Sample records for lab-on-valve manifold applied

  1. Two-parameter monitoring in a lab-on-valve manifold, applied to intracellular H2O2 measurements.

    PubMed

    Lähdesmäki, Ilkka; Chocholous, Petr; Carroll, Andrea D; Anderson, Judy; Rabinovitch, Peter S; Ruzicka, Jaromir

    2009-07-01

    This work introduces, for the first time, simultaneous monitoring of fluorescence and absorbance using Bead Injection in a Lab-on-valve format. The aim of the paper is to show that when the target species, cells immobilized on a stationary phase, are exposed to reagents under well-controlled reaction conditions, dual monitoring yields valuable information. The applicability of this technique is demonstrated by the development of a Bead Injection method for automated measurement of cell density and intracellular hydrogen peroxide.

  2. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo...

  3. In-situ monitoring of H2O2 degradation by live cells using voltammetric detection in a lab-on-valve system.

    PubMed

    Lähdesmäki, Ilkka; Park, Young K; Carroll, Andrea D; Decuir, Michael; Ruzicka, Jaromir

    2007-08-01

    This paper describes a method for monitoring the degradation of hydrogen peroxide by cells immobilized on a beaded support. The detection is based on the voltammetric reduction of hydrogen peroxide on a mercury film working electrode, whilst combining the concept of sequential injection (SI) with the lab-on-valve (LOV) manifold allows the measurements to be carried out in real time and automatically, in well-defined conditions. The method is shown to be capable of simultaneously monitoring hydrogen peroxide in the 10-1000 microM range and oxygen in the 160-616 microM range. A correction algorithm has been used to ensure reliable H2O2 results in the presence of varying oxygen levels. The method has been successfully applied to monitoring the degradation of H2O2 by wild-type cells and by catalase-overexpressing mouse embryonic fibroblasts. Since the technique allows the monitoring of the initial response rate, it provides data not accessible by current methods that are end-point-based measurements.

  4. 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water.

    PubMed

    Mattio, Elodie; Robert-Peillard, Fabien; Vassalo, Laurent; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Knoery, Joël; Boudenne, Jean-Luc; Coulomb, Bruno

    2018-06-01

    In recent years, the development of 3D printing in flow analysis has allowed the creation of new systems with various applications. Up to now, 3D printing was mainly used for the manufacture of small units such as flow detection cells, preconcentration units or mixing systems. In the present study, a new 3D printed lab-on-valve system was developed to selectively quantify lead and cadmium in water. Different technologies were compared for lab-on-valve 3D printing. Printed test units have shown that stereolithography or digital light processing are satisfactory techniques for creating complex lab-on-valve units. The lab-on-valve system was composed of two columns, eight peripheral ports and a central port, and a coil integrating baffles to increase mixing possibilities. A selective extraction of lead was first carried out by TrisKem Pb™ Resin column. Then, cadmium not retained on the first column was extracted on a second column of Amberlite® IR 120 resin. In a following step, lead and cadmium were eluted with ammonium oxalate and potassium iodide, respectively. Finally, the two metals were sequentially detected by the same Rhod-5N™ fluorescent reagent. This 3D printed lab-on-valve flow system allowed us to quantify lead and cadmium with a linear response from 0.2 to 15 µg L -1 and detection limits of 0.17 and 0.20 µg L -1 for lead and cadmium, respectively, which seems adapted for natural water analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Real-time monitoring of lactate extrusion and glucose consumption of cultured cells using a lab-on-valve system.

    PubMed

    Schulz, Craig M; Scampavia, Louis; Ruzicka, Jaromir

    2002-12-01

    Microsequential injection (microST) provides microfluidic operations that are ideally suited for cellular function studies and as a means of validating targets for drug discovery. MicroSI carried out within the lab-on-valve (LOV) manifold, is an ideal platform for spectroscopic studies on living cells that are grown on microcarrier beads and kept thermostated while their metabolism is probed in real-time. In this paper a microbioreactor is integrated into the LOV manifold allowing measurement of cellular lactate extrusion and glucose consumption rates of a cell culture that is automatically renewed prior to each measurement. Glucose consumption and lactate extrusion are monitored using NAD-linked enzymatic assays. The microSI-LOV setup has demonstrated a linear analysis range of 0.05-1.00 mM for lactate and 0.1-5.6 mM for glucose. These assays were conducted in a serial fashion requiring 3 microL of cellular perfusate and 10 s for glucose determination and 30 s for the lactate assay. Overall waste generated per lactate/glucose assay is < 200 microL. This work was performed using two different transfected hepatocyte cell lines, which adhere to Cytopore microcarrier beads. This novel approach to metabolic screening allows for the rapid evaluation of the effects of dosing cells with chemical agents.

  6. A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis.

    PubMed

    Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura

    2017-01-01

    A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.

  7. Project W-314 acceptance test report HNF-4643 for HNF-4642 241-AN-A valve pit manifold valves and position indication for project W-314

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAMMERS, J.S.

    1999-09-22

    The purpose of the test was to verify that the AN Tank Farm Manifold Valves can be manually manipulated to the required operating position and that the electrical and visual indications accurately reflect that position. Physical locking devices were also verified to function. The Acceptance Test Procedure HNF-4642, 241-AN-A Valve Pit Manifold Valves and Position Indication was conducted between 23 June and 10 August 1999 at the 200E AN Tank Farm. The test has no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed, this had an impact on the procedure and testmore » results, ECN 653752 was written to correct the mismatch between the procedure and actual field conditions. P&ID H-14-100941 was changed via ECN-W-314-4C-120. All components, identified in the procedure, were not found to be labeled and identified as written in the procedure, temporary tags were used for operational identification. A retest of valve ANA-WT-V 318 was required because it was removed from its installed position and modified after testing was completed.« less

  8. Miniaturization of environmental chemical assays in flowing systems: the lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices.

    PubMed

    Miró, Manuel; Hansen, Elo Harald

    2007-09-26

    The analytical capabilities of the microminiaturized lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis systems (muTAS), also termed lab-on-a-chip (LOC). This paper illustrates, via selected representative examples, the potentials of the LOV scheme vis-à-vis LOC microdevices for environmental assays. By means of user-friendly programmable flow and the exploitation of the interplay between the thermodynamics and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take full advantage of kinetic discriminations schemes, where even subtle differences in reactions are utilized for analytical purposes. Furthermore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open-architecture of the micromachined unit for implementation of peripheral modules and automated handling of a variety of reagents; and most importantly, it offers itself as a versatile front end to a plethora of detection schemes. Not the least, LOV is regarded as an emerging downscaled tool to overcome the dilemma of LOC microsystems to admit real-life samples. This is nurtured via its intrinsic flexibility for accommodation of sample pre-treatment schemes aimed at the on-line manipulation of complex samples. Thus, LOV is playing a prominent role in the environmental field, whenever the monitoring of trace level concentration of pollutants is pursued, because both matrix isolation and preconcentration of target analytes is most often imperative, or in fact necessary, prior to sample presentation to the detector.

  9. Automated total and radioactive strontium separation and preconcentration in samples of environmental interest exploiting a lab-on-valve system.

    PubMed

    Rodríguez, Rogelio; Avivar, Jessica; Ferrer, Laura; Leal, Luz O; Cerdà, Victor

    2012-07-15

    A novel lab-on-valve system has been developed for strontium determination in environmental samples. Miniaturized lab-on-valve system potentially offers facilities to allow any kind of chemical and physical processes, including fluidic and microcarrier bead control, homogenous reaction and liquid-solid interaction. A rapid, inexpensive and fully automated method for the separation and preconcentration of total and radioactive strontium, using a solid phase extraction material (Sr-Resin), has been developed. Total strontium concentrations are determined by ICP-OES and (90)Sr activities by a low background proportional counter. The method has been successfully applied to different water samples of environmental interest. The proposed system offers minimization of sample handling, drastic reduction of reagent volume, improvement of the reproducibility and sample throughput and attains a significant decrease of both time and cost per analysis. The LLD of the total Sr reached is 1.8ng and the minimum detectable activity for (90)Sr is 0.008Bq. The repeatability of the separation procedure is 1.2% (n=10). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Quickly Removable Valve

    NASA Technical Reports Server (NTRS)

    Robbins, John S.

    1988-01-01

    Unit removed with minimal disturbance. Valve inlet and outlet ports adjacent to each other on same side of valve body. Ports inserted into special manifold on fluid line. Valve body attached to manifold by four bolts or, alternatively, by toggle clamps. Electromechanical actuator moves in direction parallel to fluid line to open and close valve. When necessary to clean valve, removed simply by opening bolts or toggle clamps. No need to move or separate ports of fluid line. Valve useful where disturbance of fluid line detrimental or where fast maintenance essential - in oil and chemical industries, automotive vehicles, aircraft, and powerplants.

  11. Measurements of droplet velocity and size downstream of the moving valves of a four-valve engine with manifold injection, operated under isothermal steady suction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posylkin, M.; Taylor, A.M.K.P.; Whitelaw, J.H.

    The four-valve head of a VTEC engine was mounted on an open cylinder and the valves and fuel injection system operated as in the engine with a rotational speed of 1,200 rpm. Local measurements of droplet characteristics were obtained with a phase-Doppler velocimeter and iso-octane injected over 5 ms intervals, corresponding to 36 crank angle degrees, with manifold depression of 20 mbar. The results show that most of the fuel droplets were located close to the liner and on the side of the cylinder adjacent to the exhaust valves. In the plane of the measurement, 10 mm below TDC, themore » liquid flux diminished as the initiation of injection was advanced before opening of the inlet valves. With injection with the inlet valves closed, there were two waves of droplets, one from each of the two valves and separated by 60 deg CA and both with the Sauter mean diameter of about 120 {micro}m. With injection with the inlet valves open, most of the droplets emerged from the main inlet valve and with Sauter mean diameters of about 50 {micro}m, smaller than those of the unconfined spray.« less

  12. Partially integrated exhaust manifold

    DOEpatents

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  13. Compressed gas manifold

    DOEpatents

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  14. Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system.

    PubMed

    Al-Shwaiyat, Mohammed Khair E A; Miekh, Yuliia V; Denisenko, Tatyana A; Vishnikin, Andriy B; Andruch, Vasil; Bazel, Yaroslav R

    2018-02-05

    A green, simple, accurate and highly sensitive sequential injection lab-at-valve procedure has been developed for the simultaneous determination of ascorbic acid (Asc) and rutin using 18-molybdo-2-phosphate Wells-Dawson heteropoly anion (18-MPA). The method is based on the dependence of the reaction rate between 18-MPA and reducing agents on the solution pH. Only Asc is capable of interacting with 18-MPA at pH 4.7, while at pH 7.4 the reaction with both Asc and rutin proceeds simultaneously. In order to improve the precision and sensitivity of the analysis, to minimize reagent consumption and to remove the Schlieren effect, the manifold for the sequential injection analysis was supplemented with external reaction chamber, and the reaction mixture was segmented. By the reduction of 18-MPA with reducing agents one- and two-electron heteropoly blues are formed. The fraction of one-electron heteropoly blue increases at low concentrations of the reducer. Measurement of the absorbance at a wavelength corresponding to the isobestic point allows strictly linear calibration graphs to be obtained. The calibration curves were linear in the concentration ranges of 0.3-24mgL -1 and 0.2-14mgL -1 with detection limits of 0.13mgL -1 and 0.09mgL -1 for rutin and Asc, respectively. The determination of rutin was possible in the presence of up to a 20-fold molar excess of Asc. The method was applied to the determination of Asc and rutin in ascorutin tablets with acceptable accuracy and precision (1-2%). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs.

    PubMed

    Oliveira, Hugo M; Segundo, Marcela A; Lima, José L F C; Miró, Manuel; Cerdà, Victor

    2010-05-01

    In the present work, it is proposed, for the first time, an on-line automatic renewable molecularly imprinted solid-phase extraction (MISPE) protocol for sample preparation prior to liquid chromatographic analysis. The automatic microscale procedure was based on the bead injection (BI) concept under the lab-on-valve (LOV) format, using a multisyringe burette as propulsion unit for handling solutions and suspensions. A high precision on handling the suspensions containing irregularly shaped molecularly imprinted polymer (MIP) particles was attained, enabling the use of commercial MIP as renewable sorbent. The features of the proposed BI-LOV manifold also allowed a strict control of the different steps within the extraction protocol, which are essential for promoting selective interactions in the cavities of the MIP. By using this on-line method, it was possible to extract and quantify riboflavin from different foodstuff samples in the range between 0.450 and 5.00 mg L(-1) after processing 1,000 microL of sample (infant milk, pig liver extract, and energy drink) without any prior treatment. For milk samples, LOD and LOQ values were 0.05 and 0.17 mg L(-1), respectively. The method was successfully applied to the analysis of two certified reference materials (NIST 1846 and BCR 487) with high precision (RSD < 5.5%). Considering the downscale and simplification of the sample preparation protocol and the simultaneous performance of extraction and chromatographic assays, a cost-effective and enhanced throughput (six determinations per hour) methodology for determination of riboflavin in foodstuff samples is deployed here.

  16. Lab-on-a-Chip Instrument Development for Titan Exploration

    NASA Astrophysics Data System (ADS)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  17. Fast acting multiple element valve

    DOEpatents

    Yang, Jefferson Y. S.; Wada, James M.

    1991-01-01

    A plurality of slide valve elements having plural axial-spaced annular parts and an internal slide are inserted into a bulkhead in a fluid conduit from a downstream side of the bulkhead, locked in place by a bayonet coupling and set screw, and project through the bulkhead into the upstream conduit. Pneumatic lines connecting the slide valve element actuator to pilot valves are brought out the throat of the valve element to the downstream side. Pilot valves are radially spaced around the exterior of the valve to permit the pneumatic lines to be made identical, thereby to minimize adverse timing tolerances in operation due to pressure variations. Ring manifolds surround the valve adjacent respective pilot valve arrangements to further reduce adverse timing tolerances due to pressure variations, the manifolds being directly connected to the respective pilot valves. Position sensors are provided the valve element slides to signal the precise time at which a slide reaches or passes through a particular point in its stroke to initiate a calibrated timing function.

  18. Get Organized at Work! A Look inside the Game Design Process of Valve and Linden Lab

    ERIC Educational Resources Information Center

    van der Graaf, Shenja

    2012-01-01

    This article considers the configuration of modular and temporary organization designs. By drawing on two prominent developer firms, namely, Valve Inc. and Linden Lab, respectively, "cabals" and "studios" are explored. The results of interviews conducted with employees of these firms are used as evidence. The article demonstrates that, to various…

  19. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  20. Lightweight Motorized Valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Vandewalle, J.

    1986-01-01

    Redesigned actuator assembly weighs 50 percent less. Isolator valve operated by ac motor instead of usual dc solenoid. Valve weighs only 3 lb (1.4 kg). New valve functions with either two-phase or three-phase power. Developed for isolating fluids in propellant tanks, manifolds, and interconnecting lines of Space Shuttle reaction control and orbital maneuvering subsystems, valve suited to applications in which leakage must be kept to minimum at high pressure differences - in petroleum and chemical processing.

  1. Influence of the single EGR valve usability on development of the charge directed to individual cylinders of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Krakowian, Konrad; Kaźmierczak, Andrzej; Górniak, Aleksander; Wróbel, Radosław

    2017-11-01

    Exhaust gas recirculation systems (EGR), aside to a catalytic converters, are nowadays widely used in piston internal combustion engines to reduce nitrogen oxides (NOx) in the exhaust gas. They are characterized in that a portion of exhaust gases from the exhaust manifold is recirculated (via a condenser), and directed to a particular valve. The valve, depending on the current engine load and speed, doses the appropriate amount of exhaust gas into the exhaust manifold. Moreover, its location has a significant impact on the diverse formation of nitrogen oxides and fumes smokiness from the individual cylinders of the engine, which is a result of uneven propagation of exhaust gas into the channels of the intake manifold. This article contains the results of numerical characterized charges formed in symmetrical intake manifold with a centrally-placed EGR valve. Simulations were performed for the original intake system derived from the two-liter, turbocharged VW diesel engine.

  2. Interference evaluation between manifold and wet Christmas tree CP systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasil, S.L.D.C.; Baptista, W.

    2000-05-01

    Offshore production wells are controlled by valves installed in the marine soil, called wet Christmas trees (WCTs). A manifold receives the production of several wells and transports it to the platform. The manifold is cathodically protected by Al anodes and the WCT by Zn anodes. A computer simulation was carried out to evaluate the interference between the equipment cathodic protection systems.

  3. Unsupervised image matching based on manifold alignment.

    PubMed

    Pei, Yuru; Huang, Fengchun; Shi, Fuhao; Zha, Hongbin

    2012-08-01

    This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.

  4. A novel manifold-manifold distance index applied to looseness state assessment of viscoelastic sandwich structures

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Zhang, Zhousuo; Guo, Ting; Luo, Xue; Qu, Jinxiu; Zhang, Chenxuan; Cheng, Wei; Li, Bing

    2014-06-01

    Viscoelastic sandwich structures (VSS) are widely used in mechanical equipment; their state assessment is necessary to detect structural states and to keep equipment running with high reliability. This paper proposes a novel manifold-manifold distance-based assessment (M2DBA) method for assessing the looseness state in VSSs. In the M2DBA method, a manifold-manifold distance is viewed as a health index. To design the index, response signals from the structure are firstly acquired by condition monitoring technology and a Hankel matrix is constructed by using the response signals to describe state patterns of the VSS. Thereafter, a subspace analysis method, that is, principal component analysis (PCA), is performed to extract the condition subspace hidden in the Hankel matrix. From the subspace, pattern changes in dynamic structural properties are characterized. Further, a Grassmann manifold (GM) is formed by organizing a set of subspaces. The manifold is mapped to a reproducing kernel Hilbert space (RKHS), where support vector data description (SVDD) is used to model the manifold as a hypersphere. Finally, a health index is defined as the cosine of the angle between the hypersphere centers corresponding to the structural baseline state and the looseness state. The defined health index contains similarity information existing in the two structural states, so structural looseness states can be effectively identified. Moreover, the health index is derived by analysis of the global properties of subspace sets, which is different from traditional subspace analysis methods. The effectiveness of the health index for state assessment is validated by test data collected from a VSS subjected to different degrees of looseness. The results show that the health index is a very effective metric for detecting the occurrence and extension of structural looseness. Comparison results indicate that the defined index outperforms some existing state-of-the-art ones.

  5. 46 CFR 56.20-15 - Valves employing resilient material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56.20-15 Valves employing resilient material. (a) A valve in which the... piping system manifolds; (ii) Isolation valves in cross-connects between two piping systems, at least one...

  6. Applied Physics Lab Kennedy Space Center: Recent Contributions

    NASA Technical Reports Server (NTRS)

    Starr, Stan; Youngquist, Robert

    2006-01-01

    The mission of the Applied Physics Lab is: (1) Develop and deliver novel sensors and devices to support KSC mission operations. (2) Analyze operational issues and recommend or deliver practical solutions. (3) Apply physics to the resolution of long term space flight issues that affect space port operation on Earth or on other planets.

  7. A novel dual-valve sequential injection manifold (DV-SIA) for automated liquid-liquid extraction. Application for the determination of picric acid.

    PubMed

    Skrlíková, Jana; Andruch, Vasil; Sklenárová, Hana; Chocholous, Petr; Solich, Petr; Balogh, Ioseph S

    2010-05-07

    A novel dual-valve sequential injection system (DV-SIA) for online liquid-liquid extraction which resolves the main problems of LLE utilization in SIA has been designed. The main idea behind this new design was to construct an SIA system by connecting two independent units, one for aqueous-organic mixture flow and the second specifically for organic phase flow. As a result, the DV-SIA manifold consists of an Extraction unit and a Detection unit. Processing a mixture of aqueous-organic phase in the Extraction unit and a separated organic phase in the Detection unit solves the problems associated with the change of phases having different affinities to the walls of the Teflon tubing used in the SI-system. The developed manifold is a simple, user-friendly and universal system built entirely from commercially available components. The system can be used for a variety of samples and organic solvents and is simple enough to be easily handled by operators less familiar with flow systems. The efficiency of the DV-SIA system is demonstrated by the extraction of picric acid in the form of an ion associate with 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium reagent, with subsequent spectrophotometric detection. The suggested DV-SIA concept can be expected to stimulate new experiments in analytical laboratories and can be applied to the elaboration of procedures for the determination of other compounds extractable by organic solvents. It could thus form a basis for the design of simple, single-purpose commercial instruments used in LLE procedures. 2010 Elsevier B.V. All rights reserved.

  8. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.

  9. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.

    PubMed

    Cooksey, Gregory A; Plant, Anne L; Atencia, Javier

    2009-05-07

    The lack of simple interfaces for microfluidic devices with a large number of inlets significantly limits production and utilization of these devices. In this article, we describe the fabrication of a reusable manifold that provides rapid world-to-chip connectivity. A vacuum network milled into a rigid manifold holds microdevices and prevents leakage of fluids injected into the device from ports in the manifold. A number of different manifold designs were explored, and all performed similarly, yielding an average of 100 kPa (15 psi) fluid holding pressure. The wide applicability of this manifold concept is demonstrated by interfacing with a 51-inlet microfluidic chip containing 144 chambers and hundreds of embedded pneumatic valves. Due to the speed of connectivity, the manifolds are ideal for rapid prototyping and are well suited to serve as "universal" interfaces.

  10. Geodesic Monte Carlo on Embedded Manifolds

    PubMed Central

    Byrne, Simon; Girolami, Mark

    2013-01-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  11. Edge compression manifold apparatus

    DOEpatents

    Renzi, Ronald F.

    2004-12-21

    A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

  12. Edge compression manifold apparatus

    DOEpatents

    Renzi, Ronald F [Tracy, CA

    2007-02-27

    A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

  13. Semiautomated solid-phase extraction manifold with a solvent-level sensor.

    PubMed

    Orlando, R M; Rath, S; Rohwedder, J J R

    2013-11-15

    A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Failure Investigation of an Intra-Manifold Explosion in a Horizontally-Mounted 870 lbf Reaction Control Thruster

    NASA Technical Reports Server (NTRS)

    Durning, Joseph G., III; Westover, Shayne C.; Cone, Darren M.

    2011-01-01

    In June 2010, an 870 lbf Space Shuttle Orbiter Reaction Control System Primary Thruster experienced an unintended shutdown during a test being performed at the NASA White Sands Test Facility. Subsequent removal and inspection of the thruster revealed permanent deformation and misalignment of the thruster valve mounting plate. Destructive evaluation determined that after three nominal firing sequences, the thruster had experienced an energetic event within the fuel (monomethylhydrazine) manifold at the start of the fourth firing sequence. The current understanding of the phenomenon of intra-manifold explosions in hypergolic bipropellant thrusters is documented in literature where it is colloquially referred to as a ZOT. The typical ZOT scenario involves operation of a thruster in a gravitational field with environmental pressures above the triple point pressure of the propellants. Post-firing, when the thruster valves are commanded closed, there remains a residual quantity of propellant in both the fuel and oxidizer (nitrogen tetroxide) injector manifolds known as the "dribble volume". In an ambient ground test configuration, these propellant volumes will drain from the injector manifolds but are impeded by the local atmospheric pressure. The evacuation of propellants from the thruster injector manifolds relies on the fluids vapor pressure to expel the liquid. The higher vapor pressure oxidizer will evacuate from the manifold before the lower vapor pressure fuel. The localized cooling resulting from the oxidizer boiling during manifold draining can result in fuel vapor migration and condensation in the oxidizer passage. The liquid fuel will then react with the oxidizer that enters the manifold during the next firing and may produce a localized high pressure reaction or explosion within the confines of the oxidizer injector manifold. The typical ZOT scenario was considered during this failure investigation, but was ultimately ruled out as a cause of the explosion

  15. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the... also in the protected space. (b) A CO2 system that protects more than one space must have a manifold... protected space. (c) A CO2 system that protects only one space must have a stop valve installed between the...

  16. Principal Curves on Riemannian Manifolds.

    PubMed

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  17. Determination of trace zinc in seawater by coupling solid phase extraction and fluorescence detection in the Lab-On-Valve format.

    PubMed

    Grand, Maxime M; Chocholouš, Petr; Růžička, Jarda; Solich, Petr; Measures, Christopher I

    2016-06-07

    By virtue of their compactness, long-term stability, minimal reagent consumption and robustness, miniaturized sequential injection instruments are well suited for automation of assays onboard research ships. However, in order to reach the sensitivity and limit of detection required for open-ocean determinations of trace elements, it is necessary to preconcentrate the analyte prior its derivatization and subsequent detection by fluorescence. In this work, a novel method for the determination of dissolved zinc (Zn) at subnanomolar levels in seawater is described. The proposed method combines, for the first time, automated matrix removal, extraction of the target element, and fluorescence detection within a miniaturized flow manifold, based on the Lab-On-Valve (LOV) concept. The key feature of the microfluidic manipulation of the sample is flow programming, designed to pass sample through a mini-column where the target analyte and other complexable cations are retained, while the seawater matrix is washed out. Next, zinc is eluted and merged with a Zn selective fluorescent probe (FluoZin-3) at the confluence point of the LOV central channel using two high-precision stepper motor driven pumps that are operated in concert. Finally, the thus formed Zn complex is transported to the LOV flow cell for selective fluorescence measurement. This work describes the characterization and optimization of the method including Solid Phase Extraction using the Toyopearl AF-Chelate-650M resin, and detailed assay protocol controlled by a commercially available software and instrument. The proposed method features a LOD of 0.02 nM, high precision (<3% at 0.1 and 2 nM Zn levels), an assay cycle of 13 min and a reagent consumption of 150 μL FluoZin-3 per sample, which makes the method highly suitable for oceanographic shipboard analysis. The accuracy of the method has been validated through the analysis of seawater reference standards and comparison with ICP-MS determinations on

  18. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  19. Continuous Optimization on Constraint Manifolds

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1988-01-01

    This paper demonstrates continuous optimization on the differentiable manifold formed by continuous constraint functions. The first order tensor geodesic differential equation is solved on the manifold in both numerical and closed analytic form for simple nonlinear programs. Advantages and disadvantages with respect to conventional optimization techniques are discussed.

  20. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  1. Centrifugo-pneumatic valving utilizing dissolvable films.

    PubMed

    Gorkin, Robert; Nwankire, Charles E; Gaughran, Jennifer; Zhang, Xin; Donohoe, Gerard G; Rook, Martha; O'Kennedy, Richard; Ducrée, Jens

    2012-08-21

    In this article we introduce a novel technology that utilizes specialized water dissolvable thin films for valving in centrifugal microfluidic systems. In previous work (William Meathrel and Cathy Moritz, IVD Technologies, 2007), dissolvable films (DFs) have been assembled in laminar flow devices to form efficient sacrificial valves where DFs simply open by direct contact with liquid. Here, we build on the original DF valving scheme to leverage sophisticated, merely rotationally actuated vapour barriers and flow control for enabling comprehensive assay integration with low-complexity instrumentation on "lab-on-a-disc" platforms. The advanced sacrificial valving function is achieved by creating an inverted gas-liquid stack upstream of the DF during priming of the system. At low rotational speeds, a pocket of trapped air prevents a surface-tension stabilized liquid plug from wetting the DF membrane. However, high-speed rotation disrupts the metastable gas/liquid interface to wet the DF and thus opens the valve. By judicious choice of the radial position and geometry of the valve, the burst frequency can be tuned over a wide range of rotational speeds nearly 10 times greater than those attained by common capillary burst valves based on hydrophobic constrictions. The broad range of reproducible burst frequencies of the DF valves bears the potential for full integration and automation of comprehensive, multi-step biochemical assay protocols. In this report we demonstrate DF valving, discuss the biocompatibility of using the films, and show a potential sequential valving system including the on-demand release of on-board stored liquid reagents, fast centrifugal sedimentation and vigorous mixing; thus providing a viable basis for use in lab-on-a-disc platforms for point-of-care diagnostics and other life science applications.

  2. Sequential injection-bead injection-lab-on-valve coupled to high-performance liquid chromatography for online renewable micro-solid-phase extraction of carbamate residues in food and environmental samples.

    PubMed

    Vichapong, Jitlada; Burakham, Rodjana; Srijaranai, Supalax; Grudpan, Kate

    2011-07-01

    A sequential injection-bead injection-lab-on-valve system was hyphenated to HPLC for online renewable micro-solid-phase extraction of carbamate insecticides. The carbamates studied were isoprocarb, methomyl, carbaryl, carbofuran, methiocarb, promecarb, and propoxur. LiChroprep(®) RP-18 beads (25-40 μm) were employed as renewable sorbent packing in a microcolumn situated inside the LOV platform mounted above the multiposition valve of the sequential injection system. The analytes sorbed by the microcolumn were eluted using 80% acetonitrile in 0.1% acetic acid before online introduction to the HPLC system. Separation was performed on an Atlantis C-18 column (4.6 × 150 mm, 5 μm) utilizing gradient elution with a flow rate of 1.0 mL/min and a detection wavelength at 270 nm. The sequential injection system offers the means of performing automated handling of sample preconcentration and matrix removal. The enrichment factors ranged between 20 and 125, leading to limits of detection (LODs) in the range of 1-20 μg/L. Good reproducibility was obtained with relative standard deviations of <0.7 and 5.4% for retention time and peak area, respectively. The developed method has been successfully applied to the determination of carbamate residues in fruit, vegetable, and water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of

  4. Pluripotential theory on quaternionic manifolds

    NASA Astrophysics Data System (ADS)

    Alesker, Semyon

    2012-05-01

    On any quaternionic manifold of dimension greater than 4 a class of plurisubharmonic functions (or, rather, sections of an appropriate line bundle) is introduced. Then a Monge-Ampère operator is defined. It is shown that it satisfies a version of the theorems of A. D. Alexandrov and Chern-Levine-Nirenberg. For more special classes of manifolds analogous results were previously obtained in Alesker (2003) [1] for the flat quaternionic space Hn and in Alesker and Verbitsky (2006) [5] for hypercomplex manifolds. One of the new technical aspects of the present paper is the systematic use of the Baston differential operators, for which we also prove a new multiplicativity property.

  5. Wave equations on anti self dual (ASD) manifolds

    NASA Astrophysics Data System (ADS)

    Bashingwa, Jean-Juste; Kara, A. H.

    2017-11-01

    In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.

  6. Characterization of small microfluidic valves for studies of mechanical properties of bacteria

    DOE PAGES

    Yang, Da; Greer, Clayton M.; Jones, Branndon P.; ...

    2015-09-02

    Lab-on-a-chip platforms present many new opportunities to study bacterial cells and cellular assemblies. Here, the authors describe a new platform that allows us to apply uniaxial stress to individual bacterial cells while observing the cell and its subcellular assemblies using a high resolution optical microscope. The microfluidic chip consists of arrays of miniature pressure actuated valves. By placing a bacterium under one of such valves and partially closing the valve by externally applied pressure, the cell can be deformed. Although large pressure actuated valves used in integrated fluidic circuits have been extensively studied previously, here the authors downsize those microfluidicmore » valves and use flow channels with rectangular cross-sections to maintain the bacteria in contact with cell culture medium during the experiments. The closure of these valves has not been characterized before. First, these valves are modeled using finite element analysis, and then compared the modeling results with the actual closing profiles of the valves, which is determined from absorption measurements. The measurements and modeling show with good agreement that the deflection of valves is a linear function of externally applied pressure and the deflection scales proportionally to the width of the flow channel. In addition to characterizing the valve, the authors show at a proof-of-principle level that it can be used to deform a bacterial cell at considerable magnitude. They found the largest deformations in 5 μm wide channels where the bacterial width and length increase by 1.6 and 1.25 times, respectively. Narrower and broader channels are less optimal for these studies. Finally, the platform presents a promising approach to probe, in a quantitative and systematic way, the mechanical properties of not only bacterial cells but possibly also yeast and other single-celled organisms.« less

  7. Automated solid-phase extraction hyphenated to voltammetry for the determination of quercetin using magnetic nanoparticles and sequential injection lab-on-valve approach.

    PubMed

    Wang, Yang; Wang, Lu; Tian, Tian; Hu, Xiaoya; Yang, Chun; Xu, Qin

    2012-05-21

    In this study, an automated sequential injection lab-on-valve (SI-LOV) system was designed for the on-line matrix removal and preconcentration of quercetin. Octadecyl functionalized magnetic silica nanoparticles were prepared and packed into the microcolumn of the LOV as adsorbents. After being adsorbed through hydrophobic interaction, the analyte was eluted and subsequently introduced into the electrochemical flow cell by voltammetric quantification. The main parameters affecting the performance of solid-phase extraction, such as sample pH and flow rate, eluent solution and volume, accumulation potential and accumulation time were investigated in detail. Under the optimum experimental conditions, a linear calibration curve was obtained in the range of 1.0 × 10(-8) to 1 × 10(-5) mol L(-1) with R(2) = 0.9979. The limit of detection (LOD) and limit of quantitation (LOQ) were 1.3 × 10(-9) and 4.3 × 10(-9) mol L(-1), respectively. The relative standard deviation (RSD) for the determination of 1.0 × 10(-6) mol L(-1) quercetin was found to be 2.9% (n = 11) along with a sampling frequency of 40 h(-1). The applicability and reliability of the automated method described here had been applied to the determination of quercetin in human urine and red wine samples through recovery experiments, and the obtained results were in good agreement with those obtained by the HPLC method.

  8. Maximizing water use efficiency in designing microirrigation unit (IrriLab Software)

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio

    2016-04-01

    As the year 2050 approaches, the world population will reach 9 billion - so does the challenge of doubling crop yields. To meet this crop yields demand, the associated dramatic improving of water productivity (WP) must necessarily be accompanied by maximization of water use efficiency (WUE) (Ragab 2011, UNEP 2014). In this work, a recently developed software (IrriLab, https://www.facebook.com/irrilab) moving in this direction is presented. IrriLab is a very simple toll allows to design microirrigation unit optimizing WUE, pressure energy and irrigation unit costs. Irrigation software available in commerce provide microirrigation system designs, by mainly looking at the maximum flow rate uniformity criteria. Thus, each emitter installed along the laterals operates with an operating pressure head occurring in between an established range of pressure head variability (Dh < Dhadm). However, the latter condition does not always corresponds to the cheapest and to the maximizing WUE solution; in fact, it is not assured if the entire range of the admitted pressure head is profited and used by the emitters. IrriLab allows this occurrence because, for the entire Irrigation Unit Area, IUA, each design solution assures that at least two emitters rigorously operates, one with the minimum admitted pressure head, and the other one with the maximum admitted (Dh = Dhadm), (Baiamonte et al., 2015; Baiamonte, 2016). The same extreme values of pressure head are those that in the common design criteria delimit the range of pressure head, but without assuring their achievement. Compared to the common design criteria, this condition i) for fixed laterals' length and inside diameter, allows reducing the inlet required pressure head whereas, ii) for fixed pressure head at the inlet, provides an increasing in laterals and manifold lengths and in the associated IUA. Based on analytical solutions, IrriLab follows a very simple rectangular sketch, any way oriented in the space, and defined by

  9. Research on the transfers to Halo orbits from the view of invariant manifolds

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Tan, Tian; Xu, ShiJie

    2012-04-01

    This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.

  10. Polynomial chaos representation of databases on manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu

    2017-04-15

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. Themore » method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.« less

  11. Manifold learning-based subspace distance for machinery damage assessment

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang

    2016-03-01

    Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.

  12. Active contours on statistical manifolds and texture segmentation

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2005-01-01

    A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...

  13. Active contours on statistical manifolds and texture segmentaiton

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2005-01-01

    A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...

  14. Discriminative clustering on manifold for adaptive transductive classification.

    PubMed

    Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang

    2017-10-01

    In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Selected KSC Applied Physics Lab Responses to Shuttle Processing Measurement Requests

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2010-01-01

    The KSC Applied Physics Lab has been supporting Shuttle Ground Processing for over 20 years by solving problems brought to us by Shuttle personnel. Roughly half of the requests to our lab have been to find ways to make measurements, or to improve on an existing measurement process. This talk will briefly cover: 1) Centering the aft end of the External Tank between the Solid Rocket Boosters; 2) Positioning the GOX Vent Hood over the External Tank; 3) Remote Measurements of External Tank Damage; 4) Strain Measurement in the Orbiter Sling; and 5) Over-center Distance Measurement in an Over-center Mechanism.

  16. Towards a double field theory on para-Hermitian manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaisman, Izu

    In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action ofmore » the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.« less

  17. Classical BV Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2014-12-01

    In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.

  18. Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields*

    PubMed Central

    Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.

    2013-01-01

    In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004

  19. Development of a Fully Integrated Lab-on-a-Chip Electrophoresis System for ExoMars and Future Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Willis, P. A.; Fisher, A.; Greer, F.; Grunthaner, F. J.; Hoppe, D.; Chiesl, T.; Mathies, R. A.; Rolland, J. P.

    2009-04-01

    This paper will describe current and future development efforts in lab-on-a-chip instrumentation for astrobiological investigations underway at JPL. We will begin with a discussion of the current technology status of our autonomous microfluidic capillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps [1], as part of the Urey Instrument. This work builds on the μCE system developed by Skelley et al. [2], but extends the system capability through the use of bio- and spaceflight-compatible PFPE-membrane valves rather than utilizing a PDMS-based approach. The ultimate goal of this μCE system is to perform ultrasensitive compositional and chiral analysis of amino acids in order to determine if Mars harbors signatures of past or present life. An autonomously functioning flight version of this instrument will examine extracts from the Martian regolith as part of the Pasteur Payload of the 2016 ExoMars astrobiology mission. The four-layer wafer stack design utilizes independent CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The valve geometries and layouts in our integrated two-channel PFPE system have been optimized for valve sealing characteristics and uniform device spacing across the wafer surface. This paper will discuss current experimental development work in our research group involving further integration of functionality into an autonomous multi-channel system with no human intervention, enabling CE analysis upon a dried sample after receipt of a single pre-programmed instruction set from the user. The key structure under current development is an

  20. Natural differential operations on manifolds: an algebraic approach

    NASA Astrophysics Data System (ADS)

    Katsylo, P. I.; Timashev, D. A.

    2008-10-01

    Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles \\mathscr{V},\\mathscr{W}\\to M all the natural differential operations D\\colon\\Gamma(\\mathscr{V})\\to\\Gamma(\\mathscr{W}) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds.Bibliography: 21 titles.

  1. Scientific data interpolation with low dimensional manifold model

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  2. Manifolds, Tensors, and Forms

    NASA Astrophysics Data System (ADS)

    Renteln, Paul

    2013-11-01

    Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.

  3. Integral Manifold in System Design with Application to Flexible Link Robot Control

    DTIC Science & Technology

    1988-06-01

    environment. I am very grateful to my advisor . Professor Kokotovic. whose insight and guidance in my research work led me to the beginning of my...MANIFOLD IN SVSTEM DESIGN WITH RPLICATION TT 2Z2 FLEXIBLE LINK ROBO (U) ILLINOIS UNIV AT URBANA DECISION AND CONTROL LAB H C TSENG JUN 98

  4. Optimal transfers between unstable periodic orbits using invariant manifolds

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn E.; Anderson, Rodney L.; Scheeres, Daniel J.; Born, George H.

    2011-03-01

    This paper presents a method to construct optimal transfers between unstable periodic orbits of differing energies using invariant manifolds. The transfers constructed in this method asymptotically depart the initial orbit on a trajectory contained within the unstable manifold of the initial orbit and later, asymptotically arrive at the final orbit on a trajectory contained within the stable manifold of the final orbit. Primer vector theory is applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connects the unstable and stable manifold trajectories. Transfers are constructed between unstable periodic orbits in the Sun-Earth, Earth-Moon, and Jupiter-Europa three-body systems. Multiple solutions are found between the same initial and final orbits, where certain solutions retrace interior portions of the trajectory. All transfers created satisfy the conditions for optimality. The costs of transfers constructed using manifolds are compared to the costs of transfers constructed without the use of manifolds. In all cases, the total cost of the transfer is significantly lower when invariant manifolds are used in the transfer construction. In many cases, the transfers that employ invariant manifolds are three times more efficient, in terms of fuel expenditure, than the transfer that do not. The decrease in transfer cost is accompanied by an increase in transfer time of flight.

  5. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-07

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.

  6. Study on stair-step liquid triggered capillary valve for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  7. Learning an intrinsic-variable preserving manifold for dynamic visual tracking.

    PubMed

    Qiao, Hong; Zhang, Peng; Zhang, Bo; Zheng, Suiwu

    2010-06-01

    Manifold learning is a hot topic in the field of computer science, particularly since nonlinear dimensionality reduction based on manifold learning was proposed in Science in 2000. The work has achieved great success. The main purpose of current manifold-learning approaches is to search for independent intrinsic variables underlying high dimensional inputs which lie on a low dimensional manifold. In this paper, a new manifold is built up in the training step of the process, on which the input training samples are set to be close to each other if the values of their intrinsic variables are close to each other. Then, the process of dimensionality reduction is transformed into a procedure of preserving the continuity of the intrinsic variables. By utilizing the new manifold, the dynamic tracking of a human who can move and rotate freely is achieved. From the theoretical point of view, it is the first approach to transfer the manifold-learning framework to dynamic tracking. From the application point of view, a new and low dimensional feature for visual tracking is obtained and successfully applied to the real-time tracking of a free-moving object from a dynamic vision system. Experimental results from a dynamic tracking system which is mounted on a dynamic robot validate the effectiveness of the new algorithm.

  8. Scientific data interpolation with low dimensional manifold model

    DOE PAGES

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; ...

    2017-09-28

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on datamore » compression and interpolation from both regular and irregular samplings.« less

  9. Scientific data interpolation with low dimensional manifold model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on datamore » compression and interpolation from both regular and irregular samplings.« less

  10. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  11. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  12. Extrinsic local regression on manifold-valued data

    PubMed Central

    Lin, Lizhen; St Thomas, Brian; Zhu, Hongtu; Dunson, David B.

    2017-01-01

    We propose an extrinsic regression framework for modeling data with manifold valued responses and Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold where the responses lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back onto the image of the manifold. Outside the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d manifold-valued data. However, to our knowledge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic regression framework is general, computationally efficient and theoretically appealing. Asymptotic distributions and convergence rates of the extrinsic regression estimates are derived and a large class of examples are considered indicating the wide applicability of our approach. PMID:29225385

  13. Towards an automatic lab-on-valve-ion mobility spectrometric system for detection of cocaine abuse.

    PubMed

    Cocovi-Solberg, David J; Esteve-Turrillas, Francesc A; Armenta, Sergio; de la Guardia, Miguel; Miró, Manuel

    2017-08-25

    A lab-on-valve miniaturized system integrating on-line disposable micro-solid phase extraction has been interfaced with ion mobility spectrometry for the accurate and sensitive determination of cocaine and ecgonine methyl ester in oral fluids. The method is based on the automatic loading of 500μL of oral fluid along with the retention of target analytes and matrix clean-up by mixed-mode cationic/reversed-phase solid phase beads, followed by elution with 100μL of 2-propanol containing (3% v/v) ammonia, which are online injected into the IMS. The sorptive particles are automatically discarded after every individual assay inasmuch as the sorptive capacity of the sorbent material is proven to be dramatically deteriorated with reuse. The method provided a limit of detection of 0.3 and 0.14μgL -1 for cocaine and ecgonine methyl ester, respectively, with relative standard deviation values from 8 till 14% with a total analysis time per sample of 7.5min. Method trueness was evaluated by analyzing oral fluid samples spiked with cocaine at different concentration levels (1, 5 and 25μgL -1 ) affording relative recoveries within the range of 85±24%. Fifteen saliva samples were collected from volunteers and analysed following the proposed automatic procedure, showing a 40% cocaine occurrence with concentrations ranging from 1.3 to 97μgL -1 . Field saliva samples were also analysed by reference methods based on lateral flow immunoassay and gas chromatography-mass spectrometry. The application of this procedure to the control of oral fluids of cocaine consumers represents a step forward towards the development of a point-of-care cocaine abuse sensing system. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Automation of Silica Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc Platform

    NASA Astrophysics Data System (ADS)

    Kinahan, David J.; Mangwanya, Faith; Garvey, Robert; Chung, Danielle WY; Lipinski, Artur; Julius, Lourdes AN; King, Damien; Mohammadi, Mehdi; Mishra, Rohit; Al-Ofi, May; Miyazaki, Celina; Ducrée, Jens

    2016-10-01

    We describe a centrifugal microfluidic ‘Lab-on-a-Disc’ (LoaD) technology for DNA purification towards eventual integration into a Sample-to-Answer platform for detection of the pathogen Escherichia coli O157:H7 from food samples. For this application, we use a novel microfluidic architecture which combines ‘event-triggered’ dissolvable film (DF) valves with a reaction chamber gated by a centrifugo-pneumatic siphon valve (CPSV). This architecture permits comprehensive flow control by simple changes in the speed of the platform innate spindle motor. Even before method optimisation, characterisation by DNA fluorescence reveals an extraction efficiency of 58%, which is close to commercial spin columns.

  15. Lab-on-a-Chip

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station. Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. (NASA/MSFC/D.Stoffer)

  16. PMMA/PDMS valves and pumps for disposable microfluidics.

    PubMed

    Zhang, Wenhua; Lin, Shuichao; Wang, Chunming; Hu, Jia; Li, Cong; Zhuang, Zhixia; Zhou, Yongliang; Mathies, Richard A; Yang, Chaoyong James

    2009-11-07

    Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 microL s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to microL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.

  17. Long Time Quantum Evolution of Observables on Cusp Manifolds

    NASA Astrophysics Data System (ADS)

    Bonthonneau, Yannick

    2016-04-01

    The Eisenstein functions {E(s)} are some generalized eigenfunctions of the Laplacian on manifolds with cusps. We give a version of Quantum Unique Ergodicity for them, for {|{I}s| to ∞} and {R}s to d/2} with {{R}s - d/2 ≥ log log |{I}s| / log |{I}s|}. For the purpose of the proof, we build a semi-classical quantization procedure for finite volume manifolds with hyperbolic cusps, adapted to a geometrical class of symbols. We also prove an Egorov Lemma until Ehrenfest times on such manifolds.

  18. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control

    PubMed Central

    Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.

    2013-01-01

    We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812

  19. Mechanical systems with closed orbits on manifolds of revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryavtseva, E A; Fedoseev, D A

    We study natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential. We obtain a classification of Riemannian manifolds of revolution and central potentials on them that have the strong Bertrand property: any nonsingular (that is, not contained in a meridian) orbit is closed. We also obtain a classification of manifolds of revolution and central potentials on them that have the 'stable' Bertrand property: every parallel is an 'almost stable' circular orbit, and any nonsingular bounded orbit is closed. Bibliography: 14 titles.

  20. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  1. Locally optimal transfer trajectories between libration point orbits using invariant manifolds

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn E.

    2009-12-01

    Techniques from dynamical systems theory and primer vector theory have been applied to the construction of locally optimal transfer trajectories between libration point orbits. When two libration point orbits have different energies, it has been found that the unstable manifold of the first orbit can be connected to the stable manifold of the second orbit with a bridging trajectory. A bounding sphere centered on the secondary, with a radius less than the radius of the sphere of influence of the secondary, was used to study the stable and unstable manifold trajectories. It was numerically demonstrated that within the bounding sphere, the two-body parameters of the unstable and stable manifold trajectories could be analyzed to locate low transfer costs. It was shown that as the two-body parameters of an unstable manifold trajectory more closely matched the two-body parameters of a stable manifold trajectory, the total DeltaV necessary to complete the transfer decreased. Primer vector theory was successfully applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connected the unstable manifold of the first orbit to the stable manifold of the second orbit. Transfer trajectories were constructed between halo orbits in the Sun-Earth and Earth-Moon three-body systems. Multiple solutions were found between the same initial and final orbits, where certain solutions retraced interior portions of the trajectory. All of the trajectories created satisfied the conditions for optimality. The costs of transfers constructed using invariant manifolds were compared to the costs of transfers constructed without the use of invariant manifolds, when data was available. In all cases, the total cost of the transfers were significantly lower when invariant manifolds were used in the transfer construction. In many cases, the transfers that employed invariant manifolds were three to four times more efficient, in terms of fuel expenditure

  2. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  3. LCD OF AIR INTAKE MANIFOLDS PHASE 2: FORD F250 AIR INTAKE MANIFOLD

    EPA Science Inventory

    The life cycle design methodology was applied to the design analysis of three alternatives for the lower plehum of the air intake manifold for us with a 5.4L F-250 truck engine: a sand cast aluminum, a lost core molded nylon composite, and a vibration welded nylon composite. The ...

  4. Assessment of the effect of gaseous fuel delivery mode on thermal efficiency and fuel losses during the valve overlap period in a dual-fuel compression ignition engine

    NASA Astrophysics Data System (ADS)

    Skrzek, T.

    2016-09-01

    The paper describes the effect of dual fuelling of single cylinder AVL test CI engine with the use of two ways of gas delivery to the engine manifold. The engine was fuelled diesel oil and propane. For all the tests, gas consumption was maintained at the same level. In the first mode the gas was delivered by injector located under inlet valve. In the second method, there was used a mixer fitted to the intake manifold. The paper compares the results of thermal efficiency and emissions of propane in the exhaust for both fuelling modes. Research clearly show how important it is to synchronize the injector opening time of the intake stroke. This is especially important for supercharged engines in which there is a valve overlap.

  5. Technologies for autonomous integrated lab-on-chip systems for space missions

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.

    2016-11-01

    Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.

  6. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.

    PubMed

    Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J

    2007-11-01

    Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.

  7. Multilayer based lab-on-a-chip-systems for substance testing

    NASA Astrophysics Data System (ADS)

    Sonntag, Frank; Grünzner, Stefan; Schmieder, Florian; Busek, Mathias; Klotzbach, Udo; Franke, Volker

    2015-03-01

    An integrated technology chain for laser-microstructuring and bonding of polymer foils for fast, flexible and low-cost manufacturing of multilayer lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer the corresponding foils and plates are chosen. In the third step the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step the multiple plates and foils are joined using thermal diffusion bonding. Membranes for pneumatically driven valves and micropumps where bonded via chemical surface modification. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.

  8. Unimodularity criteria for Poisson structures on foliated manifolds

    NASA Astrophysics Data System (ADS)

    Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury

    2018-03-01

    We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.

  9. 30 CFR 291.101 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... component or riser. Examples include anodes, valves, flanges, fittings, umbilicals, subsea manifolds...). Pipeline is the piping, risers, accessories and appurtenances installed for transportation of oil and gas...

  10. 30 CFR 291.101 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... component or riser. Examples include anodes, valves, flanges, fittings, umbilicals, subsea manifolds...). Pipeline is the piping, risers, accessories and appurtenances installed for transportation of oil and gas...

  11. 30 CFR 291.101 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... component or riser. Examples include anodes, valves, flanges, fittings, umbilicals, subsea manifolds...). Pipeline is the piping, risers, accessories and appurtenances installed for transportation of oil and gas...

  12. Cayley transform on Stiefel manifolds

    NASA Astrophysics Data System (ADS)

    Macías-Virgós, Enrique; Pereira-Sáez, María José; Tanré, Daniel

    2018-01-01

    The Cayley transform for orthogonal groups is a well known construction with applications in real and complex analysis, linear algebra and computer science. In this work, we construct Cayley transforms on Stiefel manifolds. Applications to the Lusternik-Schnirelmann category and optimization problems are presented.

  13. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  14. The world problem: on the computability of the topology of 4-manifolds

    NASA Technical Reports Server (NTRS)

    vanMeter, J. R.

    2005-01-01

    Topological classification of the 4-manifolds bridges computation theory and physics. A proof of the undecidability of the homeomorphy problem for 4-manifolds is outlined here in a clarifying way. It is shown that an arbitrary Turing machine with an arbitrary input can be encoded into the topology of a 4-manifold, such that the 4-manifold is homeomorphic to a certain other 4-manifold if and only if the corresponding Turing machine halts on the associated input. Physical implications are briefly discussed.

  15. The Design-To-Cost Manifold

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1990-01-01

    Design-to-cost is a popular technique for controlling costs. Although qualitative techniques exist for implementing design to cost, quantitative methods are sparse. In the launch vehicle and spacecraft engineering process, the question whether to minimize mass is usually an issue. The lack of quantification in this issue leads to arguments on both sides. This paper presents a mathematical technique which both quantifies the design-to-cost process and the mass/complexity issue. Parametric cost analysis generates and applies mathematical formulas called cost estimating relationships. In their most common forms, they are continuous and differentiable. This property permits the application of the mathematics of differentiable manifolds. Although the terminology sounds formidable, the application of the techniques requires only a knowledge of linear algebra and ordinary differential equations, common subjects in undergraduate scientific and engineering curricula. When the cost c is expressed as a differentiable function of n system metrics, setting the cost c to be a constant generates an n-1 dimensional subspace of the space of system metrics such that any set of metric values in that space satisfies the constant design-to-cost criterion. This space is a differentiable manifold upon which all mathematical properties of a differentiable manifold may be applied. One important property is that an easily implemented system of ordinary differential equations exists which permits optimization of any function of the system metrics, mass for example, over the design-to-cost manifold. A dual set of equations defines the directions of maximum and minimum cost change. A simplified approximation of the PRICE H(TM) production-production cost is used to generate this set of differential equations over [mass, complexity] space. The equations are solved in closed form to obtain the one dimensional design-to-cost trade and design-for-cost spaces. Preliminary results indicate that cost

  16. In-plane cost-effective magnetically actuated valve for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Pugliese, Marco; Ferrara, Francesco; Bramanti, Alessandro Paolo; Gigli, Giuseppe; Maiorano, Vincenzo

    2017-04-01

    We present a new in-plane magnetically actuated microfluidic valve. Its simple design includes a circular area joining two channels lying on the same plane. The area is parted by a septum lying on and adhering to a magneto-active polymeric ‘floor’ membrane, keeping the channels normally separated (valve closed). Under the action of a magnetic field, the membrane collapses, letting the liquid flow below the septum (valve open). The valve was extensively characterized experimentally, and modeled and optimized theoretically. The growing interest in lab on chips, especially for diagnostics and precision medicine, is driving researchers towards smart, efficient and low cost solutions to the management of biological samples. In this context, the valve developed in this work represents a useful building-block for microfluidic applications requiring precise flow control, its main features being easy and rapid manufacturing, biocompatibility and low cost.

  17. Computational studies of an intake manifold for restricted engine application

    NASA Astrophysics Data System (ADS)

    Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar

    2018-02-01

    The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.

  18. Explosive-actuated valve design concept that eliminates blow-by. [for the TOPS spacecraft trajectory correction propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1974-01-01

    A method of evaluating the normally open normally closed, explosive actuated valves that were selected for use in the trajectory correction propulsion subsystem of the Thermoelectric Outer Planet Spacecraft (TOPS) program is presented. The design philosophy which determined the requirements for highly reliable valves that could provide the performance capability during long duration (10 year) missions to the outer planets is discussed. The techniques that were used to fabricate the valves and manifold ten valves into an assembly with the capability of five propellant-flow initiation/isolation sequences are described. The test program, which was conducted to verify valve design requirements, is outlined and the more significant results are shown.

  19. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  20. Locking apparatus for gate valves

    DOEpatents

    Fabyan, J.; Williams, C.W.

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  1. MFCVs (Manual Flow Control Valves) in the Lab

    NASA Image and Video Library

    2009-07-07

    ISS020-E-017705 (7 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works at a rotated rack in the Destiny laboratory of the International Space Station during in-flight maintenance (IFM) to adjust the periodic flow rate of manual flow control valves for coolant loops.

  2. MFCVs (Manual Flow Control Valves) in the Lab

    NASA Image and Video Library

    2009-07-07

    ISS020-E-017710 (7 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works at a rotated rack in the Destiny laboratory of the International Space Station during in-flight maintenance (IFM) to adjust the periodic flow rate of manual flow control valves for coolant loops.

  3. Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis.

    PubMed

    Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2006-04-15

    In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems.

  4. Geometry and physics of pseudodifferential operators on manifolds

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Napolitano, George M.

    2016-09-01

    A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic calculus; the two kinds of derivative acting on smooth sections of the cotangent bundle of the Riemannian manifold; the concept of symbol as an equivalence class. Physical motivations and applications are then outlined, with emphasis on Green functions of quantum field theory and Parker's evaluation of Hawking radiation.

  5. Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2006-01-01

    Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.

  6. Fabricating microfluidic valve master molds in SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  7. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    NASA Astrophysics Data System (ADS)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  8. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    EPA Science Inventory

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  9. Dimensionality reduction of collective motion by principal manifolds

    NASA Astrophysics Data System (ADS)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  10. Effective Field Theory on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  11. Heterotic model building: 16 special manifolds

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Lee, Seung-Joo; Lukas, Andre; Sun, Chuang

    2014-06-01

    We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded from http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.

  12. Clustering Tree-structured Data on Manifold

    PubMed Central

    Lu, Na; Miao, Hongyu

    2016-01-01

    Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696

  13. The functional equation truncation method for approximating slow invariant manifolds: a rapid method for computing intrinsic low-dimensional manifolds.

    PubMed

    Roussel, Marc R; Tang, Terry

    2006-12-07

    A slow manifold is a low-dimensional invariant manifold to which trajectories nearby are rapidly attracted on the way to the equilibrium point. The exact computation of the slow manifold simplifies the model without sacrificing accuracy on the slow time scales of the system. The Maas-Pope intrinsic low-dimensional manifold (ILDM) [Combust. Flame 88, 239 (1992)] is frequently used as an approximation to the slow manifold. This approximation is based on a linearized analysis of the differential equations and thus neglects curvature. We present here an efficient way to calculate an approximation equivalent to the ILDM. Our method, called functional equation truncation (FET), first develops a hierarchy of functional equations involving higher derivatives which can then be truncated at second-derivative terms to explicitly neglect the curvature. We prove that the ILDM and FET-approximated (FETA) manifolds are identical for the one-dimensional slow manifold of any planar system. In higher-dimensional spaces, the ILDM and FETA manifolds agree to numerical accuracy almost everywhere. Solution of the FET equations is, however, expected to generally be faster than the ILDM method.

  14. Fuel cell manifold sealing system

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  15. Manifold seal structure for fuel cell stack

    DOEpatents

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  16. Camera-pose estimation via projective Newton optimization on the manifold.

    PubMed

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  17. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  18. Integrated lab-in-syringe platform incorporating a membraneless gas-liquid separator for automatic cold vapor atomic absorption spectrometry.

    PubMed

    Giakisikli, Georgia; Miró, Manuel; Anthemidis, Aristidis

    2013-10-01

    This manuscript reports the proof-of-concept of a novel integrated lab-in-syringe/gas-liquid separation (LIS/GLS) batch-flow system based on a programmable flow for automatic cold vapor atomic absorption spectrometric assays. Homogeneous mixing of metered volumes of sample and reagent solutions drawn up in a sandwich-type mode along with in situ vapor generation are accomplished inside the microsyringe in a closed manner, while the separation of vapor species is achieved via the membraneless GLS located at the top of the syringe's valve in the upright position. The potentials of the proposed manifold were demonstrated for trace inorganic mercury determination in drinking waters and seawater. For a 3.0 mL sample, the limit of detection and repeatability (RSD) were found to be 0.03 μg L(-1) Hg(II) and 3.1% (at the 2.0 μg L(-1) concentration level), respectively, with a dynamic range extending up to 10.0 μg L(-1). The proposed system fulfills the requirements of US-EPA, WHO, and EU Council Directives for measurements of the maximum allowed concentrations of inorganic mercury in drinking water.

  19. Monitoring the performance of a storm water separating manifold with distributed temperature sensing.

    PubMed

    Langeveld, J G; de Haan, C; Klootwijk, M; Schilperoort, R P S

    2012-01-01

    Storm water separating manifolds in house connections have been introduced as a cost effective solution to disconnect impervious areas from combined sewers. Such manifolds have been applied by the municipality of Breda, the Netherlands. In order to investigate the performance of the manifolds, a monitoring technique (distributed temperature sensing or DTS) using fiber optic cables has been applied in the sewer system of Breda. This paper describes the application of DTS as a research tool in sewer systems. DTS proves to be a powerful tool to monitor the performance of (parts of) a sewer system in time and space. The research project showed that DTS is capable of monitoring the performance of house connections and identifying locations of inflow of both sewage and storm runoff. The research results show that the performance of storm water separating manifolds varies over time, thus making them unreliable.

  20. Remote actuated valve implant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  1. Pseudo-Kähler Quantization on Flag Manifolds

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  2. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform.

    PubMed

    Torres Delgado, Saraí M; Kinahan, David J; Nirupa Julius, Lourdes Albina; Mallette, Adam; Ardila, David Sáenz; Mishra, Rohit; Miyazaki, Celina M; Korvink, Jan G; Ducrée, Jens; Mager, Dario

    2018-06-30

    In this paper we present a wirelessly powered array of 128 centrifugo-pneumatic valves that can be thermally actuated on demand during spinning. The valves can either be triggered by a predefined protocol, wireless signal transmission via Bluetooth, or in response to a sensor monitoring a parameter like the temperature, or homogeneity of the dispersion. Upon activation of a resistive heater, a low-melting membrane (Parafilm™) is removed to vent an entrapped gas pocket, thus letting the incoming liquid wet an intermediate dissolvable film and thereby open the valve. The proposed system allows up to 12 heaters to be activated in parallel, with a response time below 3 s, potentially resulting in 128 actuated valves in under 30 s. We demonstrate, with three examples of common and standard procedures, how the proposed technology could become a powerful tool for implementing diagnostic assays on Lab-on-a-Disc. First, we implement wireless actuation of 64 valves during rotation in a freely programmable sequence, or upon user input in real time. Then, we show a closed-loop centrifugal flow control sequence for which the state of mixing of reagents, evaluated from stroboscopically recorded images, triggers the opening of the valves. In our last experiment, valving and closed-loop control are used to facilitate centrifugal processing of whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Applying Neurological Learning Research to an Intro Astronomy Online Lab Course

    NASA Astrophysics Data System (ADS)

    Byrd, Gene G.; Byrd, Dana

    2015-01-01

    The neurological research used the 'Tower of London', a well-tested puzzle requiring multi-step planning toward a solution. Four and five year-olds are starting multistep reasoning and provide good puzzle subjects. Preschoolers who talked to themselves about future moves had greatly improved performance over those who did not. Adults given preplanning time prior to solving the same puzzle showed more neural activation during preplanning, especially in brain areas which serve higher level thinking. Applying these results to teaching astronomy, we modified an online introductory lab course in which students take a multiple choice final exam. We composed questions related to the learning objectives of the course modules (LOQs). Students could 'talk to themselves' by discursively answering these for extra credit prior to the final. Results were compared to an otherwise identical previous unmodified class. Modified classes showed statistically much better final exam average scores (78% vs. 66%). This modification helped those students who most need help. Students in the lower third of the class preferentially answered the LOQs to improve their scores and the class average on the exam. These results also show the effectiveness of relevant extra credit work. For more details plus an application to a lecture course, see Byrd and Byrd http://www.ncolr.org/issues/jiol/v12/n2/3 (Journal of Interactive Online Learning). The online lab course emphasized real photographic and quantitative astronomical observations. We also discuss and show equipment found to be most useful for the online lab course, including a 'pin-hole protractor', telescope kit and "AL-henge" telescope mount..

  4. A Method for Reducing the Temperature of Exhaust Manifolds

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report describes tests conducted at the Langley Memorial Aeronautical Laboratory on an "air-inducting" exhaust manifold for aircraft engines. The exhaust gases from each cylinder port are discharged into the throat of an exhaust pipe which has a frontal bellmouth. Cooling air is drawn into the pipe, where it surrounds and mixes with the exhaust gases. Temperatures of the manifold shell and of the exhaust gases were obtained in flight for both a conventional manifold and the air-inducting manifold. The air-inducting manifold was installed on an engine which was placed on a test stand. Different fuels were sprayed on and into the manifold to determine whether the use of this manifold reduced the fire hazard. The flight tests showed reductions in manifold temperatures of several hundred degrees, to values below the ignition point of aviation gasoline. On the test stand when the engine was run at idling speeds fuels sprayed into the manifold ignited. It is believed that at low engine speeds the fuel remained in the manifold long enough to become thoroughly heated, and was then ignited by the exhaust gas which had not mixed with cooling air. The use of the air-inducting exhaust manifold must reduce the fire hazard by virtue of its lower operating temperature, but it is not a completely satisfactory solution of the problem.

  5. On a program manifold's stability of one contour automatic control systems

    NASA Astrophysics Data System (ADS)

    Zumatov, S. S.

    2017-12-01

    Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold's absolute stability of one contour automatic control systems are obtained. The Hurwitz's angle of absolute stability was determined. The sufficient conditions of program manifold's absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov's second method.

  6. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall be...

  7. Access to Mars from Earth-Moon Libration Point Orbits:. [Manifold and Direct Options

    NASA Technical Reports Server (NTRS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-01-01

    This investigation is focused specifically on transfers from Earth-Moon L(sub 1)/L(sub 2) libration point orbits to Mars. Initially, the analysis is based in the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L(sub 2) orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L(sub 2) libration point orbits to Sun-Earth L(sub 1)/L(sub 2) halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  8. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-01-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  9. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-12-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  10. Energy minimization on manifolds for docking flexible molecules

    PubMed Central

    Mirzaei, Hanieh; Zarbafian, Shahrooz; Villar, Elizabeth; Mottarella, Scott; Beglov, Dmitri; Vajda, Sandor; Paschalidis, Ioannis Ch.; Vakili, Pirooz; Kozakov, Dima

    2015-01-01

    In this paper we extend a recently introduced rigid body minimization algorithm, defined on manifolds, to the problem of minimizing the energy of interacting flexible molecules. The goal is to integrate moving the ligand in six dimensional rotational/translational space with internal rotations around rotatable bonds within the two molecules. We show that adding rotational degrees of freedom to the rigid moves of the ligand results in an overall optimization search space that is a manifold to which our manifold optimization approach can be extended. The effectiveness of the method is shown for three different docking problems of increasing complexity. First we minimize the energy of fragment-size ligands with a single rotatable bond as part of a protein mapping method developed for the identification of binding hot spots. Second, we consider energy minimization for docking a flexible ligand to a rigid protein receptor, an approach frequently used in existing methods. In the third problem we account for flexibility in both the ligand and the receptor. Results show that minimization using the manifold optimization algorithm is substantially more efficient than minimization using a traditional all-atom optimization algorithm while producing solutions of comparable quality. In addition to the specific problems considered, the method is general enough to be used in a large class of applications such as docking multidomain proteins with flexible hinges. The code is available under open source license (at http://cluspro.bu.edu/Code/Code_Rigtree.tar), and with minimal effort can be incorporated into any molecular modeling package. PMID:26478722

  11. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  12. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  13. Harmonic spinors on a family of Einstein manifolds

    NASA Astrophysics Data System (ADS)

    Franchetti, Guido

    2018-06-01

    The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.

  14. Multilayer-based lab-on-a-chip systems for perfused cell-based assays

    NASA Astrophysics Data System (ADS)

    Klotzbach, Udo; Sonntag, Frank; Grünzner, Stefan; Busek, Mathias; Schmieder, Florian; Franke, Volker

    2014-12-01

    A novel integrated technology chain of laser-microstructured multilayer foils for fast, flexible, and low-cost manufacturing of lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers, which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer, their corresponding foils and plates are chosen. In the third step, the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step, the multiple plates and foils are joined using different bonding techniques like adhesive bonding, welding, etc. This multilayer technology together with pneumatically driven micropumps and valves permits the manufacturing of fluidic structures and perfusion systems, which spread out above multiple planes. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.

  15. Encoding quantum information in a stabilized manifold of a superconducting cavity

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.

  16. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    PubMed

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Microfluidic valve array control system integrating a fluid demultiplexer circuit

    NASA Astrophysics Data System (ADS)

    Kawai, Kentaro; Arima, Kenta; Morita, Mizuho; Shoji, Shuichi

    2015-06-01

    This paper proposes an efficient control method for the large-scale integration of microvalves in microfluidic systems. The proposed method can control 2n individual microvalves with 2n + 2 control lines (where n is an integer). The on-chip valves are closed by applying pressure to a control line, similar to conventional pneumatic microvalves. Another control line closes gate valves between the control line to the on-chip valves and the on-chip valves themselves, to preserve the state of the on-chip valves. The remaining control lines select an activated gate valve. While the addressed gate valve is selected by the other control lines, the corresponding on-chip valve is actuated by applying input pressure to the control line to the on-chip valves. Using this method would substantially reduce the number of world-to-chip connectors and off-chip valve controllers. Experiments conducted using a fabricated 28 microvalve array device, comprising 256 individual on-chip valves controlled with 18 (2   ×   8 + 2) control lines, yielded switching speeds for the selected on-chip valve under 90 ms.

  18. Topography of aortic heart valves. [applied to the development of a prosthetic heart valve

    NASA Technical Reports Server (NTRS)

    Karara, H. M.

    1974-01-01

    The cooperative effort towards the development of a tri-leaflet prosthetic heart valve is described. The photogrammetric studies were conducted on silicone rubber molds. Information on data acquisition and data reduction phases is given, and certain accuracy aspects of the project are explained. The various outputs which are discussed include digital models, profiles, and contour maps.

  19. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  20. Magnetic-adhesive based valves for microfluidic devices used in low-resource settings.

    PubMed

    Harper, Jason C; Andrews, Jenna M; Ben, Candice; Hunt, Andrew C; Murton, Jaclyn K; Carson, Bryan D; Bachand, George D; Lovchik, Julie A; Arndt, William D; Finley, Melissa R; Edwards, Thayne L

    2016-10-18

    Since the introduction of micro total analytical systems (μTASs), significant advances have been made toward development of lab-on-a-chip platforms capable of performing complex biological assays that can revolutionize public health, among other applications. However, use of these platforms in low-resource environments (e.g. developing countries) has yet to be realized as the majority of technologies used to control microfluidic flow rely on off-device hardware with non-negligible size, cost, power requirements and skill/training to operate. In this paper we describe a magnetic-adhesive based valve that is simple to construct and operate, and can be used to control fluid flow and store reagents within a microfluidic device. The design consists of a port connecting two chambers on different planes in the device that is closed by a neodymium disk magnet seated on a thin ring of adhesive. Bringing an external magnet into contact with the outer surface of the device unseats and displaces the valve magnet from the adhesive ring, exposing the port. Using this configuration, we demonstrate on-device reagent storage and on-demand transport and reaction of contents between chambers. This design requires no power or external instrumentation to operate, is extremely low cost ($0.20 materials cost per valve), can be used by individuals with no technical training, and requires only a hand-held magnet to actuate. Additionally, valve actuation does not compromise the integrity of the completely sealed microfluidic device, increasing safety for the operator when toxic or harmful substances are contained within. This valve concept has the potential to simplify design of μTASs, facilitating development of lab-on-a-chip systems that may be practical for use in point-of-care and low-resource settings.

  1. The relative isoperimetric inequality on a conformally parabolic manifold with boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesel'man, Vladimir M

    2011-07-31

    For an arbitrary noncompact n-dimensional Riemannian manifold with a boundary of conformally parabolic type it is proved that there exists a conformal change of metric such that a relative isoperimetric inequality of the same form as in the closed n-dimensional Euclidean half-space holds on the manifold with the new metric. This isoperimetric inequality is asymptotically sharp. Bibliography: 6 titles.

  2. Flexible fuel cell gas manifold system

    DOEpatents

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  3. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    PubMed Central

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  4. Masking Strategies for Image Manifolds.

    PubMed

    Dadkhahi, Hamid; Duarte, Marco F

    2016-07-07

    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the datadependent masking process, even for modest mask sizes.

  5. On-chip liquid storage and dispensing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Bodén, Roger; Lehto, Marcus; Margell, Joakim; Hjort, Klas; Schweitz, Jan-Åke

    2008-07-01

    This work presents novel components for on-chip storage and dispensing inside a lab-on-a-chip (LOC) for applications in immunoassay point-of-care testing (POCT), where incubation and washing steps are essential. It involves easy-to-use on-chip solutions for the sequential thermo-hydraulic actuation of liquids. The novel concept of combining the use of a rubber plug, both as a non-return valve cap and as a liquid injection interface of a sealed reservoir, allows simple filling of a sterilized cavity, as well as the storage and dispensing of reagent and washing buffer liquids. Segmenting the flow with air spacers enables effective rinsing and the use of small volumes of on-chip stored liquids. The chip uses low-resistance resistors as heaters in the paraffin actuator, providing the low-voltage actuation that is preferred for handheld battery driven instruments.

  6. Developing automated analytical methods for scientific environments using LabVIEW.

    PubMed

    Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard

    2010-01-15

    The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.

  7. Fluid delivery manifolds and microfluidic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.

    2017-02-28

    Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.

  8. Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis.

    PubMed

    Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan

    2016-09-29

    A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance.

  9. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    PubMed

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  10. Pattern formation and geometry of the manifold

    NASA Astrophysics Data System (ADS)

    Haji, Amir Hossein; Mahzoon, Mojtaba; Javadpour, Sirus

    2011-03-01

    The objective of the present work is to investigate how pattern formation in the Cahn-Hilliard system can be influenced by geometry of the manifold. This is in contrast to control methods in which the physical field is modified and the pattern formation of the original system changes in response to control inputs. The idea begins with the cylindrical manifold symmetry leading to circumferential rolls while the torus manifold can be used to produce and control helical rolls. The next step is to search for a weaker restriction on the geometry of the manifold in order to reduce its dimension. In particular a short amplitude sinusoidal modulation on a flat surface is studied. At the final step a sequential pattern formation is presented.

  11. Perturbative Quantum Gauge Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2018-01-01

    This paper introduces a general perturbative quantization scheme for gauge theories on manifolds with boundary, compatible with cutting and gluing, in the cohomological symplectic (BV-BFV) formalism. Explicit examples, like abelian BF theory and its perturbations, including nontopological ones, are presented.

  12. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  13. Fully On-line Introductory Physics with a Lab

    NASA Astrophysics Data System (ADS)

    Schatz, Michael

    We describe the development and implementation of a college-level introductory physics (mechanics) course and laboratory that is suited for both on-campus and on-line environments. The course emphasizes a ``Your World is Your Lab'' approach whereby students first examine and capture on video (using cellphones) motion in their immediate surroundings, and then use free, open-source software both to extract data from the video and to apply physics principles to build models that describe, predict, and visualize the observations. Each student reports findings by creating a video lab report and posting it online; these video lab reports are then distributed to the rest of the class for peer review. In this talk, we will discuss the student and instructor experiences in courses offered to three distinct audiences in different venues: (1) a Massively Open On-line Course (MOOC) for off-campus participants, (2) a flipped/blended course for on-campus students, and, most recently, (3) a fully-online course for off-campus students.

  14. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  15. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  16. 5D Super Yang-Mills on Y p, q Sasaki-Einstein Manifolds

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Zabzine, Maxim

    2015-01-01

    On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as Y p, q manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of a certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large N behaviour for the case of single hypermultiplet in adjoint representation and we derive the N 3-behaviour in this case.

  17. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  18. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  19. Dual manifold system and method for fluid transfer

    DOEpatents

    Doktycz, Mitchel J [Knoxville, TN; Bryan, William Louis [Knoxville, TN; Kress, Reid [Oak Ridge, TN

    2003-05-27

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  20. Dual manifold system and method for fluid transfer

    DOEpatents

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-09-30

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  1. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassa, Mateos; Hall, Carrie; Ickes, Andrew

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuelmore » is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the

  2. Three-dimensional Simulation and Prediction of Solenoid Valve Failure Mechanism Based on Finite Element Model

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Xiao, Mingqing; Liang, Yajun; Tang, Xilang; Li, Chao

    2018-01-01

    The solenoid valve is a kind of basic automation component applied widely. It’s significant to analyze and predict its degradation failure mechanism to improve the reliability of solenoid valve and do research on prolonging life. In this paper, a three-dimensional finite element analysis model of solenoid valve is established based on ANSYS Workbench software. A sequential coupling method used to calculate temperature filed and mechanical stress field of solenoid valve is put forward. The simulation result shows the sequential coupling method can calculate and analyze temperature and stress distribution of solenoid valve accurately, which has been verified through the accelerated life test. Kalman filtering algorithm is introduced to the data processing, which can effectively reduce measuring deviation and restore more accurate data information. Based on different driving current, a kind of failure mechanism which can easily cause the degradation of coils is obtained and an optimization design scheme of electro-insulating rubbers is also proposed. The high temperature generated by driving current and the thermal stress resulting from thermal expansion can easily cause the degradation of coil wires, which will decline the electrical resistance of coils and result in the eventual failure of solenoid valve. The method of finite element analysis can be applied to fault diagnosis and prognostic of various solenoid valves and improve the reliability of solenoid valve’s health management.

  3. Programmable lab-on-a-chip system for single cell analysis

    NASA Astrophysics Data System (ADS)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  4. Engine Air Intake Manifold Having Built In Intercooler

    DOEpatents

    Freese, V, Charles E.

    2000-09-12

    A turbocharged V type engine can be equipped with an exhaust gas recirculation cooler integrated into the intake manifold, so as to achieve efficiency, cost reductions and space economization improvements. The cooler can take the form of a tube-shell heat exchanger that utilizes a cylindrical chamber in the air intake manifold as the heat exchanger housing. The intake manifold depends into the central space formed by the two banks of cylinders on the V type engine, such that the central space is effectively utilized for containing the manifold and cooler.

  5. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    NASA Astrophysics Data System (ADS)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  6. Variable Valve Actuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation ismore » a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  7. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

    PubMed

    Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua

    2013-12-01

    This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

  8. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Experimental study on the effect of an artificial cardiac valve on the left ventricular flow

    NASA Astrophysics Data System (ADS)

    Wang, JiangSheng; Gao, Qi; Wei, RunJie; Wang, JinJun

    2017-09-01

    The use of artificial valves to replace diseased human heart valves is currently the main solution to address the malfunctioning of these valves. However, the effect of artificial valves on the ventricular flow still needs to be understood in flow physics. The left ventricular flow downstream of a St. Jude Medical (SJM) bileaflet mechanical heart valve (BMHV), which is a widely implanted mechanical bileaflet valve, is investigated with time-resolved particle image velocimetry in the current work. A tilting-disk valve is installed on the aortic orifice to guarantee unidirectional flow. Several post-processing tools are applied to provide combined analyses of the physics involved in the ventricular flow. The triple jet pattern that is closely related to the characteristics of the bileaflet valve is discussed in detail from both Eulerian and Lagrangian views. The effects of large-scale vortices on the transportation of blood are revealed by the combined analysis of the tracking of Lagrangian coherent structures, the Eulerian monitoring of the shear stresses, and virtual dye visualization. It is found that the utilization of the SJM BMHV complicates the ventricular flow and could reduce the efficiency of blood transportation. In addition, the kinematics of the bileaflets is presented to explore the effects of flow structures on their motion. These combined analyses could elucidate the properties of SJM BMHV. Furthermore, they could provide new insights into the understanding of other complex blood flows.

  10. Development of a Calibration Rig for a Large Multi-Component Rotor Balance

    DTIC Science & Technology

    2000-05-01

    valve pressure reducer pressure manifold pressure switch pressure transducer pressure relief valve pressure gage off on control valve pressure switch on...Each of the four manifolds has been equipped with a pressure switch , a pressure transducer, a pressure gage, and a pressure relief valve. If the...valve. A pressure switch is installed between the servo valve and the actuator. This pressure switch is used as a diagnostic indicator by the

  11. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  12. Manifold learning of brain MRIs by deep learning.

    PubMed

    Brosch, Tom; Tam, Roger

    2013-01-01

    Manifold learning of medical images plays a potentially important role for modeling anatomical variability within a population with pplications that include segmentation, registration, and prediction of clinical parameters. This paper describes a novel method for learning the manifold of 3D brain images that, unlike most existing manifold learning methods, does not require the manifold space to be locally linear, and does not require a predefined similarity measure or a prebuilt proximity graph. Our manifold learning method is based on deep learning, a machine learning approach that uses layered networks (called deep belief networks, or DBNs) and has received much attention recently in the computer vision field due to their success in object recognition tasks. DBNs have traditionally been too computationally expensive for application to 3D images due to the large number of trainable parameters. Our primary contributions are (1) a much more computationally efficient training method for DBNs that makes training on 3D medical images with a resolution of up to 128 x 128 x 128 practical, and (2) the demonstration that DBNs can learn a low-dimensional manifold of brain volumes that detects modes of variations that correlate to demographic and disease parameters.

  13. Frobenius manifolds and Frobenius algebra-valued integrable systems

    NASA Astrophysics Data System (ADS)

    Strachan, Ian A. B.; Zuo, Dafeng

    2017-06-01

    The notion of integrability will often extend from systems with scalar-valued fields to systems with algebra-valued fields. In such extensions the properties of, and structures on, the algebra play a central role in ensuring integrability is preserved. In this paper, a new theory of Frobenius algebra-valued integrable systems is developed. This is achieved for systems derived from Frobenius manifolds by utilizing the theory of tensor products for such manifolds, as developed by Kaufmann (Int Math Res Not 19:929-952, 1996), Kontsevich and Manin (Inv Math 124: 313-339, 1996). By specializing this construction, using a fixed Frobenius algebra A, one can arrive at such a theory. More generally, one can apply the same idea to construct an A-valued topological quantum field theory. The Hamiltonian properties of two classes of integrable evolution equations are then studied: dispersionless and dispersive evolution equations. Application of these ideas are discussed, and as an example, an A-valued modified Camassa-Holm equation is constructed.

  14. Cavitation guide for control valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines sixmore » cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.« less

  15. Fast-responding liquid crystal light-valve technology for color-sequential display applications

    NASA Astrophysics Data System (ADS)

    Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.

    1996-04-01

    A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.

  16. Fivebranes and 3-manifold homology

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  17. Method for producing a fuel cell manifold seal

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1982-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  18. Minimal models of compact symplectic semitoric manifolds

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Palmer, J.; Pelayo, Á.

    2018-02-01

    A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1 × R) -action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into account the effects of the monodromy near focus-focus singularities. We give two applications of the helix: first, we use it to give a classification of the minimal models of symplectic semitoric manifolds, where "minimal" is in the sense of not admitting any blowdowns. The second application is an extension to the compact case of a well known result of Vũ Ngọc about the constraints posed on a symplectic semitoric manifold by the existence of focus-focus singularities. The helix permits to translate a symplectic geometric problem into an algebraic problem, and the paper describes a method to solve this type of algebraic problem.

  19. Manifold tool guide

    DOEpatents

    Djordjevic, A.

    1982-07-08

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  20. Manifold tool guide

    DOEpatents

    Djordjevic, Aleksandar

    1983-12-27

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  1. On the Ck-embedding of Lorentzian manifolds in Ricci-flat spaces

    NASA Astrophysics Data System (ADS)

    Avalos, R.; Dahia, F.; Romero, C.

    2018-05-01

    In this paper, we investigate the problem of non-analytic embeddings of Lorentzian manifolds in Ricci-flat semi-Riemannian spaces. In order to do this, we first review some relevant results in the area and then motivate both the mathematical and physical interests in this problem. We show that any n-dimensional compact Lorentzian manifold (Mn, g), with g in the Sobolev space Hs+3, s >n/2 , admits an isometric embedding in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold. The sharpest result available for these types of embeddings, in the general setting, comes as a corollary of Greene's remarkable embedding theorems R. Greene [Mem. Am. Math. Soc. 97, 1 (1970)], which guarantee the embedding of a compact n-dimensional semi-Riemannian manifold into an n(n + 5)-dimensional semi-Euclidean space, thereby guaranteeing the embedding into a Ricci-flat space with the same dimension. The theorem presented here improves this corollary in n2 + 3n - 2 codimensions by replacing the Riemann-flat condition with the Ricci-flat one from the beginning. Finally, we will present a corollary of this theorem, which shows that a compact strip in an n-dimensional globally hyperbolic space-time can be embedded in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold.

  2. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  3. Hopf solitons on compact manifolds

    NASA Astrophysics Data System (ADS)

    Ward, R. S.

    2018-02-01

    Hopf solitons in the Skyrme-Faddeev system on R3 typically have a complicated structure, in particular when the Hopf number Q is large. By contrast, if we work on a compact 3-manifold M, and the energy functional consists only of the Skyrme term (the strong-coupling limit), then the picture simplifies. There is a topological lower bound E ≥ Q on the energy, and the local minima of E can look simple even for large Q. The aim here is to describe and investigate some of these solutions, when M is S3, T3, or S2 × S1. In addition, we review the more elementary baby-Skyrme system, with M being S2 or T2.

  4. Design criteria monograph for valve components

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph treats valve design technology problems as they were solved in successful development of flightweight operational valves for liquid rocket systems. General practices for cleaning and contamination prevention are summarized. Balance of information is arranged by topic, since detail design requirements apply to most types of valves.

  5. Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.

    2017-09-01

    This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.

  6. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  7. Manifold tool guide

    DOEpatents

    Djordjevic, A.

    1983-12-27

    A tool guide is described that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into the cross pipe for cleaning, inspection, etc. 3 figs.

  8. [A design of simple ventilator control system based on LabVIEW].

    PubMed

    Pei, Baoqing; Xu, Shengwei; Li, Hui; Li, Deyu; Pei, Yidong; He, Haixing

    2011-01-01

    This paper designed a ventilator control system to control proportional valves and motors. It used LabVIEW to control the object mentioned above and design ,validate, evaluate arithmetic, and establish hardware in loop platform. There are two system' s hierarchies. The high layer was used to run non-real time program and the low layer was used to run real time program. The two layers communicated through TCP/IP net. The program can be divided into several modules, which can be expanded and maintained easily. And the harvest in the prototype designing can be seamlessly used to embedded products. From all above, this system was useful in employing OEM products.

  9. Formation of a Chern-Simons cylindrical wormhole during evolution of manifolds

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Ghaffary, Tooraj; Naimi, Yaghoob; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    In this paper, the formation of cylindrical wormhole during evolution of manifolds is studied. It is shown that this type of wormholes may be produced at two stages and then disappeared very fast at the third stage. First, one N-dimensional is formed by joining point-like manifolds. Then, this manifold is torn and two child manifolds plus one Chern-Simons manifold appeared. Our universe is born on one of the child manifolds and connected to the other one by Chern-Simons manifold. At the third stage, this Chern-Simons manifold-which plays the role of cylindrical wormhole, dissolves into universes and gives its energy to them and causes inflation. Thus, the Chern-Simons cylindrical wormhole is unstable and dissolves in our four-dimensional universes and another universe very fast.

  10. Fivebranes and 3-manifold homology

    DOE PAGES

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-14

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that vebrane compacti cations provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N = 2 theory T[M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categori cation of Chern-Simons partition function.more » Finally, some of the new key elements include the explicit form of the S-transform and a novel connection between categori cation and a previously mysterious role of Eichler integrals in Chern-Simons theory.« less

  11. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise.

    PubMed

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-03-22

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method.

  12. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise

    PubMed Central

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-01-01

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288

  13. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr

    2015-05-07

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility ofmore » the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.« less

  14. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  15. A Framework of Covariance Projection on Constraint Manifold for Data Fusion.

    PubMed

    Bakr, Muhammad Abu; Lee, Sukhan

    2018-05-17

    A general framework of data fusion is presented based on projecting the probability distribution of true states and measurements around the predicted states and actual measurements onto the constraint manifold. The constraint manifold represents the constraints to be satisfied among true states and measurements, which is defined in the extended space with all the redundant sources of data such as state predictions and measurements considered as independent variables. By the general framework, we mean that it is able to fuse any correlated data sources while directly incorporating constraints and identifying inconsistent data without any prior information. The proposed method, referred to here as the Covariance Projection (CP) method, provides an unbiased and optimal solution in the sense of minimum mean square error (MMSE), if the projection is based on the minimum weighted distance on the constraint manifold. The proposed method not only offers a generalization of the conventional formula for handling constraints and data inconsistency, but also provides a new insight into data fusion in terms of a geometric-algebraic point of view. Simulation results are provided to show the effectiveness of the proposed method in handling constraints and data inconsistency.

  16. Lab-on-a-Chip Pathogen Sensors for Food Safety

    PubMed Central

    Yoon, Jeong-Yeol; Kim, Bumsang

    2012-01-01

    There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors. PMID:23112625

  17. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  18. Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.

    PubMed

    Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2015-11-01

    Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.

  19. Flux compactification of M-theory on compact manifolds with spin(7) holonomy

    NASA Astrophysics Data System (ADS)

    Constantin, Dragos Eugeniu

    2005-11-01

    At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin (7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin (7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N = 1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin (7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin (7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost

  20. Salient object detection: manifold-based similarity adaptation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing

    2014-11-01

    A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.

  1. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach

  2. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to

  3. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  4. Constructive methods of invariant manifolds for kinetic problems

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.

    2004-06-01

    The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.

  5. Multidimensional flamelet-generated manifolds for partially premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam

    2010-01-15

    Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which ismore » tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)« less

  6. Reconstructing spatial organizations of chromosomes through manifold learning.

    PubMed

    Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-05-04

    Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.

  7. Control of reaction-diffusion equations on time-evolving manifolds.

    PubMed

    Rossi, Francesco; Duteil, Nastassia Pouradier; Yakoby, Nir; Piccoli, Benedetto

    2016-12-01

    Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.

  8. Integrated high pressure manifold for thermoplastic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Aghvami, S. Ali; Fraden, Seth

    2017-11-01

    We introduce an integrated tubing manifold for thermoplastic microfluidic chips that tolerates high pressure. In contrast to easy tubing in PDMS microfluidic devices, tube connection has been challenging for plastic microfluidics. Our integrated manifold connection tolerates 360 psi while conventional PDMS connections fail at 50 psi. Important design considerations are incorporation of a quick-connect, leak-free and high-pressure manifold for the inlets and outlets on the lid and registration marks that allow the precise alignment of the inlets and outlets. In our method, devices are comprised of two molded pieces joined together to create a sealed device. The first piece contains the microfluidic features and the second contains the inlet and outlet manifold, a frame for rigidity and a viewing window. The mold for the lid with integrated manifold is CNC milled from aluminium. A cone shape PDMS component which acts as an O-ring, seals the connection between molded manifold and tubing. The lid piece with integrated inlet and outlets will be a standard piece and can be used for different chips and designs. Sealing the thermoplastic device is accomplished by timed immersion of the lid in a mixture of volatile and non-volatile solvents followed by application of heat and pressure.

  9. Sequenced drive for rotary valves

    DOEpatents

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  10. Magnon Valve Effect between Two Magnetic Insulators.

    PubMed

    Wu, H; Huang, L; Fang, C; Yang, B S; Wan, C H; Yu, G Q; Feng, J F; Wei, H X; Han, X F

    2018-03-02

    The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.

  11. Magnon Valve Effect between Two Magnetic Insulators

    NASA Astrophysics Data System (ADS)

    Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.

    2018-03-01

    The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.

  12. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  13. Bose-Einstein condensation on a manifold with non-negative Ricci curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akant, Levent, E-mail: levent.akant@boun.edu.tr; Ertuğrul, Emine, E-mail: emine.ertugrul@boun.edu.tr; Tapramaz, Ferzan, E-mail: waskhez@gmail.com

    The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite sizemore » effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.« less

  14. Dysfunction of an On-X Heart Valve by Pannus.

    PubMed

    Abad, Cipriano; Urso, Stefano; Gomez, Elsa; De la Vega, Maria

    2016-09-01

    A 68-year-old woman with a history of previous double-valve replacement with On-X mechanical heart valves presented with clinical, echocardiographic and cardiac catheterization signs of obstruction of the On-X tricuspid heart valve prosthesis. The patient was successfully reoperated, but at surgery the valve was seen to be invaded by an abnormal overgrowth of pannus that blocked one of the leaflets. A small amount of non-obstructive fresh thrombus was also observed. The valve was successfully replaced with a biological heart valve prosthesis. The patient was discharged home, and is doing well four months after the operation, when echocardiography demonstrated normal function in the tricuspid valve. The present case represents the first ever report of pannus formation and subsequent dysfunction in an On-X heart valve, and also the first case of tricuspid valve malfunction and obstruction using this type of heart valve substitute.

  15. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  16. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    PubMed

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  17. Large volume preconcentration and determination of nanomolar concentrations of iron in seawater using a renewable cellulose 8-hydroquinoline sorbent microcolumn and universal approach of post-column eluate utilization in a Lab-on-Valve system.

    PubMed

    Horstkotte, Burkhard; Chocholouš, Petr; Solich, Petr

    2016-04-01

    We report on a Lab-On-Valve (LOV) configuration for analyte preconcentration from milliliter sample volumes using confluent mixing in the holding coil for in-line addition of loading buffer. The system was applied to the spectrophotometric determination of iron(II) in acidified seawater using 1,10-phenanthroline as color reagent. A cellulose-based chelating sorbent containing 8-hydroxyquinoline was used for the first time in LOV and excellent retention behavior and loading capacity were found. The flow system employs a syringe pump for handling all solutions (sorbent suspension, loading buffer, water, eluent, and color reagent) and a peristaltic pump for sample propulsion and includes a fit-for-purpose 14 cm long detection glass flow cell and a bubble trap for in-line carrier degasification. Advantage was taken of the LOV flow-through port to keep the eluted analytes for re-aspiration for subsequent chromogenic reaction. In effect, a universal analyzer configuration and preconcentration procedure was developed, which is combinable with other analytes, sorbents, and reagents. Among the studied parameters were the compositions, pH, volumes, and flow rates of loading buffer, eluent, and color reagent, as well as the microcolumn size, repeatability, and system stability. Reproducibility of 4.1% RSD over the entire working range, a LOD of down to 5 nmol L(-1), sampling frequency of 12h(-1), and linearity up to 1 µmol L(-1) for 3.3 mL of sample were obtained and applicability to real samples was demonstrated. It was proven that both Fe(III) and Fe(II) were retained and yielded similar recovery and sensitivity values. The method was applied to coastal seawater samples and spiking experiments yielded recovery values close to 100%. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Slow Invariant Manifolds in Chemically Reactive Systems

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Powers, Joseph M.

    2006-11-01

    The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.

  19. Direct biomechanical modeling of trabecular bone using a nonlinear manifold-based volumetric representation

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.

    2017-03-01

    Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This

  20. High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths.

    PubMed

    Hasselbrink, Ernest F; Shepodd, Timothy J; Rehm, Jason E

    2002-10-01

    We have developed a nonstick polymer formulation for creating moving parts inside of microfluidic channels and have applied the technique to create piston-based devices that overcome several microfluidic flow control challenges. The parts were created bycompletely filling the channels of a glass microfluidic chip with the monomer/ solvent/initiator components of a nonstick photopolymer and then selectively exposing the chip to UV light in order to define mobile pistons (or other quasi-two-dimensional shapes) inside the channels. Stops defined in the substrate prevent the part from flushing out of the device but also provide sealing surfaces so that valves and other flow control devices are possible. Sealing against pressures greater than 30 MPa (4,500 psi) and actuation times less than 33 ms are observed. An on-chip check valve, a diverter valve, and a 10-nL pipet are demonstrated. This valving technology, coupled with high-pressure electrokinetic pumps, should make it possible to create a completely integrated HPLC system on a chip.

  1. Lab on a CD.

    PubMed

    Madou, Marc; Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui

    2006-01-01

    In this paper, centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions, such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation, are introduced. Those fluidic functions have been combined with analytical measurement techniques, such as optical imaging, absorbance, and fluorescence spectroscopy and mass spectrometry, to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays, and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare technical barriers involved in applying microfluidics for sensing and diagnostic use and applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, whereas we might have to wait longer to see commercial CD-based diagnostics.

  2. Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves

    PubMed Central

    Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.

    2011-01-01

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the

  3. Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.

    PubMed

    Schipke, Kimberly J; To, S D Filip; Warnock, James N

    2011-08-23

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed

  4. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  5. Consistent Pauli reduction on group manifolds

    DOE PAGES

    Baguet, A.; Pope, Christopher N.; Samtleben, H.

    2016-01-01

    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less

  6. Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds

    NASA Astrophysics Data System (ADS)

    Hsu, Elton P.

    Let Wo(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that γ(0) =o, a fixed point on M, and ν the Wiener measure on Wo(M) (the law of Brownian motion on M starting at o).If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds:

  7. Improvement of a Pneumatic Control Valve with Self-Holding Function

    NASA Astrophysics Data System (ADS)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  8. Computer calculation of Witten's 3-manifold invariant

    NASA Astrophysics Data System (ADS)

    Freed, Daniel S.; Gompf, Robert E.

    1991-10-01

    Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.

  9. Water hammer caused by closure of turbine safety spherical valves

    NASA Astrophysics Data System (ADS)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  10. Duality constructions from quantum state manifolds

    NASA Astrophysics Data System (ADS)

    Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.

    2015-11-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.

  11. Manifold seal for fuel cell stack assembly

    DOEpatents

    Schmitten, Phillip F.; Wright, Maynard K.

    1989-01-01

    An assembly for sealing a manifold to a stack of fuel cells includes a first resilient member for providing a first sealing barrier between the manifold and the stack. A second resilient member provides a second sealing barrier between the manifold and the stack. The first and second resilient members are retained in such a manner as to define an area therebetween adapted for retaining a sealing composition.

  12. Manifold to uniformly distribute a solid-liquid slurry

    DOEpatents

    Kern, Kenneth C.

    1983-01-01

    This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.

  13. Uncertainty quantification for complex systems with very high dimensional response using Grassmann manifold variations

    NASA Astrophysics Data System (ADS)

    Giovanis, D. G.; Shields, M. D.

    2018-07-01

    This paper addresses uncertainty quantification (UQ) for problems where scalar (or low-dimensional vector) response quantities are insufficient and, instead, full-field (very high-dimensional) responses are of interest. To do so, an adaptive stochastic simulation-based methodology is introduced that refines the probability space based on Grassmann manifold variations. The proposed method has a multi-element character discretizing the probability space into simplex elements using a Delaunay triangulation. For every simplex, the high-dimensional solutions corresponding to its vertices (sample points) are projected onto the Grassmann manifold. The pairwise distances between these points are calculated using appropriately defined metrics and the elements with large total distance are sub-sampled and refined. As a result, regions of the probability space that produce significant changes in the full-field solution are accurately resolved. An added benefit is that an approximation of the solution within each element can be obtained by interpolation on the Grassmann manifold. The method is applied to study the probability of shear band formation in a bulk metallic glass using the shear transformation zone theory.

  14. Shape-based diagnosis of the aortic valve

    NASA Astrophysics Data System (ADS)

    Ionasec, Razvan Ioan; Tsymbal, Alexey; Vitanovski, Dime; Georgescu, Bogdan; Zhou, S. Kevin; Navab, Nassir; Comaniciu, Dorin

    2009-02-01

    Disorders of the aortic valve represent a common cardiovascular disease and an important public-health problem worldwide. Pathological valves are currently determined from 2D images through elaborate qualitative evalu- ations and complex measurements, potentially inaccurate and tedious to acquire. This paper presents a novel diagnostic method, which identies diseased valves based on 3D geometrical models constructed from volumetric data. A parametric model, which includes relevant anatomic landmarks as well as the aortic root and lea ets, represents the morphology of the aortic valve. Recently developed robust segmentation methods are applied to estimate the patient specic model parameters from end-diastolic cardiac CT volumes. A discriminative distance function, learned from equivalence constraints in the product space of shape coordinates, determines the corresponding pathology class based on the shape information encoded by the model. Experiments on a heterogeneous set of 63 patients aected by various diseases demonstrated the performance of our method with 94% correctly classied valves.

  15. Using Betweenness Centrality to Identify Manifold Shortcuts

    PubMed Central

    Cukierski, William J.; Foran, David J.

    2010-01-01

    High-dimensional data presents a challenge to tasks of pattern recognition and machine learning. Dimensionality reduction (DR) methods remove the unwanted variance and make these tasks tractable. Several nonlinear DR methods, such as the well known ISOMAP algorithm, rely on a neighborhood graph to compute geodesic distances between data points. These graphs can contain unwanted edges which connect disparate regions of one or more manifolds. This topological sensitivity is well known [1], [2], [3], yet handling high-dimensional, noisy data in the absence of a priori manifold knowledge, remains an open and difficult problem. This work introduces a divisive, edge-removal method based on graph betweenness centrality which can robustly identify manifold-shorting edges. The problem of graph construction in high dimension is discussed and the proposed algorithm is fit into the ISOMAP workflow. ROC analysis is performed and the performance is tested on synthetic and real datasets. PMID:20607142

  16. Locating an atmospheric contamination source using slow manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Wenbo; Haller, George; Baik, Jong-Jin; Ryu, Young-Hee

    2009-04-01

    Finite-size particle motion in fluids obeys the Maxey-Riley equations, which become singular in the limit of infinitesimally small particle size. Because of this singularity, finding the source of a dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup. Here we use recent results on the existence of a slow manifold in the Maxey-Riley equations to overcome this difficulty in source inversion. Specifically, we locate the source of particles by projecting their dispersed positions on a time-varying slow manifold, and by advecting them on the manifold in backward time. We use this technique to locate the source of a hypothetical anthrax release in an unsteady three-dimensional atmospheric wind field in an urban street canyon.

  17. A Parylene MEMS Electrothermal Valve

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Holschneider, Daniel P.; Maarek, Jean-Michel I.; Meng, Ellis

    2011-01-01

    The first microelectromechanical-system normally closed electrothermal valve constructed using Parylene C is described, which enables both low power (in milliwatts) and rapid operation (in milliseconds). This low-power valve is well suited for applications in wirelessly controlled implantable drug-delivery systems. The simple design was analyzed using both theory and modeling and then characterized in benchtop experiments. Operation in air (constant current) and water (current ramping) was demonstrated. Valve-opening powers of 22 mW in air and 33 mW in water were obtained. Following integration of the valve with catheters, our valve was applied in a wirelessly operated microbolus infusion pump, and the in vivo functionality for the appropriateness of use of this pump for future brain mapping applications in small animals was demonstrated. PMID:21350679

  18. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  19. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.

    2015-12-01

    The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

  20. Valve-sparing aortic root replacement in bicuspid aortic valves: a reasonable option?

    PubMed

    Aicher, Diana; Langer, Frank; Kissinger, Anke; Lausberg, Henning; Fries, Roland; Schäfers, Hans-Joachim

    2004-11-01

    Aortic dilatation occurs in many patients with bicuspid aortic valves. We have added root replacement using the remodeling technique originally designed for tricuspid aortic valves to bicuspid aortic valve repair for treatment of the dilated root. We compared the results of remodeling in bicuspid aortic valves with those in tricuspid aortic valves. From October 1995 through January 2004, 60 patients underwent root remodeling for bicuspid aortic valves (group A), and 130 patients underwent root remodeling for tricuspid aortic valves (group B). Correction of cusp prolapse was more often performed in group A (group A, 50/60; group B, 47/130; P < .0001). Transthoracic echocardiography was performed at 1 week, 6 and 12 months, and every year thereafter. Cumulative follow-up was 527 patient-years (mean, 2.9 +/- 2 years). No patient died in group A. Hospital mortality in group B was 5% (5/100; 95% confidence interval,1.6%-11.3%) after elective operations and 10% (3/30; 95% confidence interval, 2.1%-26.5%) after emergency operations. Mean systolic gradients were identical at 1 year (group A, 4.8 +/- 2.1 mm Hg; group B, 4.0 +/- 2 mm Hg) and 5 years (group A, 4.5 +/- 2.3 mm Hg; group B, 3.9 +/- 2.2 mm Hg). Freedom from aortic regurgitation of grade 2 or higher at 5 years was 96% in group A and 83% in group B ( P = .07), and freedom from reoperation at 5 years was 98% in group A and 98% in group B ( P = .73). Valve-sparing aortic replacement with root remodeling can be applied to aortic dilatation and a regurgitant bicuspid aortic valve. Hemodynamic function and valve stability of a repaired bicuspid aortic valve are comparable with those seen in cases of tricuspid anatomy.

  1. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca; Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological casesmore » who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.« less

  2. Reconstructing spatial organizations of chromosomes through manifold learning

    PubMed Central

    Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-01-01

    Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992

  3. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  4. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  5. Completely integrable 2D Lagrangian systems and related integrable geodesic flows on various manifolds

    NASA Astrophysics Data System (ADS)

    Yehia, Hamad M.

    2013-08-01

    In this study we have formulated a theorem that generates deformations of the natural integrable conservative systems in the plane into integrable systems on Riemannian and other manifolds by introducing additional parameters into their structures. The relation of explicit solutions of the new and the original dynamics to the corresponding Jacobi (Maupertuis) geodesic flow is clarified. For illustration, we apply the result to three concrete examples of the many available integrable systems in the literature. Complementary integrals in those systems are polynomial in velocity with degrees 3, 4 and 6, respectively. As a special case of the first deformed system, a new several-parameter family of integrable mechanical systems (and geodesic flows) on S2 is constructed.

  6. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  7. Effect of the mitral valve on diastolic flow patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat, E-mail: mittal@jhu.edu

    2014-12-15

    The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diodemore » type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed.« less

  8. Highly selective micro-sequential injection lab-on-valve (muSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry.

    PubMed

    Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald

    2006-10-01

    A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.

  9. Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh

    2018-01-01

    In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth L1 and L2-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold's approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth's parking orbit of the spacecraft and the manifold.

  10. Transcatheter Aortic Valve Replacement for Native Aortic Valve Regurgitation

    PubMed Central

    Spina, Roberto; Anthony, Chris; Muller, David WM

    2015-01-01

    Transcatheter aortic valve replacement with either the balloon-expandable Edwards SAPIEN XT valve, or the self-expandable CoreValve prosthesis has become the established therapeutic modality for severe aortic valve stenosis in patients who are not deemed suitable for surgical intervention due to excessively high operative risk. Native aortic valve regurgitation, defined as primary aortic incompetence not associated with aortic stenosis or failed valve replacement, on the other hand, is still considered a relative contraindication for transcatheter aortic valve therapies, because of the absence of annular or leaflet calcification required for secure anchoring of the transcatheter heart valve. In addition, severe aortic regurgitation often coexists with aortic root or ascending aorta dilatation, the treatment of which mandates operative intervention. For these reasons, transcatheter aortic valve replacement has been only sporadically used to treat pure aortic incompetence, typically on a compassionate basis and in surgically inoperable patients. More recently, however, transcatheter aortic valve replacement for native aortic valve regurgitation has been trialled with newer-generation heart valves, with encouraging results, and new ancillary devices have emerged that are designed to stabilize the annulus–root complex. In this paper we review the clinical context, technical characteristics and outcomes associated with transcatheter treatment of native aortic valve regurgitation. PMID:29588674

  11. Implementation of an Unequal Path Length, Heterodyne Interferometer on the MOCHI LabJet Experiment

    NASA Astrophysics Data System (ADS)

    Card, Alexander Harrison

    The MOCHI LabJet experiment aims to explore the stability of magnetic flux tubes through the medium of laboratory astrophysical plasmas. The boundary conditions of large gravitational bodies, namely accretion disks, are replicated and allowed to influence a plasma over short timescales. Observation of the plasma is enabled through use of a variety of fast diagnostics, including an unequal path length, heterodyne, quadrature phase differential interferometer, the development and implementation of which is described in detail. The LabJet gun, a triple-electrode planar plasma gun featuring azimuthally symmetric gas injection achieves a new, long-duration, highly-stabilized, jet plasma formation. The line-integrated density in this new LabJet formation is found to be ne = (6 +/- 3)x1020 [m-2]. By observing the axial expansion rate of the jet over multiple chord locations (all perpendicular to the propagation axis), the interferometer provides an Alfvén velocity measurement of vA = 41.3 +/- 5.4 [km/s], which at the jet density observed indicates an axial magnetic field strength of Bz = 0.15 +/- 0.04 [T]. Various other laboratory components are also detailed, such as a shot-based MDSplus data storage architecture implemented into the LabVIEW experiment control code, and the production and performance of ten fast neutral gas injection valves which when fired in unison provide a total particle inventory of (7.8 +/- 0.6)x1023 [HI particles].

  12. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  13. LCK rank of locally conformally Kähler manifolds with potential

    NASA Astrophysics Data System (ADS)

    Ornea, Liviu; Verbitsky, Misha

    2016-09-01

    An LCK manifold with potential is a quotient of a Kähler manifold X equipped with a positive Kähler potential f, such that the monodromy group acts on X by holomorphic homotheties and multiplies f by a character. The LCK rank is the rank of the image of this character, considered as a function from the monodromy group to real numbers. We prove that an LCK manifold with potential can have any rank between 1 and b1(M) . Moreover, LCK manifolds with proper potential (ones with rank 1) are dense. Two errata to our previous work are given in the last section.

  14. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  15. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  16. [Elastic registration method to compute deformation functions for mitral valve].

    PubMed

    Yang, Jinyu; Zhang, Wan; Yin, Ran; Deng, Yuxiao; Wei, Yunfeng; Zeng, Junyi; Wen, Tong; Ding, Lu; Liu, Xiaojian; Li, Yipeng

    2014-10-01

    Mitral valve disease is one of the most popular heart valve diseases. Precise positioning and displaying of the valve characteristics is necessary for the minimally invasive mitral valve repairing procedures. This paper presents a multi-resolution elastic registration method to compute the deformation functions constructed from cubic B-splines in three dimensional ultrasound images, in which the objective functional to be optimized was generated by maximum likelihood method based on the probabilistic distribution of the ultrasound speckle noise. The algorithm was then applied to register the mitral valve voxels. Numerical results proved the effectiveness of the algorithm.

  17. Multi-threaded integration of HTC-Vive and MeVisLab

    NASA Astrophysics Data System (ADS)

    Gunacker, Simon; Gall, Markus; Schmalstieg, Dieter; Egger, Jan

    2018-03-01

    This work presents how Virtual Reality (VR) can easily be integrated into medical applications via a plugin for a medical image processing framework called MeVisLab. A multi-threaded plugin has been developed using OpenVR, a VR library that can be used for developing vendor and platform independent VR applications. The plugin is tested using the HTC Vive, a head-mounted display developed by HTC and Valve Corporation.

  18. 30. Engine controls and valve gear, looking aft on main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  19. Kernel Manifold Alignment for Domain Adaptation.

    PubMed

    Tuia, Devis; Camps-Valls, Gustau

    2016-01-01

    The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors' knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational

  20. WetLab-2: Providing Quantitative PCR Capabilities on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Jung, Jimmy Kar Chuen; Almeida, Eduardo; Boone, Travis David; Schonfeld, Julie; Tran, Luan Hoang

    2015-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The

  1. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    PubMed

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P <0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P <0.001). No procedural complications were reported. BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  2. JenaValve.

    PubMed

    Treede, Hendrik; Rastan, Ardawan; Ferrari, Markus; Ensminger, Stephan; Figulla, Hans-Reiner; Mohr, Friedrich-Wilhelm

    2012-09-01

    The JenaValve is a next-generation TAVI device which consists of a well-proven porcine root valve mounted on a low-profile nitinol stent. Feeler guided positioning and clip fixation on the diseased leaflets allow for anatomically correct implantation of the device without rapid pacing. Safety and efficacy of transapical aortic valve implantation using the JenaValve were evaluated in a multicentre prospective study that showed good short and midterm results. The valve was CE-mark released in Europe in September 2011. A post-market registry ensures on-going and prospective data collection in "real-world" patients. The transfemoral JenaValve delivery system will be evaluated in a first-in-man study in the near future.

  3. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  4. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  5. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  6. Fluid manifold design for a solar energy storage tank

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  7. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE PAGES

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  8. Fixed points, stable manifolds, weather regimes, and their predictability.

    PubMed

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-12-01

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  9. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  10. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    NASA Astrophysics Data System (ADS)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  11. A manifold learning approach to target detection in high-resolution hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ziemann, Amanda K.

    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying "targets" such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m << d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into

  12. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.

    PubMed

    Fedele, Marco; Faggiano, Elena; Dedè, Luca; Quarteroni, Alfio

    2017-10-01

    In this paper, we propose a full computational framework to simulate the hemodynamics in the aorta including the valve. Closed and open valve surfaces, as well as the lumen aorta, are reconstructed directly from medical images using new ad hoc algorithms, allowing a patient-specific simulation. The fluid dynamics problem that accounts from the movement of the valve is solved by a new 3D-0D fluid-structure interaction model in which the valve surface is implicitly represented through level set functions, yielding, in the Navier-Stokes equations, a resistive penalization term enforcing the blood to adhere to the valve leaflets. The dynamics of the valve between its closed and open position is modeled using a reduced geometric 0D model. At the discrete level, a finite element formulation is used and the SUPG stabilization is extended to include the resistive term in the Navier-Stokes equations. Then, after time discretization, the 3D fluid and 0D valve models are coupled through a staggered approach. This computational framework, applied to a patient-specific geometry and data, allows to simulate the movement of the valve, the sharp pressure jump occurring across the leaflets, and the blood flow pattern inside the aorta.

  13. Transcatheter Aortic Valve-in-Valve Procedure in Patients with Bioprosthetic Structural Valve Deterioration

    PubMed Central

    Reul, Ross M.; Ramchandani, Mahesh K.; Reardon, Michael J.

    2017-01-01

    Surgical aortic valve replacement is the gold standard procedure to treat patients with severe, symptomatic aortic valve stenosis or insufficiency. Bioprosthetic valves are used for surgical aortic valve replacement with a much greater prevalence than mechanical valves. However, bioprosthetic valves may fail over time because of structural valve deterioration; this often requires intervention due to severe bioprosthetic valve stenosis or regurgitation or a combination of both. In select patients, transcatheter aortic valve replacement is an alternative to surgical aortic valve replacement. Transcatheter valve-in-valve (ViV) replacement is performed by implanting a transcatheter heart valve within a failing bioprosthetic valve. The transcatheter ViV operation is a less invasive procedure compared with reoperative surgical aortic valve replacement, but it has been associated with specific complications and requires extensive preoperative work-up and planning by the heart team. Data from experimental studies and analyses of results from clinical procedures have led to strategies to improve outcomes of these procedures. The type, size, and implant position of the transcatheter valve can be optimized for individual patients with knowledge of detailed dimensions of the surgical valve and radiographic and echocardiographic measurements of the patient's anatomy. Understanding the complexities of the ViV procedure can lead surgeons to make choices during the original surgical valve implantation that can make a future ViV operation more technically feasible years before it is required. PMID:29743998

  14. On the formulation and assessment of flamelet-generated manifolds applied to two-phase turbulent combustion

    NASA Astrophysics Data System (ADS)

    Bojko, Brian T.

    Accounting for the effects of finite rate chemistry in reacting flows is intractable when considering the number of species and reactions to be solved for during a large scale flow simulation. This is especially complicated when solid/liquid fuels are also considered. While modeling the reacting boundary layer with the use of finite-rate chemistry may allow for a highly accurate description of the coupling between the flame and fuel surface, it is not tractable in large scale simulations when considering detailed chemical kinetics. It is the goal of this research to investigate a Flamelet-Generated Manifold (FGM) method in order to reduce the finite rate chemistry to a lookup table cataloged by progress variables and queried during runtime. In this study, simplified unsteady 1D flames with mass blowing are considered for a solid biomass fuel where the FGM method is employed as a model reduction strategy for potential application to multidimensional calculations. Two types of FGM are considered. The first are a set of steady-state flames differentiated by their scalar dissipation rate. Results show the use of steady flames produce unacceptable errors compared to the finite-rate chemistry solution, with temperature errors in excess of 45%. To avoid these errors, a new methodology for developing an unsteady FGM (UFGM) is presented that accounts for unsteady diffusion effects and greatly reduces errors in temperature with differences that are under 10%. The FGM modeling is then extended to individual droplet combustion with the development of a Droplet Flamelet-Generated Manifold (DFGM) to account for the effects of finite-rate chemistry of individual droplets. A spherically symmetric droplet model is developed for methanol and aluminum. The inclusion of finite-rate chemistry allows the capturing of the transition from diffusion to kinetically controlled combustion as the droplet diameter decreases. The droplet model is then used to create a DFGM by successively

  15. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves

    PubMed Central

    Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J.

    2015-01-01

    Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels. PMID:25654448

  16. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves.

    PubMed

    Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J; Jockenhoevel, Stefan; Mela, Petra

    2015-08-01

    Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels.

  17. Study on a linear relationship between limited pressure difference and coil current of on/off valve and its influential factors.

    PubMed

    Zhang, Junzhi; Lv, Chen; Yue, Xiaowei; Li, Yutong; Yuan, Ye

    2014-01-01

    On/off solenoid valves with PWM control are widely used in all types of vehicle electro-hydraulic control systems respecting to their desirable properties of reliable, low cost and fast acting. However, it can hardly achieve a linear hydraulic modulation by using on/off valves mainly due to the nonlinear behaviors of valve dynamics and fluid, which affects the control accuracy significantly. In this paper, a linear relationship between limited pressure difference and coil current of an on/off valve in its critical closed state is proposed and illustrated, which has a great potential to be applied to improve hydraulic control performance. The hydraulic braking system of case study is modeled. The linear correspondence between limited pressure difference and coil current of the inlet valve is simulated and further verified experimentally. Based on validated simulation models, the impacts of key parameters are researched. The limited pressure difference affected by environmental temperatures is experimentally studied, and the amended linear relation is given according to the test data. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. The Use of Large Valve Overlap in Scavenging a Supercharged Spark-ignition Engine Using Fuel Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1932-01-01

    This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.

  19. Discriminative Structured Dictionary Learning on Grassmann Manifolds and Its Application on Image Restoration.

    PubMed

    Pan, Han; Jing, Zhongliang; Qiao, Lingfeng; Li, Minzhe

    2017-09-25

    Image restoration is a difficult and challenging problem in various imaging applications. However, despite of the benefits of a single overcomplete dictionary, there are still several challenges for capturing the geometric structure of image of interest. To more accurately represent the local structures of the underlying signals, we propose a new problem formulation for sparse representation with block-orthogonal constraint. There are three contributions. First, a framework for discriminative structured dictionary learning is proposed, which leads to a smooth manifold structure and quotient search spaces. Second, an alternating minimization scheme is proposed after taking both the cost function and the constraints into account. This is achieved by iteratively alternating between updating the block structure of the dictionary defined on Grassmann manifold and sparsifying the dictionary atoms automatically. Third, Riemannian conjugate gradient is considered to track local subspaces efficiently with a convergence guarantee. Extensive experiments on various datasets demonstrate that the proposed method outperforms the state-of-the-art methods on the removal of mixed Gaussian-impulse noise.

  20. A general Kastler-Kalau-Walze type theorem for manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Yong

    2016-11-01

    In this paper, we establish a general Kastler-Kalau-Walze type theorem for any dimensional manifolds with boundary which generalizes the results in [Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys. 54 (2010) 38-42]. This solves a problem of the referee of [J. Wang and Y. Wang, A Kastler-Kalau-Walze type theorem for five-dimensional manifolds with boundary, Int. J. Geom. Meth. Mod. Phys. 12(5) (2015), Article ID: 1550064, 34 pp.], which is a general expression of the lower dimensional volumes in terms of the geometric data on the manifold.

  1. Singularities and non-hyperbolic manifolds do not coincide

    NASA Astrophysics Data System (ADS)

    Simányi, Nándor

    2013-06-01

    We consider the billiard flow of elastically colliding hard balls on the flat ν-torus (ν ⩾ 2), and prove that no singularity manifold can even locally coincide with a manifold describing future non-hyperbolicity of the trajectories. As a corollary, we obtain the ergodicity (actually the Bernoulli mixing property) of all such systems, i.e. the verification of the Boltzmann-Sinai ergodic hypothesis.

  2. A low-cost bioprosthetic semilunar valve for research, disease modelling and surgical training applications.

    PubMed

    Rosa, Benoit; Machaidze, Zurab; Shin, Borami; Manjila, Sunil; Brown, David W; Baird, Christopher W; Mayer, John E; Dupont, Pierre E

    2017-11-01

    This paper provides detailed instructions for constructing low-cost bioprosthetic semilunar valves for animal research and clinical training. This work fills an important gap between existing simulator training valves and clinical valves by providing fully functioning designs that can be employed in ex vivo and in vivo experiments and can also be modified to model valvular disease. Valves are constructed in 4 steps consisting of creating a metal frame, covering it with fabric and attaching a suture ring and leaflets. Computer-aided design files are provided for making the frame from wire or by metal 3D printing. The covering fabric and suturing ring are made from materials readily available in a surgical lab, while the leaflets are made from pericardium. The entire fabrication process is described in figures and in a video. To demonstrate disease modelling, design modifications are described for producing paravalvular leaks, and these valves were evaluated in porcine ex vivo (n = 3) and in vivo (n = 6) experiments. Porcine ex vivo and acute in vivo experiments demonstrate that the valves can replicate the performance of clinical valves for research and training purposes. Surgical implantation is similar, and echocardiograms are comparable to clinical valves. Furthermore, valve leaflet function was satisfactory during acute in vivo tests with little central regurgitation, while the paravalvular leak modifications consistently produced leaks in the desired locations. The detailed design procedure presented here, which includes a tutorial video and computer-aided design files, should be of substantial benefit to researchers developing valve disease models and to clinicians developing realistic valve training systems. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  3. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  4. Cells for tissue engineering of cardiac valves.

    PubMed

    Jana, Soumen; Tranquillo, Robert T; Lerman, Amir

    2016-10-01

    Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  6. Minimum impulse thruster valve design and development

    NASA Technical Reports Server (NTRS)

    Huftalen, Richard L.; Platt, Andrea L.; Parker, Morgan J.; Yankura, George A.

    2003-01-01

    The design and development of a minimum impulse thruster valve was conducted, by Moog, under contract by NASA's Jet Propulsion Laboratory, California Institute of Technology, for deep space propulsion systems. The effort was focused on applying known solenoid design techniques scaled to provide a 1 -millisecond response capability for monopropellant, hydrazine ACS thruster applications. The valve has an extended operating temperature range of 20(deg)F to +350(deg)F with a total mass of less than 25 grams and nominal power draw of 7 watts. The design solution resulted in providing a solenoid valve that is one-tenth the scale of the standard product line. The valve has the capability of providing a mass flow rate of 0.0009 pounds per second hydrazine. The design life of 1,000,000 cycles was demonstrated both dry and wet. Not all design factors scaled as expected and proved to be the focus of the final development effort. These included the surface interactions, hydrodynamics and driver electronics. The resulting solution applied matured design approaches to minimize the program risk with innovative methods to address the impacts of scale.

  7. Fault Study of Valve Based on Test Analysis and Comparison

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Yang, Wukui; Liang, Tao; Xu, Yu; Chen, Chao

    2017-10-01

    The valve of a certain type of small engine often has the fault phenomenon of abnormal vibration noise and can’t close under the specified pressure, which may cause the engine automatic stop because of valve incomplete close leading to fuel leakage during test and startup on the bench. By test study compared to imported valve with the same use function and test condition valve, and put forward the thinking of improving valve structure, compared no-improved valve to improved valve by adopting Fluent field simulation software. As a result, improved valve can restore close pressure of valve, restrain abnormal vibration noise phenomenon, and effectively compensate compression value of spring because of steel ball contacting position downward with valve casing.

  8. ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection.

    PubMed

    Sun, Steven; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2010-08-21

    A miniature 96 sample ELISA-lab-on-a-chip (ELISA-LOC) was designed, fabricated, and tested for immunological detection of Staphylococcal Enterotoxin B (SEB). The chip integrates a simple microfluidics system into a miniature ninety-six sample plate, allowing the user to carry out an immunological assay without a laboratory. Assay reagents are delivered into the assay plate without the need for separate devices commonly used in immunoassays. The ELISA-LOC was constructed using Laminated Object Manufacturing (LOM) technology to assemble six layers with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser. The ELISA-LOC has three main functional elements: reagent loading fluidics, assay and detection wells, and reagent removal fluidics, a simple "surface tension" valve used to control the flow. To enhance assay sensitivity and to perform the assay without a lab, ELISA-LOC detection combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected SEB at concentrations as low as 0.1 ng ml(-1), which is similar to the reported sensitivity of conventional ELISA. The fluidics system can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without a laboratory.

  9. {\\ {PT}}-symmetric models in curved manifolds

    NASA Astrophysics Data System (ADS)

    Krejčiřík, David; Siegl, Petr

    2010-12-01

    We consider the Laplace-Beltrami operator in tubular neighborhoods of curves on two-dimensional Riemannian manifolds, subject to non-Hermitian parity and time preserving boundary conditions. We are interested in the interplay between the geometry and spectrum. After introducing a suitable Hilbert space framework in the general situation, which enables us to realize the Laplace-Beltrami operator as an m-sectorial operator, we focus on solvable models defined on manifolds of constant curvature. In some situations, notably for non-Hermitian Robin-type boundary conditions, we are able to prove either the reality of the spectrum or the existence of complex conjugate pairs of eigenvalues, and establish similarity of the non-Hermitian m-sectorial operators to normal or self-adjoint operators. The study is illustrated by numerical computations.

  10. Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

    NASA Astrophysics Data System (ADS)

    Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-07-01

    An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.

  11. Riemannian multi-manifold modeling and clustering in brain networks

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  12. Evaluating the effect of three-dimensional visualization on force application and performance time during robotics-assisted mitral valve repair.

    PubMed

    Currie, Maria E; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W A; Patel, Rajni; Peters, Terry; Kiaii, Bob B

    2013-01-01

    The purpose of this study was to determine the effect of three-dimensional (3D) binocular, stereoscopic, and two-dimensional (2D) monocular visualization on robotics-assisted mitral valve annuloplasty versus conventional techniques in an ex vivo animal model. In addition, we sought to determine whether these effects were consistent between novices and experts in robotics-assisted cardiac surgery. A cardiac surgery test-bed was constructed to measure forces applied during mitral valve annuloplasty. Sutures were passed through the porcine mitral valve annulus by the participants with different levels of experience in robotics-assisted surgery and tied in place using both robotics-assisted and conventional surgery techniques. The mean time for both the experts and the novices using 3D visualization was significantly less than that required using 2D vision (P < 0.001). However, there was no significant difference in the maximum force applied by the novices to the mitral valve during suturing (P = 0.7) and suture tying (P = 0.6) using either 2D or 3D visualization. The mean time required and forces applied by both the experts and the novices were significantly less using the conventional surgical technique than when using the robotic system with either 2D or 3D vision (P < 0.001). Despite high-quality binocular images, both the experts and the novices applied significantly more force to the cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery.

  13. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.

    PubMed

    Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo

    2011-07-01

    Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.

  14. Distributed mean curvature on a discrete manifold for Regge calculus

    NASA Astrophysics Data System (ADS)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  15. Uniform gradient estimates on manifolds with a boundary and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Juan; Thalmaier, Anton; Thompson, James

    2018-04-01

    We revisit the problem of obtaining uniform gradient estimates for Dirichlet and Neumann heat semigroups on Riemannian manifolds with boundary. As applications, we obtain isoperimetric inequalities, using Ledoux's argument, and uniform quantitative gradient estimates, firstly for C^2_b functions with boundary conditions and then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.

  16. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  17. Observations of the J = 10 manifold of the pure rotational band of phosphine on Saturn

    NASA Technical Reports Server (NTRS)

    Haas, M. R.; Erickson, E. F.; Goorvitch, D.; Mckibbin, D. D.; Rank, D. M.

    1986-01-01

    Saturn was observed in the vicinity of the J = 10 manifold of the pure rotational band of phosphine on 1984 July 10 and 12 from NASA's Kuiper Airborne Observatory with the facility far-infrared cooled grating spectrometer. On each night observations of the full disk plus rings were made at 4 to 6 discrete wavelengths which selectively sampled the manifold and the adjacent continuum. The previously reported detection of this manifold is confirmed. After subtraction of the flux due to the rings, the data are compared with disk-averaged models of Saturn. It is found that PH3 must be strongly depleted above the thermal inversion (approx. 70 mbar). The best fitting models consistent with other observational constaints indicate that PH3 is significantly depleted at even deeper atmospheric levels ( or = 500 mbar), implying an eddy diffusion coefficient for Saturn of 10 to the 4 cm sq/sec.

  18. Manifold regularized multitask learning for semi-supervised multilabel image classification.

    PubMed

    Luo, Yong; Tao, Dacheng; Geng, Bo; Xu, Chao; Maybank, Stephen J

    2013-02-01

    It is a significant challenge to classify images with multiple labels by using only a small number of labeled samples. One option is to learn a binary classifier for each label and use manifold regularization to improve the classification performance by exploring the underlying geometric structure of the data distribution. However, such an approach does not perform well in practice when images from multiple concepts are represented by high-dimensional visual features. Thus, manifold regularization is insufficient to control the model complexity. In this paper, we propose a manifold regularized multitask learning (MRMTL) algorithm. MRMTL learns a discriminative subspace shared by multiple classification tasks by exploiting the common structure of these tasks. It effectively controls the model complexity because different tasks limit one another's search volume, and the manifold regularization ensures that the functions in the shared hypothesis space are smooth along the data manifold. We conduct extensive experiments, on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes, by comparing MRMTL with popular image classification algorithms. The results suggest that MRMTL is effective for image classification.

  19. Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp

    It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less

  20. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside

    PubMed Central

    Saxon, John T; Allen, Keith B; Cohen, David J

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient–prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient–prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions. PMID:29593832

  1. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    PubMed

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  2. Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries

    NASA Astrophysics Data System (ADS)

    Holst, Michael; Meier, Caleb; Tsogtgerel, G.

    2018-01-01

    In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have

  3. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles; Canham, John

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the initial valve design and subsequent improvements that resulted from prototype testing. The initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the initial Valve design was used to develop a second, more robust Aperture Valve. Based on a check-ball design, the ETU / flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, non-magnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  4. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  5. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles D.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  6. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  7. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    PubMed

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  8. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  9. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  10. Manifold gasket accommodating differential movement of fuel cell stack

    DOEpatents

    Kelley, Dana A.; Farooque, Mohammad

    2007-11-13

    A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.

  11. Transcatheter aortic valve-in-valve implantation of a CoreValve in a JenaValve prosthesis: a case report.

    PubMed

    Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg

    2017-09-10

    Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.

  12. Alzheimer's Disease Early Diagnosis Using Manifold-Based Semi-Supervised Learning.

    PubMed

    Khajehnejad, Moein; Saatlou, Forough Habibollahi; Mohammadzade, Hoda

    2017-08-20

    Alzheimer's disease (AD) is currently ranked as the sixth leading cause of death in the United States and recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages and preventing it from progressing is of great importance. The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to the heterogeneous nature of medical tests; therefore, an efficient approach for accurate prediction of the condition of the brain through the classification of magnetic resonance imaging (MRI) images is greatly beneficial and yet very challenging. In this paper, a novel approach is proposed for the diagnosis of very early stages of AD through an efficient classification of brain MRI images, which uses label propagation in a manifold-based semi-supervised learning framework. We first apply voxel morphometry analysis to extract some of the most critical AD-related features of brain images from the original MRI volumes and also gray matter (GM) segmentation volumes. The features must capture the most discriminative properties that vary between a healthy and Alzheimer-affected brain. Next, we perform a principal component analysis (PCA)-based dimension reduction on the extracted features for faster yet sufficiently accurate analysis. To make the best use of the captured features, we present a hybrid manifold learning framework which embeds the feature vectors in a subspace. Next, using a small set of labeled training data, we apply a label propagation method in the created manifold space to predict the labels of the remaining images and classify them in the two groups of mild Alzheimer's and normal condition (MCI/NC). The accuracy of the classification using the proposed method is 93

  13. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode.

    PubMed

    García-Valverde, María Teresa; Rosende, María; Lucena, Rafael; Cárdenas, Soledad; Miró, Manuel

    2018-04-03

    Mesofluidic lab-on-a-valve (LOV) platforms have been proven suitable to accommodate automatic micro-solid-phase extraction (μSPE) approaches with on-chip handling of micrometer-bead materials in a fully disposable mode to prevent sample cross-contamination and pressure-drop effects. The efficiency of the extraction process notably depends upon the sorptive capacity of the material because the sorbent mass is usually down to 10 mg in LOV devices. Nanomaterials, capitalizing upon their enhanced surface-to-volume ratio and diversity of potential chemical moieties, are appealing alternatives to microbead sorbents. However, the handling and confinement of nanomaterials in fluidic chip structures have been challenging to date. This is most likely a consequence of the aggregation tendency of a number of nanomaterials, including carbon-based sorbents, that leads to excessive back-pressure in flowing systems along with irreproducible bead loading. This paper addresses these challenges by ad hoc synthesis of hybrid nanomaterials, such as porous carbon-coated titanium dioxide nanotubes (TiO 2 -NT@pC). Tailoring of the surface polarity of the carbon coating is proven to foster the dispersion of TiO 2 -NT@pC in LOV settings while affording superior extraction capability of moderately nonpolar species from aqueous matrices. The determination of trace-level concentrations of butylparaben (BPB) and triclosan (TCS) in seawater samples is herein selected as a proof-of-concept of the exploitation of disposable nanomaterials in LOV. The mesofluidic platform accommodating μSPE features online hyphenation to liquid chromatography/tandem mass spectrometry (LC/MS/MS) for reliable determination of the target analytes with excellent limits of detection (0.5 and 0.6 ng/L for BPB and TCS, respectively) and intermediate precision (relative standard deviation <5.8%). For 5.0 mL of sample and 200 μL of eluent, enrichment factors of 23 and 14 with absolute extraction efficiencies of 90% ± 14

  14. The challenge of valve-in-valve procedures in degenerated Mitroflow bioprostheses and the advantage of using the JenaValve transcatheter heart valve.

    PubMed

    Conradi, Lenard; Kloth, Benjamin; Seiffert, Moritz; Schirmer, Johannes; Koschyk, Dietmar; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik

    2014-12-01

    Recently, the feasibility of valve-in-valve procedures using current first-generation transcatheter heart valves (THV) in cases of structural valve degeneration has been reported as an alternative to conventional open repeat valve replacement. By design, certain biological valve xenografts carry a high risk of coronary ostia occlusion due to lateral displacement of leaflets after valve-in-valve procedures. In the present report we aimed to prove feasibility and safety of transapical valve-in-valve implantation of the JenaValve THV in two cases of degenerated Mitroflow bioprostheses. We herein report two cases of successful transapical valve-in-valve procedures using a JenaValve THV implanted in Sorin Mitroflow bioprostheses for structural valve degeneration. Both patients were alive and in good clinical condition at 30 days from the procedure. However, increased transvalvular gradients were noted in both cases. Transcatheter valve-in-valve implantation of a JenaValve THV is a valid alternative for patients with degenerated Mitroflow bioprostheses of sufficient size and in the presence of short distances to the coronary ostia who are too ill for conventional repeat open heart surgery. Increased pressure gradients have to be expected and weighed against the disadvantages of other treatment options when planning such a procedure.

  15. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    PubMed

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P < 0.05). To achieve better control of interaction forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  17. Compact, singular G 2-holonomy manifolds and M/heterotic/F-theory duality

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Schäfer-Nameki, Sakura

    2018-04-01

    We study the duality between M-theory on compact holonomy G 2-manifolds and the heterotic string on Calabi-Yau three-folds. The duality is studied for K3-fibered G 2-manifolds, called twisted connected sums, which lend themselves to an application of fiber-wise M-theory/Heterotic Duality. For a large class of such G 2-manifolds we are able to identify the dual heterotic as well as F-theory realizations. First we establish this chain of dualities for smooth G 2-manifolds. This has a natural generalization to situations with non-abelian gauge groups, which correspond to singular G 2-manifolds, where each of the K3-fibers degenerates. We argue for their existence through the chain of dualities, supported by non-trivial checks of the spectra. The corresponding 4d gauge groups can be both Higgsable and non-Higgsable, and we provide several explicit examples of the general construction.

  18. Microfluidic droplet sorting using integrated bilayer micro-valves

    NASA Astrophysics Data System (ADS)

    Chen, Yuncong; Tian, Yang; Xu, Zhen; Wang, Xinran; Yu, Sicong; Dong, Liang

    2016-10-01

    This paper reports on a microfluidic device capable of sorting microfluidic droplets utilizing conventional bilayer pneumatic micro-valves as sorting controllers. The device consists of two micro-valves placed symmetrically on two sides of a sorting area, each on top of a branching channel at an inclined angle with respect to the main channel. Changes in transmitted light intensity, induced by varying light absorbance by each droplet, are used to divert the droplet from the sorting area into one of the three outlet channels. When no valve is activated, the droplet flows into the outlet channel in the direction of the main channel. When one of the valves is triggered, the flexible membrane of valve will first be deflected. Once the droplet leaves the detection point, the deflected membrane will immediately return to its default flattened position, thereby exerting a drawing pressure on the droplet and deviating it from its original streamline to the outlet on the same side as the valve. This sorting method will be particularly suitable for numerous large-scale integrated microfluidic systems, where pneumatic micro-valves are already used. Only few structural modifications are needed to achieve droplet sorting capabilities in these systems. Due to the mechanical nature of diverting energy applied to droplets, the proposed sorting method may induce only minimal interference to biological species or microorganisms encapsulated inside the droplets that may accompany electrical, optical and magnetic-based techniques.

  19. Manifold Learning for 3D Shape Description and Classification

    DTIC Science & Technology

    2014-06-09

    sportswear, personal protection clothing and equipment, office and health care device, etc. Therefore it is desirable to develop an effective shape...Modeling Figure 2: Toy example for submanifold decomposition. (a) The original data on the top are fused by two uncorrelated manifolds, blue and red... developed which is effective to extract two linear submanifolds. We demonstrated that comparing with existing manifold learning methods that only

  20. Reliability and construct validity of the Instrument to Measure the Impact of Valve Heart Disease on the Patient's Daily Life

    PubMed Central

    dos Anjos, Daniela Brianne Martins; Rodrigues, Roberta Cunha Matheus; Padilha, Kátia Melissa; Pedrosa, Rafaela Batista dos Santos; Gallani, Maria Cecília Bueno Jayme

    2016-01-01

    ABSTRACT Objective: evaluate the practicality, acceptability and the floor and ceiling effects, estimate the reliability and verify the convergent construct's validity with the instrument called the Heart Valve Disease Impact on daily life (IDCV) of the valve disease in patients with mitral and or aortic heart valve disease. Method: data was obtained from 86 heart valve disease patients through 3 phases: a face to face interview for a socio-demographic and clinic characterization and then other two done through phone calls of the interviewed patients for application of the instrument (test and repeat test). Results: as for the practicality and acceptability, the instrument was applied with an average time of 9,9 minutes and with 110% of responses, respectively. Ceiling and floor effects observed for all domains, especially floor effect. Reliability was tested using the test - repeating pattern to give evidence of temporal stability of the measurement. Significant negative correlations with moderate to strong magnitude were found between the score of the generic question about the impact of the disease and the scores of IDCV, which points to the validity of the instrument convergent construct. Conclusion: the instrument to measure the impact of valve heart disease on the patient's daily life showed evidence of reliability and validity when applied to patients with heart valve disease. PMID:27992024

  1. Dehumidifying Heat Pipe

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1993-01-01

    U-shaped heat pipe partly dehumidifies air leaving air conditioner. Fits readily in air-handling unit of conditioner. Evaporator and condenser sections of heat pipe consist of finned tubes in comb pattern. Each tube sealed at one end and joined to manifold at other. Sections connected by single pipe carrying vapor to condenser manifold and liquid to evaporator manifold. Simple on/off or proportional valve used to control flow of working fluid. Valve actuated by temperature/humidity sensor.

  2. GPU accelerated manifold correction method for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  3. Safety valve

    DOEpatents

    Bergman, Ulf C.

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  4. Rapid patterning of 'tunable' hydrophobic valves on disposable microchips by laser printer lithography.

    PubMed

    Ouyang, Yiwen; Wang, Shibo; Li, Jingyi; Riehl, Paul S; Begley, Matthew; Landers, James P

    2013-05-07

    We recently defined a method for fabricating multilayer microdevices using poly(ethylene terephthalate) transparency film and printer toner, and showed these could be successfully applied to DNA extraction and amplification (Duarte et al., Anal. Chem. 2011, 83, 5182-5189). Here, we advance the functionality of these microdevices with flow control enabled by hydrophobic valves patterned using laser printer lithography. Laser printer patterning of toner within the microchannel induces a dramatic change in surface hydrophobicity (change in contact angle of DI water from 51° to 111°) with good reproducibility. Moreover, the hydrophobicity of the surface can be controlled by altering the density of the patterned toner via varying the gray-scale setting on the laser printer, which consequently tunes the valve's burst pressure. Toner density provided a larger burst pressure bandwidth (158 ± 18 Pa to 573 ± 16 Pa) than could be achieved by varying channel geometry (492 ± 18 Pa to 573 ± 16 Pa). Finally, we used a series of tuned toner valves (with varied gray-scale) for passive valve-based fluidic transfer in a predictable manner through the architecture of a rotating PeT microdevice. While an elementary demonstration, this presents the possibility for simplistic and cost-effective microdevices with valved fluid flow control to be fabricated using nothing more than a laser printer, a laser cutter and a laminator.

  5. Absence of posterior tricuspid valve leaflet and valve reconstruction

    PubMed Central

    Komoda, Takeshi; Stamm, Christof; Fleck, Eckart; Hetzer, Roland

    2012-01-01

    We report a rare case of the absence of a posterior tricuspid valve leaflet. A male patient, aged 46, suffering from severe tricuspid valve regurgitation (TR) of unknown aetiology and atrial septal aneurysm was referred to our hospital for surgery. On surgical inspection, the posterior tricuspid valve leaflet and its subvalvular apparatus were completely absent and only the valve annulus was seen in the corresponding position. The anterior and septal leaflets were normal. We successfully reconstructed the tricuspid valve as follows: the head of an anterior papillary muscle was approximated to the ventricular septum (Sebening stitch). After the approximation of the centre of the tricuspid annulus of the anterior leaflet to the tricuspid annulus on the opposite side, a sizer of 29 mm in diameter was easily passed through the anterior orifice. The posterior orifice was closed with running sutures (posterior annulorrhaphy after Hetzer). Before these procedures, we attempted to reconstruct the tricuspid valve with a posterior annulorrhaphy alone; however, valve competence was insufficient. A Sebening stitch was necessary to improve the valve competence. Echocardiography showed TR grade 1 at the patient's discharge from hospital and TR grade 1 to 2 at the follow-up, 10 months after the operation. PMID:22419794

  6. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  7. Conformal invariance of (0, 2) sigma models on Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Jardine, Ian T.; Quigley, Callum

    2018-03-01

    Long ago, Nemeschansky and Sen demonstrated that the Ricci-flat metric on a Calabi-Yau manifold could be corrected, order by order in perturbation theory, to produce a conformally invariant (2, 2) nonlinear sigma model. Here we extend this result to (0, 2) sigma models for stable holomorphic vector bundles over Calabi-Yaus.

  8. Novel liquid equilibrium valving on centrifugal microfluidic CD platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Arof, Hamzah; Madou, Marc

    2013-01-01

    One of the main challenges faced by researchers in the field of microfluidic compact disc (CD) platforms is the control of liquid movement and sequencing during spinning. This paper presents a novel microfluidic valve based on the principle of liquid equilibrium on a rotating CD. The proposed liquid equilibrium valve operates by balancing the pressure produced by the liquids in a source and a venting chamber during spinning. The valve does not require external forces or triggers, and is able to regulate burst frequencies with high accuracy. In this work, we demonstrate that the burst frequency can be significantly raised by making just a small adjustment of the liquid height in the vent chamber. Finally, the proposed valve ng method can be used separately or combined with other valving methods in advance microfluidic processes.

  9. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  10. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  11. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  12. Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (OAI)

    NASA Astrophysics Data System (ADS)

    Donoghue, C.; Rao, A.; Bull, A. M. J.; Rueckert, D.

    2011-03-01

    Osteoarthritis (OA) is a degenerative, debilitating disease with a large socio-economic impact. This study looks to manifold learning as an automatic approach to harness the plethora of data provided by the Osteoarthritis Initiative (OAI). We construct several Laplacian Eigenmap embeddings of articular cartilage appearance from MR images of the knee using multiple MR sequences. A region of interest (ROI) defined as the weight bearing medial femur is automatically located in all images through non-rigid registration. A pairwise intensity based similarity measure is computed between all images, resulting in a fully connected graph, where each vertex represents an image and the weight of edges is the similarity measure. Spectral analysis is then applied to these pairwise similarities, which acts to reduce the dimensionality non-linearly and embeds these images in a manifold representation. In the manifold space, images that are close to each other are considered to be more "similar" than those far away. In the experiment presented here we use manifold learning to automatically predict the morphological changes in the articular cartilage by using the co-ordinates of the images in the manifold as independent variables for multiple linear regression. In the study presented here five manifolds are generated from five sequences of 390 distinct knees. We find statistically significant correlations (up to R2 = 0.75), between our predictors and the results presented in the literature.

  13. 3D spine reconstruction of postoperative patients from multi-level manifold ensembles.

    PubMed

    Kadoury, Samuel; Labelle, Hubert; Parent, Stefan

    2014-01-01

    The quantitative assessment of surgical outcomes using personalized anatomical models is an essential task for the treatment of spinal deformities such as adolescent idiopathic scoliosis. However an accurate 3D reconstruction of the spine from postoperative X-ray images remains challenging due to presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. In this paper, we formulate the reconstruction problem as an optimization over a manifold of articulated spine shapes learned from pathological training data. The manifold itself is represented using a novel data structure, a multi-level manifold ensemble, which contains links between nodes in a single hierarchical structure, as well as links between different hierarchies, representing overlapping partitions. We show that this data structure allows both efficient localization and navigation on the manifold, for on-the-fly building of local nonlinear models (manifold charting). Our reconstruction framework was tested on pre- and postoperative X-ray datasets from patients who underwent spinal surgery. Compared to manual ground-truth, our method achieves a 3D reconstruction accuracy of 2.37 +/- 0.85 mm for postoperative spine models and can deal with severe cases of scoliosis.

  14. Elastic Valve Using Induced-Charge Electro-Osmosis

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2015-06-01

    Biomimic devices using induced-charge electro-osmosis (ICEO) is interesting since they have the possibility to realize high-performance functions with simple structures and with low-energy consumption. Thus, inspired by a cilium, we propose a two-dimensional artificial elastic valve using hydrodynamic force due to ICEO with a thin elastic beam in a microfluidic channel and numerically examine the valving performance. By an implicit strongly coupled simulation technique between a fluid and an elastic structure based on the boundary-element method, along with the thin-double-layer approximation, we realize stable calculations and find that the elastic valve using ICEO functions effectively at high frequency with low applied voltages in a realistic pressure flow. Further, we also examine passive motion of the valve; i.e., it stops a reverse flow effectively and releases a forward flow in the channel. We believe that our device can be used in a wide range of microfluidic applications, such as mixers, pumps, etc.

  15. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  16. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  17. Supercritical carbon dioxide-based sterilization of decellularized heart valves

    PubMed Central

    Hennessy, Ryan S.; Jana, Soumen; Tefft, Brandon J.; Helder, Meghana R.; Young, Melissa D.; Hennessy, Rebecca R.; Stoyles, Nicholas J.; Lerman, Amir

    2017-01-01

    Objective The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Background Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Methods Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Results Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Conclusions Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Summary Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated

  18. Supercritical carbon dioxide-based sterilization of decellularized heart valves.

    PubMed

    Hennessy, Ryan S; Jana, Soumen; Tefft, Brandon J; Helder, Meghana R; Young, Melissa D; Hennessy, Rebecca R; Stoyles, Nicholas J; Lerman, Amir

    2017-02-01

    The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe

  19. Manifold Learning by Preserving Distance Orders.

    PubMed

    Ataer-Cansizoglu, Esra; Akcakaya, Murat; Orhan, Umut; Erdogmus, Deniz

    2014-03-01

    Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimensional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem by assuming explicit constraints on the order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS, instead of forcing a linear relationship between the distances in the high-dimensional original and low-dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions. We compare the proposed method with existing manifold learning algorithms using synthetic datasets based on the commonly used residual variance and proposed percentage of violated distance orders metrics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis.

  20. Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.

    PubMed

    Ding, Meng; Fan, Guolian

    2015-11-01

    We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.

  1. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  2. Manifolds for pose tracking from monocular video

    NASA Astrophysics Data System (ADS)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  3. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant whilemore » phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that

  4. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  5. Development and testing of a passive check valve for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Moore, B. D.; Maddocks, J. R.; Miller, F. K.

    2014-11-01

    Several cryogenic technologies use check valves, such as the Cold Cycle Dilution Refrigerator (CCDR) and the Hybrid Pulse-Tube/Reverse-Brayton Cryocooler. This paper details the development of a reed-style passive check valve with a PTFE seat for cryogenic applications. The experimental results of tests on the valve using helium gas at temperatures from 293 K down to 5.2 K, verify a scaling argument based on fundamental fluid dynamics that allows results from 78 K to be used in predicting valve performance at much lower temperatures. The scaling argument is then applied to a test conducted at the normal boiling point of Nitrogen to examine the results of improved fabrication methods.

  6. Perturbation Facilitated Optical Optical Double Resonance Investigation of the Quintet Manifold of C_2 by Applying Two-Color Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Bornhauser, Peter; Marquardt, Roberto; Radi, Peter

    2014-06-01

    The potential of four-wave mixing spectroscopy for deperturbation studies has been demonstrated by an analysis of the spin-orbit and L-uncoupling interaction between the d ^3Π_g,v=4 and the b ^3Σ_g^-, v=16 states of C_2. The double-resonance method provides unambiguous assignments of perturbed transitions by intermediate level labeling. Furthermore, the sensitivity of the method unveiled extra transitions that originate from the perturbing b ^3Σ_g^-, v=16 state. A following study has successfully applied the method to deperturb the d ^3Π_g,v=6 state of the dicarbon and lead to the discovery of the first high-spin state of C_2. The energetically lowest quintet (^5Π_g) %and the additionally perturbing b ^3Σ_g^-, v=19 state% has been characterized by applying a conventional Hamiltonian. The detailed study unraveled major issues of the so-called high-pressure band of C_2 which were initially observed back in 1910 and later observed in numerous experimental environments. In this work we take into account our recent studies on tri-carbon where we used perturbation-facilitated two-color resonant four-wave mixing spectroscopy to access the (dark) triplet manifold of C_3 from the singlet tilde{X}^1Σ_g^+ ground state via ``gate-way" levels (i.e. singlet-triplet mixed levels). In a similar way, we performed for this study perturbation-facilitated optical-optical double-resonance experiments to access the first excited quintet state of C_2 via ``gate-way states" in the perturbed d ^3Π_g,v=6. The newly found ^5Π_u state is characterized at rotational resolution by performing a least-squares fit of the observed transitions to a ^5Π_u - ^5Π_g Hamiltionian. The work represents a rare case of a successful analysis of a quintet manifold of a molecule exhibiting a singlet ground state (^1Σ_g^+). P. Bornhauser, G. Knopp, T. Gerber, and P.P. Radi, Journal of Molecular Spectroscopy 262, 69 (2010). P. Bornhauser, Y. Sych, G. Knopp, T. Gerber, and P.P. Radi, J. Chem. Phys. 134

  7. Characteristic classes of Q-manifolds: Classification and applications

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Mosman, E. A.; Sharapov, A. A.

    2010-05-01

    A Q-manifold M is a supermanifold endowed with an odd vector field Q squaring to zero. The Lie derivative LQ along Q makes the algebra of smooth tensor fields on M into a differential algebra. In this paper, we define and study the invariants of Q-manifolds called characteristic classes. These take values in the cohomology of the operator LQ and, given an affine symmetric connection with curvature R, can be represented by universal tensor polynomials in the repeated covariant derivatives of Q and R up to some finite order. As usual, the characteristic classes are proved to be independent of the choice of the affine connection used to define them. The main result of the paper is a complete classification of the intrinsic characteristic classes, which, by definition, do not vanish identically on flat Q-manifolds. As an illustration of the general theory we interpret some of the intrinsic characteristic classes as anomalies in the BV and BFV-BRST quantization methods of gauge theories. An application to the theory of (singular) foliations is also discussed.

  8. Magneto-Seebeck effect in spin valves

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Wan, C. H.; Wu, H.; Tang, P.; Yuan, Z. H.; Zhang, Q. T.; Zhang, X.; Tao, B. S.; Fang, C.; Han, X. F.

    2017-10-01

    The magneto-Seebeck (MS) effect, which is also called magneto-thermo-power, was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in the parallel state were larger than those in the antiparallel state, and the MS ratio defined as (SAP -SP)/SP could reach -9% in our case. The MS effect originated not only from trivial giant magnetoresistance but also from spin current generated due to spin-polarized thermoelectric conductivity of ferromagnetic materials and subsequent modulation of the spin current by different spin configurations in spin valves. A simple Mott two-channel model reproduced a -11% MS effect for the Co/Cu/Co spin valves, qualitatively consistent with our observations. The MS effect could be applied for simultaneously sensing the temperature gradient and the magnetic field and also be possibly applied to determine spin polarization of thermoelectric conductivity and the Seebeck coefficient of ferromagnetic thin films.

  9. Fabrication of Lab-on-Paper Using Porous Au-Paper Electrode: Application to Tumor Marker Electrochemical Immunoassays.

    PubMed

    Ge, Shenguang; Zhang, Yan; Yan, Mei; Huang, Jiadong; Yu, Jinghua

    2017-01-01

    A simple, low-cost, and sensitive electrochemical lab-on-paper assay is developed based on a novel gold nanoparticle modified porous paper working electrode for use in point-of-care testing (POCT). Electrochemical methods are introduced for lab-on-paper based on screen-printed paper electrodes. To further improve specificity, performance, and sensitivity for point-of-care testing, a novel porous Au-paper working electrode (Au-PWE) is designed for lab-on-paper using growth of an interconnected Au nanoparticle (NP) layer on the surface of cellulose fibers in order to enhance the conductivity of the paper sample zone and immobilize the primary antibodies (Ab1). With a sandwich-type immunoassay format, Pd-Au bimetallic nanoparticles possessing peroxidase-like activity are used as a matrix to immobilize secondary antibodies (Ab2) for rapid detection of targets. This lab-on-paper based immunodevice is applied to the diagnosis of a cancer biomarker in clinical serum samples.

  10. Stemless Ball Valve

    NASA Technical Reports Server (NTRS)

    Burgess, Robert K.; Yakos, David; Walthall, Bryan

    2012-01-01

    This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.

  11. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    PubMed

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  12. Potts-model critical manifolds revisited

    DOE PAGES

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2016-02-11

    We compute the critical polynomials for the q-state Potts model on all Archimedean lattices, using a parallel implementation of the algorithm of Ref. [1] that gives us access to larger sizes than previously possible. The exact polynomials are computed for bases of size 6 6 unit cells, and the root in the temperature variable v = e K-1 is determined numerically at q = 1 for bases of size 8 8. This leads to improved results for bond percolation thresholds, and for the Potts-model critical manifolds in the real (q; v) plane. In the two most favourable cases, we findmore » now the kagome-lattice threshold to eleven digits and that of the (3; 12 2) lattice to thirteen. Our critical manifolds reveal many interesting features in the antiferromagnetic region of the Potts model, and determine accurately the extent of the Berker-Kadano phase for the lattices studied.« less

  13. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass adaptor, stopcock, manifold... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular diagnostic...

  14. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass adaptor, stopcock, manifold... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular diagnostic...

  15. Towards generalized mirror symmetry for twisted connected sum G 2 manifolds

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Del Zotto, Michele

    2018-03-01

    We revisit our construction of mirror symmetries for compactifications of Type II superstrings on twisted connected sum G 2 manifolds. For a given G 2 manifold, we discuss evidence for the existence of mirror symmetries of two kinds: one is an autoequivalence for a given Type II superstring on a mirror pair of G 2 manifolds, the other is a duality between Type II strings with different chiralities for another pair of mirror manifolds. We clarify the role of the B-field in the construction, and check that the corresponding massless spectra are respected by the generalized mirror maps. We discuss hints towards a homological version based on BPS spectroscopy. We provide several novel examples of smooth, as well as singular, mirror G 2 backgrounds via pairs of dual projecting tops. We test our conjectures against a Joyce orbifold example, where we reproduce, using our geometrical methods, the known mirror maps that arise from the SCFT worldsheet perspective. Along the way, we discuss non-Abelian gauge symmetries, and argue for the generation of the Affleck-Harvey-Witten superpotential in the pure SYM case.

  16. Integral manifolding structure for fuel cell core having parallel gas flow

    DOEpatents

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  17. Integral manifolding structure for fuel cell core having parallel gas flow

    DOEpatents

    Herceg, J.E.

    1983-10-12

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  18. Swimming invariant manifolds and the motion of bacteria in a fluid flow

    NASA Astrophysics Data System (ADS)

    Yoest, Helena; Mitchell, Kevin; Solomon, Tom

    2017-11-01

    We present experiments on the motion of both wild-type and smooth-swimming bacillus subtilis in a hyperbolic, microfluidic fluid flow. Passive invariant manifolds crossing the fixed point in the flow act as barriers that block inert tracers in the flow. Self-propelled tracers can cross these passive manifolds, but are blocked by and attracted to swimming invariant manifolds (SWIMs) that split from the passive manifolds with larger and larger non-dimensional swimming speed v0 ≡V0 / U , where V0 is the swimming speed in the absence of a flow and U is a characteristic flos speed. We present the theory that predicts these SWIMs for smooth-swimming tracers, along with experiments that we are conducting to test these theories. We also discuss potential effects of rheotaxis and chemotaxis on the phenomena. Supported by NSF Grant DMR-1361881.

  19. Geometry of quantum state manifolds generated by the Lie algebra operators

    NASA Astrophysics Data System (ADS)

    Kuzmak, A. R.

    2018-03-01

    The Fubini-Study metric of quantum state manifold generated by the operators which satisfy the Heisenberg Lie algebra is calculated. The similar problem is studied for the manifold generated by the so(3) Lie algebra operators. Using these results, we calculate the Fubini-Study metrics of state manifolds generated by the position and momentum operators. Also the metrics of quantum state manifolds generated by some spin systems are obtained. Finally, we generalize this problem for operators of an arbitrary Lie algebra.

  20. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  1. Experimental study of flow distribution and pressure loss with circumferential inlet and outlet manifolds

    NASA Technical Reports Server (NTRS)

    Dittrich, R. T.

    1972-01-01

    Water flow tests with circumferential inlet and outlet manifolds were conducted to determine factors affecting fluid distribution and pressure losses. Various orifice sizes and manifold geometries were tested over a range of flow velocities. With inlet manifolds, flow distribution was related directly to orifice discharge coefficients. A correlation indicated that nonuniform distribution resulted when the velocity head ratio at the orifice was not in the range of constant discharge coefficient. With outlet manifolds, nonuniform flow was related to static pressure variations along the manifold. Outlet manifolds had appreciably greater pressure losses than comparable inlet manifolds.

  2. The Stack of Yang-Mills Fields on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Benini, Marco; Schenkel, Alexander; Schreiber, Urs

    2018-03-01

    We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG con.

  3. Single leg separation prevalence among explanted Björk-Shiley prosthetic heart valves.

    PubMed

    Blot, William J; Signorello, Lisa B; Cohen, Sarah S; Ibrahim, Michel A

    2007-11-01

    Björk-Shiley convexo-concave (BSCC) prosthetic heart valves are believed to have been implanted in over 86,000 patients worldwide. Limited data are available on the prevalence of single leg separations (SLS) of the valves' outlet struts, a potential precursor to complete valve fracture. Data maintained by the manufacturer, including results of examinations for SLS in explanted valves, were merged with available information on the characteristics of the valve. The prevalence of SLS in the examined valves was calculated according to valve angle, size, position, and study. Among 343 examined valves, the overall prevalence of SLS was 8.2%, but this varied significantly by valve size, being three-fold higher among 29+ mm valves than among smaller valves, with statistically non-significantly higher prevalences among mitral than aortic, and among 70 degrees than 60 degrees valves. By applying the size, position and angle-specific SLS prevalences to the worldwide valve distribution, it is estimated that SLS may be present in 6.8% (95% confidence limits 4.1-9.4%) of all BSCC valves. These findings suggest that SLS may affect between 820 and 1,880 of the almost 20,000 BSCC valves among surviving patients worldwide. Such estimates help frame the context for potential patient screenings, should imaging and acoustic techniques to detect SLS become available.

  4. Anomalies, conformal manifolds, and spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  5. Anomalies, conformal manifolds, and spheres

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-01

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  6. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  7. Outcome of bioprosthetic valve replacement in dogs with tricuspid valve dysplasia.

    PubMed

    Bristow, P; Sargent, J; Luis Fuentes, V; Brockman, D

    2017-04-01

    To describe the short-term and long-term outcome in dogs with tricuspid valve dysplasia undergoing tricuspid valve replacement under cardiopulmonary bypass. Data were collected from the hospital records of all dogs that had undergone tricuspid valve replacement under cardiopulmonary bypass between 2006 and 2012. Dogs were considered candidates for tricuspid valve replacement if they had severe tricuspid valve regurgitation associated with clinical signs of cardiac compromise. Nine dogs of six different breeds were presented. Median age was 13 months (range 7 to 61 months), median weight 26·5 kg (range 9·7 to 59 kg). Eight bovine pericardial valves and one porcine aortic valve were used. One non-fatal intraoperative complication occurred. Complications during hospitalisation occurred in six dogs, four of which were fatal. Of the five dogs discharged, one presented dead due to haemothorax after minor trauma seven days later. The four remaining dogs survived a median of 533 days; all of these dogs received a bovine pericardial valve. Based on our results, tricuspid valve replacement with bovine or porcine prosthetic valves is associated with a high incidence of complications. © 2017 British Small Animal Veterinary Association.

  8. Retrieving handwriting by combining word spotting and manifold ranking

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Morin, Emmanuel; Viard-Gaudin, Christian

    2012-01-01

    Online handwritten data, produced with Tablet PCs or digital pens, consists in a sequence of points (x, y). As the amount of data available in this form increases, algorithms for retrieval of online data are needed. Word spotting is a common approach used for the retrieval of handwriting. However, from an information retrieval (IR) perspective, word spotting is a primitive keyword based matching and retrieval strategy. We propose a framework for handwriting retrieval where an arbitrary word spotting method is used, and then a manifold ranking algorithm is applied on the initial retrieval scores. Experimental results on a database of more than 2,000 handwritten newswires show that our method can improve the performances of a state-of-the-art word spotting system by more than 10%.

  9. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, Fanghua

    2016-01-01

    In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.

  10. Deformation quantizations with separation of variables on a Kähler manifold

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    1996-10-01

    We give a simple geometric description of all formal differentiable deformation quantizations on a Kähler manifold M such that for each open subset U⊂ M ⋆-multiplication from the left by a holomorphic function and from the right by an antiholomorphic function on U coincides with the pointwise multiplication by these functions. We show that these quantizations are in 1-1 correspondence with the formal deformations of the original Kähler metrics on M.

  11. Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, J.D.; Scheer, R.

    1994-12-31

    A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less

  12. Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect.

    PubMed

    Choi, Min-Seong; Yoo, Jae-Chern

    2015-04-01

    We report a fully automated DNA purification platform with a micropored membrane in the channel utilizing centrifugal microfluidics on a lab-on-a-disc (LOD). The microfluidic flow in the LOD, into which the reagents are injected for DNA purification, is controlled by a single motor and laser burst valve. The sample and reagents pass successively through the micropored membrane in the channel when each laser burst valve is opened. The Coriolis effect is used by rotating the LOD bi-directionally to increase the purity of the DNA, thereby preventing the mixing of the waste and elution solutions. The total process from the lysed sample injection into the LOD to obtaining the purified DNA was finished within 7 min with only one manual step. The experimental result for Salmonella shows that the proposed microfluidic platform is comparable to the existing devices in terms of the purity and yield of DNA.

  13. Prescribed curvature tensor in locally conformally flat manifolds

    NASA Astrophysics Data System (ADS)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  14. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  15. Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott

    2013-01-01

    WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.

  16. Variable volume combustor with nested fuel manifold system

    DOEpatents

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  17. Transcatheter Aortic Valve Implantation: Experience with the CoreValve Device.

    PubMed

    Asgar, Anita W; Bonan, Raoul

    2012-01-01

    The field of transcatheter aortic valve implantation has been rapidly evolving. The Medtronic CoreValve first emerged on the landscape in 2004 with initial first human studies, and it is currently being studied in the Pivotal US trial. This article details the current experience with the self-expanding aortic valve with a focus on clinical results and ongoing challenges. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Impact of Chronic Rheumatic Valve Diseases on Large Vessels.

    PubMed

    Altunbas, Gokhan; Yuce, Murat; Ozer, Hasan O; Davutoglu, Vedat; Ercan, Suleyman; Kizilkan, Nese; Bilici, Muhammet

    2016-01-01

    BACKGROUND AND AIM OF STUDY: Rheumatic valvular heart disease, which remains a common health problem in developing countries, has numerous consequences on the heart chambers and circulation. The study aim was to investigate the effects of chronic rheumatic valve disease on the diameters of the descending aorta (DA) and inferior vena cava (IVC). METHODS: A total of 88 patients with echocardiographically documented rheumatic valvular heart disease and 112 healthy controls were enrolled into the study. All patients underwent detailed echocardiographic examinations, while their height and body weight were recorded and adjusted to their body surface area. RESULTS: The most common involvement was mitral valve disease, followed by aortic valve disease and tricuspid valve disease. The mean diameter of the DA (indexed to BSA) was 1.79 ± 0.49 cm for patients and 1.53 ± 0.41 for controls (p <0.001). The mean diameter of the IVC (indexed to BSA) was 1.69 ± 0.73 for patients and 1.38 ± 0.35 cm for controls (p <0.001). There was a significant positive correlation between mitral valve mean gradient and IVC diameter (p = 0.01, r = 0.18). There were also strong associations between the mitral valve area and the diameters of the DA (p = 0.001, r = -0.239) and IVC (p <0.001, r = -0.246). CONCLUSION: Rheumatic valve disease, especially mitral stenosis, was closely related to remodeling of the great vessels.

  19. Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Chikin, V. M.

    2017-07-01

    In contrast to the Euclidean case, almost no Steiner minimal trees with concrete boundaries on Riemannian manifolds are known. A result describing the types of Steiner minimal trees on a Riemannian manifold for arbitrary small boundaries is obtained. As a consequence, it is shown that for sufficiently small regular n-gons with n≥ 7 their boundaries without a longest side are Steiner minimal trees. Bibliography: 22 titles.

  20. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  1. The Hantzsche-Wendt manifold in cosmic topology

    NASA Astrophysics Data System (ADS)

    Aurich, R.; Lustig, S.

    2014-08-01

    The Hantzsche-Wendt space is one of the 17 multiply connected spaces of the three-dimensional Euclidean space {{{E}}^{3}}. It is a compact and orientable manifold which can serve as a model for a spatial finite universe. Since it possesses much fewer matched back-to-back circle pairs on the cosmic microwave background (CMB) sky than the other compact flat spaces, it can escape the detection by a search for matched circle pairs. The suppression of temperature correlations C(\\vartheta ) on large angular scales on the CMB sky is studied. It is shown that the large-scale correlations are of the same order as for the three-torus topology but express a much larger variability. The Hantzsche-Wendt manifold provides a topological possibility with reduced large-angle correlations that can hide from searches for matched back-to-back circle pairs.

  2. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    NASA Astrophysics Data System (ADS)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  3. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve

    PubMed Central

    VeDepo, Mitchell C; Detamore, Michael S; Hopkins, Richard A; Converse, Gabriel L

    2017-01-01

    The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves. PMID:28890780

  4. Valve-sparing options in tetralogy of Fallot surgery.

    PubMed

    Bacha, Emile

    2012-01-01

    Given late outcomes of patients with tetralogy of Fallot repaired in the 1970s and 1980s, as well as a better understanding of the late deleterious effects of pulmonary regurgitation, there is a tendency toward preservation of the pulmonary valve function during primary repair of tetralogy of Fallot. The bar keeps moving downward, to include smaller and more dysmorphic pulmonary valves. This article reviews some useful indications and techniques for valve-sparing options, including intraoperative balloon dilation and cusp reconstruction using a patch. Just like other valve repair techniques, no one technique can be applied uniformly, and surgeons must master a wide armamentarium of techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. An inkjet-printed electrowetting valve for paper-fluidic sensors.

    PubMed

    Koo, Charmaine K W; He, Fei; Nugen, Sam R

    2013-09-07

    Paper-fluidic devices have become an emerging trend for micro total analysis systems (microTAS) in the bioengineering field due to their ability to maintain the rapid, sensitive and specific attributes of microfluidic devices. Subsequently, paper-fluidic devices are also more portable, have a lower production cost and are easier to use. However, one of the obstacles in developing paper fluidic devices is the limited ability to control the rate of fluid flow during an assay. In our project, we use electrowetting on dielectrics where a dielectric, which is normally hydrophobic, is polarized and becomes hydrophilic. We have fabricated paper-fluidic devices by inkjet printing and spraying conductive hydrophobic electrodes/valves in conjunction with conductive hydrophilic electrodes which are able to stop the fluid front of phosphate buffered saline (PBS). The hydrophobic valves were then actuated by an applied potential which altered the fluorinated monolayer on the electrode. As the applied potential between the electrodes was increased, the amount of time for the fluid front to pass the valve decreased because the monolayer was altered faster. However, we did not observe significant differences in time as we increased the distance between the electrodes. The valves were also incorporated in a lateral flow assay where the device was used to detect Saccharomyces cerevisiae rRNA sequences. With the ability to control the fluid flow in a paper-fluidic device, more complex and intricate assays can be developed, which not only can be applied in the biomedical, food and environmental fields, but also can be used in low resource settings for the detection of diseases.

  6. Overflow control valve

    DOEpatents

    Hundal, Rolv; Kessinger, Boyd A.; Parlak, Edward A.

    1984-07-24

    An overflow control valve for use in a liquid sodium coolant pump tank which valve can be extended to create a seal with the pump tank wall or retracted to break the seal thereby accommodating valve removal. An actuating shaft which controls valve disc position also has cams which bear on roller surfaces to force retraction of a sliding cylinder against spring tension to retract the cylinder from sealing contact with the pump tank.

  7. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  8. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  9. Note: High temperature pulsed solenoid valve.

    PubMed

    Shen, Wei; Sulkes, Mark

    2010-01-01

    We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 degrees C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations.

  10. Beyond union of subspaces: Subspace pursuit on Grassmann manifold for data representation

    DOE PAGES

    Shen, Xinyue; Krim, Hamid; Gu, Yuantao

    2016-03-01

    Discovering the underlying structure of a high-dimensional signal or big data has always been a challenging topic, and has become harder to tackle especially when the observations are exposed to arbitrary sparse perturbations. Here in this paper, built on the model of a union of subspaces (UoS) with sparse outliers and inspired by a basis pursuit strategy, we exploit the fundamental structure of a Grassmann manifold, and propose a new technique of pursuing the subspaces systematically by solving a non-convex optimization problem using the alternating direction method of multipliers. This problem as noted is further complicated by non-convex constraints onmore » the Grassmann manifold, as well as the bilinearity in the penalty caused by the subspace bases and coefficients. Nevertheless, numerical experiments verify that the proposed algorithm, which provides elegant solutions to the sub-problems in each step, is able to de-couple the subspaces and pursue each of them under time-efficient parallel computation.« less

  11. Convergence of spectra of graph-like thin manifolds

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Post, Olaf

    2005-05-01

    We consider a family of compact manifolds which shrinks with respect to an appropriate parameter to a graph. The main result is that the spectrum of the Laplace-Beltrami operator converges to the spectrum of the (differential) Laplacian on the graph with Kirchhoff boundary conditions at the vertices. On the other hand, if the shrinking at the vertex parts of the manifold is sufficiently slower comparing to that of the edge parts, the limiting spectrum corresponds to decoupled edges with Dirichlet boundary conditions at the endpoints. At the borderline between the two regimes we have a third possibility when the limiting spectrum can be described by a nontrivial coupling at the vertices.

  12. Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas

    PubMed Central

    Abulon, Dina Joy; Charles, Martin; Charles, Daniel E

    2015-01-01

    Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520

  13. ELECTROSTRICTION VALVE

    DOEpatents

    Kippenhan, D.O.

    1962-09-25

    An accurately controlled, pulse gas valve is designed capable of delivering output pulses which vary in length from one-tenth millisecond to one second or more, repeated at intervals of a few milliseconds or- more. The pulsed gas valve comprises a column formed of barium titanate discs mounted in stacked relation and electrically connected in parallel, with means for applying voltage across the discs to cause them to expand and effect a mechanical elongation axially of the column. The column is mounted within an enclosure having an inlet port and an outlet port with an internal seat in communication with the outlet port, such that a plug secured to the end of the column will engage the seat of the outlet port to close the outlet port in response to the application of voltage is regulated by a conventional electronic timing circuit connected to the column. (AEC)

  14. Adjustable flow rate controller for polymer solutions

    DOEpatents

    Jackson, Kenneth M.

    1981-01-01

    An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.

  15. Proportional mechanical ventilation through PWM driven on/off solenoid valve.

    PubMed

    Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G

    2010-01-01

    Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.

  16. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    PubMed

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  17. Automated electric valve for electrokinetic separation in a networked microfluidic chip.

    PubMed

    Cui, Huanchun; Huang, Zheng; Dutta, Prashanta; Ivory, Cornelius F

    2007-02-15

    This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulations demonstrate that dispersion and sample loss can be reduced by applying a constant additional electric field in the side channel to straighten current streamlines in linear electrokinetic flow (zone electrophoresis). This additional electric field was provided by a pair of platinum microelectrodes integrated into the chip in the vicinity of the T-junction. Both simulations and experiments of this electric valve with constant valve voltages were shown to provide unsatisfactory valve performance during nonlinear electrophoresis (isotachophoresis). On the basis of these results, however, an automated electric valve system was developed with improved valve performance. Experiments conducted with this system showed decreased dispersion and increased reproducibility as protein zones isotachophoretically passed the T-junction. Simulations of the automated electric valve offer further support that the desired shape of current streamlines was maintained at the T-junction during isotachophoresis. Valve performance was evaluated at different valve currents based on statistical variance due to dispersion. With the automated control system, two integrated microelectrodes provide an effective way to manipulate current streamlines, thus acting as an electric valve for charged species in electrokinetic separations.

  18. Micro system comprising 96 micro valves on a titer plate

    NASA Astrophysics Data System (ADS)

    Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.

    2016-10-01

    A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.

  19. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  20. Transcatheter aortic valve-in-valve treatment of degenerative stentless supra-annular Freedom Solo valves: A single centre experience.

    PubMed

    Cockburn, James; Dooley, Maureen; Parker, Jessica; Hill, Andrew; Hutchinson, Nevil; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David

    2017-02-15

    Redo surgery for degenerative bioprosthetic aortic valves is associated with significant morbidity and mortality. Report results of valve-in-valve therapy (ViV-TAVI) in failed supra-annular stentless Freedom Solo (FS) bioprostheses, which are the highest risk for coronary occlusion. Six patients with FS valves (mean age 78.5 years, 50% males). Five had valvular restenosis (peak gradient 87.2 mm Hg, valve area 0.63 cm 2 ), one had severe regurgitation (AR). Median time to failure was 7 years. Patients were high risk (mean STS/Logistic EuroScore 10.6 15.8, respectively). FS valves ranged from 21 to 25 mm. Successful ViV-TAVI was achieved in 4/6 patients (67%). Of the unsuccessful cases, (patient 1 and 2 of series) patient 1 underwent BAV with simultaneous aortography which revealed left main stem occlusion. The procedure was stopped and the patient went forward for repeat surgery. Patient 2 underwent successful ViV-TAVI with a 26-mm CoreValve with a guide catheter in the left main, but on removal coronary obstruction occurred, necessitating valve snaring into the aorta. Among the successful cases, (patients 3, 4, 5, 6) the TAVIs used were CoreValve Evolut R 23 mm (n = 3), and Lotus 23 mm (n = 1). In the successful cases the peak gradient fell from 83.0 to 38.3 mm Hg. No patient was left with >1+ AR. One patient had a stroke on Day 2, with full neurological recovery. Two patients underwent semi-elective pacing for LBBB and PR >280 ms. ViV-TAVI in stentless Freedom Solo valves is high risk. The risk of coronary occlusion is high. The smallest possible prosthesis (1:1 sizing) should be used, and strategies to protect the coronary vessels must be considered. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong

    2010-03-01

    The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.

  2. ON THE BIOMECHANICS OF HEART VALVE FUNCTION

    PubMed Central

    Sacks, Michael S.; Merryman, W. David; Schmidt, David E.

    2009-01-01

    Heart valves (HVs) are fluidic control components of the heart that ensure unidirectional blood flow during the cardiac cycle. However, this description does not adequately describe the biomechanical ramifications of their function in that their mechanics are multi-modal. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3×109 cycles. The focus of the present review is on the functional biomechanics of heart valves. Thus, the focus of the present review is on functional biomechanics, referring primarily to biosolid as well as several key biofluid mechanical aspects underlying heart valve physiological function. Specifically, we refer to the mechanical behaviors of the extra-cellular matrix structural proteins, underlying cellular function, and their integrated relation to the major aspects of valvular hemodynamic function. While we focus on the work from the author’s laboratories, relevant works of other investigators have been included whenever appropriate. We conclude with a summary of important future trends. PMID:19540499

  3. Rapid Diagnosis of Histoplasma capsulatum Endocarditis Using the AccuProbe on an Excised Valve

    PubMed Central

    Chemaly, Roy F.; Tomford, J. Walton; Hall, Gerri S.; Sholtis, Mary; Chua, Jimmy D.; Procop, Gary W.

    2001-01-01

    Histoplasma capsulatum is an infrequent but serious cause of endocarditis. The definitive diagnosis requires culture, which may require a long incubation. We demonstrated the ability of the Histoplasma capsulatum AccuProbe to accurately identify this organism when applied directly on an excised valve that contained abundant yeast forms consistent with H. capsulatum. PMID:11427583

  4. Investigation of the effect of different carbon film thickness on the exhaust valve

    NASA Astrophysics Data System (ADS)

    Karamangil, M. I.; Avci, A.; Bilal, H.

    2008-03-01

    Valves working under different loads and temperatures are the mostly forced engine elements. In an internal combustion engine, pressures and temperatures affecting on the valves vary with fuel type and the combustion characteristics of the fuel. Consequently, valves are exposed to different dynamic and thermal stress. In this study, stress distributions and temperature profiles on exhaust valve are obtained depending on different carbon film thickness. It is concluded that heat losses and valve temperatures decrease and valve surfaces are exposed to less thermal shocks with increasing carbon film thickness.

  5. Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Albanese, Guglielmo; Rigoli, Marco

    2017-12-01

    We prove an existence theorem for positive solutions to Lichnerowicz-type equations on complete manifolds with boundary (M , ∂ M , 〈 , 〉) and nonlinear Neumann conditions. This kind of nonlinear problems arise quite naturally in the study of solutions for the Einstein-scalar field equations of General Relativity in the framework of the so called Conformal Method.

  6. Prosthetic valve endocarditis due to Propionibacterium acnes.

    PubMed

    van Valen, Richard; de Lind van Wijngaarden, Robert A F; Verkaik, Nelianne J; Mokhles, Mostafa M; Bogers, Ad J J C

    2016-07-01

    To study the characteristics of patients with Propionibacterium acnes prosthetic valve endocarditis (PVE) who required surgery. A single-centre retrospective cohort study was conducted during a 7-year period. Patients with definite infective P. acnes endocarditis, according to the modified Duke criteria, were included. An extended culture protocol was applied. Information on medical health status, surgery, antibiotic treatment and mortality was obtained. Thirteen patients fulfilled the criteria for P. acnes endocarditis (0.53% of 2466 patients with valve replacement in a 7-year period). All patients were male and had a previous valve replacement. The health status of patients was poor at diagnosis of P. acnes PVE. Most patients (11 of 13, 85%) were admitted with signs of heart failure due to a significant paravalvular leak; 2 of 13 (15%) patients presented with septic emboli. Twelve patients needed redo surgery, whereas one could be treated with antibiotic therapy only. The time between the index surgery and presentation with P. acnes PVE varied between 5 and 135 months (median 26.5 months). Replacement and reconstruction of the dysfunctional valve and affected anatomical structures was mainly performed with a mechanical valve (n = 5, 42%) or a (bio-) Bentall prosthesis (n = 6, 50%). Antibiotic therapy consisted of penicillin with or without rifampicin for 6 weeks after surgery. The mortality in this series was low (n = 1, 8%) and no recurrent endocarditis was found during a median follow-up of 38 months. Propionibacterium acnes PVE is a rare complication after valve surgery. Redo surgery is often required. Treatment of the dysfunctional prosthetic aortic valve most often consists of root replacement, in combination with antibiotic therapy. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  7. 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones

    NASA Astrophysics Data System (ADS)

    Comina, G.; Suska, A.; Filippini, D.

    2017-02-01

    Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques. Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components. Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.

  8. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander N.

    Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.

  9. A low power, on demand electrothermal valve for wireless drug delivery applications

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Sheybani, Roya; Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    We present a low power, on demand Parylene MEMS electrothermal valve. A novel Ω-shaped thermal resistive element requires low power (~mW) and enables rapid valve opening (~ms). Using both finite element analysis and valve opening experiments, a robust resistive element design for improved valve opening performance in water was obtained. In addition, a thermistor, as an inrush current limiter, was added into the valve circuit to provide variable current ramping. Wireless activation of the valve using RF inductive power transfer was demonstrated. PMID:20024057

  10. LabVIEW-based sequential-injection analysis system for the determination of trace metals by square-wave anodic and adsorptive stripping voltammetry on mercury-film electrodes.

    PubMed

    Economou, Anastasios; Voulgaropoulos, Anastasios

    2003-01-01

    The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.

  11. LabVIEW-based sequential-injection analysis system for the determination of trace metals by square-wave anodic and adsorptive stripping voltammetry on mercury-film electrodes

    PubMed Central

    Economou, Anastasios; Voulgaropoulos, Anastasios

    2003-01-01

    The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV. PMID:18924623

  12. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking

    NASA Astrophysics Data System (ADS)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.

    2018-04-01

    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  13. Control Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Wayne R.

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between amore » first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.« less

  14. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  15. Research on digital system design of nuclear power valve

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  16. Double-orifice mitral valve associated with bicuspid aortic valve.

    PubMed

    Khani, Mohammad; Rohani, Atoosheh

    2017-06-01

    Double-orifice mitral valve is a rare congenital anomaly that usually does not cause a significant hemodynamic effect. Double-orifice mitral valve and a bicuspid aortic valve were detected in a 54-year-old lady who presented with dyspnea on exertion for one year. This is a rare association. Three-dimensional echocardiography is helpful to determine the type of malformation. The patient had no significant mitral regurgitation or stenosis, but demonstrated moderate aortic stenosis. She is undergoing periodic monitoring.

  17. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  18. ESC Working Group on Valvular Heart Disease position paper--heart valve clinics: organization, structure, and experiences.

    PubMed

    Lancellotti, Patrizio; Rosenhek, Raphael; Pibarot, Philippe; Iung, Bernard; Otto, Catherine M; Tornos, Pilar; Donal, Erwan; Prendergast, Bernard; Magne, Julien; La Canna, Giovanni; Piérard, Luc A; Maurer, Gerald

    2013-06-01

    With an increasing prevalence of patients with valvular heart disease (VHD), a dedicated management approach is needed. The challenges encountered are manifold and include appropriate diagnosis and quantification of valve lesion, organization of adequate follow-up, and making the right management decisions, in particular with regard to the timing and choice of interventions. Data from the Euro Heart Survey have shown a substantial discrepancy between guidelines and clinical practice in the field of VHD and many patients are denied surgery despite having clear indications. The concept of heart valve clinics (HVCs) is increasingly recognized as the way to proceed. At the same time, very few centres have developed such expertise, indicating that specific recommendations for the initial development and subsequent operating requirements of an HVC are needed. The aim of this position paper is to provide insights into the rationale, organization, structure, and expertise needed to establish and operate an HVC. Although the main goal is to improve the clinical management of patients with VHD, the impact of HVCs on education is of particular importance: larger patient volumes foster the required expertise among more senior physicians but are also fundamental for training new cardiologists, medical students, and nurses. Additional benefits arise from research opportunities resulting from such an organized structure and the delivery of standardized care protocols. The growing volume of patients with VHD, their changing characteristics, and the growing technological opportunities of refined diagnosis and treatment in addition to the potential dismal prognosis if overlooked mandate specialized evaluation and care by dedicated physicians working in a specialized environment that is called the HVC.

  19. Aortic valve repair leads to a low incidence of valve-related complications.

    PubMed

    Aicher, Diana; Fries, Roland; Rodionycheva, Svetlana; Schmidt, Kathrin; Langer, Frank; Schäfers, Hans-Joachim

    2010-01-01

    Aortic valve replacement for aortic regurgitation (AR) has been established as a standard treatment but implies prosthesis-related complications. Aortic valve repair is an alternative approach, but its mid- to long-term results still need to be defined. Over a 12-year period, 640 patients underwent aortic valve repair for regurgitation of a unicuspid (n=21), bicuspid (n=205), tricuspid (n=411) or quadricuspid (n=3) aortic valve. The mechanism of regurgitation involved prolapse (n=469) or retraction (n=20) of the cusps, and dilatation of the root (n=323) or combined pathologies. Treatment consisted of cusp repair (n=529), root repair (n=323) or a combination of both (n=208). The patients were followed clinically and echocardiographically; follow-up was complete in 98.5% (cumulative follow-up: 3035 patient years). Hospital mortality was 3.4% in the total patient cohort and 0.8% for isolated aortic valve repair. The incidences of thrombo-embolism (0.2% per patient per year) and endocarditis (0.16%per patient per year) were low. Freedom from re-operation at 5 and 10 years was 88% and 81% in bicuspid and 97% and 93% in tricuspid aortic valves (p=0.0013). At re-operation, 13 out of 36 valves could be re-repaired. Freedom from valve replacement was 95% and 90% in bicuspid and 97% and 94% in tricuspid aortic valves (p=0.36). Freedom from all valve-related complications at 10 years was 88%. Reconstructive surgery of the aortic valve is feasible with low mortality in many individuals with aortic regurgitation. Freedom from valve-related complications after valve repair seems superior compared to available data on standard aortic valve replacement. Copyright 2009 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  20. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  1. Control of soft machines using actuators operated by a Braille display.

    PubMed

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  2. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  3. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  4. Application of several variable-valve-timing concepts to an LHR engine

    NASA Technical Reports Server (NTRS)

    Morel, T.; Keribar, R.; Sawlivala, M.; Hakim, N.

    1987-01-01

    The paper discusses advantages provided by electronically controlled hydraulically activated valves (ECVs) when applied to low heat rejection (LHR) engines. The ECV concept provides additional engine control flexibility by allowing for a variable valve timing as a function of speed and load, or for a given transient condition. The results of a study carried out to assess the benefits that this flexibility can offer to an LHR engine indicated that, when judged on the benefits to BSFC, volumetric efficiency, and peak firing pressure, ECVs would provide only modest benefits in comparison to conventional valve profiles. It is noted, however, that once installed on the engine, the ECVs would permit a whole range of certain more sophisticated variable valve timing strategies not otherwise possible, such as high compression cranking, engine braking, cylinder cutouts, and volumetric efficiency timing with engine speed.

  5. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    PubMed

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  6. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  7. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  8. The role of invariant manifolds in lowthrust trajectory design (part III)

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Anderson, Rodney L.; Lam, Try; Whiffen, Greg

    2006-01-01

    This paper is the third in a series to explore the role of invariant manifolds in the design of low thrust trajectories. In previous papers, we analyzed an impulsive thrust resonant gravity assist flyby trajectory to capture into Europa orbit using the invariant manifolds of unstable resonant periodic orbits and libration orbits. The energy savings provided by the gravity assist may be interpreted dynamically as the result of a finite number of intersecting invariant manifolds. In this paper we demonstrate that the same dynamics is at work for low thrust trajectories with resonant flybys and low energy capture. However, in this case, the flybys and capture are effected by continuous families of intersecting invariant manifolds.

  9. FoodChain-Lab: A Trace-Back and Trace-Forward Tool Developed and Applied during Food-Borne Disease Outbreak Investigations in Germany and Europe.

    PubMed

    Weiser, Armin A; Thöns, Christian; Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie

    2016-01-01

    FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available.

  10. FoodChain-Lab: A Trace-Back and Trace-Forward Tool Developed and Applied during Food-Borne Disease Outbreak Investigations in Germany and Europe

    PubMed Central

    Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie

    2016-01-01

    FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available. PMID:26985673

  11. Learning implicit brain MRI manifolds with deep learning

    NASA Astrophysics Data System (ADS)

    Bermudez, Camilo; Plassard, Andrew J.; Davis, Larry T.; Newton, Allen T.; Resnick, Susan M.; Landman, Bennett A.

    2018-03-01

    An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease or markers of development in populations. Having a low-dimensional manifold of an image allows for easier statistical comparisons between groups and the synthesis of group representatives. Previous studies have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have been limited by assumptions of explicit similarity measures. In this work, we use deep learning techniques to investigate implicit manifolds of normal brains and generate new, high-quality images. We explore implicit manifolds by addressing the problems of image synthesis and image denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by performing a cross-correlation with the training set. Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5. The quality score of the synthetic image showed substantial overlap with that of the real images. Moreover, we use an autoencoder with skip connections for image denoising, showing that the proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the power of artificial networks to synthesize realistic imaging data, which can be used to improve image processing techniques and provide a quantitative framework to structural changes in the brain.

  12. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    PubMed

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  13. Shape Memory Alloy Isolation Valves: Public Quad Chart

    DTIC Science & Technology

    2017-05-12

    NUMBER (Include area code) 12 May 2017 Briefing Charts 12 April 2017 - 12 May 2017 Shape Memory Alloy Isolation Valves: Public Quad Chart William...Unclassified Unclassified Unclassified SAR 2 William Hargus N/A PAYOFF/TRANSITIONTECHNICAL APPROACH MOTIVATION APPLYING AFRL TO SUSTAINMENT • Evaluate...spacecraft (15+ yrs) • Shaped memory alloy isolation valves provide an intrinsically safe isolation system that increases lifetime >5x over SOTA and

  14. Manifold learning in machine vision and robotics

    NASA Astrophysics Data System (ADS)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  15. Reduction of the suction losses through reed valves in hermetic reciprocating compressors using a magnet coil

    NASA Astrophysics Data System (ADS)

    Hopfgartner, J.; Posch, S.; Zuber, B.; Almbauer, R.; Krischan, K.; Stangl, S.

    2017-08-01

    Reed valves are widely used in hermetic reciprocating compressors and are responsible for a large part of the thermodynamic losses. Especially, the suction valve, which is opened nearly during the whole suction stroke, has a big potential for improvement. Usually, suction valves are opened only by vacuum created by the moving piston and should be closed before the compression stroke starts to avoid a reversed mass-flow through the valve. Therefore, the valves are prestressed, which results on the other hand in a higher flow resistance. In this work, a suction valve is investigated, which is not closed by the preload of the valve but by an electromagnetic coil located in the suction muffler neck. Shortly before the piston reaches its bottom dead centre, voltage is applied to the coil and a magnetic force is generated which pulls the valve shut. Thereby, the flow resistance through the valve can be reduced by changing the preload on the reed valve because it is no longer needed to close the valve. The investigation of this adapted valve and the electromagnetic coil is firstly done by numerical simulations including fluid structure interactions of the reed valves of a reciprocating compressor and secondly by experiments made on a calorimeter test bench.

  16. Micro-valve using induced-charge electrokinetic motion of Janus particle.

    PubMed

    Daghighi, Yasaman; Li, Dongqing

    2011-09-07

    A new micro-valve using the electrokinetic motion of a Janus particle is introduced in this paper. A Janus particle with a conducting hemisphere and a non-conducting hemisphere is placed in a junction of several microchannels. Under an applied electric field, the induced-charge electrokinetic flow around the conducting side of the Janus particle forms vortices. The vortices push the particle moving forwards to block the entrance of a microchannel. By switching the direction of the applied electric field, the motion of the Janus particle can be changed to block different microchannels. This paper develops a theoretical model and conducts numerical simulations of the three-dimensional transient motion of the Janus particle. The results show that this Janus particle-based micro-valve is feasible for switching and controlling the flow rate in a microfluidic chip. This method is simple in comparison with other types of micro-valve methods. It is easy for fabrication, for operation control, and has a fast response time. To better understand the micro-valve functions, comparisons with a non-conducting particle and a fully conducting particle were made. Results proved that only a Janus particle can fulfill the requirements of such a micro-valve.

  17. Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Lassas, Matti; Uhlmann, Gunther; Wang, Yiran

    2018-06-01

    We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.

  18. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  19. A planning system for transapical aortic valve implantation

    NASA Astrophysics Data System (ADS)

    Gessat, Michael; Merk, Denis R.; Falk, Volkmar; Walther, Thomas; Jacobs, Stefan; Nöttling, Alois; Burgert, Oliver

    2009-02-01

    Stenosis of the aortic valve is a common cardiac disease. It is usually corrected surgically by replacing the valve with a mechanical or biological prosthesis. Transapical aortic valve implantation is an experimental minimally invasive surgical technique that is applied to patients with high operative risk to avoid pulmonary arrest. A stented biological prosthesis is mounted on a catheter. Through small incisions in the fifth intercostal space and the apex of the heart, the catheter is positioned under flouroscopy in the aortic root. The stent is expanded and unfolds the valve which is thereby implanted into the aortic root. Exact targeting is crucial, since major complications can arise from a misplaced valve. Planning software for the perioperative use is presented that allows for selection of the best fitting implant and calculation of the safe target area for that implant. The software uses contrast enhanced perioperative DynaCT images acquired under rapid pacing. In a semiautomatic process, a surface segmentation of the aortic root is created. User selected anatomical landmarks are used to calculate the geometric constraints for the size and position of the implant. The software is integrated into a PACS network based on DICOM communication to query and receive the images and implants templates from a PACS server. The planning results can be exported to the same server and from there can be rertieved by an intraoperative catheter guidance device.

  20. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  1. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-06-06

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  2. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-01-01

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  3. RiskLab - a joint Teaching Lab on Hazard and Risk Management

    NASA Astrophysics Data System (ADS)

    Baruffini, Mi.; Baruffini, Mo.; Thuering, M.

    2009-04-01

    In the future natural disasters are expected to increase due to climatic changes that strongly affect environmental, social and economical systems. For this reason and because of the limited resources, governments require analytical risk analysis for a better mitigation planning. Risk analysis is a process to determine the nature and extent of risk by estimating potential hazards and evaluating existing conditions of vulnerability that could pose a potential threat or harm to people, property, livelihoods and environment. This process has become a generally accepted approach for the assessment of cost-benefit scenarios; originating from technical risks it is being applied to natural hazards for several years now in Switzerland. Starting from these premises "Risk Lab", a joint collaboration between the Institute of Earth Sciences of the University of Applied Sciences of Southern Switzerland and the Institute for Economic Research of the University of Lugano, has been started in 2006, aiming to become a competence centre about Risk Analysis and Evaluation. The main issue studied by the lab concerns the topic "What security at what price?" and the activities follow the philosophy of the integral risk management as proposed by PLANAT, that defines the process as a cycle that contains different and interrelated phases. The final aim is to change the population and technician idea about risk from "defending against danger" to "being aware of risks" through a proper academic course specially addressed to young people. In fact the most important activity of the laboratory consists in a degree course, offered both to Engineering and Architecture students of the University of Applied Sciences of Southern Switzerland and Economy Students of the University of Lugano. The course is structured in two main parts: an introductive, theoretical part, composed by class lessons, where the main aspects of natural hazards, risk perception and evaluation and risk management are presented

  4. Improved mitral valve coaptation and reduced mitral valve annular size after percutaneous mitral valve repair (PMVR) using the MitraClip system.

    PubMed

    Patzelt, Johannes; Zhang, Yingying; Magunia, Harry; Ulrich, Miriam; Jorbenadze, Rezo; Droppa, Michal; Zhang, Wenzhong; Lausberg, Henning; Walker, Tobias; Rosenberger, Peter; Seizer, Peter; Gawaz, Meinrad; Langer, Harald F

    2017-08-01

    Improved mitral valve leaflet coaptation with consecutive reduction of mitral regurgitation (MR) is a central goal of percutaneous mitral valve repair (PMVR) with the MitraClip® system. As influences of PMVR on mitral valve geometry have been suggested before, we examined the effect of the procedure on mitral annular size in relation to procedural outcome. Geometry of the mitral valve annulus was evaluated in 183 patients undergoing PMVR using echocardiography before and after the procedure and at follow-up. Mitral valve annular anterior-posterior (ap) diameter decreased from 34.0 ± 4.3 to 31.3 ± 4.9 mm (P < 0.001), and medio-lateral (ml) diameter from 33.2 ± 4.8 to 32.4 ± 4.9 mm (P < 0.001). Accordingly, we observed an increase in MV leaflet coaptation after PMVR. The reduction of mitral valve ap diameter showed a significant inverse correlation with residual MR. Importantly, the reduction of mitral valve ap diameter persisted at follow-up (31.3 ± 4.9 mm post PMVR, 28.4 ± 5.3 mm at follow-up). This study demonstrates mechanical approximation of both mitral valve annulus edges with improved mitral valve annular coaptation by PMVR using the MitraClip® system, which correlates with residual MR in patients with MR. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  5. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    PubMed

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  6. DETAIL OF VALVE TOWER SHOWING SLUICE GATE ON EAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VALVE TOWER SHOWING SLUICE GATE ON EAST SIDE OF TOWER. VIEW FACING WEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  7. A Comparative Result of Ventriculoperitoneal Shunt, Focusing Mainly on Gravity-Assisted Valve and Programmable Valve

    PubMed Central

    Lee, Won-Chul; Choe, Il-Seung; Park, Sung-Choon; Ha, Young-Soo; Lee, Kyu Chang

    2010-01-01

    Objective Despite rapid evolution of shunt devices, the complication rates remain high. The most common causes are turning from obstruction, infection, and overdrainage into mainly underdrainage. We investigated the incidence of complications in a consecutive series of hydrocephalic patients. Methods From January 2002 to December 2009, 111 patients underwent ventriculoperitoneal (VP) shunting at our hospital. We documented shunt failures and complications according to valve type, primary disease, and number of revisions. Results Overall shunt survival time was 268 weeks. Mean survival time of gravity-assisted valve (GAV) was 222 weeks versus 286 weeks for other shunts. Survival time of programmable valves (264 weeks) was longer than that of pressure-controlled valves (186 weeks). The most common cause for shunt revision was underdrainage (13 valves). The revision rate due to underdrainage in patients with GAV (7 of 10 patients) was higher than that for other valve types. Of 7 patients requiring revision for GAV underdrainage, 6 patients were bedridden. The overall infection rate was 3.6%, which was lower than reported series. Seven patients demonstrating overdrainage had cranial defects when operations were performed (41%), and overdrainage was improved in 5 patients after cranioplasty. Conclusion Although none of the differences was statistically significant, some of the observations were especially notable. If a candidate for VP shunting is bedridden, GAV may not be indicated because it could lead to underdrainage. Careful procedure and perioperative management can reduce infection rate. Cranioplasty performed prior to VP shunting may be beneficial. PMID:21082054

  8. On B-type Open-Closed Landau-Ginzburg Theories Defined on Calabi-Yau Stein Manifolds

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Doryn, Dmitry; Lazaroiu, Calin Iuliu; Tavakol, Mehdi

    2018-05-01

    We consider the bulk algebra and topological D-brane category arising from the differential model of the open-closed B-type topological Landau-Ginzburg theory defined by a pair (X,W), where X is a non-compact Calabi-Yau manifold and W is a complex-valued holomorphic function. When X is a Stein manifold (but not restricted to be a domain of holomorphy), we extract equivalent descriptions of the bulk algebra and of the category of topological D-branes which are constructed using only the analytic space associated to X. In particular, we show that the D-brane category is described by projective factorizations defined over the ring of holomorphic functions of X. We also discuss simplifications of the analytic models which arise when X is holomorphically parallelizable and illustrate these in a few classes of examples.

  9. Kangaroo versus porcine aortic valve tissue--valve geometry morphology, tensile strength and calcification potential.

    PubMed

    Neethling, W M; Papadimitriou, J M; Swarts, E; Hodge, A J

    2000-06-01

    Valve related factors and patient related factors are responsible for calcification of valvular bioprostheses. Recent studies showed different donor and recipient species have different influences on the total calcification rate of bioprostheses. This study was performed to evaluate and compare Kangaroo aortic valve leaflets with porcine aortic valve leaflets. Experimental design. Prospective study. Setting. Cardio-thoracic experimental research of a university department. Glutaraldehyde-fixed Kangaroo and porcine valve leaflets were evaluated in vitro according to valve geometry (internal diameter and leaflet thickness), morphology (light and electron microscopy) and tensile strength. In vivo evaluation consisted of implantation in a rat model for 8 weeks, Von Kossa stain for calcium and atomic absorption spectrophotometry for total extractable calcium content. Kangaroo valves indicated a smaller internal valve diameter as well as a thinner valve leaflet (p<0.01, ANOVA) at corresponding body weight, less proteoglycan spicules in the fibrosa, increased elasticity (p<0.05) and low calcification potential (p<0.01, confidence interval 95%). Kangaroo aortic valve leaflets have different valvular qualities compared to porcine valve tissue. Kangaroo valve leaflets are significantly superior to porcine valve leaflets as far as calcification is concerned. These results are encouraging and suggest further in vivo evaluation in a larger animal model before clinical application can be considered.

  10. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    NASA Astrophysics Data System (ADS)

    Chambers, Timothy

    the novel nature of this research and the large number of item-level results we produced, we recommend additional research to determine the reproducibility of our results. Analyzing the data with item response theory yields additional information about the performance of our students on both conceptual questions and quantitative problems. We find that performing lab activities on a topic does lead to better-than-expected performance on some conceptual questions regardless of pedagogical approach, but that this acquired conceptual understanding is strongly context-dependent. The results also suggest that a single "Newtonian reasoning ability" is inadequate to explain student response patterns to items from the Force Concept Inventory. We develop a framework for applying polytomous item response theory to the analysis of quantitative free-response problems and for analyzing how features of student solutions are influenced by problem-solving ability. Patterns in how students at different abilities approach our post-test problems are revealed, and we find hints as to how features of a free-response problem influence its item parameters. The item-response theory framework we develop provides a foundation for future development of quantitative free-response research instruments. Chapter 1 of the dissertation presents a brief history of physics education research and motivates the present study. Chapter 2 describes our experimental methodology and discusses the treatments applied to students and the instruments used to measure their learning. Chapter 3 provides an introduction to the statistical and analytical methods used in our data analysis. Chapter 4 presents the full data set, analyzed using both classical test theory and item response theory. Chapter 5 contains a discussion of the implications of our results and a data-driven analysis of our experimental methods. Chapter 6 describes the importance of this work to the field and discusses the relevance of our research to

  11. Tricuspid valve and percutaneous approach: No longer the forgotten valve!

    PubMed

    Bouleti, Claire; Juliard, Jean-Michel; Himbert, Dominique; Iung, Bernard; Brochet, Eric; Urena, Marina; Dilly, Marie-Pierre; Ou, Phalla; Nataf, Patrick; Vahanian, Alec

    2016-01-01

    Tricuspid valve disease is mainly represented by tricuspid regurgitation (TR), which is a predictor of poor outcome. TR is usually secondary, caused by right ventricle pressure or volume overload, the leading cause being left-sided heart valve diseases. Tricuspid surgery for severe TR is recommended during left valve surgery, and consists of either a valve replacement or, most often, a tricuspid repair with or without prosthetic annuloplasty. When TR persists or worsens after left valvular surgery, redo isolated tricuspid surgery is associated with high mortality. In addition, a sizeable proportion of patients present with tricuspid surgery deterioration over time, and need a reintervention, which is associated with high morbi-mortality rates. In this context, and given the recent major breakthrough in the percutaneous treatment of aortic and mitral valve diseases, the tricuspid valve appears an appealing challenge, although it raises specific issues. The first applications of transcatheter techniques for tricuspid valve disease were valve-in-valve and valve-in-ring implantation for degenerated bioprosthesis or ring annuloplasty. Some concerns remain regarding prosthesis sizing, rapid ventricular pacing and the best approach, but these procedures appear to be safe and effective. More recently, bicuspidization using a transcatheter approach for the treatment of native tricuspid valve has been published, in two patients. Finally, other devices are in preclinical development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-07-01

    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  13. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    The design and test results for two types of pulsed gas valves are presented. The valves, a piezo valve and a solenoid actuated valve, must have exceedingly long lifetime to support gas-fed pulsed electric thruster operation for missions of interest. The performance of both valves was tested, with both demonstrating the capability to throttle the gas flow rate while maintaining low leakage levels below 10(exp -3) sccs of He at the beginning of valve lifetime. The piezo valve varies the flow rate by changing the amount that the valve is open, which is a function of applied voltage. This valve demonstrated continuous throttlability from 0-10 mL/s, with opening and closing times of 100 microsecond or less. The solenoid actuated valve flow rate changes as a function of the inlet gas pressure, with demonstrated flow rates in these tests from 2.7-11 mL per second. The valve response time is slower than the piezo valve, opening in 1-2 ms and closing in several ms. The solenoid actuated valve was tested to one million cycles, with the valve performance remaining relatively unchanged throughout the test. Galling of the sliding plunger caused the valve to bind and fail just after one million cycles, but at this point in the test the valve sealing surface leak rate still appeared to be well below the maximum target leak rake of 1×10(exp -3) sccs of He.

  14. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  15. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  16. Recent developments in the structural design and optimization of ITER neutral beam manifold

    NASA Astrophysics Data System (ADS)

    Chengzhi, CAO; Yudong, PAN; Zhiwei, XIA; Bo, LI; Tao, JIANG; Wei, LI

    2018-02-01

    This paper describes a new design of the neutral beam manifold based on a more optimized support system. A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase. Both the structural reliability and feasibility were confirmed with detailed analyses. Comparative analyses between two typical types of manifold support scheme were performed. All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented. Future optimization activities are described, which will give useful information for a refined setting of components in the next phase.

  17. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke manifold..., and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold...

  18. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke manifold..., and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold...

  19. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke manifold..., and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold...

  20. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  1. Valve technology: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A technical compilation on the types, applications and modifications to certain valves is presented. Data cover the following: (1) valves that feature automatic response to stimuli (thermal, electrical, fluid pressure, etc.), (2) modified valves changed by redesign of components to increase initial design effectiveness or give the item versatility beyond its basic design capability, and (3) special purpose valves with limited application as presented, but lending themselves to other uses with minor changes.

  2. Optimization of the High-speed On-off Valve of an Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Li-mei, ZHAO; Huai-chao, WU; Lei, ZHAO; Yun-xiang, LONG; Guo-qiao, LI; Shi-hao, TANG

    2018-03-01

    The response time of the high-speed on-off solenoid valve has a great influence on the performance of the automatic transmission. In order to reduce the response time of the high-speed on-off valve, the simulation model of the valve was built by use of AMESim and Ansoft Maxwell softwares. To reduce the response time, an objective function based on ITAE criterion was built and the Genetic Algorithms was used to optimize five parameters including circle number, working air gap, et al. The comparison between experiment and simulation shows that the model is verified. After optimization, the response time of the valve is reduced by 38.16%, the valve can meet the demands of the automatic transmission well. The results can provide theoretical reference for the improvement of automatic transmission performance.

  3. How to start a minimal access mitral valve program.

    PubMed

    Hunter, Steven

    2013-11-01

    The seven pillars of governance established by the National Health Service in the United Kingdom provide a useful framework for the process of introducing new procedures to a hospital. Drawing from local experience, the author present guidance for institutions considering establishing a minimal access mitral valve program. The seven pillars of governance apply to the practice of minimally invasive mitral valve surgery, based on the principle of patient-centred practice. The author delineate the benefits of minimally invasive mitral valve surgery in terms of: "clinical effectiveness", including reduced length of hospital stay, "risk management effectiveness", including conversion to sternotomy and aortic dissection, "patient experience" including improved cosmesis and quicker recovery, and the effectiveness of communication, resources and strategies in the implementation of minimally invasive mitral valve surgery. Finally, the author have identified seven learning curves experienced by surgeons involved in introducing a minimal access mitral valve program. The learning curves are defined as: techniques of mitral valve repair, Transoesophageal Echocardiography-guided cannulation, incisions, instruments, visualization, aortic occlusion and cardiopulmonary bypass strategies. From local experience, the author provide advice on how to reduce the learning curves, such as practising with the specialised instruments and visualization techniques during sternotomy cases. Underpinning the NHS pillars are the principles of systems awareness, teamwork, communication, ownership and leadership, all of which are paramount to performing any surgery but more so with minimal access surgery, as will be highlighted throughout this paper.

  4. How to start a minimal access mitral valve program

    PubMed Central

    2013-01-01

    The seven pillars of governance established by the National Health Service in the United Kingdom provide a useful framework for the process of introducing new procedures to a hospital. Drawing from local experience, the author present guidance for institutions considering establishing a minimal access mitral valve program. The seven pillars of governance apply to the practice of minimally invasive mitral valve surgery, based on the principle of patient-centred practice. The author delineate the benefits of minimally invasive mitral valve surgery in terms of: “clinical effectiveness”, including reduced length of hospital stay, “risk management effectiveness”, including conversion to sternotomy and aortic dissection, “patient experience” including improved cosmesis and quicker recovery, and the effectiveness of communication, resources and strategies in the implementation of minimally invasive mitral valve surgery. Finally, the author have identified seven learning curves experienced by surgeons involved in introducing a minimal access mitral valve program. The learning curves are defined as: techniques of mitral valve repair, Transoesophageal Echocardiography-guided cannulation, incisions, instruments, visualization, aortic occlusion and cardiopulmonary bypass strategies. From local experience, the author provide advice on how to reduce the learning curves, such as practising with the specialised instruments and visualization techniques during sternotomy cases. Underpinning the NHS pillars are the principles of systems awareness, teamwork, communication, ownership and leadership, all of which are paramount to performing any surgery but more so with minimal access surgery, as will be highlighted throughout this paper. PMID:24349981

  5. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves.

    PubMed

    Theodoridis, Karolina; Müller, Janina; Ramm, Robert; Findeisen, Katja; Andrée, Birgit; Korossis, Sotirios; Haverich, Axel; Hilfiker, Andres

    2016-10-01

    Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis

  6. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.

    PubMed

    He, Z; Xi, B; Zhu, K; Hwang, N H

    2001-09-01

    The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.

  7. Development of a versatile lab-on-a-chip enzyme assay platform for pathogen detection in CBRNE scenarios

    NASA Astrophysics Data System (ADS)

    Klemm, Richard; Schattschneider, Sebastian; Jahn, Tobias; Hlawatsch, Nadine; Julich, Sandra; Becker, Holger; Gärtner, Claudia

    2013-05-01

    The ability to integrate complete assays on a microfluidic chip helps to greatly simplify instrument requirements and allows the use of lab-on-a-chip technology in the field. A core application for such field-portable systems is the detection of pathogens in a CBRNE scenario such as permanent monitoring of airborne pathogens, e.g. in metro stations or hospitals etc. As one assay methodology for the pathogen identification, enzymatic assays were chosen. In order evaluate different detection strategies, the realized on-chip enzyme assay module has been designed as a general platform chip. In all application cases, the assays are based on immobilized probes located in microfluidic channels. Therefore a microfluidic chip was realized containing a set of three individually addressable channels, not only for detection of the sample itself also to have a set of references for a quantitative analysis. It furthermore includes two turning valves and a waste container for clear and sealed storage of potential pathogenic liquids to avoid contamination of the environment. All liquids remain in the chip and can be disposed of in proper way subsequently to the analysis. The chip design includes four inlet ports consisting of one sample port (Luer interface) and three mini Luer interfaces for fluidic support of e.g. washing buffer, substrate and enzyme solution. The sample can be applied via a special, sealable sampling vessel with integrated female Luer interface. Thereby also pre-anaytical contamination of the environment can be provided. Other reagents that are required for analysis will be stored off chip.

  8. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  9. A new construction of Calabi-Yau manifolds: Generalized CICYs

    NASA Astrophysics Data System (ADS)

    Anderson, Lara B.; Apruzzi, Fabio; Gao, Xin; Gray, James; Lee, Seung-Joo

    2016-05-01

    We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi-Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a 'configuration matrix', a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integers in the configuration matrices which were previously taken to have positive semi-definite entries. This broadening of the complete intersection construction leads to a larger class of Calabi-Yau manifolds than that considered in previous work, which nevertheless enjoys much of the same degree of calculational control. These new Calabi-Yau manifolds are complete intersections in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities.

  10. Clogging of Manifolds with Evaporatively Frozen Propellants. Part 2; Analysis

    NASA Technical Reports Server (NTRS)

    Simmon, J. A.; Gift, R. D.; Spurlock, J. M.

    1966-01-01

    The mechanisms of evaporative freezing of leaking propellant and the creation of flow stoppages within injector manifolds is discussed. A quantitative analysis of the conditions, including the existence of minimum and maximum leak rates, for the accumulation of evaporatively frozen propellant is presented. Clogging of the injector manifolds of the Apollo SPS and the Gemini OAMS engines by the freezing of leaking propellant is predicted and the seriousness of the consequences are discussed. Based on the analysis a realistic evaluation of selected techniques to eliminate flow stoppages by frozen propellant is made.

  11. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  12. Effects of bileaflet mechanical heart valve orientation on coronary flow

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2015-11-01

    The aortic sinus is approximately tri-radially symmetric, but bileaflet mechanical heart valves (BMHVs), which are commonly used to replace diseased aortic valves, are bilaterally symmetric. This mismatch in symmetry suggests that the orientation in which a BMHV is implanted within the aortic sinus affects the flow characteristics downstream of it. This study examines the effect of BMHV orientation on the flow in the coronary arteries, which originate in the aortic sinus and supply the heart tissue with blood. Planar particle image velocimetry measurements were made past a BMHV mounted at the inlet of an anatomical aorta model under physiological flow conditions. The complex interactions between the valve jets, the sinus vortex and the flow in the right coronary artery were elucidated for three valve orientations. The coronary flow rate was directly affected by the size, orientation, and time evolution of the vortex in the sinus, all of which were sensitive to the valve's orientation. The total flow through the artery was highest when the valve was oriented with its axis of symmetry intersecting the artery's opening. The findings of this research may assist surgeons in choosing the best orientation for BMHV implantation. The bileaflet valve was donated by St. Jude Medical. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.

  13. 3D printed mitral valve models: affordable simulation for robotic mitral valve repair.

    PubMed

    Premyodhin, Ned; Mandair, Divneet; Ferng, Alice S; Leach, Timothy S; Palsma, Ryan P; Albanna, Mohammad Z; Khalpey, Zain I

    2018-01-01

    3D printed mitral valve (MV) models that capture the suture response of real tissue may be utilized as surgical training tools. Leveraging clinical imaging modalities, 3D computerized modelling and 3D printing technology to produce affordable models complements currently available virtual simulators and paves the way for patient- and pathology-specific preoperative rehearsal. We used polyvinyl alcohol, a dissolvable thermoplastic, to 3D print moulds that were casted with liquid platinum-cure silicone yielding flexible, low-cost MV models capable of simulating valvular tissue. Silicone-moulded MV models were fabricated for 2 morphologies: the normal MV and the P2 flail. The moulded valves were plication and suture tested in a laparoscopic trainer box with a da Vinci Si robotic surgical system. One cardiothoracic surgery fellow and 1 attending surgeon qualitatively evaluated the ability of the valves to recapitulate tissue feel through surveys utilizing the 5-point Likert-type scale to grade impressions of the valves. Valves produced with the moulding and casting method maintained anatomical dimensions within 3% of directly 3D printed acrylonitrile butadiene styrene controls for both morphologies. Likert-type scale mean scores corresponded with a realistic material response to sutures (5.0/5), tensile strength that is similar to real MV tissue (5.0/5) and anatomical appearance resembling real MVs (5.0/5), indicating that evaluators 'agreed' that these aspects of the model were appropriate for training. Evaluators 'somewhat agreed' that the overall model durability was appropriate for training (4.0/5) due to the mounting design. Qualitative differences in repair quality were notable between fellow and attending surgeon. 3D computer-aided design, 3D printing and fabrication techniques can be applied to fabricate affordable, high-quality educational models for technical training that are capable of differentiating proficiency levels among users. © The Author 2017

  14. Minimally Invasive Aortic Valve Replacement Following Root Enlargement on too Narrow Annulus to Perform Transcatheter Aortic Valve Implantation.

    PubMed

    Sakamoto, Kosuke; Totsugawa, Toshinori; Hiraoka, Arudo; Tamura, Kentaro; Yoshitaka, Hidenori; Sakaguchi, Taichi

    2018-05-30

    An 88-year-old woman was diagnosed with aortic stenosis and an aortic annulus that was too narrow to perform transcatheter aortic valve implantation. Surgery was performed through a 7-cm right mini-thoracotomy at the fourth intercostal space. A 19-mm aortic valve bioprosthesis was implanted after root enlargement. The fourth intercostal space was a suitable site for aortic root enlargement because of the shorter skin-to-root distance and the detailed exposure of the aortic valve after cutting the aortic wall. This study concluded that minimally-invasive aortic valve replacement following root enlargement can be an option for the treatment of elderly patients with aortic stenosis accompanied by an annulus that is too small to perform transcatheter aortic valve implantation.

  15. The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.

    PubMed

    Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria

    2016-01-01

    A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of <1. 0m2, and 1.5 mm for a BSA of >1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no

  16. Transcatheter Mitral Valve Replacement for Native and Failed Bioprosthetic Mitral Valves

    PubMed Central

    Sarkar, Kunal; Reardon, Michael J.; Little, Stephen H.; Barker, Colin M.; Kleiman, Neal S.

    2017-01-01

    Transcatheter mitral valve replacement (TMVR) is a novel approach for treatment of severe mitral regurgitation. A number of TMVR devices are currently undergoing feasibility trials using both transseptal and transapical routes for device delivery. Overall experience worldwide is limited to fewer than 200 cases. At present, the 30-day mortality exceeds 30% and is attributable to both patient- and device-related factors. TMVR has been successfully used to treat patients with degenerative mitral stenosis (DMS) as well as failed mitral bioprosthesis and mitral repair using transcatheter mitral valve-in-valve (TMViV)/valve-in-ring (ViR) repair. These patients are currently treated with devices designed for transcatheter aortic valve replacement. Multicenter registries have been initiated to collect outcomes data on patients currently undergoing TMViV/ViR and TMVR for DMS and have confirmed the feasibility of TMVR in these patients. However, the high periprocedural and 30-day event rates underscore the need for further improvements in device design and multicenter randomized studies to delineate the role of these technologies in patients with mitral valve disease. PMID:29743999

  17. WOOV (Water On/Off Valve) 3

    NASA Image and Video Library

    2011-10-14

    ISS029-E-027343 (14 Oct. 2011) --- In the International Space Station’s Columbus laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, works on Water On/Off Valves (WOOV), performing inspection, cleaning, disinfection and encapsulation on WOOV 3, 4 and 5.

  18. WOOV (Water On/Off Valve) 3

    NASA Image and Video Library

    2011-10-14

    ISS029-E-027341 (14 Oct. 2011) --- In the International Space Station’s Columbus laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, works on Water On/Off Valves (WOOV), performing inspection, cleaning, disinfection and encapsulation on WOOV 3, 4 and 5.

  19. Sensory determinants of valve rhythm dynamics provide in situ biodetection of copper in aquatic environments.

    PubMed

    Jou, Li-John; Chen, Bo-Ching; Chen, Wei-Yu; Liao, Chung-Min

    2016-03-01

    This study successfully applied an improved valvometry technique to measure waterborne copper (Cu), based on valve activity dynamics of the freshwater clam Corbicula fluminea. The improved valvometry technique allows the use of free-range bivalves and avoids causing stresses from experimental artifacts. The proposed daily valve rhythm models and a toxicodynamics-based Hill model were linked to predict valve dynamic responses under different Cu exposures with a circadian valve rhythm endpoint. Cu-specific detection threshold was 5.6 (95 % CI 2.1-9.3) and 19.5 (14.6-24.3) μg L(-1) for C. fluminea, based on response times of 300 and 30 min, respectively. Upon exposure to Cu concentrations in excess of 50 μg L(-1), the alteration of valve rhythm behavior was correlated with Cu concentration within 30 min, indicating notable sensing ability. This study outlines the feasibility of an in situ early warning dynamic biomonitoring system for detection of waterborne Cu based on circadian valve activities of C. fluminea.

  20. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    PubMed

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  1. [Percutaneously implantable aortic valve: the JenaValve concept evolution].

    PubMed

    Figulla, Hans R; Ferrari, Markus

    2006-10-01

    Due to the increasing incidence of severe aortic stenosis in old and multimorbid patients, the percutaneous implantation of aortic valve-carrying stents has become an alternative to the surgical replacement of aortic valves. Starting in 1995, the authors developed a self-expanding stent which transferred the necessary forces for anchoring up to the aorta ascendens-a conception taken over from CoreValve. The further improvement of this idea over the past 11 years has led to a self-expanding, relatively short stent-valve system that is reliably positioned in the cusps of the old aortic valve and holds the old valve like a paper clip, thus transferring the holding forces physiologically. As compared to conventional systems, the sophisticated insertion catheter requires further chronic animal tests so as to represent a true alternative to the conventional surgical procedure.

  2. Characteristics of an electro-rheological fluid valve used in an inkjet printhead

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.; Liao, W. C.

    2000-12-01

    The demand for non-impact printers has grown considerably with the advent of personal computers. For entry-level mass production, two drop-on-demand techniques have dominated the market - piezoelectric impulse and thermal-bubble types. However, the high cost of the piezoelectric printhead and the thermal problems encountered by the thermal-bubble jet printhead have restrained the use of these techniques in an array-type printhead. In this study, we propose a new design of printhead with an electro-rheological (ER) fluid acting as a control medium. The ER fluid valve controls the ink ejection. As a first step toward developing this new printhead, the characteristics of an ER fluid valve which controls the deflection of the elastic diaphragm are investigated. First, the response of a prototype is tested experimentally to prove the feasibility of using this ER valve for the inkjet printhead. Then, the discretized governing equation of the ER valve is derived. Finally, the prototype of the ER valve is fabricated. The experimental measurement based on the sinusoidal response verifies both the theoretical analysis and the controllability of the response of the ER valve by the applied electric field.

  3. Superhydrophobicity to minimize thrombogenic risk on mechanical heart valves

    NASA Astrophysics Data System (ADS)

    Bark, David; Vahabi, Hamed; Movafaghi, Sanli; Popat, Ketul; Kota, Arun K.; Dasi, Lakshmi Prasad

    2017-11-01

    A large number of prosthetic heart valves are implanted each year to treat heart valve disease, where half of the surgically replaced valves are mechanical heart valves (MHV)s. MHVs are at high risk for thrombosis and therefore require lifelong antithrombotic therapies, causing an increased bleeding risk that can lead to death. To alleviate this need, we investigate the potential of superhydrophobic surfaces in reducing the thrombotic risk. Particle imaging velocimetry and computational fluid dynamics are used to quantify shear stress in the presence of potential slip on the surface. Coagulation and cell adhesion are quantified by incubating blood under static conditions. We further evaluate a dynamic blood response in polydimethylsiloxane channels under complex shear conditions that mimic the hinge region of bileaflet mechanical heart valves, a region known to exhibit thrombosis. Overall, Shear stress is not reduced on a superhydrophobic bileaflet MHV. However, superhydrophobic surfaces significantly reduce the potential for platelet responses under static and dynamic blood flow conditions, a counterintuitive result when considering that hydrophobic surfaces are prone to protein and cell adhesion. The authors gratefully acknowledge funding from National Institutes of Health (NIH) under Award Number R01HL119824 and F32HL129730. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

  4. Implementation of transcatheter aortic valve replacement in California: Influence on aortic valve surgery.

    PubMed

    Maximus, Steven; Milliken, Jeffrey C; Danielsen, Beate; Shemin, Richard; Khan, Junaid; Carey, Joseph S

    2018-04-01

    Transcatheter aortic valve replacement (TAVR) procedures were introduced in 2011. Initially, procedures were limited to patients who were not surgical candidates, but subsequently high-risk surgical candidates were considered for TAVR. The influence on aortic valve surgery in California is unknown. The California Office of Statewide Health Planning and Development hospitalized patient discharge database was queried for the years 2009 through 2014. isolated surgical aortic valve and aortic valve/coronary artery bypass graft (SAVR) and TAVR procedures were identified by International Classification of Diseases-9th revision clinical modification procedure codes. Seven TAVR programs were introduced in 2011, 12 in 2012, 3 in 2013, and 6 in 2014. SAVR procedure volumes were compared from the 2 years before institution with SAVR volumes during the year(s) after institution of the TAVR program in these 28 hospitals. Overall, surgical volumes increased during the first, second, and third years after implementation of TAVR procedures. Among 7 hospitals with 4-year programs, surgical volumes increased to a maximum of 15.5% during the third year, then began to decrease. The hospital performing the largest number of TAVR procedures showed a marked decrease in SAVR volume by the fourth year, suggesting a shift of SAVR candidates to TAVR. Among all hospitals with 4-year programs, TAVR exceeded SAVR procedures by the fourth year. In California overall, SAVR increased during 2011 through 2013, due primarily to increasing volume of isolated SAVR procedures. Statewide, isolated SAVR increased from a yearly average of 3111 procedures during 2009-2010 to 3592 (+15.5%) in 2013, then decreased slightly in 2014. SAVR plus coronary artery bypass graft procedures decreased during the same time period. After implementation of TAVR, hospital SAVR volumes increased moderately, then began to decrease by the fourth year, when TAVR volume exceeded SAVR. Surgical candidates may be identified

  5. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  6. A real-time biomonitoring system to detect arsenic toxicity by valve movement in freshwater clam Corbicula fluminea.

    PubMed

    Chen, Wei-Yu; Jou, Li-John; Chen, Suz-Hsin; Liao, Chung-Min

    2012-05-01

    Arsenic (As) is the element of greatest ecotoxicological concern in aquatic environments. Effective monitoring and diagnosis of As pollution via a biological early warning system is a great challenge for As-affected regions. The purpose of this study was to synthesize water chemistry-based bioavailability and valve daily rhythm in Corbicula fluminea to design a biomonitoring system for detecting waterborne As. We integrated valve daily rhythm dynamic patterns and water chemistry-based Hill dose-response model to build into a programmatic mechanism of inductance-based valvometry technique for providing a rapid and cost-effective dynamic detection system. A LabVIEW graphic control program in a personal computer was employed to demonstrate completely the functional presentation of the present dynamic system. We verified the simulated dissolved As concentrations based on the valve daily rhythm behavior with published experimental data. Generally, the performance of this proposed biomonitoring system demonstrates fairly good applicability to detect waterborne As concentrations when the field As concentrations are less than 1 mg L(-1). We also revealed that the detection times were dependent on As exposure concentrations. This biomonitoring system could particularly provide real-time transmitted information on the waterborne As activity under various aquatic environments. This parsimonious C. fluminea valve rhythm behavior-based real-time biomonitoring system presents a valuable effort to promote the automated biomonitoring and offers early warnings on potential ecotoxicological risks in regions with elevated As exposure concentrations.

  7. Experimental research of flow servo-valve

    NASA Astrophysics Data System (ADS)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  8. Control of Soft Machines using Actuators Operated by a Braille Display

    PubMed Central

    Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.

    2013-01-01

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070

  9. Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach.

    PubMed

    Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir

    2016-08-01

    In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.

  10. Allergen screening bioassays: recent developments in lab-on-a-chip and lab-on-a-disc systems.

    PubMed

    Ho, Ho-pui; Lau, Pui-man; Kwok, Ho-chin; Wu, Shu-yuen; Gao, Minghui; Cheung, Anthony Ka-lun; Chen, Qiulan; Wang, Guanghui; Kwan, Yiu-wa; Wong, Chun-kwok; Kong, Siu-kai

    2014-01-01

    Allergies occur when a person's immune system mounts an abnormal response with or without IgE to a normally harmless substance called an allergen. The standard skin-prick test introduces suspected allergens into the skin with lancets in order to trigger allergic reactions. This test is annoying and sometimes life threatening. New tools such as lab-on-a-chip and lab-on-a-disc, which rely on microfabrication, are designed for allergy testing. These systems provide benefits such as short analysis times, enhanced sensitivity, simplified procedures, minimal consumption of sample and reagents and low cost. This article gives a summary of these systems. In particular, a cell-based assay detecting both the IgE- and non-IgE-type triggers through the study of degranulation in a centrifugal microfluidic system is highlighted.

  11. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures.

    PubMed

    van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M

    2004-03-01

    To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004

  12. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  13. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  14. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  15. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  16. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  17. Factors influencing mortality after bioprosthetic valve replacement; a midterm outcome.

    PubMed

    Javadzadegan, Hassan; Javadzadegan, Amir; Mehdizadeh Baghbani, Jafar

    2013-01-01

    Although valve repair is applied routinely nowadays, particularly for mitral regurgitation (MR) or tricuspid regurgitation (TR), valve replacement using prosthetic valves is also common especially in adults. Unfortunately the valve with ideal hemodynamic performance and long-term durability without increasing the risk of bleeding due to long-term anticoagulant therapy has not been introduced. Therefore, patients and physicians must choose either bioprosthetic or mechanical valves. Currently, there is an increasing clinical trend of using bioprosthetic valves instead of mechanical valves even in young patients apparently because of their advantages. Seventy patients undergone valvular replacement using bioprosthetic valves were evaluated by ECG and Echocardiography to assess the rhythm and ejection fracture. Mean follow-up time was 33 months (min 9, max 92). Mortality rate was 25.9% (n=18) within 8 years of follow-up. Statistical analysis showed a significant relation between atrial fibrillation rhythm and mortality (P=0.02). Morbidities occurred in 30 patients (42.8%). Significant statistical relation was found between the morbidities and age over 65 years old (P=0.005). In follow-up period, 4 cases (5.7%) underwent re-operation due to global valve dysfunction. Our study shows that using biprosthetic valve could reduce the risk of morbidity occurrence in patient who needs valve replacement. However, if medical treatments fail, patients should be referred for surgery. This would reduce the risk of mortality because of lower incident of complications such as atrial fibrillation and morbidities due to younger patients' population.

  18. The construction of combinatorial manifolds with prescribed sets of links of vertices

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. A.

    2008-10-01

    To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation \\mathcal{L} is the main object of study in this paper. We pose an inversion problem for \\mathcal{L} and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin-Schwartz-Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of \\mathcal{L}. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of \\mathcal{L} after passing to a multiple set and adding several pairs of the form (Z,-Z), where -Z is the sphere Z with the orientation reversed. Given any singular simplicial cycle \\xi of a space X, this construction enables us to find explicitly a combinatorial manifold M and a map \\varphi\\colon M\\to X such that \\varphi_* \\lbrack M \\rbrack =r[\\xi] for some positive integer r. The construction is based on resolving singularities of \\xi. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.

  19. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Early Outcomes for Valve-in-valve Transcatheter Aortic Valve Replacement in Degenerative Freestyle Bioprostheses.

    PubMed

    Sang, Stephane Leung Wai; Beute, Tyler; Heiser, John; Berkompas, Duane; Fanning, Justin; Merhi, William

    2017-11-20

    Transcatheter aortic valve replacement (TAVR) is used increasingly to treat bioprosthetic valve failure. A paucity of data exists regarding valve-in-valve (ViV) TAVR in degenerated Freestyle stentless bioprostheses (FSBs). This study sought to evaluate the feasibility and short-term outcomes of ViV TAVR in previously placed FSB. From October 2014 to September 2016, 22 patients at a single institution underwent ViV TAVR with a self-expanding transcatheter valve for a failing FSB. Patient baseline characteristics and clinical outcomes data were collected retrospectively and entered into a dedicated database. The mean patient age was 74 ± 9years, and the mean Society of Thoracic Surgeons' Risk score was 9.0 ± 7.4%. Ten patients presented with acute heart failure requiring urgent intervention. The most common mode of failure of the FSB was regurgitation caused by a flail or malcoapting leaflet. Seventeen (77%) patients had a modified subcoronary implantation, 3 (14%) had a full root replacement, and 2 (9%) had a root inclusion. Device success using a self-expanding transcatheter valve was 95%, all via transfemoral approach. The mean implant depth was 7 ± 3 mm. Thirty-day survival was 100%. No patient had more than mild paravalvular regurgitation at 30days, and the permanent pacemaker rate was 9%. The mean hospital stay after intervention was 5 ± 2days. ViV TAVR using a self-expanding transcatheter valve is safe, feasible, and can be used successfully to treat a failed FSB. Procedural challenges suggest referral to valve centers of excellence. Copyright © 2017 Elsevier Inc. All rights reserved.