7. Biomechanical Analysis of Locust Jumping in a Physically Realistic Virtual Environment

    NASA Astrophysics Data System (ADS)

    Cofer, David; Cymbalyuk, Gennady; Heitler, William; Edwards, Donald

    2008-03-01

    The biomechanical and neural components that underlie locust jumping have been extensively studied. Previous research suggested that jump energy is stored primarily in the extensor apodeme, and in a band of cuticle called the semi-lunar process (SLP). As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump. To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping. The results show that without the SLP the jump distance was reduced by almost half. Further, the simulations were also able to show that loss of the SLP had a significant impact on the final phase of the jump. We are currently working on postural control mechanisms for targeted jumping in locust.

  8. STS-88 crew use simulators and virtual reality in preflight training

    NASA Image and Video Library

    1998-04-08

    S98-05075 (8 Apr. 1998) --- Astronaut Nancy J. Currie, assigned as a mission specialist for the mission, uses hardware in the virtual reality lab at the Johnson Space Center (JSC) to train for her duties aboard the Space Shuttle Endeavour. This type computer interface paired with virtual reality training hardware for the assigned space-walking astronauts -- in this case, Jerry L. Ross and James H. Newman -- helps to prepare the entire team for dealing with International Space Station (ISS) elements. One of those elements will be the Functional Cargo Block (FGB), which will have been launched a couple of weeks prior to STS-88. Once the FGB is captured using the Remote Manipulator System (RMS) of the Endeavour, Currie will maneuver the robot arm to dock the FGB to the conical mating adapter at the top of Node 1, to be carried in the Endeavour?s cargo bay. In ensuing days, three Extravehicular Activity?s (EVA) by Ross and Newman will be performed to make power, data and utility connections between the two modules.

  9. LABS Foundational Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jerry

    2012-01-01

    They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.

  10. Actor modelling and its contribution to the development of integrative strategies for management of pharmaceuticals in drinking water.

    PubMed

    Titz, Alexandra; Döll, Petra

    2009-02-01

    Widespread presence of human pharmaceuticals in water resources across the globe is documented. While some, but certainly not enough, research on the occurrence, fate and effect of pharmaceuticals in water resources has been carried out, a holistic risk management strategy is missing. The transdisciplinary research project "start" aimed to develop an integrative strategy by the participation of experts representing key actors in the problem field "pharmaceuticals in drinking water". In this paper, we describe a novel modelling method, actor modelling with the semi-quantitative software DANA (Dynamic Actor Network Analysis), and its application in support of identifying an integrative risk management strategy. Based on the individual perceptions of different actors, the approach allows the identification of optimal strategies. Actors' perceptions were elicited by participatory model building and interviews, and were then modelled in perception graphs. Actor modelling indicated that an integrative strategy that targets environmentally-responsible prescription, therapy, and disposal of pharmaceuticals on one hand, and the development of environmentally-friendly pharmaceuticals on the other hand, will likely be most effective for reducing the occurrence of pharmaceuticals in drinking water (at least in Germany where the study was performed). However, unlike most other actors, the pharmaceutical industry itself does not perceive that the production of environmentally-friendly pharmaceuticals is an action that helps to achieve its goals, but contends that continued development of highly active pharmaceutical ingredients will help to reduce the occurrence of pharmaceuticals in the water cycle. Investment in advanced waste or drinking water treatment is opposed by both the wastewater treatment company and the drinking water supplier, and is not mentioned as appropriate by the other actors. According to our experience, actor modelling is a useful method to suggest effective

  11. Putting Gino's lesson to work: Actor-network theory, enacted humanity, and rehabilitation.

    PubMed

    Abrams, Thomas; Gibson, Barbara E

    2016-02-01

    This article argues that rehabilitation enacts a particular understanding of "the human" throughout therapeutic assessment and treatment. Following Michel Callon and Vololona Rabeharisoa's "Gino's Lesson on Humanity," we suggest that this is not simply a top-down process, but is cultivated in the application and response to biomedical frameworks of human ability, competence, and responsibility. The emergence of the human is at once a materially contingent, moral, and interpersonal process. We begin the article by outlining the basics of the actor-network theory that underpins "Gino's Lesson on Humanity." Next, we elucidate its central thesis regarding how disabled personhood emerges through actor-network interactions. Section "Learning Gino's lesson" draws on two autobiographical examples, examining the emergence of humanity through rehabilitation, particularly assessment measures and the responses to them. We conclude by thinking about how rehabilitation and actor-network theory might take this lesson on humanity seriously. © The Author(s) 2016.

  12. Getting acquainted: Actor and partner effects of attachment and temperament on young children's peer behavior.

    PubMed

    McElwain, Nancy L; Holland, Ashley S; Engle, Jennifer M; Ogolsky, Brian G

    2014-06-01

    Guided by a dyadic view of children's peer behavior, this study assessed actor and partner effects of attachment security and temperament on young children's behavior with an unfamiliar peer. At 33 months of age, child-mother attachment security was assessed via a modified Strange Situation procedure, and parents reported on child temperament (anger proneness and social fearfulness). At 39 months, same-sex children (N = 114, 58 girls) were randomly paired, and child dyads were observed during 3 laboratory visits occurring over 1 month. Actor-partner interdependence models, tested via multilevel modeling, revealed that actor security, partner anger proneness, and acquaintanceship (e.g., initial vs. later visits) combined to predict child behavior. Actor security predicted more responsiveness to the new peer partner at the initial visit, regardless of partner anger proneness. Actor security continued to predict responsiveness at the 2nd and 3rd visits when partner anger was low, but these associations were nonsignificant when partner anger was high. Actor security also predicted a less controlling assertiveness style at the initial visit when partner anger proneness was high, yet this association was nonsignificant by the final visit. The findings shed light on the dynamic nature of young children's peer behavior and indicate that attachment security is related to behavior in expected ways during initial interactions with a new peer, but may change as children become acquainted. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. The crossover of daily work engagement: test of an actor-partner interdependence model.

    PubMed

    Bakker, Arnold B; Xanthopoulou, Despoina

    2009-11-01

    This study of 62 dyads of employees (N = 124) examined the crossover of work engagement-a positive, fulfilling, work-related state of mind that is characterized by vigor, dedication, and absorption. We hypothesized that work engagement crosses over from an employee (the actor) to his or her colleague (the partner) on a daily basis. The frequency of daily communication was expected to moderate the crossover of daily work engagement, which in turn would relate to colleagues' daily performance. Participants first filled in a general questionnaire and then completed a diary study over 5 consecutive workdays. The hypotheses were tested with multilevel analyses, using an actor-partner interdependence model. Results confirmed the crossover of daily work engagement, but only on days when employees within a dyad interacted more frequently than usual. Moreover, we found that actor's work engagement (particularly vigor), when frequently communicated, had a positive indirect relationship with partner's performance through partner's work engagement. Finally, results showed that actor's vigor was negatively related to partner's performance when communication was low. However, this negative effect was counteracted when mediated by the vigor of the partner.

  14. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A

  16. Experiential Learning of Digital Communication Using LabVIEW

    ERIC Educational Resources Information Center

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  17. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  18. [Acoustic analysis and characteristics of vocal range in Beijing Opera actors].

    PubMed

    Qu, C; Liu, Y

    2000-02-01

    To get the objective acoustic parameters of the voice of Beijing Opera actors and set a foundation for the training and protection of the special professional voice. Seventy-three (age 16-57 years) professional actors and students were asked to produce sustained comfortable vowels /a/ and /i/, and to sing two pieces of songs which were in the category of Xipi and Erhuang respectively. Dr. Speech for windows version 3.0 was used to get the acoustic parameters of the vowels and the songs. F0 of the vowels /a/ and /i/ of different Hangdangs were Chou (272.6 +/- 42.0) Hz (mean +/- s), (304.2 +/- 22.1) Hz; Xiaosheng (499.3 +/- 34.0) Hz, (485.4 +/- 18.7) Hz; Laosheng (335.6 +/- 60.0) Hz, (317.9 +/- 45.1) Hz; Hualian (319.0 +/- 61.3) Hz, (340.1 +/- 68.8) Hz; Laodan (427.6 +/- 47.2) Hz, (437.7 +/- 45.8) Hz; Huadan (535.8 +/- 48.8) Hz, (561.6 +/- 29.2) Hz; Qingyi (548.0 +/- 69.5) Hz, (543.5 +/- 79.3) Hz; these and other acoustic parameters of vowels such as Jitter, Shimmer and NNE were all within the normal range given by the software. The vocal range of Beijing Opera actors was from 1.7 to 2.8 oct, and most of the highest and the lowest pitches were higher than that of tenor or soprano. These findings may help to provide insight regarding the acoustic characteristics of the voice of Beijing Opera actors.

  19. Practical Physics Labs: A Resource Manual.

    ERIC Educational Resources Information Center

    Goodwin, Peter

    This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…

  20. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.

    PubMed

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.

  1. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture

    PubMed Central

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value. PMID:23675345

  2. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  3. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  4. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  5. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  6. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  7. Baseball Physics: A New Mechanics Lab

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  8. Teaching Chemistry Lab Safety through Comics

    NASA Astrophysics Data System (ADS)

    di Raddo, Pasquale

    2006-04-01

    As a means for raising students' interest in aspects pertaining to chemistry lab safety, this article presents a novel approach to teaching this important subject. Comic book lab scenes that involve fictional characters familiar to many students are presented and discussed as to the safety concerns represented in those images. These are discussed in a safety prelab session. For the sake of comparison, students are then shown images taken from current chemistry journals of safety-conscious contemporary chemists at work in their labs. Finally the need to adhere to copyright regulations for the use of the images is discussed so as to increase students' awareness of academic honesty and copyright issues.

  9. Factors that predict the use or non-use of virtual dissection by high school biology teachers

    NASA Astrophysics Data System (ADS)

    Cockerham, William

    2001-07-01

    With the advent of computers into scholastic classrooms, virtual dissection has become a potential educational tool in high school biology lab settings. Utilizing non-experimental survey research methodology, this study attempted to identify factors that may influence high school biology teachers to use or not to use a virtual dissection. A 75-item research survey instrument consisting of both demographic background and Likert style questions was completed by 215 high school members of the National Association of Biology Teachers. The survey responses provided data to answer the research questions concerning the relationship between the likelihood of a high school biology teacher using a virtual dissection and a number of independent variables from the following three categories: (a) demographics, (b) attitude and experience, and (c) resources and support. These data also allowed for the determination of a demographic profile of the sample population. The demographic profile showed the sample population of high school biology teachers to be two-thirds female, mature, highly educated and very experienced. Analysis of variance and Pearson product moment correlational statistics were used to determine if there was a relationship between high school biology teachers' likelihood to use a virtual dissection and the independent variables. None of the demographic or resource and support independent variables demonstrated a strong relationship to the dependent variable of teachers' likelihood to use a virtual dissection. Three of the attitude and experience independent variables showed a statistically significant (p < .05) relationship to teachers' likelihood to use a virtual dissection: attitude toward virtual dissection, previous use of a virtual dissection and intention to use a real animal dissection. These findings may indicate that teachers are using virtual dissection as a supplement rather than a substitute. It appears that those concerned with promoting virtual

  10. VirTUal remoTe labORatories managEment System (TUTORES): Using Cloud Computing to Acquire University Practical Skills

    ERIC Educational Resources Information Center

    Caminero, Agustín C.; Ros, Salvador; Hernández, Roberto; Robles-Gómez, Antonio; Tobarra, Llanos; Tolbaños Granjo, Pedro J.

    2016-01-01

    The use of practical laboratories is a key in engineering education in order to provide our students with the resources needed to acquire practical skills. This is specially true in the case of distance education, where no physical interactions between lecturers and students take place, so virtual or remote laboratories must be used. UNED has…

  11. Hugh Grant's Image Restoration Discourse: An Actor Apologizes.

    ERIC Educational Resources Information Center

    Benoit, William L.

    1997-01-01

    Examines the strategies used by actor Hugh Grant (in his appearances on talk shows) to help restore his reputation after he was arrested for lewd behavior with a prostitute. Uses this case as a springboard to contrast entertainment image repair with political and corporate image repair, arguing that important situational differences can be…

  12. Strutting and Fretting: Shakespeare and the Novice Actor.

    ERIC Educational Resources Information Center

    Barton, Robert

    A survey of approximately 450 novice Shakespearean actors was undertaken to determine what could be learned from a careful study of the initiation of new performers acting Shakespeare that might be helpful to others. The findings revealed that the typical initiate perceives acting Shakespeare as different from other acting, indicates a definite…

  13. Hydrogel Beads: The New Slime Lab?

    ERIC Educational Resources Information Center

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  14. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  15. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  16. Seeing an Old Lab in a New Light: Transforming a Traditional Optics Lab into Full Guided Inquiry

    ERIC Educational Resources Information Center

    Maley, Tim; Stoll, Will; Demir, Kadir

    2013-01-01

    This paper describes the authors' experiences transforming a "cookbook" lab into an inquiry-based investigation and the powerful effect the inquiry-oriented lab had on our students' understanding of lenses. We found the inquiry-oriented approach led to richer interactions between students as well as a deeper conceptual…

  17. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  18. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  19. Daily Associations Among Self-control, Heavy Episodic Drinking, and Relationship Functioning: An Examination of Actor and Partner Effects

    PubMed Central

    Crane, Cory A.; Testa, Maria; Derrick, Jaye L.; Leonard, Kenneth E.

    2014-01-01

    An emerging literature suggests that temporary deficits in the ability to inhibit impulsive urges may be proximally associated with intimate partner aggression. The current study examined the experience of alcohol use and the depletion of self-control in the prediction of relationship functioning. Daily diary data collected from 118 heterosexual couples were analyzed using parallel multi-level Actor Partner Interdependence Models to assess the effects of heavy episodic drinking and depletion of self-control across partners on outcomes of participant-reported daily arguing with and anger toward an intimate partner. Heavy episodic drinking among actors predicted greater arguing but failed to interact with either actor or partner depletion. We also found that greater arguing was reported on days of high congruent actor and partner depletion. Both actor and partner depletion, as well as their interaction, predicted greater partner-specific anger. Greater partner-specific anger was generally reported on days of congruent actor and partner depletion, particularly on days of high partner depletion. The current results highlight the importance of independently assessing partner effects (i.e., depletion of self-control), which interact dynamically with disinhibiting actor effects, in the prediction of daily adverse relationship functioning. Results offer further support for the development of prospective individualized and couples-based interventions for partner conflict. PMID:24700558

  20. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample