Sample records for labdenoic acid derivatives

  1. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  2. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  3. Multifunctional Cinnamic Acid Derivatives.

    PubMed

    Peperidou, Aikaterini; Pontiki, Eleni; Hadjipavlou-Litina, Dimitra; Voulgari, Efstathia; Avgoustakis, Konstantinos

    2017-07-25

    Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino) ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX) inhibition (IC 50 = 6 μΜ) and antiproteolytic activity (IC 50 = 0.425 μΜ). The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC 50 = 0.315 μΜ) and good LOX inhibitory activity (IC 50 = 66 μΜ). Compounds 3a and 3b , derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro . Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  4. 40 CFR 721.10039 - Diethoxybenzenamine derivative, diazotized, coupled with aminonaphthalenesulfonic acid derivative...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Diethoxybenzenamine derivative, diazotized, coupled with aminonaphthalenesulfonic acid derivative, ammonium salt (generic). 721.10039 Section... Substances § 721.10039 Diethoxybenzenamine derivative, diazotized, coupled with aminonaphthalenesulfonic acid...

  5. 40 CFR 721.10039 - Diethoxybenzenamine derivative, diazotized, coupled with aminonaphthalenesulfonic acid derivative...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Diethoxybenzenamine derivative, diazotized, coupled with aminonaphthalenesulfonic acid derivative, ammonium salt (generic). 721.10039 Section... Substances § 721.10039 Diethoxybenzenamine derivative, diazotized, coupled with aminonaphthalenesulfonic acid...

  6. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  7. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  8. 3-Nitroasterric Acid Derivatives from an Antarctic Sponge-Derived Pseudogymnoascus sp. Fungus.

    PubMed

    Figueroa, Luis; Jiménez, Carlos; Rodríguez, Jaime; Areche, Carlos; Chávez, Renato; Henríquez, Marlene; de la Cruz, Mercedes; Díaz, Caridad; Segade, Yuri; Vaca, Inmaculada

    2015-04-24

    Four new nitroasterric acid derivatives, pseudogymnoascins A-C (1-3) and 3-nitroasterric acid (4), along with the two known compounds questin and pyriculamide, were obtained from the cultures of a Pseudogymnoascus sp. fungus isolated from an Antarctic marine sponge belonging to the genus Hymeniacidon. The structures of the new compounds were determined by extensive NMR and MS analyses. These compounds are the first nitro derivatives of the known fungal metabolite asterric acid. Several asterric acid derivatives isolated from other fungal strains have shown antibacterial and antifungal activities. However, the new compounds described in this work were inactive against a panel of bacteria and fungi (MIC > 64 μg/mL).

  9. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  10. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  11. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  12. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    PubMed Central

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-01-01

    Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance. PMID:17147830

  13. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-ascorbic acid.

    PubMed

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-12-06

    Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L-ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. 5,6-O-isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  14. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant new...

  16. Synthesis of 5'-deoxy-5'-nucleosideacetic acid derivatives

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1990-01-01

    Several new 5'-deoxy-5'-nucleosideacetic acid derivatives have been synthesized by the reactions of alkoxycarbonylmethylene triphenylphosphoranes with nucleoside 5'-aldehydes. The oligomerization of adenine derivatives IIa, IIIa, IV, V and guanine derivatives IIc and IIIc in aqueous solution was studied using a water-soluble carbodiimide as a condensing agent. It is found that the saturated acid (IV) tends to cyclize to the lactone, while IIa and unsaturated acids (IIIa and V) oligomerized efficiently, especially in the presence of poly (U) as a template.

  17. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Synthesis and characterization of bis-thiourea having amino acid derivatives

    NASA Astrophysics Data System (ADS)

    Fakhar, Imran; Yamin, Bohari M.; Hasbullah, Siti Aishah

    2016-11-01

    In this article four new symmetric bis-thiourea derivatives having amino acid linkers were reported with good yield. Isophthaloyl dichloride was used as spacer and L-alanine, L-aspartic acid, L-phenylalanine and L-glutamic acid were used as linkers. Bis-thiourea derivatives were prepared from relatively stable isophthaloyl isothiocyanate intermediate. Newly synthesized bis-thiourea derivatives were characterized by FTIR, H-NMR, 13C-NMR and CHNS-O elemental analysis techniques. Characterization data was in good agreement with the expected derivatives, hence confirmed the synthesis of four new derivatives of bis-thiourea having amino acids.

  19. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  20. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE PAGES

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.; ...

    2018-06-04

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  1. Anti-Inflammatory Activity of Tanzawaic Acid Derivatives from a Marine-Derived Fungus Penicillium steckii 108YD142

    PubMed Central

    Shin, Hee Jae; Pil, Gam Bang; Heo, Soo-Jin; Lee, Hyi-Seung; Lee, Jong Seok; Lee, Yeon-Ju; Lee, Jihoon; Won, Ho Shik

    2016-01-01

    Chemical investigation of a marine-derived fungus, Penicillium steckii 108YD142, resulted in the discovery of a new tanzawaic acid derivative, tanzawaic acid Q (1), together with four known analogues, tanzawaic acids A (2), C (3), D (4), and K (5). The structures of tanzawaic acid derivatives 1–5 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis. These compounds significantly inhibited nitric oxide (NO) production and the new tanzawaic acid Q (1) inhibited the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA expressions in RAW 264.7 macrophages. Additionally, compound 1 reduced the mRNA levels of inflammatory cytokines. Taken together, the results of this study demonstrated that the new tanzawaic acid derivative inhibits LPS-induced inflammation. This is the first report on the anti-inflammatory activity of tanzawaic acid Q (1). PMID:26761016

  2. Oleic acid-derived oleoylethanolamide: A nutritional science perspective.

    PubMed

    Bowen, Kate J; Kris-Etherton, Penny M; Shearer, Gregory C; West, Sheila G; Reddivari, Lavanya; Jones, Peter J H

    2017-07-01

    The fatty acid ethanolamide oleoylethanolamide (OEA) is an endogenous lipid mediator derived from the monounsaturated fatty acid, oleic acid. OEA is synthesized from membrane glycerophospholipids and is a high-affinity agonist of the nuclear transcription factor peroxisome proliferator-activated receptor α (PPAR-α). Dietary intake of oleic acid elevates circulating levels of OEA in humans by increasing substrate availability for OEA biosynthesis. Numerous clinical studies demonstrate a beneficial relationship between high-oleic acid diets and body composition, with emerging evidence to suggest OEA may mediate this response through modulation of lipid metabolism and energy intake. OEA exposure has been shown to stimulate fatty acid uptake, lipolysis, and β-oxidation, and also promote food intake control. Future research on high-oleic acid diets and body composition is warranted to confirm these outcomes and elucidate the underlying mechanisms by which oleic acid exerts its biological effects. These findings have significant practical implications, as the oleic acid-derived OEA molecule may be a promising therapeutic agent for weight management and obesity treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives.

    PubMed

    Tian, Yuxin; Liu, Weirui; Lu, Yi; Wang, Yan; Chen, Xiaoyi; Bai, Shaojuan; Zhao, Yicheng; He, Ting; Lao, Fengxue; Shang, Yinghui; Guo, Yu; She, Gaimei

    2016-10-24

    Cinnamic acid sugar ester derivatives (CASEDs) are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3',6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM), presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae . This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  4. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  5. Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives.

    PubMed

    Sha, Xuejiao; Chen, Hai; Zhang, Jingsheng; Zhao, Guanghua

    2018-05-04

    Plant ferritin represents a novel class of iron supplement, which widely co-exists with phenolic acids in a plant diet. However, there are few reports on the effect of these phenolic acids on function of ferritin. In this study, we demonstrated that cinnamic acid derivatives, as widely occurring phenolic acids, can induce iron release from holo soybean seed ferritin (SSF) in a structure-dependent manner. The ability of the iron release from SSF by five cinnamic acids follows the sequence of Cinnamic acid > Chlorogenic acid > Ferulic acid > p -Coumaric acid > Trans -Cinnamic acid. Fluorescence titration in conjunction with dialysis results showed that all of these five compounds have a similar, weak ability to bind with protein, suggesting that their protein-binding ability is not related to their iron release activity. In contrast, both Fe 2+ -chelating activity and reducibility of these cinnamic acid derivatives are in good agreement with their ability to induce iron release from ferritin. These studies indicate that cinnamic acid and its derivatives could have a negative effect on iron stability of holo soybean seed ferritin in diet, and the Fe 2+ -chelating activity and reducibility of cinnamic acid and its derivatives have strong relations to the iron release of soybean seed ferritin.

  6. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    PubMed

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  7. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  8. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  9. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  10. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  11. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  12. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  13. Synthesis and Proteasome Inhibition of Glycyrrhetinic Acid Derivatives

    PubMed Central

    Huang, Li; Yu, Donglei; Ho, Phong; Qian, Keduo; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2008-01-01

    This study discovered that glycyrrhetinic acid inhibited the human 20S proteasome at 22.3 µM. Esterification of the C-3 hydroxyl group on glycyrrhetinic acid with various carboxylic acid reagents yielded a series of analogs with marked improved potency. Among the derivatives, glycyrrhetinic acid 3-O-isophthalate (17) was the most potent compound with IC50 of 0.22 µM, which was approximately 100-fold more potent than glycyrrhetinic acid. PMID:18562200

  14. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney.

  15. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats

    PubMed Central

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  16. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.

    PubMed

    Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij

    2016-08-01

    The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).

  17. Novel cajaninstilbene acid derivatives as antibacterial agents.

    PubMed

    Geng, Zhi-Zhong; Zhang, Jian-Jun; Lin, Jing; Huang, Mei-Yan; An, Lin-Kun; Zhang, Hong-Bin; Sun, Ping-Hua; Ye, Wen-Cai; Chen, Wei-Min

    2015-07-15

    Discovery of novel antibacterial agents with new structural scaffolds that combat drug-resistant pathogens is an urgent task. Cajaninstilbene acid, which is isolated from pigeonpea leaves, has shown antibacterial activity. In this study, a series of cajaninstilbene acid derivatives were designed and synthesized. The antibacterial activities of these compounds against gram-negative and gram-positive bacteria, as well as nine strains of methicillin-resistant staphylococcus aureus (MRSA) bacteria are evaluated,and the related structure-activity relationships are discussed. Assays suggest that some of the synthetic cajaninstilbene acid derivatives exhibit potent antibacterial activity against gram-positive bacterial strains and MRSA. Among these compounds, 5b, 5c, 5j and 5k show better antibacterial activity than the positive control compounds. The results of MTT assays illustrate the low cytotoxicity of the active compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Spirocyclic systems derived from pyroglutamic acid.

    PubMed

    Cowley, Andrew R; Hill, Thomas J; Kocis, Petr; Moloney, Mark G; Stevenson, Robert D; Thompson, Amber L

    2011-10-21

    The synthesis and likely conformational structure of rigid spirocyclic bislactams and lactam-lactones derived from pyroglutamic acid, and their suitability as lead structures for applications in drug development programmes using cheminformatic analysis, has been investgated.

  19. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  20. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  1. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  2. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  3. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  4. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  5. Reactions of glycidyl derivatives with ambident nucleophiles; part 2: amino acid derivatives

    PubMed Central

    Dyker, Gerald; Thöne, Andreas; Henkel, Gerald

    2007-01-01

    A three-step procedure for the synthesis of multifunctionalized heterocycles from a pyroglutamic acid derivative, glycidyl components and anilines by nucleophilic substitution and cobalt catalysis is presented. PMID:17900352

  6. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a component in the manufacture of food-grade additives in accordance with the following prescribed... component in the manufacture of other food-grade additives. (d) To assure safe use of the additive, the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172...

  7. Acyl Meldrum's acid derivatives: application in organic synthesis

    NASA Astrophysics Data System (ADS)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  8. Cinnamic acid derivatives in cosmetics - current use and future prospects.

    PubMed

    Gunia-Krzyżak, Agnieszka; Słoczyńska, Karolina; Popiół, Justyna; Koczurkiewicz, Paulina; Marona, Henryk; Pękala, Elżbieta

    2018-06-05

    Cinnamic acid derivatives are widely used in cosmetics and possess various functions. This group of compounds includes both naturally occurring as well as synthetic substances. On the basis of the Cosmetic Ingredient Database (CosIng) and available literature, this review summarizes their functions in cosmetics, including their physicochemical and biological properties as well as reported adverse effects. A perfuming function is typical of many derivatives of cinnamaldehyde, cinnamyl alcohol, dihydrocinnamyl alcohol, and cinnamic acid itself; these substances are commonly used in cosmetics all over the world. Some of them show allergic and photoallergic potential, resulting in restrictions in maximum concentrations and/or a requirement to indicate the presence of some substances in the list of ingredients when their concentrations exceed certain fixed values in a cosmetic product. Another important function of cinnamic acid derivatives in cosmetics is UV protection. Ester derivatives such as ethylhexyl methoxycinnamate (octinoxate), isoamyl p-methoxycinnamte (amiloxiate), octocrylene, and cinoxate are used in cosmetics all over the world as UV filters. However, their maximum concentrations in cosmetic products are restricted due to their adverse effects, which include contact and a photocontact allergies, phototoxic contact dermatitis, contact dermatitis, estrogenic modulation, and generation of reactive oxygen species. Other rarely utilized functions of cinnamic acid derivatives are as an antioxidant, in skin conditioning, hair conditioning, as a tonic, and in antimicrobial activities. Moreover, some currently investigated natural and synthetic derivatives of cinnamic acid have shown skin lightening and anti-aging properties. Some of them may become new cosmetic ingredients in the future. In particular, 4-hydroxycinnamic acid, which is currently indexed as a skin-conditioning cosmetics ingredient, has been widely tested in vitro and in vivo as a new drug candidate

  9. Actions of derivatives of lysergic acid on the heart of venus mercenaria

    PubMed Central

    Wright, Anne McCoy; Moorhead, Merilyn; Welsh, J. H.

    1962-01-01

    5-Hydroxytryptamine and a number of (+)-lysergic acid derivatives have been tested on the heart of Venus mercenaria. One group of derivatives was found to increase the amplitude and frequency of heart beat in a manner much like 5-hydroxytryptamine. It included the monoethylamide, diethylamide, propanolamide (ergometrine), butanolamide (methylergometrine) and certain peptide derivatives of lysergic acid without substituents in positions 1 or 2. Of these, lysergic acid diethylamide was the most active. Given sufficient time (up to 4 hr), as little as 10 ml. of 10-16 M lysergic acid diethylamide produced a maximum increase in amplitude and frequency in about one-half of the 80 hearts on which it was tested. Its action was very slowly reversed by washing, as was true of all lysergic acid derivatives. A second group of lysergic acid derivatives, substituted in positions 1 or 2, had weak excitor action, if any, and specific 5-hydroxytryptamine blocking action. This group consisted of 1-methyl-, 1-acetyl-, and 2-bromo-lysergic acid diethylamide and 1-methyllysergic acid butanolamide (methysergide). Of these, the last showed least signs of excitor action, usually none up to 10-4 M, and it blocked 5-hydroxytryptamine in a molar ratio of about one to one. PMID:14008412

  10. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  11. Three amino acid derivatives of valproic acid: design, synthesis, theoretical and experimental evaluation as anticancer agents.

    PubMed

    Luna-Palencia, Gabriela R; Martinez-Ramos, Federico; Vasquez-Moctezuma, Ismael; Fragoso-Vazquez, Manuel Jonathan; Mendieta-Wejebe, Jessica Elena; Padilla-Martínez, Itzia I; Sixto-Lopez, Yudibeth; Mendez-Luna, David; Trujillo-Ferrara, Jose; Meraz-Rios, Marco A; Fonseca-Sabater, Yadira; Correa-Basurto, Jose

    2014-01-01

    Valproic acid (VPA) is extensively used as an anticonvulsive agent and as a treatment for other neurological disorders. It has been shown that VPA exerts an anti-proliferative effect on several types of cancer cells by inhibiting the activity of histone deacetylases (HDACs), which are involved in replication and differentiation processes. However, VPA has some disadvantages, among which are poor water solubility and hepatotoxicity. Therefore, the aim of the present study was to design and synthesize three derivatives of VPA to improve its physicochemical properties and anti-proliferative effects. For this purpose, the amino acids aspartic acid, glutamic acid and proline were added to the molecular structure of VPA. Docking and molecular dynamics simulations were used to determine the mode of recognition of these three derivatives by different conformations of HDAC8. This receptor was used as the specific target because of its high affinity for this type of substrate. The results demonstrate that, compared to VPA, the test compounds bind to different sites on the enzyme and that hydrogen bonds and hydrophobic interactions play key roles in this difference. The IC50 values of the VPA derivatives, experimentally determined using HeLa cells, were in the mM range. This result indicates that the derivatives have greater antiproliferative effects than the parent compound. Hence, these results suggest that these amino acid derivatives may represent a good alternative for anticancer treatment.

  12. Adipose‑derived stem cells and hyaluronic acid based gel compatibility, studied in vitro.

    PubMed

    Guo, Jiayan; Guo, Shu; Wang, Yuxin; Yu, Yanqiu

    2017-10-01

    Minimally invasive aesthetic and cosmetic procedures have increased in popularity. Injectable dermal fillers provide soft tissue augmentation, improve facial rejuvenation and wrinkles, and correct tissue defects. To investigate the use of adipose‑derived stem cells integrated with a hyaluronic acid based gel as a dermal filler, the present study used cytotoxicity studies, proliferation studies, adipogenic and osteogenic differentiation, apoptosis assays and scanning electron microscopy. Although hyaluronic acid induced low levels of apoptosis in adipose‑derived stem cells, its significantly promoted proliferation of adipose‑derived stem cells. Hyaluronic acid demonstrates little toxicity against adipose‑derived stem cells. Adipose‑derived stem cells were able to differentiate into adipocytes and osteoblasts. Furthermore, scanning electron microscopy revealed that adipose‑derived stem cells maintained intact structures on the surface of hyaluronic acid as well as in it, and demonstrated abundant cell attachments. The present study demonstrated the compatibility of adipose‑derived stem cells and hyaluronic acid based gels in vitro.

  13. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  14. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines.

    PubMed

    Sova, Matej; Žižak, Željko; Stanković, Jelena A Antic; Prijatelj, Matevž; Turk, Samo; Juranić, Zorica D; Mlinarič-Raščan, Irena; Gobec, Stanislav

    2013-08-01

    Cinnamic acid derivatives can be found in plant material, and they possess a remarkable variety of biological effects. In the present study, we have investigated the cytotoxic effects of representative cinnamic acid esters and amides. The cytotoxicity was determined by MTT test on human cervix adenocarcinoma (HeLa), myelogenous leukemia (K562), malignant melanoma (Fem-x), and estrogen-receptor-positive breast cancer (MCF-7) cells, versus peripheral blood mononuclear cells (PBMCs) without or with the addition of the plant lectin phytohemaglutinin (PHA). The compounds tested showed significant cytotoxicity (IC50s between 42 and 166 µM) and furthermore selectivity of these cytotoxic effects on the malignant cell lines versus the PBMCs was also seen, especially when electron-withdrawing groups, such as a cyano group (compound 5), were present on the aromatic rings of the alcohol or amine parts of the cinnamic acid derivatives. The additional study on cell cycle phase distribution indicated that novel cinnamic acid derivatives inhibit cell growth by induction of cell death. Thus, cinnamic acids derivatives represent important lead compounds for further development of antineoplastic agents.

  15. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  16. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  17. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids.

    PubMed

    Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir

    2010-12-01

    Dietary polyphenols are beneficial to human health by exerting various biological effects. Ferulic and caffeic acids are hydroxycinnamic acid derivatives widely distributed in plant-derived food products. Studies indicate that some dietary compounds may have concentration-dependent antioxidant or prooxidant activities. The present study concerns such activities of ferulic and caffeic acids. They have concentration-dependent antioxidant effects in terms of inhibition of lipid peroxidation and reactive oxygen species-scavenging after 2,2'-azobis-amidinopropane dihydrochloride-induced damage in mouse liver microsomes and splenic lymphocytes respectively. They also show differential scavenging of nitric oxide, superoxide and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid radical (ABTS*(+)). In DPPH (1,1-diphenyl picrylhydrazyl) assay above 20 μM the absorbance start increasing due to the formation of an unknown adduct which has a shoulder at 517 nm. However, in Fenton reaction, above 5 μM, they behave as prooxidants and the possible mechanisms responsible for their prooxidant property may be related to their ferric reducing ability. These findings may have significant health implications where these natural compounds are being used/consumed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  19. Effect of molecular parameters on the binding of phenoxyacetic acid derivatives to albumins.

    PubMed

    Cserháti, T; Forgács, E; Deyl, Z; Miksík, I

    2001-03-25

    The interaction of 12 phenoxyacetic acid derivatives with human and serum albumin as well as with egg albumin was studied by charge-transfer reversed-phase (RP) thin-layer chromatography (TLC) and the relative strength of interaction was calculated. Each phenoxyacetic acid derivative interacted with human and bovine serum albumins whereas no interaction was observed with egg albumin. Stepwise regression analysis proved that the lipophilicity of the derivatives exert a significant impact on their capacity to bind to serum albumins. This result supports the hypothesis that the binding of phenoxyacetic acid derivatives to albumins may involve hydrophobic forces occurring between the corresponding apolar substructures of these derivatives and the amino acid side chains.

  20. Amino acids derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Ogino, H.; Nagy, B.; Er, C.; Schram, K. H.; Arakawa, E. T.

    1986-01-01

    An organic heteropolymer (Titan tholin) was produced by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mbar pressure, roughly simulating the cloudtop atmosphere of Titan. Treatment of this tholin with 6N HCl yielded 16 amino acids by gas chromatography after derivatization of N-trifluroacetyl isopropyl esters on two different capillary columns. Identifications were confirmed by GC/MS. Glycine, aspartic acid, and alpha- and beta-alanine were produced in greatest abundance; the total yield of amino acids was approximately 10(-2), approximately equal to the yield of urea. The presence of "nonbiological" amino acids, the absence of serine, and the fact that the amino acids are racemic within experimental error together indicate that these molecules are not due to microbial or other contamination, but are derived from the tholin. In addition to the HCN, HC2CN, and (CN)2 found by Voyager, nitriles and aminonitriles should be sought in the Titanian atmosphere and, eventually, amino acids on the surface. These results suggest that episodes of liquid water in the past or future of Titan might lead to major further steps in prebiological organic chemistry on that body.

  1. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    PubMed

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  2. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne

    1997-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  3. Pseudoephedrine-Directed Asymmetric α-Arylation of α-Amino Acid Derivatives.

    PubMed

    Atkinson, Rachel C; Fernández-Nieto, Fernando; Mas Roselló, Josep; Clayden, Jonathan

    2015-07-27

    Available α-amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N'-aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N'-aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy-metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools.

    PubMed

    Ekinci, Deniz; Sentürk, Murat; Küfrevioğlu, Ömer İrfan

    2011-12-01

    In the field of medicinal chemistry, there is a growing interest in the use of small molecules. Although acetyl salicylic acid is well known for medical applications, little is known about other salicylic acid derivatives, and there is serious lack of data and information on the effects and biological evaluation that connect them. This review covers the synthesis and drug potencies of salicylic acid derivatives. After a brief overview of the information on salicylic acid and its features, a detailed review of salicylic acids as drugs and prodrugs, usage as cyclooxygenase inhibitors, properties in plants, synthesis and recent patents, is developed. Salicylic acid research is still an important area and innovations continue to arise, which offer hope for new therapeutics in related fields. It is anticipated that this review will guide the direction of long-term drug/nutraceutical safety trials and stimulate ideas for future research.

  5. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  6. Quest for steroidomimetics: Amino acids derived steroidal and nonsteroidal architectures.

    PubMed

    Shagufta; Ahmad, Irshad; Panda, Gautam

    2017-06-16

    The chiral pool amino acids have been utilized for the construction of steroidal and non-steroidal architectures in the quest for steroidomimetics. Chirality derived from amino acid-based architectures provides new and easy to incorporate chiral chemical space, which is otherwise very difficult to introduce and comprised of several synthetic steps for asymmetric steroids. The different and exciting ligand-receptor interactions may arise from the use of each amino acid enantiomer that was introduced into the chiral steroidal backbone. The A and D rings of steroidal architectures can be mimicked by the phenyl group of the amino acid tyrosine. The Mitsunobu reaction, nucleophilic substitution and elimination, etc. were utilized for constructing diverse tri- and tetracyclic steroidal skeletons as well as benzofused seco-steroids from amino acids. These benzofused, amino acid-derived steroidal and nonsteroidal molecules had promising biological activity in hormonal related disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Pyrrolidinones derived from (S)-pyroglutamic acid: penmacric acid and analogues.

    PubMed

    Anwar, Muhammed; Bailey, Jonathan H; Dickinson, Laura C; Edwards, Hermia J; Goswami, Rajesh; Moloney, Mark G

    2003-07-07

    Alkylation reactions using alpha-halolactams or lactam enolates derived from bicyclic lactam templates can proceed with high endo- or exo- diastereoselectivity respectively. In the latter case, stereochemical correction by means of enolate generation and hindered phenol quench is possible with moderate efficiency. This protocol has been applied to the synthesis of protected penmacric acid and its analogues.

  8. Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives

    Treesearch

    Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg

    1998-01-01

    The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...

  9. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  10. Structure-activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid.

    PubMed

    Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen

    2018-12-01

    In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.

  11. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    PubMed

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Novel Ellagic Acid Derivative from Desbordesia glaucescens.

    PubMed

    DongmoMafodong, Faustine L; Tsopmo, Apollinaire; Awouafack, Maurice D; Roland, Tchuenguem T; Dzoyem, Jean P; Tane, Pierre

    2015-10-01

    One novel ellagic acid derivative, desglauside (1), was isolated from the leaves of Desbordesia glaucescens together with three known compounds [3',4'-di-O-methylellagic acid (2), oleanolic acid (3) and β-sitosterol-3-O-β-D-glucopyranoside (4)]. Their structures were elucidated on the basis of NMR spectroscopic and MS analysis, and by comparison with related published data. The crude extract, fractions and isolated compounds showed no activity against four yeast strains [Candida albicans (ATCC 9002), C. parapsilopsis (ATCC22019), C. tropicalis (ATCC750), Cryptococcus neoformans (IP95026) and one isolate of Candida guilliermondii].

  13. Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema.

    PubMed Central

    Inoue, H.; Mori, T.; Shibata, S.; Koshihara, Y.

    1989-01-01

    1. The anti-inflammatory effects of glycyrrhetinic acid and its derivatives on TPA (12-O-tetradecanoylphorbol-13-acetate)-induced mouse ear oedema were studied. The mechanisms of TPA-induced ear oedema were first investigated with respect to the chemical mediators. 2. The formation of ear oedema reached a maximum 5 h after TPA application (2 micrograms per ear) and the prostaglandin E2 (PGE2) production of mouse ear increased with the oedema formation. 3. TPA-induced ear oedema was prevented by actinomycin D and cycloheximide (0.1 mg per ear, respectively) when applied during 60 min after TPA treatment. 4. Of glycyrrhetinic acid derivatives examined, dihemiphthalate derivatives (IIe, IIe', IIIa, IIIa', IVa, IVa') most strongly inhibited ear oedema on both topical (ID50, 1.6 mg per ear for IIe, 2.0 mg per ear for IIIa and 1.6 mg per ear for IVa) and oral (ID50, 88 mg kg-1 for IIe', 130 mg kg-1 for IIIa' and 92 mg kg-1 for IVa') administration. 5. Glycyrrhetinic acid (Ia) and its derivatives applied 30 min before TPA treatment were much more effective in inhibiting oedema than when applied 30 min after TPA. A dihemiphthalate of triterpenoid compound IVa completely inhibited oedema, even when applied 3 h before TPA treatment. 6. Glycyrrhetinic acid (Ia) and deoxoglycyrrhetol (IIa), the parent compounds, produced little inhibition by oral administration at less than 200 mg kg-1. 7. These results suggest that the dihemiphthalate derivatives of triterpenes derived from glycyrrhetinic acid by chemical modification are useful for the treatment of skin inflammation by both topical and oral application. PMID:2924072

  14. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  15. HYPERSENSITIVITY TO PENICILLENIC ACID DERIVATIVES IN HUMAN BEINGS WITH PENICILLIN ALLERGY

    PubMed Central

    Parker, Charles W.; Shapiro, Jack; Kern, Milton; Eisen, Herman N.

    1962-01-01

    Multifunctional derivatives of penicillenic acid are effective elicitors of wheal-and-erythema skin responses in humans allergic to penicillin. Of the effective derivatives, penicilloyl-polylysines are particularly attractive as skin test reagents because they appear to be incapable of inducing antibody formation. The skin responses are specifically inhibitable in most instances by homologous unifunctional haptens. The penicillenic acid derivatives which appear to be determinants of human allergic reactions to penicillin are: penicilloyl, penicillenate, and groups of the penamaldate-penilloaldehyde type. Of these, the most significant appears to be the penicilloyl-lysyl determinant. PMID:14483916

  16. Decay resistance of wood treated with boric acid and tall oil derivates.

    PubMed

    Temiz, Ali; Alfredsen, Gry; Eikenes, Morten; Terziev, Nasko

    2008-05-01

    In this study, the effect of two boric acid concentrations (1% and 2%) and four derivates of tall oil with varying chemical composition were tested separately and in combination. The tall oil derivates were chosen in a way that they consist of different amounts of free fatty, resin acids and neutral compounds. Decay tests using two brown rot fungi (Postia placenta and Coniophora puteana) were performed on both unleached and leached test samples. Boric acid showed a low weight loss in test samples when exposed to fungal decay before leaching, but no effect after leaching. The tall oil derivates gave better efficacy against decay fungi compared to control, but are not within the range of the efficacy needed for a wood preservative. Double impregnation with boric acid and tall oil derivates gave synergistic effects for several of the double treatments both in unleached and leached samples. In the unleached samples the double treatment gave a better efficacy against decay fungi than tall oil alone. In leached samples a better efficacy against brown rot fungi were achieved than in samples with boron alone and a nearly similar or better efficacy than for tall oil alone. Boric acid at 2% concentration combined with the tall oil derivate consisting of 90% free resin acids (TO-III) showed the best performance against the two decay fungi with a weight loss less than 3% after a modified pure culture test.

  17. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  18. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  19. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  20. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  1. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  2. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  3. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  4. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  5. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  6. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    USDA-ARS?s Scientific Manuscript database

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  7. Caffeic Acid Derivatives in Dried Lamiaceae and Echinacea purpurea Products

    USDA-ARS?s Scientific Manuscript database

    The concentrations of caffeic acid derivatives within Lamiaceae and Echinacea (herb, spice, tea, and dietary supplement forms) readily available in the U.S. marketplace (n=72) were determined. After the first identification of chicoric acid in Ocimum basilicum (basil), the extent to which chicoric a...

  8. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  9. [Stereoselective synthesis of polyhydroxylated amines using (S)-pyroglutamic acid derivatives].

    PubMed

    Ikota, Nobuo

    2014-01-01

    Naturally occurring polyhydroxylated amines such as (+)-1-deoxynojirimycin, polyoxamic acid, anisomycin, (-)swainsonine, and alexine stereoisomers, which have interesting biological activities including glucosidase- and mannosidase-inhibitory activity, immunoregulatory activity, and antibacterial effects, were synthesized stereoselectively starting from (S)-pyroglutamic acid derivatives. α,β-Unsaturated lactams ((S)-5-hydroxymethyl-2-oxo-3-pyrroline derivatives), α,β-unsaturated δ-lactone ((S)-4-amino-2-penten-5-olide derivative), and E-olefin ((S,E)-methyl-4-amino-5-hydroxypent-2-enoate derivative) from (S)-pyroglutamic acid derivatives were dihydroxylated using OsO4 in the presence of N-methyl morpholine N-oxide (NMO) to afford various chiral building blocks with different configurations. The stereoselectivity of cis-dihydroxylation for α,β-unsaturated lactams and α,β-unsaturated δ-lactone was very high, while the stereoselectivity was low for E-olefin. Therefore, the double asymmetric induction of E-olefin using K2OsO4 with chiral ligands was successively applied to yield high stereoselectivity. (2R,3S)-2-Hydroxymethyl-3-hydroxypyrrolidine and Gaissman-Weiss lactone, important intermediates for the preparation of pyrrolizidine alkaloids, were synthesized from a (3R,4R,5R)-3,4-dihydroxy-5-hydroxymethyl-2-pyrrolidinone derivative derived from α,β-unsatulated lactam. (+)-1-Deoxynojirimycin was synthesized from a (2S,3R,4R)-methyl 4-amino-2,3,5-trihydroxypentanoate derivative of E-olefin. (-)-Swainsonine and its stereoisomers were synthesized from (2R,3S,4R)- or (2R,3R,4R)-2-hydroxymethyl-3,4-dihydroxypyrrolidine derivatives of α,β-unsaturated δ-lactone or α,β-unsaturated lactam. The key reaction was diastereoselective allylation of the aldehyde derived from the corresponding 2-hydroxymethylpyrrolidine derivatives with various allylation reagents. The high diastereoselectivity could be explained by cyclic chelate formation between metals and the

  10. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  11. Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer.

    PubMed

    Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A

    2016-02-01

    A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.

  12. Aristolic Acid Derivatives from the Bark of Antidesma ghaesembilla.

    PubMed

    Schäfer, Sibylle; Schwaiger, Stefan; Stuppner, Hermann

    2017-08-01

    Antidesma ghaesembilla is an important medicinal and food plant in many Asian countries. Ten substances could be isolated from the dichloromethane and methanol extract: sitostenone ( 3 ), daucosterol ( 4 ), chavibetol ( 5 ), asperphenamate ( 6 ), protocatechuic acid ( 7 ), vanillic acid-4- O - β -D-glucoside ( 8 ), 1- O - β -D-glucopyranosyl-3- O -methyl-phloroglucinol ( 9 ), and aristolic acid II-8- O - β -D-glucoside ( 10 ), and two new aristolic acid derivatives, 10-amino-5,7-dimethoxy-aristolic acid II (= 6-amino-9,11-dimethoxyphenanthro[3,4- d ]-1,3-dioxole-5-carboxylic acid; 1 ) and 5,7-dimethoxy-aristolochic acid II (= 9,11-dimethoxy-6-nitrophenantro[3,4- d ]-1,3-dioxole-5-carboxylic acid; 2 ). Exposure to humans of some of these compounds is associated with a severe disease today known as aristolochic acid nephropathy. Therefore, the traditional usage of this plant has to be reconsidered carefully. Georg Thieme Verlag KG Stuttgart · New York.

  13. Towards Tartaric-Acid-Derived Asymmetric Organocatalysts

    PubMed Central

    Gratzer, Katharina; Gururaja, Guddeangadi N; Waser, Mario

    2013-01-01

    Tartaric acid is one of the most prominent naturally occurring chiral compounds. Whereas its application in the production of chiral ligands for metal-catalysed reactions has been exhaustively investigated, its potential to provide new organocatalysts has been less extensively explored. Nevertheless, some impressive results, such as the use of TADDOLs as chiral H-bonding catalysts or of tartrate-derived asymmetric quaternary ammonium salt catalysts, have been reported over the last decade. The goal of this article is to provide a representative overview of the potential and the limitations of tartaric acid or TADDOLs in the creation of new organocatalysts and to highlight some of the most spectacular applications of these catalysts, as well as to summarize case studies in which other classes of chiral backbones were better suited. PMID:24194674

  14. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccharide Sensing-Interface

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak

    2007-01-01

    We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.

  15. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    PubMed Central

    Chícharo, Maria Alexandra; Chícharo, Luis

    2008-01-01

    Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1) at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2) at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3) at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival) will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems. PMID:19325815

  16. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.

  17. Selective activity of several cholic acid derivatives against human immunodeficiency virus replication in vitro.

    PubMed

    Baba, M; Schols, D; Nakashima, H; Pauwels, R; Parmentier, G; Meijer, D K; De Clercq, E

    1989-01-01

    Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1.

  18. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.

    PubMed

    Chhatbar, Mahesh U; Meena, Ramavatar; Prasad, Kamalesh; Chejara, Dharmesh R; Siddhanta, A K

    2011-04-01

    A facile microwave-induced method was developed for synthesizing water-soluble fluorescent derivatives of alginic acid (ALG) with four different diamines, hydrazine (HY), ethylenediamine (EDA), 1,6-hexanediamine (HDA), and 1,4-cyclohexanediamine (CHDA), followed by a cross-linking reaction with a natural cross linker genipin. The ethylenediamine derivative of alginic acid (ALG-EDA) exhibited good fluorescent activity, which upon cross linking was enhanced threefold. The other amide derivatives, for example, ALG-HY, ALG-HDA, and ALG-CHDA, were not fluorescent, but their respective crosslinked products exhibited excellent fluorescent activity. The fluorescence intensity had an inverse correlation with the number of carbon atoms present in the amine, which in turn was a function of degree of substitution (DS). These fluorescent polysaccharide derivatives are of potential utility in the domain of sensor applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  20. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-06-01

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids.

    PubMed

    Rodrigues, Marieli O; Cantos, Jéssica B; D'Oca, Caroline R Montes; Soares, Karina L; Coelho, Tatiane S; Piovesan, Luciana A; Russowsky, Dennis; da Silva, Pedro A; D'Oca, Marcelo G Montes

    2013-11-15

    This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Synthesis of a Series of Caffeic Acid Phenethyl Amide (CAPA) Fluorinated Derivatives: Comparison of Cytoprotective Effects to Caffeic Acid Phenethyl Ester (CAPE)

    DTIC Science & Technology

    2010-06-11

    the cinnamic acid phenyl ring. Although compound 4c proved to be very cytotoxic in HUVEC over a 24 h period, the toxicity is less apparent over a 5 h...drug development process, as it determines how much of the initial dose actually reaches the target site. Cinnamic acid -derived amides are known to...Synthesis of a series of caffeic acid phenethyl amide (CAPA) fluorinated derivatives: Comparison of cytoprotective effects to caffeic acid phenethyl

  3. Catalytic conversion of lactic acid and its derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokitkar, P.B.; Langford, R.; Miller, D.J.

    1993-12-31

    The catalytic upgrading of lactic acid and methyl lactate is being investigated. With the commercialization of inexpensive starch fermentation technologies, US production of lactic acid is undergoing a surge. Dropping cost and increased availability offer a major opportunity to develop lactic acid as a renewable feedstock for chemicals production. IT can be catalytically converted into several important chemical intermediates currently derived from petroleum including acrylic acid, propanoic acid, and 2,3-pentanedione. The process can expand the potential of biomass as a substitute feedstock for petroleum and can benefit both the US chemical process industry and US agriculture via increased production ofmore » high-value, non-food products from crops and crop byproducts. Reaction studies of lactic acid and its ester are conducted in fixed bed reactors at 250-380{degrees}C and 0.1-0.5 MPa (1-5 atm) using salt catalysts on low surface area supports. Highest selectivities achieved are 42% to acrylic acid and 55% to 2,3-pentanedione from lactic acid over NaNO{sub 3} catalyst on low surface area silica support. High surface area (microporous) or highly acidic supports promote fragmentation to acetaldehyde and thus reduce yields of desirable products. The support acidity gives rice to lactic acid from neat methyl lactate feed but the lactic acid yield goes down after the nitrate salt is impregnated on the support. Both lactic acid and methyl lactate form 2,3-pentanedione. Methyl lactate reactions are more complex since it forms all the products obtained from lactic acid as well as many corresponding esters of the acids obtained from lactic acid (mainly methyl acrylate, methyl propionate, methyl acetate). At high temperatures, methyl acetate and acetic acid yields become significant from methyl lactate whereas lactic acid gives significant amount of acetol at high temperatures.« less

  4. Derivatives of diphosphonic acids: synthesis and biological activity

    NASA Astrophysics Data System (ADS)

    Zolotukhina, M. M.; Krutikov, V. I.; Lavrent'ev, A. N.

    1993-07-01

    The scientific-technical and patent literature on the synthesis of derivatives of diphosphonic acids is surveyed. Various methods of synthesis of diphosphonate, phosphonylphosphinyl, and phosphonophosphate compounds are described. The principal aspects of the use of the above compounds in medicine, biochemistry, and agriculture are examined. The bibliography includes 174 references.

  5. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  6. An Overview of Structurally Modified Glycyrrhetinic Acid Derivatives as Antitumor Agents.

    PubMed

    Xu, Bing; Wu, Gao-Rong; Zhang, Xin-Yu; Yan, Meng-Meng; Zhao, Rui; Xue, Nan-Nan; Fang, Kang; Wang, Hui; Chen, Meng; Guo, Wen-Bo; Wang, Peng-Long; Lei, Hai-Min

    2017-06-02

    Glycyrrhetinic Acid ( GA ), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.

  7. Quantification of acidic compounds in complex biomass-derived streams

    DOE PAGES

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; ...

    2016-05-10

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkalinemore » pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here as well excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.« less

  8. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives.

    PubMed

    Viveros-Ceballos, José Luis; Ordóñez, Mario; Sayago, Francisco J; Cativiela, Carlos

    2016-08-29

    α-Amino-C-phosphinic acids and derivatives are an important group of compounds of synthetic and medicinal interest and particular attention has been dedicated to their stereoselective synthesis in recent years. Among these, phosphinic pseudopeptides have acquired pharmacological importance in influencing physiologic and pathologic processes, primarily acting as inhibitors for proteolytic enzymes where molecular stereochemistry has proven to be critical. This review summarizes the latest developments in the asymmetric synthesis of acyclic and phosphacyclic α-amino-C-phosphinic acids and derivatives, following in the first case an order according to the strategy used, whereas for cyclic compounds the nitrogen embedding in the heterocyclic core is considered. In addition selected examples of pharmacological implications of title compounds are also disclosed.

  9. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P.

    2018-01-01

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).

  11. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase.

    PubMed

    Cui, Yi; Hu, Yong-Hua; Yu, Feng; Zheng, Jing; Chen, Lin-Shan; Chen, Qing-Xi; Wang, Qin

    2017-02-01

    This study was to investigate the inhibition effects of para-substituted cinnamic acid derivatives (4-chlorocinnamic acid, 4-ethoxycinnamic acid and 4-nitrocinnamic acid) on tyrosinase catalyzing the substrates, with the purpose of elucidating the inhibition mechanism of the tested derivatives on tyrosinase by the UV-vis spectrum, fluorescence spectroscopy, copper interacting and molecular docking, respectively. The native-PAGE results showed that 4-chlorocinnamic acid (4-CCA), 4-ethoxycinnamic acid (4-ECA) and 4-nitrocinnamic acid (4-NCA) had inhibitory effects on tyrosinase. Spectrophotometric analysis used to determine the inhibition capabilities of these compounds on tyrosinase catalyzing L-tyrosine (L-Tyr) and L-3,4-Dihydroxyphenylalanine (L-DOPA) as well. The IC 50 values and inhibition constants were further determined. Moreover, quenching mechanisms of tested compounds to tyrosinase belonged to static type and a red shift on fluorescence emission peak occurred when 4-NCA added. Copper interacting and molecular docking demonstrated that 4-CCA could not bind directly to the copper, but it could interact with residues in the active center of tyrosinase. Meanwhile, 4-ECA and 4-NCA could chelate a copper ion of tyrosinase. Anti-tyrosinase activities of para-substituted cinnamic acid derivatives would lay scientific foundation for their utilization in designing of novel tyrosinase inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A new coruleoellagic acid derivative from stems of Rhodamnia dumetorum.

    PubMed

    Lakornwong, Waranya; Kanokmedhakul, Kwanjai; Kanokmedhakul, Somdej

    2018-07-01

    A new coruleoellagic acid derivative, 3,3',4,4',5'-pentamethylcoruleoellagic acid (1) together with nine known compounds, hexamethylcoruleoellagic acid (2), 3,4,3'-tri-O-methylellagic acid (3), heptaphylline (4), 7-methoxymukonal (5), dentatin (6), sinapaldehyde (7), gallic acid (8), 2,6-dimethoxy-4H-pyran-4-one (9) and β-sitosterol (10) were isolated from the stems of Rhodamnia dumetorum. Their structures were identified by physical and spectroscopic data (IR, 1D and 2D NMR, and MS). Compounds 1, 2 and 7-10 were tested for antibacterial activity against six pathogenic bacterial strains (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Methicillin resistant S. aureus (MRSA)).

  13. Reactive Derivatives of Nucleic Acids and Their Components as Affinity Reagents

    NASA Astrophysics Data System (ADS)

    Knorre, Dmitrii G.; Vlasov, Valentin V.

    1985-09-01

    The review is devoted to derivatives of nucleic acids and their components — nucleotides, nucleoside triphosphates, and oligonucleotides carrying reactive groups. Such derivatives are important tools for the investigation of protein-nucleic acid interactions and the functional topography of complex protein and nucleoprotein structures and can give rise to the prospect of being able to influence in a highly selective manner living organisms, including the nucleic acids and the nucleoproteins of the genetic apparatus. The review considers the principal groups of such reagents, the methods of their synthesis, and their properties which determine the possibility of their use for the selective (affinity) modification of biopolymers. The general principles of the construction of affinity reagents and their applications are analysed in relation to nucleotide affinity reagents. The bibliography includes 121 references.

  14. Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative.

    PubMed

    Bitencourt, Fernanda Gobbi; de Brum Vieira, Patrícia; Meirelles, Lucia Collares; Rigo, Graziela Vargas; da Silva, Elenilson Figueiredo; Gnoatto, Simone Cristina Baggio; Tasca, Tiana

    2018-05-01

    Trichomonas vaginalis is an extracellular parasite that binds to the epithelium of the human urogenital tract and causes the sexually transmitted infection, trichomoniasis. In view of increased resistance to drugs belonging to the 5-nitroimidazole class, new treatment alternatives are urgently needed. In this study, eight semisynthetized triterpene derivatives were evaluated for in vitro anti-T. vaginalis activity. Ursolic acid and its derivative, 3-oxime-urs-12-en-28-oic-ursolic acid (9), presented the best anti-T. vaginalis activity when compared to other derivatives, with minimum inhibitory concentration (MIC) at 25 μM. Moreover, 9 was active against several T. vaginalis fresh clinical isolates. Hemolysis assay demonstrated that 9 presented a low hemolytic effect. Importantly, 25 μM 9 was not cytotoxic against the Vero cell lineage. Finally, we demonstrated that compound 9 acts synergistically with metronidazole against a T. vaginalis metronidazole-resistant isolate. This report reveals the high potential of the triterpenoid derivative 9 as trichomonicidal agent.

  15. [Lactic acid inhibits the formation of semen-derived amyloid fibrils].

    PubMed

    Li, Jin-Qing; Song, Ya-Li; Xun, Tian-Rong; Tan, Sui-Yi; Liu, Shu-Wen

    2017-07-20

    To investigate the inhibitory effect of lactic acid on semen-derived amyloid (SEVI) fibril formation. PAP248-286 (2 mg/mL) was incubated with 4.0, 2.0, 1.0, 0.5, 0.25, and 0.125 mg/mL of lactic acid. After incubation for different times, aliquots were drawn from each sample for Thioflavin T (ThT) and Congo red staining to monitor semen-derived amyloid fibril formation. The β sheet structure formation of PAP248-286 was measured by circular dichroism spectrum, and the morphology of amyloid fibrils incubated with or without lactic acid was observed with transmission electron microscopy (TEM). The enhancing effect of amyloid fibril incubated with lactic acid at different time points was determined using virus infection assay. PAP248-286 (2 mg/mL) was incubated with dilutions of vaginal secretion from healthy women, and amyloid fibril formation was detected with ThT and Congo red staining. Lactic acid inhibited SEVI fibril formation in a dose-dependent manner in vitro. Lactic acid at 0.5 mg/mL completely inhibited 2 mg/mL SEVI fibril formation within 48 h. After incubation for 48 h, lactic acid at 1 mg/mL inhibited the formation of β-sheet structure of SEVI (2 mg/mL) and completely inhibited 2 mg/mL PAP248-286 aggregation as observed with TEM. In the presence of lactic acid, PAP248-286 lost the ability to enhance virus infection. Vaginal secretion inhibited SEVI fibril formation in a dose-dependent manner, and virtually no SEVI fibril occurred after incubation of 2 mg/mL PAP248-286 with 67% vaginal secretion. Lactic acid inhibits SEVI fibril formation in vitro.

  16. Cinnamic Acid and Its Derivatives: Mechanisms for Prevention and Management of Diabetes and Its Complications.

    PubMed

    Adisakwattana, Sirichai

    2017-02-21

    With recent insight into the development of dietary supplements and functional foods, search of effective phytochemical compounds and their mechanisms involved in prevention and management of diabetes and its complications are now being assessed. Cinnamic acid and its derivatives occur naturally in high levels of plant-based foods. Among various biological activities, cinnamic acid and its derivatives are associated with a beneficial influence on diabetes and its complications. The aim of the review is to summarize the potential mechanisms of these compounds for prevention and management of diabetes and its complications. Based on several in vitro studies and animal models, cinnamic acid and its derivatives act on different mechanism of actions, including stimulation of insulin secretion, improvement of pancreatic β-cell functionality, inhibition of hepatic gluconeogenesis, enhanced glucose uptake, increased insulin signaling pathway, delay of carbohydrate digestion and glucose absorption, and inhibition of protein glycation and insulin fibrillation. However, due to the limited intestinal absorption being a result of low bioavailability of cinnamic acid and its derivatives, current improvement efforts with entrapping into solid and liquid particles are highlighted. Further human clinical studies are needed to clarify the effects of cinnamic acid and its derivatives in diabetic patients.

  17. Synthesis and Pro-Apoptotic Activity of Novel Glycyrrhetinic Acid Derivatives

    PubMed Central

    Logashenko, Evgeniya B; Salomatina, Oksana V; Markov, A V; Korchagina, Dina V; Salakhutdinov, Nariman F; Tolstikov, Genrikh A; Vlassov, Valentin V; Zenkova, Marina A

    2011-01-01

    Triterpenoids are used for medicinal purposes in many countries. Some, such as oleanolic and glycyrrhetinic acids, are known to be anti-inflammatory and anticarcinogenic. However, the biological activities of these naturally occurring molecules against their particular targets are weak, so the synthesis of new synthetic analogues with enhanced potency is needed. By combining modifications to both the A and C rings of 18βH-glycyrrhetinic acid, the novel synthetic derivative methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate was obtained. This derivative displays high antiproliferative activity in cancer cells, including a cell line with a multidrug-resistance phenotype. It causes cell death by inducing the intrinsic caspase-dependent apoptotic pathway. PMID:21328513

  18. Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives.

    PubMed

    Cunha, Wilson R; de Matos, Geilton X; Souza, Maria Goreti M; Tozatti, Marcos G; Andrade e Silva, Márcio L; Martins, Carlos H G; da Silva, Rosangela; Da Silva Filho, Ademar A

    2010-02-01

    The methylene chloride extract of Miconia ligustroides (DC.) Naudin (Melastomataceae), the isolated compounds ursolic and oleanolic acids and a mixture of these acids, and ursolic acid derivatives were evaluated against the following microorganisms: Bacillus cereus (ATCC 14579), Vibrio cholerae (ATCC 9458), Salmonella choleraesuis (ATCC 10708), Klebsiella pneumoniae (ATCC 10031), and Streptococcus pneumoniae (ATCC 6305). The microdilution method was used for determination of the minimum inhibitory concentration (MIC) during evaluation of the antibacterial activity. The methylene chloride extract showed no activity against the selected microorganisms. Ursolic acid was active against B. cereus, showing a MIC value of 20 microg/mL. Oleanolic acid was effective against B. cereus and S. pneumoniae with a MIC of 80 microg/mL in both cases. The mixture of triterpenes, ursolic and oleanolic acids, did not enhance the antimicrobial activity. However, the acetyl and methyl ester derivatives, prepared from ursolic acid, increased the inhibitory activity for S. pneumoniae.

  19. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  20. Electrooxidation of pyrrole-terminated self-assembled lipoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Cabrita, Joana F.; Viana, Ana S.; Eberle, Christoph; Montforts, Franz-Peter; Mourato, Ana; Abrantes, Luisa M.

    2009-08-01

    New pyrrole derivatives, pyrrolyl lipoic acid (Py-LA 3) and dipyrrolyl lipoic acid (Py 2-LA 2) have been used for surface attachment and immobilisation on gold surfaces, by self-assembly. The electrooxidation of the surface-confined pyrroles was analysed by cyclic voltammetry and the modified electrodes morphological and thickness changes addressed by scanning probe microscopy and ellipsometry. The data support the formation of oligomers as a result of the pendant-pyrrolyl units ease oxidation but provide no evidence of an effective subsequent polymerisation.

  1. Catalytic amino acid production from biomass-derived intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  2. Catalytic amino acid production from biomass-derived intermediates

    PubMed Central

    Deng, Weiping; Zhang, Sui; Gupta, Krishna M.; Hülsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. PMID:29712826

  3. Catalytic amino acid production from biomass-derived intermediates.

    PubMed

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M; Hülsey, Max J; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M; Beckham, Gregg T; Dyson, Paul J; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-05-15

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. Copyright © 2018 the Author(s). Published by PNAS.

  4. Catalytic amino acid production from biomass-derived intermediates

    DOE PAGES

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; ...

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  5. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  6. Cinnamic Acid and Its Derivatives: Mechanisms for Prevention and Management of Diabetes and Its Complications

    PubMed Central

    Adisakwattana, Sirichai

    2017-01-01

    With recent insight into the development of dietary supplements and functional foods, search of effective phytochemical compounds and their mechanisms involved in prevention and management of diabetes and its complications are now being assessed. Cinnamic acid and its derivatives occur naturally in high levels of plant-based foods. Among various biological activities, cinnamic acid and its derivatives are associated with a beneficial influence on diabetes and its complications. The aim of the review is to summarize the potential mechanisms of these compounds for prevention and management of diabetes and its complications. Based on several in vitro studies and animal models, cinnamic acid and its derivatives act on different mechanism of actions, including stimulation of insulin secretion, improvement of pancreatic β-cell functionality, inhibition of hepatic gluconeogenesis, enhanced glucose uptake, increased insulin signaling pathway, delay of carbohydrate digestion and glucose absorption, and inhibition of protein glycation and insulin fibrillation. However, due to the limited intestinal absorption being a result of low bioavailability of cinnamic acid and its derivatives, current improvement efforts with entrapping into solid and liquid particles are highlighted. Further human clinical studies are needed to clarify the effects of cinnamic acid and its derivatives in diabetic patients. PMID:28230764

  7. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Pallu, Reddanna; Pasupulati, Anil Kumar; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2017-11-01

    Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited.

    PubMed

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P

    2018-01-15

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Cooper, George W.

    2001-07-01

    The varied organic suite extracted from the Murchison meteorite contains several amino acids that are common to the biosphere. Some of these have been found to be non-racemic, but the indigenous nature of their L-enantiomeric excesses has been subject to debate in view of possible terrestrial contamination. We have investigated two amino acids of common terrestrial and meteoritic occurrence, alanine and glutamic acid, and assessed their indigenous enantiomeric ratios in the Murchison and Murray meteorites through the ratios of some of their derivatives. Analyzed were: N-acetyl alanine, ??imino propioacetic acid, N-acetyl glutamic acid and pyroglutamic acid. Both alanine derivatives were found to be racemic, while those of glutamic acid showed L-enantiomeric excesses varying from 16% to 47.2% for pyroglutamic acid, and from 8.6% to 41% for N-acetyl glutamic acid. The ?13C was determined for the two enantiomers of Murchison pyroglutamic acid both before and after acid hydrolysis of the lactam to glutamic acid. The values of +27.7 (D-pyro), +10.0 (L-pyro), +32.2 (D-glu) and +14.6 (L-glu) were obtained. The racemic nature of alanine derivatives strongly suggests that alanine itself, as indigenous to the meteorite, is racemic. The explanation of the L-enantiomeric excesses found for glutamic acid derivatives is less direct; however, the variability of the enantiomeric ratios for these compounds and the distinctly lower ?13C values determined for pyroglutamic L-enantiomer point to a terrestrial contamination, possibly dating to the time of fall.

  10. Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C-N and C-O coupling reactions.

    PubMed

    Pereira, G; Vilaça, H; Ferreira, P M T

    2013-02-01

    Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C-N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N'-dimethylethylenediamine as ligand and K(2)CO(3) as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N'-dimethylethylene diamine) was used in the C-O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.

  11. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  12. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    PubMed

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  13. Self-assembled pentacenequinone derivative for trace detection of picric acid.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna

    2013-02-01

    Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.

  14. Severe Acute Local Reactions to a Hyaluronic Acid-derived Dermal Filler

    PubMed Central

    Hays, Geoffrey P.; Caglia, Anthony E.; Caglia, Michael

    2010-01-01

    Injectable fillers are normally well tolerated by patients with little or no adverse effects. The most common side effects include swelling, redness, bruising, and pain at the injection site. This report describes three cases in which patients injected with a hyaluronic acid-derived injectable filler that is premixed with lidocaine developed adverse reactions including persistent swelling, pain, and nodule formation. Two of the three patients' abscesses were cultured for aerobic and anaerobic bacteria and mycobacterium. All three cultures were negative. Abscess persistence in all cases necessitated physical removal and/or enzymatic degradation with hyaluronidase. The effects subsided only after the product had been removed. Two of these patients were subsequently treated with other hyaluronic acid-derived dermal fillers without adverse events. PMID:20725567

  15. Sophorolipid-derived unsaturated and epoxy fatty acid estolides as plasticizers for poly(3-hydroxybutyrate)

    USDA-ARS?s Scientific Manuscript database

    Unsaturated and epoxy fatty acid estolides were synthesized from the omega and omega-1 hydroxy fatty acids derived from sophorolipids (SLs) prepared by fermentation from glucose:soybean oil and glucose:oleic acid, respectively. These estolides were utilized as additives in solution-cast poly(3-hydro...

  16. Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Milovanović, Jelena; Arsenijević, Aleksandar; Stojanović, Bojana; Trifunović, Srećko R.; Radić, Gordana P.

    2016-07-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, CT26 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells.

  17. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    PubMed

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  18. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    PubMed Central

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  19. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    PubMed Central

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  20. Fluorescence studies on binding of pyrene and its derivatives to humic acid

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Maki, M.; Ishikawa, F.; Yoshikawa, T.; Gong, Y.-K.; Miyajima, T.

    2007-07-01

    Binding of pyrene (PyH) and its derivatives to humic acid (HA) has been studied by fluorescence spectroscopy. The nature of the interaction between HA and pyrene derivatives are extensively investigated by employing three derivatives ranging from anionic to cationic compounds: 1-pyrenebutylic acid (PyA), 1-pyrenemethanol (PyM), and 1-pyrenebutyltrimethylammonium bromide (PyB). Binding constants between HA and PyX (X = H, A, M, B) are obtained by steady-state fluorescence quenching techniques, and it is found that PyB has a markedly large binding constant among the pyrene family. This is attributed to a strong electrostatic interaction between cationic PyB and anionic HA. The result suggests that an electrostatic interaction plays a dominant role in binding of pyrenes to humic acid. The importance of electrostatic interaction was also confirmed by a salt effect on the binding constant. Influence of collisional quenching on the binding constant, which causes overestimation of the binding constant, was examined by time-resolved fluorescence spectroscopy as well as temperature effect in steady-state fluorescence measurements. It is elucidated that collisional quenching does not much bring overestimation into the binding constants.

  1. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    PubMed

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Synthesis of α,ω-polyfluorinated α-amino acid derivatives and δ,δ-difluoronorvaline.

    PubMed

    Ulbrich, Dirk; Daniliuc, Constantin G; Haufe, Günter

    2016-03-07

    Intending to synthesize ω,ω-difluoroalkyl amino acid derivatives by oxidative desulfurization-fluorination reactions of suitable arylthio-2-phthalimido butanoates and pentanoates, in addition to small amounts of the target products, mainly α,ω-polyfluorinated amino acid derivatives were formed by additional sulfur-assisted α-fluorination. This novel structural motif was verified spectroscopically as well as by X-ray analysis. A plausible mechanism of formation is suggested. Using a different approach, δ,δ-difluoronorvaline hydrochloride was synthesized with at least 36% enantiomeric excess via deoxofluorination of the corresponding aldehyde.

  3. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  5. Electrochemical Coupling of Biomass-Derived Acids: New C8 Platforms for Renewable Polymers and Fuels.

    PubMed

    Wu, Linglin; Mascal, Mark; Farmer, Thomas J; Arnaud, Sacha Pérocheau; Wong Chang, Maria-Angelica

    2017-01-10

    Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C 6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed.

    PubMed

    Ghassempour, Alireza; Nojavan, Saeed; Talebpour, Zahra; Amiri, Ali Asghar; Najafi, Nahid Mashkouri

    2004-10-20

    In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method. Copyright 2004 American Chemical Society

  8. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    PubMed

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  9. Graphene quantum dots as additives in capillary electrophoresis for separation cinnamic acid and its derivatives.

    PubMed

    Sun, Yaming; Bi, Qing; Zhang, Xiaoli; Wang, Litao; Zhang, Xia; Dong, Shuqing; Zhao, Liang

    2016-05-01

    A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds.

    PubMed

    Radivojevic, Jelena; Skaro, Sanja; Senerovic, Lidija; Vasiljevic, Branka; Guzik, Maciej; Kenny, Shane T; Maslak, Veselin; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2016-01-01

    A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.

  11. Lactic acid as an invaluable green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives.

    PubMed

    Wang, Shi-Fan; Guo, Chao-Lun; Cui, Ke-Ke; Zhu, Yan-Ting; Ding, Jun-Xiong; Zou, Xin-Yue; Li, Yi-Hang

    2015-09-01

    Lactic acid has been used as a bio-based green solvent to study the ultrasound-assisted scale-up synthesis. We report here, for the first time, on the novel and scalable process for synthesis of pyrrole derivatives in lactic acid solvent under ultrasonic radiation. Eighteen pyrrole derivatives have been synthesized in lactic acid solvent under ultrasonic radiation and characterized by (1)H NMR, IR, ESI MS. The results show, under ultrasonic radiation, lactic acid solvent can overcome the scale-up challenges and exhibited many advantages, such as bio-based origin, shorter reaction time, lower volatility, higher yields, and ease of isolating the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  13. Humic acid batteries derived from vermicomposts at different C/N ratios

    NASA Astrophysics Data System (ADS)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  14. Mass spectral analysis of C3 and C4 aliphatic amino acid derivatives.

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Chadha, M. S.

    1971-01-01

    Diagnostic criteria are obtained for the distinction of alpha, beta, gamma, and N-methyl isomers of the C3 and C4 aliphatic amino acids, using mass spectral analysis of the derivatives of these acids. The use of deuterium labeling has helped in the understanding of certain fragmentation pathways.

  15. β-Functionalization of Indolin-2-one-Derived Aliphatic Acids for the Divergent Synthesis of Spirooxindole γ-Butyrolactones.

    PubMed

    Cao, Jing; Dong, Shuding; Jiang, Delu; Zhu, Peiyu; Zhang, Han; Li, Rui; Li, Zhanyi; Wang, Xuanyu; Tang, Weifang; Du, Ding

    2017-04-21

    β-Functionalization of indolin-2-one-derived aliphatic acids has been applied in formal [3 + 2] annualtions for catalyst-free and divergent synthesis of two series of structurally interesting 3,3'-spirooxindole γ-butyrolactones that may be attractive for potential drug discovery. These findings also pave the way for further diversity-oriented synthesis of spirooxindoles starting from indolin-2-one-derived aliphatic acids or their derivatives.

  16. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS.

    PubMed

    Frerot, Eric; Chen, Ting

    2013-10-01

    Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non-proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein-based food product, soy sauce. An acidic fraction was prepared with anion-exchange solid-phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF-MS. α-Glutamyl, γ-glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ-glutamyl dipeptides (70 mg/kg). In addition, N-succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Synthesis and biological activity of alkynoic acids derivatives against mycobacteria

    PubMed Central

    Vilchèze, Catherine; Leung, Lawrence W.; Bittman, Robert; Jacobs, William R.

    2015-01-01

    2-alkynoic acids have bactericidal activity against Mycobacterium smegmatis but their activity fall sharply as the length of the carbon chain increased. In this study, derivatives of 2- alkynoic acids were synthesized and tested against fast- and slow-growing mycobacteria. Their activity was first evaluated in M. smegmatis against their parental 2-alkynoic acids, as well as isoniazid, a first-line antituberculosis drug. The introduction of additional unsaturation or heteroatoms into the carbon chain enhanced the antimycobacterial activity of longer chain alkynoic acids (more than 19 carbons long). In contrast, although the modification of the carboxylic group did not improve the antimycobacterial activity, it significantly reduced the toxicity of the compounds against eukaryotic cells. Importantly, 4-(alkylthio)but-2-ynoic acids, had better bactericidal activity than the parental 2-alkynoic acids and on a par with isoniazid against the slow-grower Mycobacterium bovis BCG. These compounds had also low toxicity against eukaryotic cells, suggesting that they could be potential therapeutic agents against other types of topical mycobacterial infections causing skin diseases including Mycobacterium abscessus, Mycobacterium ulcerans, and Mycobacterium leprae. Moreover, they provide a possible scaffold for future drug development. PMID:26256431

  18. Natural derivatives of diphenolic acid as substitutes for bisphenol-A

    NASA Astrophysics Data System (ADS)

    Ertl, Johanna; Cerri, Elisa; Rizzuto, Matteo; Caretti, Daniele

    2014-05-01

    Diphenolic acid had been originally used in the first epoxy resins and was later on forgotten as it was substituted by the cheaper bisphenol A. But in the recent years major health concerns have been raised as bisphenol A has a pseudo-hormonal effect on the body, playing the role of estrogen it can cause a severe impact on the organism, especially in males. Moreover it is produced from acetone and phenol, both from fossil, and thus limited resources. On the contrary, diphenolic acid is synthesized from levulinic acid and phenol. Levulinic acid being directly produced by hydrolysis of biomass. By substituting the fossil phenol with natural phenols from lignin or plant extraction we are able to synthesize a fully renewable substitute for bisphenol A. The reactions to yield an epoxy resin have been examined and the reactivity with epichlorohydrin is satisfying. Moreover, some of the derivatives of diphenolic acid have interesting curing properties and preliminary results show excellent properties of the cured resin, including thermal stability and pencil hardness.

  19. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  1. Synthesis and Biological Evaluation of Non-Hydrolizable 1,2,3-Triazole Linked Sialic Acid Derivatives as Neuraminidase Inhibitors

    PubMed Central

    Weïwer, Michel; Chen, Chi-Chang; Kemp, Melissa M.; Linhardt, Robert J.

    2013-01-01

    α-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition (“click chemistry”). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the α-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en. PMID:24223493

  2. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold.

    PubMed

    Zall, Andrea; Kieser, Daniel; Höttecke, Nicole; Naumann, Eva C; Thomaszewski, Binia; Schneider, Katrin; Steinbacher, Dirk T; Schubenel, Robert; Masur, Stefan; Baumann, Karlheinz; Schmidt, Boris

    2011-08-15

    Modulation of γ-secretase activity holds potential for the treatment of Alzheimer's disease. Most NSAID-derived γ-secretase modulators feature a carboxylic acid, which may impair blood-brain barrier permeation. The structure activity relationship of 33 carbazoles featuring diverse carboxylic acid isosteres or metabolic precursors thereof was established in a cellular amyloid secretion assay. The modulatory activity was observed for acidic moieties and metabolically labile esters only, which supports our hypothesis of an acid-lysine interaction to be relevant for this type of γ-secretase modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  4. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  5. Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives.

    PubMed

    Cipollina, Chiara; Salvatore, Sonia R; Muldoon, Matthew F; Freeman, Bruce A; Schopfer, Francisco J

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30-55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the precept that the benefit of

  6. Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review.

    PubMed

    Aucoin, Monique; Cooley, Kieran; Knee, Christopher; Fritz, Heidi; Balneaves, Lynda G; Breau, Rodney; Fergusson, Dean; Skidmore, Becky; Wong, Raimond; Seely, Dugald

    2017-03-01

    The use of natural health products in prostate cancer (PrCa) is high despite a lack of evidence with respect to safety and efficacy. Fish-derived omega-3 fatty acids possess anti-inflammatory effects and preclinical data suggest a protective effect on PrCa incidence and progression; however, human studies have yielded conflicting results. A search of OVID MEDLINE, Pre-MEDLINE, Embase, and the Allied and Complementary Medicine Database (AMED) was completed for human interventional or observational data assessing the safety and efficacy of fish-derived omega-3 fatty acids in the incidence and progression of PrCa. Of 1776 citations screened, 54 publications reporting on 44 studies were included for review and analysis: 4 reports of 3 randomized controlled trials, 1 nonrandomized clinical trial, 20 reports of 14 cohort studies, 26 reports of 23 case-control studies, and 3 case-cohort studies. The interventional studies using fish oil supplements in patients with PrCa showed no impact on prostate-specific antigen levels; however, 2 studies showed a decrease in inflammatory or other cancer markers. A small number of mild adverse events were reported and interactions with other interventions were not assessed. Cohort and case-control studies assessing the relationship between dietary fish intake and the risk of PrCa were equivocal. Cohort studies assessing the risk of PrCa mortality suggested an association between higher intake of fish and decreased risk of prostate cancer-related death. Current evidence is insufficient to suggest a relationship between fish-derived omega-3 fatty acid and risk of PrCa. An association between higher omega-3 intake and decreased PrCa mortality may be present but more research is needed. More intervention trials or observational studies with precisely measured exposure are needed to assess the impact of fish oil supplements and dietary fish-derived omega-3 fatty acid intake on safety, PrCa incidence, treatment, and progression.

  7. Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review

    PubMed Central

    Aucoin, Monique; Cooley, Kieran; Knee, Christopher; Fritz, Heidi; Balneaves, Lynda G.; Breau, Rodney; Fergusson, Dean; Skidmore, Becky; Wong, Raimond; Seely, Dugald

    2016-01-01

    Background. The use of natural health products in prostate cancer (PrCa) is high despite a lack of evidence with respect to safety and efficacy. Fish-derived omega-3 fatty acids possess anti-inflammatory effects and preclinical data suggest a protective effect on PrCa incidence and progression; however, human studies have yielded conflicting results. Methods. A search of OVID MEDLINE, Pre-MEDLINE, Embase, and the Allied and Complementary Medicine Database (AMED) was completed for human interventional or observational data assessing the safety and efficacy of fish-derived omega-3 fatty acids in the incidence and progression of PrCa. Results. Of 1776 citations screened, 54 publications reporting on 44 studies were included for review and analysis: 4 reports of 3 randomized controlled trials, 1 nonrandomized clinical trial, 20 reports of 14 cohort studies, 26 reports of 23 case-control studies, and 3 case-cohort studies. The interventional studies using fish oil supplements in patients with PrCa showed no impact on prostate-specific antigen levels; however, 2 studies showed a decrease in inflammatory or other cancer markers. A small number of mild adverse events were reported and interactions with other interventions were not assessed. Cohort and case-control studies assessing the relationship between dietary fish intake and the risk of PrCa were equivocal. Cohort studies assessing the risk of PrCa mortality suggested an association between higher intake of fish and decreased risk of prostate cancer–related death. Conclusions. Current evidence is insufficient to suggest a relationship between fish-derived omega-3 fatty acid and risk of PrCa. An association between higher omega-3 intake and decreased PrCa mortality may be present but more research is needed. More intervention trials or observational studies with precisely measured exposure are needed to assess the impact of fish oil supplements and dietary fish-derived omega-3 fatty acid intake on safety, Pr

  8. Investigation on the ZBG-functionality of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase inhibitors.

    PubMed

    Musso, Loana; Cincinelli, Raffaella; Zuco, Valentina; Zunino, Franco; Nurisso, Alessandra; Cuendet, Muriel; Giannini, Giuseppe; Vesci, Loredana; Pisano, Claudio; Dallavalle, Sabrina

    2015-10-15

    A series of alternative Zn-binding groups were explored in the design of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Most of the synthesized compounds were less effective than the parent hydroxamic acid. However, the profile of activity shown by the analog bearing a hydroxyurea head group, makes this derivative promising for further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synthesis, structure and cytotoxic activity of acetylenic derivatives of betulonic and betulinic acids

    NASA Astrophysics Data System (ADS)

    Bębenek, Ewa; Chrobak, Elwira; Wietrzyk, Joanna; Kadela, Monika; Chrobak, Artur; Kusz, Joachim; Książek, Maria; Jastrzębska, Maria; Boryczka, Stanisław

    2016-02-01

    A series of acetylenic derivatives of betulonic and betulinic acids has been synthesized and characterized by 1H and 13C NMR, IR and MS spectroscopy. The structure of propargyl betulonate 4 and propargyl betulinate-DMF solvate 8A was solved by X-ray diffraction. Thermal properties were examined using a DSC technique. The resulting alkynyl derivatives, as well as betulin 1 and betulinic acid 3, were evaluated in vitro for their cytotoxic activity against human T47D breast cancer, CCRF/CEM leukemia, SW707 colorectal, murine P388 leukemia and BALB3T3 normal fibroblasts cell lines. Several of the obtained compounds have a favorable cytotoxic profile than betulin 1. Propargyl betulinate 8 was the most active derivative, being up to 3-fold more potent than betulin 1 against the human leukemia (CCRF/CEM) cell line, with an IC50 value of 3.9 μg/mL.

  10. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.

    PubMed

    Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong

    2016-02-06

    A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.

  11. 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC-SPE-NMR and LC-MS techniques.

    PubMed

    Kenny, O; Smyth, T J; Hewage, C M; Brunton, N P; McLoughlin, P

    2014-02-01

    The combination of hyphenated techniques, LC-SPE-NMR and LC-MS, to isolate and identify minor isomeric compounds from an ethyl acetate fraction of Taraxacum officinale root was employed in this study. Two distinct fractions of 4-hydroxyphenylacetic acid derivatives of inositol were isolated and characterised by spectroscopic methods. The (1)H NMR spectra and MS data revealed two groups of compounds, one of which were derivatives of the di-4-hydroxyphenylacetic acid derivative of the inositol compound tetrahydroxy-5-[2-(4-hydroxyphenyl)acetyl] oxycyclohexyl-2-(4-hydroxyphenyl) acetate, while the other group consisted of similar tri-substituted inositol derivatives. For both fractions the derivatives of inositols vary in the number of 4-hydroxyphenylacetic acid groups present and their position and geometry on the inositol ring. In total, three di-substituted and three tri-substituted 4-hydroxyphenylacetic acid inositol derivates were identified for the first time along with a further two previously reported di-substituted inositol derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.

    PubMed

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S

    2008-05-22

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  13. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    PubMed Central

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S.

    2008-01-01

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum. PMID:18728765

  14. Anti-proliferative ambuic acid derivatives from Hawaiian endophytic fungus Pestalotiopsis sp. FT172.

    PubMed

    Li, Chun-Shun; Yang, Bao-Jun; Turkson, James; Cao, Shugeng

    2017-08-01

    Five previously undescribed ambuic acid derivatives, pestallic acids A-E and three known analogs were isolated from the cultured broth of Pestalotiopsis sp. FT172. The structures of the pestallic acids A-E were determined through the analysis of HRMS and NMR spectroscopic data. The absolute configurations (ACs) of pestallic acids B-E were assigned by comparison of the experimental electric circular dichroism (ECD) spectra or the optical rotations with those in the literature. All compounds were tested against A2780 and cisplatin resistant A2780 (A2780CisR) cell lines. Pestallic acid E and (+)-ambuic acid showed potent activities with IC 50 values from 3.3 to 17.0 μM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.

    2017-01-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).

  16. Acid base chemistry of luteolin and its methyl-ether derivatives: A DFT and ab initio investigation

    NASA Astrophysics Data System (ADS)

    Amat, Anna; De Angelis, Filippo; Sgamellotti, Antonio; Fantacci, Simona

    2008-09-01

    The acid-base chemistry of luteolin, a flavonoid with important pharmacological and dyeing properties, and of the related methyl ether derivatives have been investigated by DFT and MP2 methods, testing different computational setups. We calculate the pK's of all the possible deprotonation sites, for which no experimental assignment could be achieved. The calculated pK's deliver a different acidity order for the two most acidic deprotonation sites between luteolin and its methyl ether derivatives, due to intramolecular hydrogen bonding in luteolin. A lowest p Ka of 6.19 is computed for luteolin, in good agreement with available experimental data.

  17. Synthesis and evaluation of triazole linked glycosylated 18β-glycyrrhetinic acid derivatives as anticancer agents.

    PubMed

    Parida, Pravat Kumar; Sau, Abhijit; Ghosh, Tamashree; Jana, Kuladip; Biswas, Kaushik; Raha, Sanghamitra; Misra, Anup Kumar

    2014-08-15

    A series of glycosyl triazol linked 18β-glycyrrhetinic acid (GA) derivatives have been synthesized using 1,3-dipolar cycloaddition reaction of per-O-acetylated glycosyl azide derivatives (4a-h) with propargyl ester of 18β-glycyrrhetinic acid (GA) (2 and 3) following the concept of 'Click chemistry'. The synthesized triazole derivatives were de-O-acetylated to furnish compounds (7a-h and 8a-c) with free hydroxyl groups in the carbohydrate moieties, which were evaluated for their anticancer potential against human cervical cancer cells (HeLa) and normal kidney epithelial (NKE) cells. GA (1), compound 7d, compound 7g and compound 8c showed promising anticancer activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    PubMed Central

    Zhou, Yongjin J.; Buijs, Nicolaas A.; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  19. Synthesis of pyroglutamic acid derivatives via double michael reactions of alkynones.

    PubMed

    Scansetti, Myriam; Hu, Xiangping; McDermott, Benjamin P; Lam, Hon Wai

    2007-05-24

    In the presence of substoichiometric quantities of potassium tert-butoxide and an additional metal salt, amide-tethered diacids undergo double Michael reactions with alkynones to provide highly functionalized pyroglutamic acid derivatives. The metal salt was found to play an important role in improving the diastereoselectivities of the reactions.

  20. One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis.

    PubMed

    Hu, Xun; Jiang, Shengjuan; Wu, Liping; Wang, Shuai; Li, Chun-Zhu

    2017-03-07

    Direct conversion of biomass-derived xylose and furfural into levulinic acid, a platform molecule, via acid-catalysis has been accomplished for the first time in dimethoxymethane/methanol. Dimethoxymethane acted as an electrophile to transform furfural into 5-hydroxymethylfurfural (HMF). Methanol suppressed both the polymerisation of the sugars/furans and the Aldol condensation of levulinic acid/ester.

  1. Electrophilic fluorination of pyroglutamic acid derivatives: application of substrate-dependent reactivity and diastereoselectivity to the synthesis of optically active 4-fluoroglutamic acids.

    PubMed

    Konas, D W; Coward, J K

    2001-12-28

    Electrophilic fluorination of enantiomerically pure 2-pyrrolidinones (4) derived from (L)-glutamic acid has been investigated as a method for the synthesis of single stereoisomers of 4-fluorinated glutamic acids. Reaction of the lactam enolate derived from 9 with NFSi results in a completely diastereoselective monofluorination reaction to yield the monocyclic trans-substituted alpha-fluoro lactam product 21. Unfortunately, a decreased kinetic acidity in 21 and other structurally related monofluorinated products renders them resistant to a second fluorination. In contrast, the bicyclic lactam 12 is readily difluorinated under the standard conditions described to yield the alpha,alpha-difluoro lactam 24. The difference in reactivity between the two types of related lactams is attributed mainly to the presence or lack of a steric interaction between the base used for deprotonation and the protecting group present in the pyrrolidinone substrates. This conclusion was reached based on analysis of the X-ray crystal structure of 21, molecular modeling, and experimental evidence. The key intermediates 21 and 24 are converted to (2S,4R)-4-fluoroglutamic acid and (2S)-4,4-difluoroglutamic acid, respectively.

  2. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors.

    PubMed

    Qian, Keduo; Kuo, Reen-Yun; Chen, Chin-Ho; Huang, Li; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2010-04-22

    In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl-betulinic acid (MSB) analogues were also designed to better understand the contribution of the C-3' dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3), was also employed to study the influence of the backbone and the C-3 modification toward the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents and led to the design and synthesis of compound 12 (EC(50): 0.0006 microM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.

  3. Enhancing the Bioconversion of Azelaic Acid to Its Derivatives by Response Surface Methodology.

    PubMed

    Khairudin, Nurshafira; Basri, Mahiran; Fard Masoumi, Hamid Reza; Samson, Shazwani; Ashari, Siti Efliza

    2018-02-13

    Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R² of 0.9732).The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3) was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC 50 (50% inhibition of cell viability) value for AzA and AzA derivative was demonstrated. The IC 50 value for AzA was 85.28 μg/mL, whereas the IC 50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.

  4. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.

    PubMed

    Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A

    1994-12-01

    In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (< 35%) and higher fecal excretion of 5-ASA and its metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.

  5. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    PubMed

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    There is increasing evidence to indicate that nutrition is an important factor involved in the onset and development of several chronic human diseases including cancer, cardiovascular disease (CVD), type II diabetes and obesity. Clinical studies implicate excessive consumption of medium-chain saturated fatty acids (SFA) and trans-fatty acids (TFA) as risk factors for CVD, and in the aetiology of other chronic conditions. Ruminant-derived foods are significant sources of medium-chain SFA and TFA in the human diet, but also provide high-quality protein, essential micronutrients and several bioactive lipids. Altering the fatty acid composition of ruminant-derived foods offers the opportunity to align the consumption of fatty acids in human populations with public health policies without the need for substantial changes in eating habits. Replacing conserved forages with fresh grass or dietary plant oil and oilseed supplements can be used to lower medium-chain and total SFA content and increase cis-9 18:1, total conjugated linoleic acid (CLA), n-3 and n-6 polyunsaturated fatty acids (PUFA) to a variable extent in ruminant milk. However, inclusion of fish oil or marine algae in the ruminant diet results in marginal enrichment of 20- or 22-carbon PUFA in milk. Studies in growing ruminants have confirmed that the same nutritional strategies improve the balance of n-6/n-3 PUFA, and increase CLA and long-chain n-3 PUFA in ruminant meat, but the potential to lower medium-chain and total SFA is limited. Attempts to alter meat and milk fatty acid composition through changes in the diet fed to ruminants are often accompanied by several-fold increases in TFA concentrations. In extreme cases, the distribution of trans 18:1 and 18:2 isomers in ruminant foods may resemble that of partially hydrogenated plant oils. Changes in milk fat or muscle lipid composition in response to diet are now known to be accompanied by tissue-specific alterations in the expression of one or more

  6. Construction of divergent fused heterocycles via an acid-promoted intramolecular ipso-Friedel-Crafts alkylation of phenol derivatives.

    PubMed

    Yokosaka, Takuya; Shiga, Naoki; Nemoto, Tetsuhiro; Hamada, Yasumasa

    2014-05-02

    Two different cascade cyclization processes were developed using aryl group-substituted propargyl alcohol derivatives with a p-hydroxybenzylamine unit as common substrates. Using TFA as an acid promoter, an intramolecular ipso-Friedel-Crafts alkylation of phenol derivatives, formation of an iminium cation via a rearomatization-promoted C-C bond cleavage, an aza-Prins reaction, and a 6-membered ring formation proceeded sequentially, producing a variety of fused-tricyclic dihydroquinoline derivatives in 45-99% yield. In addition, a one-pot sequential silver acetate-catalyzed hydroamination/etherification-acid-promoted skeletal rearrangement was examined using the same series of substrates, affording fused-tricyclic indole/benzofuran derivatives in 66-89% yield.

  7. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  8. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  9. 2-Thiophenecarboxylic acid hydrazide Derivatives: Synthesis and Anti-Tuberculosis Studies

    NASA Astrophysics Data System (ADS)

    Fahmi, M. R. G.; Khumaidah, L.; Ilmiah, T. K.; Fadlan, A.; Santoso, M.

    2018-04-01

    One of the most frequent and widespread infectious diseases especially in developing countries is tuberculosis (TB). The number of TB drug resistant tend to increase, and there has been no new TB drug introduce since the 1960s. Six 2-Thiophenecarboxylic acid hydrazide derivatives were synthesized in 90-97% yields, and 2-thiophenecarbonylhydrazone-5, 7-dibromoisatin showed the highest activity in inhibiting M. tuberculosis H37Rv.

  10. Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization

    PubMed Central

    Yanai, Ryoji; Mulki, Lama; Hasegawa, Eiichi; Takeuchi, Kimio; Sweigard, Harry; Suzuki, Jun; Gaissert, Philipp; Vavvas, Demetrios G.; Sonoda, Koh-Hei; Rothe, Michael; Schunck, Wolf-Hagen; Miller, Joan W.; Connor, Kip M.

    2014-01-01

    Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)–epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD. PMID:24979774

  11. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid.

    PubMed

    Santra, Dines Chandra; Bera, Manas Kumar; Sukul, Pradip Kumar; Malik, Sudip

    2016-02-01

    2,6-Divinylpyridine-appended anthracene derivatives flanked by two alkyl chains at the 9,10-position of the core have been designed, synthesized, and characterized by NMR, MALDI-TOF, FTIR, and single-crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6-trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton-induced intramolecular charge transfer (ICT) as well as electron transfer from the electron-rich anthracene to the electron-deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrasound-assisted Extraction of Ursolic Acid from the Flowers of Ixora coccinia Linn (Rubiaceae) and Antiproliferative Activity of Ursolic Acid and Synthesized Derivatives

    PubMed Central

    Alves Monteath, Silvana Amadeu Ferreira; Maciel, Maria Aparecida M.; Vega, Raquel Garcia; de Mello, Heloisa; de Araújo Martins, Carollina; Esteves-Souza, Andressa; Gattass, Cerli Rocha; Echevarria, Aurea

    2017-01-01

    Background: Ixora coccinea Linn (Rubiaceae) is an evergreen shrub with bright scarlet colored flowers found in several tropical and subtropical countries. It is used as an ornamental and medicinal plant. Phytochemical studies revealed that its major special metabolites are triterpene acids, such as ursolic and oleanolic acid. Objective: To evaluate the isolation of ursolic acid (UA) (1) from methanol extracts of I. coccinea flowers through two methodologies, to prepare four derivatives, and to evaluate the cytotoxic effect against six cancer cell lines. Materials and Methods: The UA was isolated from vegetal material by percolation at room temperature and by ultrasound-assisted extraction. The preparation of derivatives was performed according to literature methods, and the cytotoxic effects were evaluated using the MTT (3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay. Results: The most efficient extraction was achieved through ultrasound irradiation with a yield of 35% after KOH-impregnated silica in chromatography column. Furthermore, four derivatives (3, 5, 6, 7) of UA were prepared and evaluated, including 1, against two lung cancer (A549 and H460) and four leukemia (K562, Lucena, HL60, and Jurkat) cell lines. Generally, results showed that 1 and 7 were the most active compounds against the assayed cell lines. Also, the cytotoxic effects observed on terpenes 1 and 7 were higher when compared with cisplatin, used as positive control, with the exception of Jurkat cell line. Conclusion: The efficiency of such an alternative extraction method led to the principal and abundant active component, 1, of I. coccinea, thus representing a considerable contribution for promising triterpenoid in cancer chemotherapy. SUMMARY The ultrasound-assisted extraction of Ixora coccinea flowers improved of the ursolic acid isolationMethanolic extract from flowers of I. coccinea provided, by ultrasound irradiation, after KOH-impregnated silica in chromatography column

  13. Direct quantitation of the preservatives benzoic and sorbic acid in processed foods using derivative spectrophotometry combined with micro dialysis.

    PubMed

    Fujiyoshi, Tomoharu; Ikami, Takahito; Kikukawa, Koji; Kobayashi, Masato; Takai, Rina; Kozaki, Daisuke; Yamamoto, Atsushi

    2018-02-01

    The preservatives benzoic acid and sorbic acid are generally quantified with separation techniques, such as HPLC or GC. Here we describe a new method for determining these compounds in processed food samples based on a narrowness of the UV-visible spectral band width with derivative processing. It permits more selective identification and determination of target analytes in matrices. After a sample is purified by micro dialysis, UV spectra of sample solutions were measured and fourth order derivatives of the spectrum were calculated. The amplitude between the maximum and minimum values in a high-order derivative spectrum was used for the determination of benzoic acid and sorbic acid. Benzoic acid and sorbic acid levels in several commercially available processed foods were measured by HPLC and the proposed spectrometry method. The levels obtained by the two methods were highly correlated (r 2 >0.97) for both preservatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Charge-conversional poly(amino acid)s derivatives as a drug delivery carrier in response to the tumor environment.

    PubMed

    Yoon, Se Rim; Yang, Hee-Man; Park, Chan Woo; Lim, Sujin; Chung, Bong Hyun; Kim, Jong-Duk

    2012-08-01

    A charge-converting and pH-dependent nanocarrier was achieved by conjugating 2,3-dimethylmaleic anhydride (DMMA) to the amino group of an octadecyl grafted poly (2-hydroxyethyl aspartamide) (PHEA-g-C(18)-NH(2)) backbone, thereby forming a spherical micelle. PHEA, a poly(amino acid)s derivative, was derived from poly(succinimide), which is biocompatible and biodegradable. DMMA, a detachable component at the tumor site, was added, preventing aggregation with negative blood serum and enhancing the nanocarrier's cellular uptake. The polymeric micelle was comprehensively characterized and doxorubicin was encapsulated successively. The cellular uptake and anticancer therapeutic effect were evaluated by flow cytometry, confocal laser scanning microscopy, and a MTT assay. The properties of the nanocarrier can further be exploited to develop an early detection module for cancer. The present work is also expected to advance the study of designing smart carriers for drug and gene delivery. Copyright © 2012 Wiley Periodicals, Inc.

  15. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    PubMed

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  16. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams.

    PubMed

    Zafrilla, P; Ferreres, F; Tomás-Barberán, F A

    2001-08-01

    From red raspberries, ellagic acid, its 4-arabinoside, its 4' (4' '-acetyl) arabinoside, and its 4' (4' '-acetyl)xyloside, as well as quercetin and kaempferol 3-glucosides, were identified. In addition, two unidentified ellagic acid derivatives were detected. The free radical scavenging activity of the ellagic acid derivatives was evaluated by using the DPPH method and compared to that of Trolox. All of the isolated compounds showed antioxidant activity. The effect of processing to obtain jams on raspberry phenolics was evaluated. The flavonol content decreased slightly with processing and more markedly during storage of the jams. The ellagic acid derivatives, with the exception of ellagic acid itself, remained quite stable with processing and during 6 months of jam storage. The content of free ellagic acid increased 3-fold during the storage period. The initial content (10 mg/kg of fresh weight of raspberries) increased 2-fold with processing, and it continued increasing up to 35 mg/kg after 1 month of storage of the jam. Then a slight decrease was observed until 6 months of storage had elapsed. The increase observed in ellagic acid could be explained by a release of ellagic acid from ellagitannins with the thermal treatment.

  18. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  19. Spectrofluorimetric and Potentiometric Determination of Acidity Constants of 4-(4'-Acetyloxy-3'-Methoxybenzylidene)-5-Oxazolone Derivatives.

    PubMed

    Taskiran, Derya Topkaya; Urut, Gulsiye Ozturk; Ayata, Sevda; Alp, Serap

    2017-03-01

    4-(4'-acetyloxy-3'-methoxybenzylidene)-5-oxazolone fluorescent molecules bearing four different aryl groups attached to the 2-position of 5-oxazolone ring have been investigated by spectrophotometric and potentiometric techniques in solution media. The acidity constants (pKa) of the fluorescent molecules were precisely determined in acetone, acetonitrile, dimethylformamide and in 1:1 mixture of toluene-isopropanol. The studied derivatives were titrated with tetrabutylammonium hydroxide and non-aqueous perchloric acid by scanning the basic and acidic region of the pH scale. A computerizable derivative method was used in order to descript precisely the end point and pKa values. The molecules investigated performed well-shaped and stoichiometric potentiometric titration curves.

  20. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.

    PubMed

    Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M

    2017-02-01

    New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC 50 =1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Study on reduction and back extraction of Pu(IV) by urea derivatives in nitric acid conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, G.A.; Xiao, S.T.; Yan, T.H.

    2013-07-01

    The reduction kinetics of Pu(IV) by hydroxyl-semicarbazide (HSC), hydroxyurea (HU) and di-hydroxyurea (DHU) in nitric acid solutions were investigated separately with adequate kinetic equations. In addition, counter-current cascade experiments were conducted for Pu split from U in nitric acid media using three kinds of reductant, respectively. The results show that urea derivatives as a kind of novel salt-free reductant can reduce Pu(IV) to Pu(III) rapidly in the nitric acid solutions. The stripping experimental results showed that Pu(IV) in the organic phase can be stripped rapidly to the aqueous phase by the urea derivatives, and the separation factors of plutonium /uraniummore » can reach more than 10{sup 4}. This indicates that urea derivatives is a kind of promising salt-free agent for uranium/plutonium separation. In addition, the complexing effect of HSC with Np(IV) was revealed, and Np(IV) can be back-extracted by HSC with a separation factor of about 20.« less

  2. Design, Synthesis and Biological Evaluation of Betulinic Acid Derivatives as New Antitumor Agents for Leukemia.

    PubMed

    Waechter, Fernanda; da Silva, Gloria N S; Willig, Julia B; de Oliveira, Cristiane B; Vieira, Bruna D; Trivella, Daniela B B; Zimmer, Aline R; Buffon, Andreia; Pilger, Diogo A; Gnoatto, Simone C B

    2017-01-01

    Chronic myeloid leukemia (CML) is currently treated with imatinib, a Bcr-Abl inhibitor. However, resistance to this drug usually develops over time. Triptolide, a diterpenoid triepoxide, has been shown active against CML cells resistant to imatinib, acting mainly on the level of Bcr-Abl transcription inhibition. Here, we used the triterpene betulinic acid, a known proteasome inhibitor with potential antileukemic activity, as a scaffold for the generation of analogues with predicted triptolide biological activity. Betulinic acid derivatives were designed based on the structure-activity relationship of triptolide and evaluated for their cytotoxic effects in CML cells, lymphocytes and human keratinocytes (HaCaT), as well as against the proteasome complex. The main modification performed on betulinic acid was fluorination at C-28 and epoxidation, both of which are responsible for enhancing activity of triptolide. A total of 10 compounds were obtained: 6 previously described and 4 novel compounds. The cytotoxic activity over a CML cell line (K562) was assessed using flow cytometry and compared to lymphocytes and HaCaT. The results show that betulinic acid was the most cytotoxic compound against CML cells, showing a good selectivity index for cancer over normal cells. The most important trend for the activity in betulinic acid derivatives is the presence of a free hydroxyl group at C-3 and a carboxyl group at C-28. Results also indicated that the epoxide is important for enhancing the activity, while modification at C-28 worsens the activity. Proteasome inhibition assays suggest that proteasome is the main target for betulinic acid and its derivatives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    PubMed Central

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  4. Characterization of pH-fractionated humic acids derived from Chinese weathered coal.

    PubMed

    Zhang, Shuiqin; Yuan, Liang; Li, Wei; Lin, Zhian; Li, Yanting; Hu, Shuwen; Zhao, Bingqiang

    2017-01-01

    To reduce the compositional and structural heterogeneity of humic acids (HAs) and achieve better use of HA resources, in this study, we report a new sequential dissolution method for HAs derived from Chinese weathered coal. This method was used to separate HAs into seven fractions by adjusting the pH (3-10) of the extraction solution. The results showed that the HA fractions derived from Chinese weathered coal were concentrated up to 90.31% in the lower pH solutions (3-7). The compositional and structural characteristics of the HA fractions were determined by elemental analysis; ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), and solid-state 13 C-nuclear magnetic resonance (NMR) spectroscopies; and other techniques. The results showed significant differences among the HA fractions. The concentrations of the total acidic groups and the carboxyl groups decreased with the increasing pH of the extraction solution. However, the HA fractions derived from extraction solutions with pH 3-4 had relatively lower aromaticity but a higher protonated carbon content. The HA fractions derived from extraction solutions with pH 6-7 had the highest aromaticity and the greatest abundance of COO/N-C=O. This study demonstrated that adjusting the pH of the extraction solution is one way to fractionate HAs from Chinese weathered coal and to obtain HA fractions with compositions and structures that could serve as useful material for study and utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. In Vitro Anti-Toxoplasma gondii and Antimicrobial Activity of Amides Derived from Cinnamic Acid.

    PubMed

    Silveira, Graziela Rangel; Campelo, Karoline Azerêdo; Lima, Gleice Rangel Silveira; Carvalho, Lais Pessanha; Samarão, Solange Silva; Vieira-da-Motta, Olney; Mathias, Leda; Matos, Carlos Roberto Ribeiro; Vieira, Ivo José Curcino; Melo, Edesio José Tenório de; Maria, Edmilson José

    2018-03-28

    Most cinnamic acids, their esters, amides, aldehydes, and alcohols present several therapeutic actions through anti-inflammatory, antitumor, and inhibitory activity against a great variety of microorganisms. In this work, eight amines derived from cinnamic acid were synthesized and tested against host cells infected with Toxoplasma gondii and the bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and three strains of Staphylococcus aureus . Compounds 3 and 4 showed the best result against intracellular T. gondii , presenting antiparasitic activity at low concentrations (0.38 and 0.77 mM). The antibacterial activity of these compounds was also evaluated by the agar microdilution method, and amides 2 and 5 had a minimum inhibitory concentration of 250 µg mL -1 against two strains of S. aureus (ATCC 25923 and bovine strain LSA 88). These also showed synergistic action along with a variety of antibiotics, demonstrating that amines derived from cinnamic acid have potential as pharmacological agents.

  6. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study.

    PubMed

    Zígolo, M Antonela; Salinas, Maximiliano; Alché, Laura; Baldessari, Alicia; Liñares, Guadalupe García

    2018-08-01

    We present an efficient approach to the synthesis of a series of glycyrrhetinic acid derivatives. Six derivatives, five of them new compounds, were obtained through chemoenzymatic reactions in very good to excellent yield. In order to find the optimal reaction conditions, the influence of various parameters such as enzyme source, nucleophile:substrate ratio, enzyme:substrate ratio, solvent and temperature was studied. The excellent results obtained by lipase catalysis made the procedure very efficient considering their advantages such as mild reaction conditions and low environmental impact. Moreover, in order to explain the reactivity of glycyrrhetinic acid and the acetylated derivative to different nucleophiles in the enzymatic reactions, molecular docking studies were carried out. In addition, one of the synthesized compounds exhibited remarkable antiviral activity against TK + and TK- strains of Herpes simplex virus type 1 (HSV-1), sensitive and resistant to acyclovir (ACV) treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Identification of gut-derived metabolites of maslinic acid, a bioactive compound from Olea europaea L.

    PubMed

    Lozano-Mena, Glòria; Sánchez-González, Marta; Parra, Andrés; Juan, M Emília; Planas, Joana M

    2016-09-01

    Maslinic acid has been described to exert a chemopreventive activity in colon cancer. Hereby, we determined maslinic acid and its metabolites in the rat intestine previous oral administration as a first step in elucidating whether this triterpene might be used as a nutraceutical. Maslinic acid was orally administered at 1, 2, and 5 mg/kg to male Sprague-Dawley for 2 days. At 24 h after the last administration, the content of the duodenum and jejunum, ileum, cecum, and colon was collected and extracted with methanol 80% prior to LC-APCI-MS analysis. The developed method was validated providing suitable sensitivity (LOQ of 5 nM), good recovery (97.8 ± 3.6%), linear correlation, and appropriate precision (< 9%). Maslinic acid was detected in all the segments with higher concentrations in the distal part of the intestine. LC-APCI-LTQ-ORBITRAP-MS allowed the identification of 11 gut-derived metabolites that were formed by mono-, dihydroxylation, and dehydrogenation reactions. Maslinic acid undergoes phase I reactions resulting in a majority of monohydroxylated metabolites without the presence of phase II derivatives. The high concentration of maslinic acid achieved in the intestine suggests that it could exert a beneficial effect in the prevention of colon cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Novel boronic acid derivatives of bis(indolyl) methane as anti-MRSA agents.

    PubMed

    Mandal, Santi M; Pegu, Rupa; Porto, William F; Franco, Octavio L; Pratihar, Sanjay

    2017-05-15

    Towards the search for a new generation of antibiotics to control methicillin-resistant Staphylococcus aureus (MRSA), the design and synthesis of various bis indolyl methane (BIM) derivatives based on their different electron donor and acceptor properties of the substituents have been made, in which boronic acid derivatives of BIM are found to be active against MRSA. The observed evidence with the lead compound reveals their strong anti-MRSA activity, which paves the way of design and further development of a new generation antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    PubMed

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  10. Development of piperic acid derivatives from Piper nigrum as UV protection agents.

    PubMed

    Choochana, Piyapong; Moungjaroen, Jirapan; Jongkon, Nathjanan; Gritsanapan, Wandee; Tangyuenyongwatana, Prasan

    2015-04-01

    There is a need for the discovery of novel natural and semi-synthetic sunscreen that is safe and effective. Piperine has a UV absorption band of 230-400 nm with high molar absorptivity. This compound has a high potential to be developed to sunscreen. This study develops new UV protection compounds from piperine by using chemical synthesis. Piperine was isolated from Piper nigrum L. (Piperaceae) fruits, converted to piperic acid by alkaline hydrolysis, and prepared as ester derivatives by chemical synthesis. The piperate derivatives were prepared as 5% o/w emulsion, and the SPF values were evaluated. The best compound was submitted to cytotoxicity test using MTT assay. Piperic acid was prepared in 86.96% yield. Next, piperic acid was reacted with alcohols using Steglich reaction to obtain methyl piperate, ethyl piperate, propyl piperate, isopropyl piperate, and isobutyl piperate in 62.39-92.79% yield. All compounds were prepared as 5% oil in water emulsion and measured its SPF and UVA/UVB values using an SPF-290S analyzer. The SPF values (n = 6) of the piperate derivatives were 2.68 ± 0.17, 8.89 ± 0.46, 6.86 ± 0.91, 16.37 ± 1.8, and 9.68 ± 1.71. The UVA/UVB ratios of all compounds ranged from 0.860 to 0.967. Cytotoxicity of isopropyl piperate was evaluated using human skin fibroblast cells and the IC50 was equal to 120.2 μM. From the results, isopropyl piperate is an outstanding compound that can be developed into a UV protection agent.

  11. Compost-derived humic acids as regulators for reductive degradation of nitrobenzene.

    PubMed

    Yuan, Ying; Xi, Beidou; He, Xiaosong; Tan, Wenbing; Gao, Rutai; Zhang, Hui; Yang, Chao; Zhao, Xinyu; Huang, Caihong; Li, Dan

    2017-10-05

    Nitrobenzene (NB) is a major class of contaminants in soil and groundwater. The current methods involved in the reductive degradation of NB suffer either cost-ineffective or slow conversion rate. Here, we investigated the mechanisms regarding compost-derived humic acids (HAs) as cost-effective regulators to enhance the reduction of NB to aniline (AN). Our results show that the compost-derived HAs, which have been reduced by a Pd-H 2 catalytic system, were able to reduce NB to AN, and their redox properties were the main factors governing the reduction of NB to AN. The decreasing reduction of NB was mainly caused by the decreasing phenol content of compost-derived HAs during composting. In addition, the results reveal that the increase in the generation content of AN was mainly attributed to the increase in the quinones, aromaticity and humic-like components of compost-derived HAs. The findings demonstrate that the HAs derived from compost are effective regulators to enhance the reduction of NB to AN, and that they exert a bright application prospect for the remediation of the NB-contaminated soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    PubMed

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  13. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  14. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    PubMed

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  15. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid.

    PubMed

    Pramanik, Subhamay; Bhalla, Vandana; Kumar, Manoj

    2013-09-02

    Aggregates of hexaphenylbenzene derivatives 3, having pyrene groups form network of fluorescent nanofibres in presence of mercury ions. Further, fluorescent nanofibres of 3-Hg(2+) supramolecular ensemble exhibit sensitive and pronounced response towards the picric acid. In addition, the solution coated paper strips of 3-Hg(2+) supramolecular ensemble can detect picric acid in the range of 2.29 fg/cm(2), thus, providing a simple, portable and low cost method for detection of picric acid in solution and in contact mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.

    PubMed

    Kumar, Sonali; Sharma, Rashi; Garcia, Megan; Kamel, Joseph; McCarthy, Caroline; Muth, Aaron; Phanstiel, Otto

    2012-12-07

    A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.

  17. Peptaibols, tetramic acid derivatives, isocoumarins, and sesquiterpenes from a Bionectria sp. (MSX 47401).

    PubMed

    Figueroa, Mario; Raja, Huzefa; Falkinham, Joseph O; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-06-28

    An extract of the filamentous fungus Bionectria sp. (MSX 47401) showed both promising cytotoxic activity (>90% inhibition of H460 cell growth at 20 μg/mL) and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). A bioactivity-directed fractionation study yielded one new peptaibol (1) and one new tetramic acid derivative (2), and the fungus biosynthesized diverse secondary metabolites with mannose-derived units. Five known compounds were also isolated: clonostachin (3), virgineone (4), virgineone aglycone (5), AGI-7 (6), and 5,6-dihydroxybisabolol (7). Compounds 5 and 7 have not been described previously from natural sources. Compound 1 represents the second member of the peptaibol structural class that contains an ester-linked sugar alcohol (mannitol) instead of an amide-linked amino alcohol, and peptaibols and tetramic acid derivatives have not been isolated previously from the same fungus. The structures of the new compounds were elucidated primarily by high-field NMR (950 and 700 MHz), HRESIMS/MS, and chemical degradations (Marfey's analysis). All compounds (except 6) were examined for antibacterial and antifungal activities. Compounds 2, 4, and 5 showed antimicrobial activity against S. aureus and several MRSA isolates.

  18. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  19. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  20. Derivatives of xanthic acid are novel antioxidants: application to synaptosomes.

    PubMed

    Lauderback, Christopher M; Drake, Jennifer; Zhou, Daohong; Hackett, Janna M; Castegna, Alessandra; Kanski, Jaroslaw; Tsoras, Maria; Varadarajan, Sridhar; Butterfield, D Allan

    2003-04-01

    Xanthic acids have long been known to act as reducing agents. Recently, D609, a tricyclodecanol derivative of xanthic acid, has been reported to have anti-apoptotic and anti-inflammatory properties that are attributed to specific inhibition of phosphatidyl choline phospholipase C (PC-PLC). However, because oxidative stress is involved in both of these cellular responses, the possibility that xanthates may act as antioxidants was investigated in the current study. Finding that xanthates efficiently scavenge hydroxyl radicals, the mechanism by which D609 and other xanthate derivatives may protect against oxidative damage was further examined. The xanthates studied, especially D609, mimic glutathione (GSH). Xanthates scavenge hydroxyl radicals and hydrogen peroxide, form disulfide bonds (dixanthogens), and react with electrophilic products of lipid oxidation (acrolein) in a manner similar to GSH. Further, upon disulfide formation, dixanthogens are reduced by glutathione reductase to a redox active xanthate. Supporting its role as an antioxidant, D609 significantly (p < 0.01) reduces free radical-induced changes in synaptosomal lipid peroxidation (TBARs), protein oxidation (protein carbonyls), and protein conformation. Thus, in addition to inhibitory effects on PC-PLC, D609 may prevent cellular apoptotic and inflammatory cascades by acting as antioxidants and novel GSH mimics. These results are discussed with reference to potential therapeutic application of D609 in oxidative stress conditions.

  1. Erythrolic acids A-E, Meroterpenoids from a Marine-Derived Erythrobacter sp

    PubMed Central

    Hu, Youcai; Legako, Aaron G.; Espindola, Ana Paula D.M.; MacMillan, John B.

    2012-01-01

    Erythrolic acids A-E (1–5) are five unusual meroterpenoids isolated from the bacterium Erythrobacter sp. derived from a marine sediment sample collected in Galveston, TX. The structures were elucidated by means of detailed spectroscopic analysis and chemical derivatization. The erythrolic acids contain a 4-hydroxybenzoic acid appended with a modified terpene side chain. The side chain modifications include oxidation of a terminal methyl substituent and in the case of 1–4 addition of a 2-carbon unit to give terpene side chains of unusual length; C22 for 1 and 2, C17 for 3 and C12 for 4. The relative and absolute configurations of the meroterpenoids were determined by coupling constant, NOE and Mosher’s analysis. In vitro cytotoxicity towards a number of non-small cell lung cancer (NSCLC) cell lines revealed only modest activity for erythrolic acid D (4) (2.5 μM against HCC44). The discovery of these unusual diterpenes, along with the previously reported erythrazoles, demonstrate the natural product potential of a previously unstudied group of bacteria for drug discovery. The unusual nature of the terpene side chain, we believe, involves an oxidation of a terminal methyl group to a carboxylic acid and subsequent Claisen condensation with acetyl-CoA. PMID:22384985

  2. Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain.

    PubMed

    Alves de Oliveira, Regiane; Vaz Rossell, Carlos Eduardo; Venus, Joachim; Cândida Rabelo, Sarita; Maciel Filho, Rubens

    2018-07-20

    Furfural and HMF are known for a negative impact in different bioprocesses, including lactic acid fermentation. There are already some methods described to remove these inhibitory compounds from the hydrolysates. However, these methods also reduce the yield of sugars from the hydrolysis and increase the process costs. In this work, the detoxification of sugarcane-derived hemicellulosic hydrolysate was performed by Lactobacillus plantarum during the fermentation time. At the end of the fermentation, a decrease of 98% of furfural and 86% of HMF and was observed, with a final lactic acid titer of 34.5 g/L. The simultaneous fermentation and bio-detoxification simplify the process and reduce operational costs, leading to economic competitiveness of second-generation feedstock for lactic acid production. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.

    PubMed

    Winston, Jenessa A; Theriot, Casey M

    2016-10-01

    Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI. Published by Elsevier Ltd.

  4. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    USGS Publications Warehouse

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  5. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence

    PubMed Central

    Shanmugam, Muthu K.; Dai, Xiaoyun; Kumar, Alan Prem; Tan, Benny KH; Sethi, Gautam; Bishayee, Anupam

    2014-01-01

    Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a ubiquitous pentacyclic multifunctional triterpenoid, widely found in several dietary and medicinal plants. Natural and synthetic OA derivatives can modulate multiple signaling pathways including nuclear factor-κB, AKT, signal transducer and activator of transcription 3, mammalian target of rapamycin, caspases, intercellular adhesion molecule 1, vascular endothelial growth factor, and poly (ADP-ribose) polymerase in a variety of tumor cells. Importantly, synthetic derivative of OA, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), and its C-28 methyl ester (CDDO-Me) and C28 imidazole (CDDO-Im) have demonstrated potent antiangiogenic and antitumor activities in rodent cancer models. These agents are presently under evaluation in phase I studies in cancer patients. This review summarizes the diverse molecular targets of OA and its derivatives and also provides clear evidence on their promising potential in preclinical and clinical situations. PMID:24486850

  6. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  7. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans.

    PubMed

    Yao, Ruimiao; Hou, Weiliang; Bao, Jie

    2017-11-01

    Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans.

    PubMed

    Deline, Marshall; Keller, Julia; Rothe, Michael; Schunck, Wolf-Hagen; Menzel, Ralph; Watts, Jennifer L

    2015-10-21

    Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.

  9. Mesomorphic properties of multi-arm chenodeoxycholic acid-derived liquid crystals

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Yao, Miao; Wu, Shuang-jie; Yao, Dan-Shu; Hu, Jian-She; He, Xiao-zhi; Tian, Mei

    2017-12-01

    Four multi-arm liquid crystals (LCs) based on chenodeoxycholic acid, termed as 2G-PD, 2G-IB, 2G-BD and 5G-GC, respectively, have been synthesised by convergent method, which nematic LC, 6-(4-((4-ethoxybenzoyl)oxy)phenoxy)-6-oxohexanoic acid, was used as side arm, and chenodeoxycholic acid (CDCA) was used as the first core, 1,2-propanediol (PD), isosorbide (IB), 4,4‧-biphenyldiol (BD) and glucose (GC) were used as the second core, respectively. The first generation product, CDCA2EA, displayed cholesteric phase. The second generation products 2G-BD and 5G-GC displayed cholesteric phase, while 2G-PD and 2G-IB exhibited nematic phase. The multi-arm LC, 2G-IB, did not display cholesteric phase although the two cores were all chiral ones. The result indicated that chirality of the second core sometimes made the multi-arm LCs display nematic phase when cholesteric CDCA-derivative were introduced into the second core. Some attention should be paid on molecular conformation besides the introduction of chiral cores for multi-chiral-core LCs to obtain cholesteric phase.

  10. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  11. Mercury-modulated supramolecular assembly of a hexaphenylbenzene derivative for selective detection of picric acid.

    PubMed

    Bhalla, Vandana; Kaur, Sharanjeet; Vij, Varun; Kumar, Manoj

    2013-05-06

    Spherical aggregates of hexaphenylbenzene derivative 5 undergo metal-induced modulation to form nanorods in the presence of Hg(2+) ions, which exhibit selective and sensitive response toward picric acid (PA) with a detection limit of 6.87 ppb.

  12. Graphene-sensitized microporous membrane/solvent microextraction for the preconcentration of cinnamic acid derivatives in Rhizoma Typhonii.

    PubMed

    Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong

    2014-09-01

    A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phellodonic acid, a new biologically active hirsutane derivative from Phellodon melaleucus (Thelephoraceae, Basidiomycetes).

    PubMed

    Stadler, M; Anke, T; Dasenbrock, J; Steglich, W

    1993-01-01

    A new hirsutane derivative, phellodonic acid (1), has been isolated from fermentations of Phellodon melaleucus strain 87113. Its structure was elucidated by spectroscopic methods. The compound exhibits antibiotic activities towards bacteria and fungi. 1 is the first bioactive metabolite from cultures of a species belonging to the family Thelephoraceae.

  14. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  15. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology.

    PubMed

    Harizi, Hedi; Corcuff, Jean-Benoît; Gualde, Norbert

    2008-10-01

    Arachidonic acid (AA)-derived eicosanoids belong to a complex family of lipid mediators that regulate a wide variety of physiological responses and pathological processes. They are produced by various cell types through distinct enzymatic pathways and act on target cells via specific G-protein-coupled receptors. Although originally recognized for their capacity to elicit biological responses such as vascular homeostasis, protection of the gastric mucosa and platelet aggregation, eicosanoids are now understood to regulate immunopathological processes ranging from inflammatory responses to chronic tissue remodelling, cancer, asthma, rheumatoid arthritis and autoimmune disorders. Here, we review the major properties of eicosanoids and their expanding roles in biology and medicine.

  16. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  17. cis-β-Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence.

    PubMed

    Tang, Khanh G; Kent, Greggory T; Erden, Ihsan; Wu, Weiming

    2017-10-04

    cis -β-Bromostyrene derivatives were synthesized stereospecifically from cinnamic acids through β-lactone intermediates. The synthetic sequence did not require the purification of the β-lactone intermediates although they were found to be stable and readily purified in most cases.

  18. Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj

    2012-06-15

    Novel pentacenequinone derivative 3 has been synthesized using the Suzuki-Miyaura coupling protocol which forms fluorescent nanoaggregates in aqueous media due to its aggregation-induced emission enhancement attributes and selectively senses picric acid with a detection limit of 500 ppb.

  19. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  20. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.

    PubMed

    Curiel, Jose Antonio; Betancor, Lorena; de las Rivas, Blanca; Muñoz, Rosario; Guisan, Jose M; Fernández-Lorente, Gloria

    2010-05-26

    A recombinant tannase from Lactobacillus plantarum , overexpressed in Escherichia coli , was purified in a single step by metal chelate affinity chromatography on poorly activated nickel supports. It was possible to obtain 0.9 g of a pure enzyme by using only 20 mL of chromatographic support. The pure enzyme was immobilized and stabilized by multipoint covalent immobilization on highly activated glyoxyl agarose. Derivatives obtained by multipoint and multisubunit immobilization were 500- and 1000-fold more stable than both the soluble enzyme and the one-point-immobilized enzyme in experiments of thermal and cosolvent inactivation, respectively. In addition, up to 70 mg of pure enzyme was immobilized on 1 g of wet support. The hydrolysis of tannic acid was optimized by using the new immobilized tannase derivative. The optimal reaction conditions were 30% diglyme at pH 5.0 and 4 degrees C. Under these conditions, it was possible to obtain 47.5 mM gallic acid from 5 mM tannic acid as substrate. The product was pure as proved by HPLC. On the other hand, the immobilized biocatalyst preserved >95% of its initial activity after 1 month of incubation under the optimal reaction conditions.

  1. New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives

    NASA Astrophysics Data System (ADS)

    Momeni, Shima; Nematollahi, Davood

    2017-02-01

    Electrochemical behavior of acid orange 7 has been exhaustively studied in aqueous solutions with different pH values, using cyclic voltammetry and constant current coulometry. This study has provided new insights into the mechanistic details, pH dependence and intermediate structure of both electrochemical oxidation and reduction of acid orange 7. Surprisingly, the results indicate that a same redox couple (1-iminonaphthalen-2(1H)-one/1-aminonaphthalen-2-ol) is formed from both oxidation and reduction of acid orange 7. Also, an additional purpose of this work is electrochemical synthesis of three new derivatives of 1-amino-4-(phenylsulfonyl)naphthalen-2-ol (3a-3c) under constant current electrolysis via electrochemical oxidation (and reduction) of acid orange 7 in the presence of arylsulfinic acids as nucleophiles. The results indicate that the electrogenerated 1-iminonaphthalen-2(1 H)-one participates in Michael addition reaction with arylsulfinic acids to form the 1-amino-3-(phenylsulfonyl)naphthalen-2-ol derivatives. The synthesis was carried out in an undivided cell equipped with carbon rods as an anode and cathode.

  2. Design, synthesis, and molecular docking studies of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives as xanthine oxidase inhibitors.

    PubMed

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Zhang, Yi; Meng, Fan-Hao

    2018-04-01

    A series of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives (1a-j) was designed and synthesized as novel xanthine oxidase inhibitors. Among them, the L/D-phenylalanine derivatives (1d and 1i) and the L/D-tryptophan derivatives (1e and 1j) were effective with micromolar level potency. In particular, the L-phenylalanine derivative 1d (IC 50  = 3.0 μm) and the D-phenylalanine derivative 1i (IC 50  = 2.9 μm) presented the highest potency and were both more potent than the positive control allopurinol (IC 50  = 8.1 μm). Preliminary SAR analysis pointed that an aromatic amino acid fragment, for example, phenylalanine or tryptophan, was essential for the inhibition; the D-amino acid derivative presented equal or greater potency compared to its L-enantiomer; and the 9,10-anthraquinone moiety was welcome for the inhibition. Molecular simulations provided rational binding models for compounds 1d and 1i in the xanthine oxidase active pocket. As a result, compounds 1d and 1i could be promising lead compounds for further investigation. © 2017 John Wiley & Sons A/S.

  3. Five new prenylated p-hydroxybenzoic acid derivatives with antimicrobial and molluscicidal activity from Piper aduncum leaves.

    PubMed

    Orjala, J; Erdelmeier, C A; Wright, A D; Rali, T; Sticher, O

    1993-12-01

    Five new prenylated benzoic acid derivatives, methyl 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxybenzoate (1), 1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-hydroxybenzoate (2), 1-(1-methylethyl)-4-methyl-3-cyclohexenyl 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoate (3), methyl 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoate (4), and 4-hydroxy-3-(3-methyl-2-butenyl)-5-(3-methyl-2-butenyl)-benzoic acid (5) were isolated from the dried leaves of Piper aduncum L. (Piperaceae). Together with the new metabolites, four known prenylated benzoic acid derivatives, 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (6), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (nervogenic acid, 7), methyl 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoate (8), and methyl 4-hydroxy-3-(3-methyl-2-butenyl)-benzoate (9) as well as, dillapiol (10), myristicin, and the three sesquiterpenes humulene, caryophyllene epoxide, and humulene epoxide were isolated. Compounds 7, 8, and 9 are reported as natural products for the first time. The structures of the isolates were elucidated by spectroscopic methods, mainly 1D-and 2D-NMR spectroscopy. Isolates 4-7, 9, and 10 were molluscicidal while 2, 5-7, and 9 displayed significant antibacterial activities.

  4. The 3-amino-derivative of gamma-cyclodextrin as chiral selector of Dns-amino acids in electrokinetic chromatography.

    PubMed

    Giuffrida, A; Contino, A; Maccarrone, G; Messina, M; Cucinotta, V

    2009-04-24

    The enantioseparation of the enantiomeric pairs of 10 Dns derivatives of alpha-amino acids was successfully carried out by using for the first time the 3-amino derivative of the gamma-cyclodextrin. The effects of pH and selector concentration on the migration times and the resolutions of analytes were studied in detail. 3-Deoxy-3-amino-2(S),3(R)-gamma-cyclodextrin (GCD3AM) shows very good chiral recognition ability even at very low concentrations at all the three investigated values of pH, as shown by the very large values of selectivity and resolution towards several pairs of amino acids. The role played by the cavity, the substitution site and the protonation equilibria on the observed properties of chiral selectivity, on varying the specific amino acid involved, is discussed.

  5. meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity.

    PubMed

    Reyes-Melo, Karen; García, Abraham; Romo-Mancillas, Antonio; Garza-González, Elvira; Rivas-Galindo, Verónica M; Miranda, Luis D; Vargas-Villarreal, Javier; Favela-Hernández, Juan Manuel J; Camacho-Corona, María Del Rayo

    2017-10-15

    Thirty-three meso-dihydroguaiaretic acid (meso-DGA) derivatives bearing esters, ethers, and amino-ethers were synthesized. All derivatives were tested against twelve drug-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including sensitive (H37Rv) and multidrug-resistant Mycobacterium tuberculosis strains. Among the tested compounds, four esters (7, 11, 13, and 17), one ether (23), and three amino-ethers (30, 31, and 33) exhibited moderate activity against methicillin-resistant Staphylococcus aureus, whereas 30 and 31 showed better results than levofloxacin against vancomycin-resistant Enterococcus faecium. Additionally, nineteen meso-DGA derivatives displayed moderate to potent activity against M. tuberculosis H37Rv with minimum inhibitory concentration (MIC) values ranging from 3.125 to 50µg/mL. Seven meso-DGA derivatives bearing amino-ethers (26-31 and 33) exhibited the lowest MICs against M. tuberculosis H37Rv and G122 strains, with 31 being as potent as ethambutol (MICs of 3.125 and 6.25µg/mL). The presence of positively charged group precursors possessing steric and hydrophobic features (e.g. N-ethylpiperidine moieties in meso-31) resulted essential to significantly increase the antimycobacterial properties of parent meso-DGA as supported by the R-group pharmacophoric and field-based QSAR analyses. To investigate the safety profile of the antimycobacterial compounds, cytotoxicity on Vero cells was determined. The amino-ether 31 exhibited a selectivity index value of 23, which indicate it was more toxic to M. tuberculosis than to mammalian cells. Therefore, 31 can be considered as a promising antitubercular agent for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  7. 4-Mercaptophenylboronic acid SAMs on gold: comparison with SAMs derived from thiophenol, 4-mercaptophenol, and 4-mercaptobenzoic acid.

    PubMed

    Barriet, David; Yam, Chi Ming; Shmakova, Olga E; Jamison, Andrew C; Lee, T Randall

    2007-08-14

    We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). Specifically, ellipsometry was used to assess the formation of monolayer films, and contact angle measurements were used to determine the surface hydrophilicity and homogeneity. Separately, PM-IRRAS was used to evaluate the molecular composition and orientation as well as the intermolecular hydrogen bonding within the SAMs. Finally, XPS was used to evaluate the film composition and surface coverage (i.e., packing density), which was observed to increase in the following order: TP < MP < MPBA < MBA. A rationalization for the observed packing differences is presented. The XPS data indicate further that ultrahigh vacuum conditions induce the partial dehydration of MPBA SAMs with the concomitant formation of surface boronic anhydride species. Overall, the analytical data collectively show that the MPBA moieties in the SAMs exist in the acid form rather than the anhydride form under ambient laboratory conditions. Furthermore, stability studies find that MPBA SAMs are surprisingly labile in basic solution, where the terminal B-C bonds are cleaved by the attack of hydroxide ion and strongly basic amine nucleophiles. The unanticipated lability observed here should be considered by those wishing to use MPBA moieties in carbohydrate-sensing applications.

  8. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.

    PubMed

    Lee, Jong-Min; Upare, Pravin P; Chang, Jong-San; Hwang, Young Kyu; Lee, Jeong Ho; Hwang, Dong Won; Hong, Do-Young; Lee, Seung Hwan; Jeong, Myung-Geun; Kim, Young Dok; Kwon, Young-Uk

    2014-11-01

    Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. EIMS Fragmentation Pathways and MRM Quantification of 7α/β-Hydroxy-Dehydroabietic Acid TMS Derivatives

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Aubert, Claude; Belt, Simon T.

    2015-09-01

    EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH4-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.

  10. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  11. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives.

    PubMed

    Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L

    2013-08-21

    The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.

  12. Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress.

    PubMed

    Amano, Ryota; Yamashita, Atsuya; Kasai, Hirotake; Hori, Tomoka; Miyasato, Sayoko; Saito, Setsu; Yokoe, Hiromasa; Takahashi, Kazunori; Tanaka, Tomohisa; Otoguro, Teruhime; Maekawa, Shinya; Enomoto, Nobuyuki; Tsubuki, Masayoshi; Moriishi, Kohji

    2017-09-01

    Several cinnamic acid derivatives have been reported to exhibit antiviral activity. In this study, we prepared 17 synthetic cinnamic acid derivatives and screened them to identify an effective antiviral compound against hepatitis C virus (HCV). Compound 6, one of two hit compounds, suppressed the viral replications of genotypes 1b, 2a, 3a, and 4a with EC 50 values of 1.5-8.1 μM and SI values of 16.2-94.2. The effect of compound 6 on the phosphorylation of Tyr 705 in signal transducer and activator of transcription 3 (STAT3) was investigated because a cinnamic acid derivative AG490 was reported to suppress HCV replication and the activity of Janus kinase (JAK) 2. Compound 6 potently suppressed HCV replication, but it did not inhibit the JAK1/2-dependent phosphorylation of STAT3 Tyr 705  at the same concentration. Furthermore, a pan-JAK inhibitor tofacitinib potently impaired phosphorylation of STAT3 Tyr 705 , but it did not inhibit HCV replication in the replicon cells and HCV-infected cells at the same concentration, supporting the notion that the phosphorylated state of STAT3 Tyr 705 is not necessarily correlated with HCV replication. The production of reactive oxygen species (ROS) was induced by treatment with compound 6, whereas N-acetyl-cysteine restored HCV replication and impaired ROS production in the replicon cells treated with compound 6. These data suggest that compound 6 inhibits HCV replication via the induction of oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Deepa B.; Padukudru, Mahesh A.; Chitturi, CH. M. Kumari; Vimalambike, Manjunath G.

    2017-01-01

    Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis. PMID:29190639

  14. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC).

    PubMed

    Anantharaju, Preethi G; Reddy, Deepa B; Padukudru, Mahesh A; Chitturi, Ch M Kumari; Vimalambike, Manjunath G; Madhunapantula, SubbaRao V

    2017-01-01

    Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis.

  15. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn.

    PubMed

    Neves, Nathália de Andrade; Stringheta, Paulo César; Gómez-Alonso, Sergio; Hermosín-Gutiérrez, Isidro

    2018-06-30

    Extracts of jabuticaba peels show complex chromatographic profiles at 360 nm, with some peaks presenting UV-Vis spectra resembling those of flavonol glycosides and others resembling that of ellagic acid. The presence and tentative identification of these phenolic compounds were comprehensively studied in four species of Brazilian jabuticaba fruit - Plinia trunciflora, variety 'jabuticaba de cabinho'; P. caulifora, varieties 'jabuticaba paulista' and 'jabuticaba canaã-açu'; P. jaboticaba, variety 'jabuticaba sabará'; and P. phitrantha, variety 'jabuticaba branca-vinho' - using HPLC-DAD-ESI-MS n . Seventeen flavonols derived from quercetin and three from myricetin and eighteen derivatives of ellagic acid and eleven of methyl ellagic acid were detected. Most of them were newly described and mainly occurred in glycosylated and acylglycosylated forms. Some compounds were missing in one variety, such as the absence of methyl ellagic acid derivatives in 'jabuticaba branca-vinho', and others only appeared in one variety, thus suggesting potential capacity for varietal differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    PubMed Central

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023

  17. Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Elečková, Lenka; Mikosch, Hans; Andruch, Vasil

    2015-07-01

    The infrared and Raman spectra of dehydroacetic acid and some of its derivatives were measured. The assignments of the vibrational bands were based on quantum chemical calculations and normal coordinate analysis. The optimized structures, atomic net charges and dipole moments of the investigated molecules were also results of our quantum chemical calculations. The analysis of the last properties made possible a deeper insight into the structure and substituent effect on the investigated molecules. One of them is presented in the graphical abstract.

  18. Exploration of pyrrole derivatives to find an effective potassium-competitive acid blocker with moderately long-lasting suppression of gastric acid secretion.

    PubMed

    Nishida, Haruyuki; Fujimori, Ikuo; Arikawa, Yasuyoshi; Hirase, Keizo; Ono, Koji; Nakai, Kazuo; Inatomi, Nobuhiro; Hori, Yasunobu; Matsukawa, Jun; Fujioka, Yasushi; Imanishi, Akio; Fukui, Hideo; Itoh, Fumio

    2017-07-01

    With the aim to discover a novel excellent potassium-competitive acid blocker (P-CAB) that could perfectly overcome the limitations of proton pump inhibitors (PPIs), we tested various approaches based on pyrrole derivative 1 as a lead compound. As part of a comprehensive approach to identify a new effective drug, we tried to optimize the duration of action of the pyrrole derivative. Among the compounds synthesized, fluoropyrrole derivative 20j, which has a 2-F-3-Py group at position 5, fluorine atom at position 4, and a 4-Me-2-Py sulfonyl group at the first position of the pyrrole ring, showed potent gastric acid-suppressive action and moderate duration of action in animal models. On the basis of structural properties including a slightly larger ClogP value (1.95), larger logD value (0.48) at pH 7.4, and fairly similar pKa value (8.73) compared to those of the previously optimized compound 2a, compound 20j was assumed to undergo rapid transfer to the stomach and have a moderate retention time there after single administration. Therefore, compound 20j was selected as a new promising P-CAB with moderately long duration of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Multi-Component synthesis and computational studies of three novel thio-barbituric acid carbohydrate derivatives

    NASA Astrophysics Data System (ADS)

    Gupta, Stuti; Khare, Naveen K.

    2017-01-01

    The thio-barbituric acid is convenient starting compound for the preparation of fused heterocycles and its 5-substituted derivatives which are pharmacologically one of the most important classes of compounds. The fused compounds of thio-barbituric acid, 4-(1R,2S,3S,4S)-1,2,3,4,5-tetrahydroxy pentyl-10-phenyl-1,3,6,8,9,10 hexahydro-2,7-dithiooxopyrido [2,3-d; 6,5'] dipyrimidine-4,5 diones (1), 4-(1S,2S,3S,4S)-1,2,3,4,5-tetrahydroxy pentyl-10-phenyl-1,3,6,8,9,10 hexahydro-2,7-dithiooxopyrido [2,3-d; 6,5'] dipyrimidine-4,5 diones (2), 3-(1R,2S,3S)-1,2,3,4-tetrahydroxy butyl-10-phenyl-1,3,6,8,9,10 hexahydro-2,7-dithiooxopyrido [2,3-d; 6,5'] dipyrimidine-4,5 diones (3) have been synthesized in single step by the condensation of thio-barbituric acid with sugars (L-rhamnose, L-fucose and L-arabinose) & aniline using para-toluene sulfonic acid (p-TSA) as an effective acid catalyst under refluxing conditions. The molecular structure and detailed spectroscopic analysis of all three novel synthesized thiones derivatives have been performed using experimental techniques like 1H, 13C NMR, 2D (COSY, HSQC, DEPT-135 and DEPT-90) as well as theoretical calculations by density functional theory (DFT) using B3LYP and 6-311G + (d, p) basis set. The strength and nature of weak intramolecular interactions have been studied by atom in molecule (AIM) approach. Global reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule.

  20. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  1. Mass spectrometry of analytical derivatives. 2. “Ortho” and “Para” effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids1

    PubMed Central

    Todua, Nino G.; Mikaia, Anzor I.

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187

  2. Antitumor activity of newly synthesized oxo and ethylidene derivatives of bile acids and their amides and oxazolines.

    PubMed

    Bjedov, Srđan; Jakimov, Dimitar; Pilipović, Ana; Poša, Mihalj; Sakač, Marija

    2017-04-01

    Bile acid derivatives with modifications in side chain and modifications on steroid skeleton were synthetized and their antitumor activity against five human cancer cell lines was investigated. Modifications in side chain include amid group, formed in reaction with 2-amino-2-methylpropanol, and 4,4-dimethyloxazoline group, obtained after cyclization of amides. In the steroid skeleton oxo groups were introduced in position 7 (2, 2a, 2b) and 7,12 (3, 3a, 3b). Ethylidene groups were introduced regio- and stereoselectively on C-7, and/or without stereoselectivity on C-3 by Wittig reaction. By combination of these modifications, a series of 19 bile acid derivatives were synthesized. Compounds containing both C-7 ethylidene and C-12 carbonyl groups (6, 6a, 6b) shown very good antitumor activity with IC 50 <5µM. Altering carboxylic group to amide or oxazoline group has positive effect on cytotoxicity. Different molecular descriptors were determined in silico and after principal component analysis was found that molecular descriptor BLTF96 can be used for fast assessment of experimental cytotoxicity of bile acid derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Anti-Inflammatory Effects of Cajaninstilbene Acid and Its Derivatives.

    PubMed

    Huang, Mei-Yan; Lin, Jing; Lu, Kuo; Xu, Hong-Gui; Geng, Zhi-Zhong; Sun, Ping-Hua; Chen, Wei-Min

    2016-04-13

    Cajaninstilbene acid (CSA) is one of the active components isolated from pigeon pea leaves. In this study, anti-inflammatory effects of CSA and its synthesized derivatives were fully valued with regard to their activities on the production of nitric oxide (NO) and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in vitro cell model, as well as their impacts on the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae model by live image analysis. Furthermore, the anti-inflammatory mechanism of this type of compounds was clarified by western-blot and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that CSA, as well as its synthesized derivatives 5c, 5e and 5h, exhibited strong inhibition activity on the release of NO and inflammatory factor TNF-α and IL-6 in lipopolysaccharides (LPS)-stimulated murine macrophages. CSA and 5c greatly inhibited the migration of neutrophils and macrophages in injury zebrafish larvae. CSA and 5c treatment greatly inhibited the phosphorylation of proteins involved in nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 could reverse partly the roles of CSA and 5c, and CSA and 5c treatment greatly resist the decrease of PPARγ mRNA and protein induced by LPS stimulation. Our results identified the promising anti-inflammatory effects of CSA and its derivatives, which may serve as valuable anti-inflammatory lead compound. Additionally, the mechanism studies demonstrated that the anti-inflammatory activity of CSA and its derivative is associated with the inhibition of NF-κB and MAPK pathways, relying partly on resisting the LPS-induced decrease of PPARγ through improving its expression.

  4. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    PubMed

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  5. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    PubMed

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  7. Microbial Incorporation of Fatty Acids Derived From n-Alkanes Into Glycerides and Waxes

    PubMed Central

    Davis, J. B.

    1964-01-01

    When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C2 addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C2-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate. PMID:14170957

  8. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    PubMed

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  9. E-cinnamic acid derivatives and phenolics from Chilean strawberry fruits, Fragaria chiloensis ssp. chiloensis.

    PubMed

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Saud, Guillermo; Caligari, Peter D S; Schmeda-Hirschmann, Guillermo

    2005-11-02

    Three E-cinnamic acid glycosides, tryptophan, and cyanidin-3-O-beta-D-glucopyranoside were isolated from ripe fruits of the Chilean strawberry Fragaria chiloensis ssp. chiloensis. 1-O-E-Cinnamoyl-beta-D-xylopyranoside, 1-O-E-cinnamoyl-beta-D-rhamnopyranoside, and 1-O-E-cinnamoyl-alpha-xylofuranosyl-(1-->6)-beta-D-glucopyranose are reported for the first time. The cinnamic acid glycosides and aromatic compound patterns in F. chiloensis fruits were determined by high-performance liquid chromatography (HPLC). HPLC analyses of extracts showed that cyanidin-3-O-beta-D-glucopyranoside and free ellagic acid are present in achenes while the E-cinnamoyl derivatives and tryptophan were identified only in the thalamus. The free radical scavenging effect of the fruit extract can be associated with the anthocyanin content.

  10. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  11. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives.

    PubMed

    Xu, Cang-Cang; Deng, Ting; Fan, Meng-Lin; Lv, Wen-Bo; Liu, Ji-Hua; Yu, Bo-Yang

    2016-01-01

    To explore novel high efficiency and low toxicity antitumor agents, a series of dihydroartemisinin-cinnamic acid ester derivatives modified on C-12 and/or C-9 position (s) were synthesized and the in vitro antitumor activities against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines were assessed. The hybrids (3-36) were prepared by esterification of 9α-hydroxyl-dihydroartemisinin (9α-OH DHA), the biotransformation product of dihydroartemisinin (DHA), and cinnamic acid derivatives. Compound 17 (IC50 = 0.20 μM) was the most potent anti-proliferative agent against the human lung carcinoma A549 cells, although it displayed low cytotoxicity on normal hepatic L-02 cells. The mechanism of action of compound 17 was further investigated by analysis of cell apoptosis and intracellular ROS generation. The results indicated that both ROS and ferrous ion contributed to the compound 17-induced cell death. Meanwhile, high intracellular ferrous ion and endogenous oxidative stress in A549 cells made them easier to suffer to compound 17-induced apoptosis. Our promising findings indicated the compound 17 could stand as drug candidate against lung cancer for further investigation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    PubMed

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  13. Value-added potential of expeller-pressed canola oil refining: characterization of sinapic acid derivatives and tocopherols from byproducts.

    PubMed

    Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A

    2014-10-08

    Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.

  14. A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation.

    PubMed

    Asahi, Takashi; Wu, Xiaohong; Shimoda, Hiroshi; Hisaka, Shinsuke; Harada, Etsuko; Kanno, Tomomi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2016-01-01

    Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.

  15. How to eliminate the formation of chlorogenic acids artefacts during plants analysis? Sea sand disruption method (SSDM) in the HPLC analysis of chlorogenic acids and their native derivatives in plants.

    PubMed

    Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L

    2015-09-01

    The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Profile of Arachidonic Acid-Derived Inflammatory Markers and Its Modulation by Nitro-Oleic Acid in an Inherited Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Trostchansky, Andrés; Mastrogiovanni, Mauricio; Miquel, Ernesto; Rodríguez-Bottero, Sebastián; Martínez-Palma, Laura; Cassina, Patricia; Rubbo, Homero

    2018-01-01

    The lack of current treatments for amyotrophic lateral sclerosis (ALS) highlights the need of a comprehensive understanding of the biological mechanisms of the disease. A consistent neuropathological feature of ALS is the extensive inflammation around motor neurons and axonal degeneration, evidenced by accumulation of reactive astrocytes and activated microglia. Final products of inflammatory processes may be detected as a screening tool to identify treatment response. Herein, we focus on (a) detection of arachidonic acid (AA) metabolization products by lipoxygenase (LOX) and prostaglandin endoperoxide H synthase in SOD1G93A mice and (b) evaluate its response to the electrophilic nitro-oleic acid (NO2-OA). Regarding LOX-derived products, a significant increase in 12-hydroxyeicosatetraenoic acid (12-HETE) levels was detected in SOD1G93A mice both in plasma and brain whereas no changes were observed in age-matched non-Tg mice at the onset of motor symptoms (90 days-old). In addition, 15-hydroxyeicosatetraenoic acid (15-HETE) levels were greater in SOD1G93A brains compared to non-Tg. Prostaglandin levels were also increased at day 90 in plasma from SOD1G93A compared to non-Tg being similar in both types of animals at later stages of the disease. Administration of NO2-OA 16 mg/kg, subcutaneously (s/c) three times a week to SOD1G93A female mice, lowered the observed increase in brain 12-HETE levels compared to the non-nitrated fatty acid condition, and modified many others inflammatory markers. In addition, NO2-OA significantly improved grip strength and rotarod performance compared to vehicle or OA treated animals. These beneficial effects were associated with increased hemeoxygenase 1 (HO-1) expression in the spinal cord of treated mice co-localized with reactive astrocytes. Furthermore, significant levels of NO2-OA were detected in brain and spinal cord from NO2-OA -treated mice indicating that nitro-fatty acids (NFA) cross brain–blood barrier and reach the central

  17. Interaction of cinnamic acid derivatives with β-cyclodextrin in water: experimental and molecular modeling studies.

    PubMed

    Liu, Benguo; Zeng, Jie; Chen, Chen; Liu, Yonglan; Ma, Hanjun; Mo, Haizhen; Liang, Guizhao

    2016-03-01

    Cyclodextrins (CDs) can be used to improve the solubility and stability of cinnamic acid derivatives (CAs). However, there was no detailed report about understanding the effects of the substituent groups in the benzene ring on the inclusion behavior between CAs and CDs in aqueous solution. Here, the interaction of β-CD with CAs, including caffeic acid, ferulic acid, and p-coumaric acid, in water was investigated by phase-solubility method, UV, fluorescence, and (1)H NMR spectroscopy, together with ONIOM (our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations. Experimental results demonstrated that CAs could form 1:1 stoichiometric inclusion complex with β-CD by non-covalent bonds, and that the maximum apparent stability constants were found in caffeic acid (176M(-1)) followed by p-coumaric acid (160M(-1)) and ferulic acid (133M(-1)). Moreover, our calculations reasonably illustrated the binding orientations of β-CD with CAs determined by experimental observations. Copyright © 2015. Published by Elsevier Ltd.

  18. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.

    PubMed

    Schwarz, Stefan; Lucas, Susana Dias; Sommerwerk, Sven; Csuk, René

    2014-07-01

    The development of remedies against the Alzheimer's disease (AD) is one of the biggest challenges in medicinal chemistry nowadays. Although not completely understood, there are several strategies fighting this disease or at least bringing some relief. During the progress of AD, the level of acetylcholine (ACh) decreases; hence, a therapy using inhibitors should be of some benefit to the patients. Drugs presently used for the treatment of AD inhibit the two ACh controlling enzymes, acetylcholinesterase as well as butyrylcholinesterase; hence, the design of selective inhibitors is called for. Glycyrrhetinic acid seems to be an interesting starting point for the development of selective inhibitors. Although its glycon, glycyrrhetinic acid is known for being an AChE activator, several derivatives, altered in position C-3 and C-30, exhibited remarkable inhibition constants in micro-molar range. Furthermore, five representative compounds were subjected to three more enzyme assays (on carbonic anhydrase II, papain and the lipase from Candida antarctica) to gain information about the selectivity of the compounds in comparison to other enzymes. In addition, photometric sulforhodamine B assays using murine embryonic fibroblasts (NiH 3T3) were performed to study the cytotoxicity of these compounds. Two derivatives, bearing either a 1,3-diaminopropyl or a 1H-benzotriazolyl residue, showed a BChE selective inhibition in the single-digit micro-molar range without being cytotoxic up to 30μM. In silico molecular docking studies on the active sites of AChE and BChE were performed to gain a molecular insight into the mode of action of these compounds and to explain the pronounced selectivity for BChE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells.

    PubMed

    Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A

    2017-01-22

    To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A traceable reference for direct comparative assessment of total naphthenic acid concentrations in commercial and acid extractable organic mixtures derived from oil sands process water.

    PubMed

    Brunswick, Pamela; Hewitt, L Mark; Frank, Richard A; Kim, Marcus; van Aggelen, Graham; Shang, Dayue

    2017-02-23

    The advantage of using naphthenic acid (NA) mixtures for the determination of total NA lies in their chemical characteristics and identification of retention times distinct from isobaric interferences. However, the differing homolog profiles and unknown chemical structures of NA mixtures do not allow them to be considered a traceable reference material. The current study provides a new tool for the comparative assessment of different NA mixtures by direct reference to a single, well-defined and traceable compound, decanoic-d 19 acid. The method employed an established liquid chromatography time-of-flight mass spectrometry (LC/QToF) procedure that was applicable both to the classic O2 NA species dominating commercial mixtures and additionally to the O4 species known to be present in acid extractable organics (AEOs) derived from oil sands process water (OSPW). Four different commercial NA mixtures and one OSPW-derived AEOs mixture were comparatively assessed. Results showed significant difference among Merichem Technical, Aldrich, Acros, and Kodak commercial NA mixtures with respect to "equivalent to decanoic-d 19 acid" concentration ratios to nominal. Furthermore, different lot numbers of single commercial NA mixtures were found to be inconsistent with respect to their homolog content by percent response. Differences in the observed homolog content varied significantly, particularly at the lower (n = 9-14) and higher (n = 20-23) carbon number ranges. Results highlighted the problem between using NA mixtures from different sources and different lot numbers but offered a solution to the problem from a concentration perspective. It is anticipated that this tool may be utilized in review of historical data in addition to future studies, such as the study of OSPW derived acid extractable organics (AEOs) and fractions employed during toxicological studies.

  1. Antimicrobial cholic acid derivatives from the Pitch Lake bacterium Bacillus amyloliquefaciens UWI-W23.

    PubMed

    Dobson, Tresha E; Maxwell, Anderson R; Ramsubhag, Adesh

    2018-07-01

    Six cholic acid derivatives (1-6) were isolated from broth cultures of Bacillus amyloliquefaciens UWI-W23, an isolate from the Trinidad Pitch Lake. The compounds were extracted via solvent extraction and/or XAD resin adsorption and purified using silica gel column chromatography. Their structures were elucidated using 1D, 2D NMR and ESI-MS spectrometry and FT-IR spectrophotometry. One of the compounds, taurodeoxycholate (2) is for the first time being reported from a bacterial source while deoxycholate (4) is for the first time being reported from a Gram-positive bacterium. The other compounds have not been previously isolated from Bacillus spp. viz. cholate (1), taurocholic acid (3); glycodeoxycholic acid (5) and glycocholic acid (6). All six compounds exhibited antimicrobial activity against P. aeruginosa and B. cereus with MICs ranging from 7 to 250 µg/mL. Cholate (1) also showed activity against MRSA (MICs = 125 µg/mL) and glycocholic acid (6) against S. cerevisiae (MICs = 15.6 µg/mL). Copyright © 2018 Elsevier Inc. All rights reserved.

  2. 2-Decenoic acid ethyl ester, a derivative of unsaturated medium-chain fatty acids, facilitates functional recovery of locomotor activity after spinal cord injury.

    PubMed

    Hirakawa, A; Shimizu, K; Fukumitsu, H; Soumiya, H; Iinuma, M; Furukawa, S

    2010-12-29

    There is increasing evidence that omega-3 polyunsaturated fatty acids (PUFAs) have therapeutic potential in various animal models of neuronal injury. However, very few studies have examined the effect of medium-chain fatty acids (MCFAs) on neuronal injury. So in the present study we synthesized various MCFAs and their derivatives, and found that exposure to trans-2-decenoic acid ethyl ester (DAEE) markedly activated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured cortical neurons. Therefore, we examined the effect of DAEE treatment on a rat model of spinal cord injury. DAEE (150 μg/kg body weight) administered after hemisection of the spinal cord resulted in improved functional recovery, decreased the lesion size, increased the activation of ERK1/2, and enhanced the expression of bcl-2 and brain-derived neurotrophic factor (BDNF) mRNA in the injury site of the spinal cord. Furthermore, it also increased neuronal survival after spinal cord injury. These results indicate that the possibility that DAEE will become a promising tool for reducing the secondary damage observed following primary physical injury to the spinal cord. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Synthesis and antitumour activity of arctigenin amino acid ester derivatives against H22 hepatocellular carcinoma.

    PubMed

    Cai, Enbo; Guo, Shijie; Yang, Limin; Han, Mei; Xia, Jing; Zhao, Yan; Gao, Xiaorui; Wang, Yu

    2018-02-01

    Arctigenin (ARG) is famous in its abundant pharmacological activity. However, many researches in it entered the bottleneck period because of its poor water solubility. The derivatives of ARG have been synthesised with five amino acids which have t-Butyloxy carbonyl (BOC) as a protective group. We examined the effects of removing BOC. The results showed that the amino acid derivatives without protective group have better water solubility and nitrite-clearing ability than ARG. Based on these results, ARG6' and ARG9' were selected at a dosage of 40 mg/kg to evaluate their antitumour activity. The percentage inhibition rate of ARG6' and ARG9' were 55.87 and 51.40, respectively, which was twice as much as ARG. Furthermore, they could increase liver and kidney indexes and produce less damage in these organs. In brief, this study provides a basis for new drug development.

  4. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines.

    PubMed

    Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui

    2017-07-01

    A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30   min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants.

    PubMed

    Dang, Zhao; Qian, Keduo; Ho, Phong; Zhu, Lei; Lee, Kuo-Hsiung; Huang, Li; Chen, Chin-Ho

    2012-08-15

    Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives

    PubMed Central

    Wu, Liping; Pang, Yilin; Qin, Guiqi; Xi, Gaina; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2017-01-01

    Dihydroartemisinin (DHA) and artesunate (ARS), two artemisinin derivatives, have efficacious anticancer activities against human hepatocarcinoma (HCC) cells. This study aims to study the anticancer action of the combination treatment of DHA/ARS and farnesylthiosalicylic acid (FTS), a Ras inhibitor, in HCC cells (Huh-7 and HepG2 cell lines). FTS pretreatment significantly enhanced DHA/ARS-induced phosphatidylserine (PS) externalization, Bak/Bax activation, mitochondrial membrane depolarization, cytochrome c release, and caspase-8 and -9 activations, characteristics of the extrinsic and intrinsic apoptosis. Pretreatment with Z-IETD-FMK (caspase-8 inhibitor) potently prevented the cytotoxicity of the combination treatment of DHA/ARS and FTS, and pretreatment with Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited the loss of ΔΨm induced by DHA/ARS treatment or the combination treatment of DHA/ARS and FTS in HCC cells. Furthermore, silencing Bak/Bax modestly but significantly inhibited the cytotoxicity of the combination treatment of DHA/ARS and FTS. Interestingly, pretreatment with an antioxidant N-Acetyle-Cysteine (NAC) significantly prevented the cytotoxicity of the combination treatment of DHA and FTS instead of the combination treatment of ARS and FTS, suggesting that reactive oxygen species (ROS) played a key role in the anticancer action of the combination treatment of DHA and FTS. Similar to FTS, DHA/ARS also significantly prevented Ras activation. Collectively, our data demonstrate that FTS potently sensitizes Huh-7 and HepG2 cells to artemisinin derivatives via accelerating the extrinsic and intrinsic apoptotic pathways. PMID:28182780

  7. A new p-hydroxybenzoic acid derivative from an endophytic fungus Penicillium sp. of Nerium indicum.

    PubMed

    Ma, Yang-Min; Qiao, Ke; Kong, Yang; Guo, Lin-Xin; Li, Meng-Yun; Fan, Chao

    2017-12-01

    A new p-hydroxybenzoic acid derivative named 4-(2'R, 4'-dihydroxybutoxy) benzoic acid (1) was isolated from the fermentation of Penicillium sp. R22 in Nerium indicum. The structure was elucidated by means of spectroscopic (HR-ESI-MS, NMR, IR, UV) and X-ray crystallographic methods. The antibacterial and antifungal activity of compound 1 was tested, and the results showed that compound 1 revealed potent antifungal activity against Colletotrichum gloeosporioides, Alternaria alternata, and Alteranria brassicae with MIC value of 31.2 μg/ml.

  8. 40 CFR 721.1675 - Disulfonic acid rosin amine salt of a benzidine derivative (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1675 Disulfonic acid rosin amine salt of a benzidine derivative (generic name). (a) Chemical substance and significant new uses subject to reporting...

  9. Antibacterial Effects of Glycyrrhetinic Acid and Its Derivatives on Staphylococcus aureus

    PubMed Central

    Oyama, Kentaro; Kawada-Matsuo, Miki; Oogai, Yuichi; Hayashi, Tetsuya; Nakamura, Norifumi; Komatsuzawa, Hitoshi

    2016-01-01

    Staphylococcus aureus is a major pathogen in humans and causes serious problems due to antibiotic resistance. We investigated the antimicrobial effect of glycyrrhetinic acid (GRA) and its derivatives against 50 clinical S. aureus strains, including 18 methicillin-resistant strains. The minimum inhibitory concentrations (MICs) of GRA, dipotassium glycyrrhizate, disodium succinoyl glycyrrhetinate (GR-SU), stearyl glycyrrhetinate and glycyrrhetinyl stearate were evaluated against various S. aureus strains. Additionally, we investigated the bactericidal effects of GRA and GR-SU against two specific S. aureus strains. DNA microarray analysis was also performed to clarify the mechanism underlying the antibacterial activity of GR-SU. We detected the antimicrobial activities of five agents against S. aureus strains. GRA and GR-SU showed strong antibacterial activities compared to the other three agents tested. At a higher concentration (above 2x MIC), GRA and GR-SU showed bactericidal activity, whereas at a concentration of 1x MIC, they showed a bacteriostatic effect. Additionally, GRA and GR-SU exhibited a synergistic effect with gentamicin. The expression of a large number of genes (including transporters) and metabolic factors (carbohydrates and amino acids) was altered by the addition of GR-SU, suggesting that the inhibition of these metabolic processes may influence the degree of the requirement for carbohydrates or amino acids. In fact, the requirement for carbohydrates or amino acids was increased in the presence of either GRA or GR-SU. GRA and GR-SU exhibited strong antibacterial activity against several S. aureus strains, including MRSA. This activity may be partly due to the inhibition of several pathways involved in carbohydrate and amino acid metabolism. PMID:27820854

  10. Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors.

    PubMed

    Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K

    2018-04-05

    Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives.

    PubMed

    Amić, Ana; Marković, Zoran; Klein, Erik; Dimitrić Marković, Jasmina M; Milenković, Dejan

    2018-04-25

    The role of antiradical moieties (catechol, guaiacyl and carboxyl group) and molecular conformation in antioxidative potency of dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) was investigated by density functional theory (DFT) method. The thermodynamic preference of different reaction paths of double (2H + /2e - ) free radical scavenging mechanisms was estimated. Antiradical potency of DHCA and DHFA was compared with that exerted by their unsaturated analogs - caffeic acid (CA) and ferulic acid (FA). Cis/trans and anti-isomers of studied cinnamic acid derivatives may scavenge free radicals via double processes by involvement of catechol or guaiacyl moiety. Carboxyl group of syn-isomers may also participate in the inactivation of free radicals. Gibbs free energies of reactions with various free radicals indicate that syn-DHCA and syn-DHFA, colon catabolites that could be present in systemic circulation in low μM concentrations, have a potential to contribute to health benefits by direct free radical scavenging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives.

    PubMed

    Khattab, Sherine Nabil; Haiba, Nesreen Saied; Asal, Ahmed Mosaad; Bekhit, Adnan A; Guemei, Aida A; Amer, Adel; El-Faham, Ayman

    2017-02-15

    A new small library of 2-aminobenzoyl amino acid hydrazide derivatives and quinazolinones derivatives was synthesized and fully characterized by IR, NMR, and elemental analysis. The activity of the prepared compounds on the growth of Leishmania aethiopica promastigotes was evaluated. 2-Benzoyl amino acid hydrazide showed higher inhibitory effect than the quinazoline counterpart. The in vitro antipromastigote activity demonstrated that compounds 2a, 2b, 2f and 4a had IC 50 better than standard drug miltefosine and comparable activity to amphotericin B deoxycholate, which indicates their high antileishmanial activity against Leishmania. aethiopica. Among the prepared compounds; 2-amino-N-(6-hydrazinyl-6-oxohexyl)benzamide 2f (IC 50 =0.051μM) has the best activity, 154 folds more active than reference standard drug miltefosine (IC 50 =7.832μM), and half fold the activity of amphotericin B (IC 50 =0.035μM). In addition, this compound was safe and well tolerated by experimental animals orally up to 250mg/kg and parenterally up to 100mg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    PubMed

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  14. Evolution in Medicinal Chemistry of Ursolic Acid Derivatives as Anticancer Agents

    PubMed Central

    Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia

    2015-01-01

    Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA. PMID:25617694

  15. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  16. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of exogenous fatty acids.

    PubMed

    Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D

    2018-03-26

    Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the

  17. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae.

    PubMed

    Gottardi, Manuela; Knudsen, Jan Dines; Prado, Lydie; Oreb, Mislav; Branduardi, Paola; Boles, Eckhard

    2017-06-01

    The production of natural aroma compounds is an expanding field within the branch of white biotechnology. Three aromatic compounds of interest are cinnamaldehyde, the typical cinnamon aroma that has applications in agriculture and medical sciences, as well as cinnamyl alcohol and hydrocinnamyl alcohol, which have applications in the cosmetic industry. Current production methods, which rely on extraction from plant materials or chemical synthesis, are associated with drawbacks regarding scalability, production time, and environmental impact. These considerations make the development of a sustainable microbial-based production highly desirable. Through steps of rational metabolic engineering, we engineered the yeast Saccharomyces cerevisiae as a microbial host to produce trans-cinnamic acid derivatives cinnamaldehyde, cinnamyl alcohol, and hydrocinnamyl alcohol, from externally added trans-cinnamic acid or de novo from glucose as a carbon source. We show that the desired products can be de novo synthesized in S. cerevisiae via the heterologous overexpression of the genes encoding phenylalanine ammonia lyase 2 from Arabidopsis thaliana (AtPAL2), aryl carboxylic acid reductase (acar) from Nocardia sp., and phosphopantetheinyl transferase (entD) from Escherichia coli, together with endogenous alcohol dehydrogenases. This study provides a proof of concept and a strain that can be further optimized for production of high-value aromatic compounds.

  18. Diet derived phenolic acids regulate osteoblast and adipocyte lineage commitment and differentiation in young mice

    USDA-ARS?s Scientific Manuscript database

    A blueberry (BB) supplemented diet previously has been shown to significantly stimulate bone formation in rapidly growing male and female rodents. Phenolic acids (PAs) are metabolites derived from polyphenols found in fruits and vegetables as a result of the actions of gut bacteria, and they were fo...

  19. Production of ethoxylated fatty acids derived from Jatropha non-edible oil as a nonionic fat-liquoring agent.

    PubMed

    El-Shattory, Y; Abo-Elwafa, Ghada A; Aly, Saadia M; Nashy, El-Shahat H A

    2012-01-01

    Natural fatty derivatives (oleochemicals) have been used as intermediate materials in several industries replacing the harmful and expensive petrochemicals. Fatty ethoxylates are one of these natural fatty derivatives. In the present work Jatropha fatty acids were derived from the non edible Jatropha oil and used as the fat source precursor. The ethoxylation process was carried out on the derived fatty acids using a conventional cheap catalyst (K₂CO₃) in order to obtain economically and naturally valuable non-ionic surfactants. Ethoxylation reaction was proceeded using ethylene oxide gas in the presence of 1 or 2% K₂CO₃ catalyst at 120 and 145°C for 5, 8 and 12 hours. The prepared products were evaluated for their chemical and physical properties as well as its application as non- ionic fat-liquoring agents in leather industry. The obtained results showed that the number of ethylene oxide groups introduced in the fatty acids as well as their EO% increased as the temperature and time of the reaction increased. The highest ethoxylation number was obtained at 145°C for 8 hr. Also, the prepared ethoxylated products were found to be effective fat-liquors with high HLB values giving stable oil in water emulsions. The fat-liquored leather led to an improvement in its mechanical properties such as tensile strength and elongation at break. In addition, a significant enhancement in the texture of the treated leather by the prepared fat-liquors as indicated from the scanning electron microscope (SEM) images was observed.

  20. Randomized trial comparing a chemical peel containing a lipophilic hydroxy acid derivative of salicylic acid with a salicylic acid peel in subjects with comedonal acne.

    PubMed

    Levesque, Annie; Hamzavi, Iltefat; Seite, Sophie; Rougier, André; Bissonnette, Robert

    2011-09-01

    Lipohydroxyacid is a lipophilic derivative of salicylic acid with comedolytic properties. To compare lipohydroxyacid and salicylic acid peels in subjects with comedonal acne. In this split face, randomized study, 20 subjects with comedonal acne received lipohydroxyacid peels on one side of the face, while the other side was treated with salicylic acid peels. A total of six peels at 2-week intervals were performed. Efficacy was evaluated by counting noninflammatory and inflammatory lesions and by performing a global change in acne assessment. Safety was assessed by evaluating adverse events, global tolerance, and the presence of erythema, scaling, and dryness. There was a statistically significant decrease of 55.6% and 48.5% from baseline to Day 98 in the mean number of noninflammatory lesions for the sides treated with lipohydroxyacid and salicylic acid peels, respectively (P < 0.001). There was no significant difference in the degree of reduction in noninflammatory lesions between the two peels. There was no significant reduction in the number of inflammatory lesions. Both peels were generally very well tolerated. This study suggests that lipohydroxyacid peels can be beneficial to subjects with comedonal acne. © 2011 Wiley Periodicals, Inc.

  1. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA.

    PubMed

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-06-01

    Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48h of fish oil (1008mg EPA and 672mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC-MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. All EPA-derived oxylipin levels were significantly increased 6h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Three new amino acid derivatives from edible mushroom Pleurotus ostreatus.

    PubMed

    Lu, Xiao-Jie; Feng, Bao-Min; Chen, Shao-Fei; Zhao, Dan; Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2017-12-01

    Three new amino acid derivatives, oxalamido-L-phenylalanine methyl ester (1), oxalamido-L-leucine methyl ester (2), and lumichrome hydrolyzate (3), together with nine known compounds (4-12), were isolated from the solid culture of edible mushroom Pleurotus ostreatus. Their structures were elucidated on the basis of extensive spectroscopic analysis. The absolute configurations of 1 and 2 were established by the chiral synthesis and confirmed by circular dichroism (CD) analysis of their total synthesis products and natural isolates. All new compounds were evaluated for their antioxidant effects, antimicrobial activities, and cytotoxic activity. Compounds 1-3 showed weak antifungal activities against Candida albicans with minimum inhibitory concentration (MIC) value of 500 μg/ml.

  3. Amino Acid Conjugated Anthraquinones from the Marine-Derived Fungus Penicillium sp. SCSIO sof101.

    PubMed

    Luo, Minghe; Cui, Zhaomeng; Huang, Hongbo; Song, Xianqin; Sun, Aijun; Dang, Yongjun; Lu, Laichun; Ju, Jianhua

    2017-05-26

    Emodacidamides A-H (1-8), natural products featuring anthraquinone-amino acid conjugates, have been isolated from a marine-derived fungus, Penicillium sp. SCSIO sof101, together with known anthraquinones 9 and 10. The planar structures of 1-8 were elucidated using a combination of NMR spectroscopy and mass spectrometry. The absolute configurations of the amino acid residues were confirmed using Marfey's method and chiral-phase HPLC analyses. Additionally, isolates were evaluated for possible immunomodulatory and cytotoxic activities. Emodacidamides A (1), C (3), D (4), and E (5) inhibited interleukin-2 secretion from Jurkat cells with IC 50 values of 4.1, 5.1, 12, and 5.4 μM, respectively.

  4. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative.

    PubMed

    Yajima, Tomoko; Yoshida, Eriko; Hamano, Masako

    2013-01-01

    The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid.

  5. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study.

    PubMed

    Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B

    2015-01-01

    Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.

  6. Intake of Marine-Derived Omega-3 Polyunsaturated Fatty Acids and Mortality in Renal Transplant Recipients

    PubMed Central

    Gomes Neto, António W.; Sotomayor Campos, Camilo G.; Pranger, Ilse G.; van den Berg, Else; Gans, Rijk O. B.; Soedamah-Muthu, Sabita S.; Navis, Gerjan J.; Bakker, Stephan J. L.

    2017-01-01

    The effect of marine-derived omega-3 polyunsaturated fatty acids (n-3 PUFA) on long-term outcome in renal transplant recipients (RTR) remains unclear. We investigated whether marine-derived n-3 PUFA intake is associated with all-cause and cardiovascular (CV) mortality in RTR. Intake of eicosapentaenoic acid plus docosahexaenoic acid (EPA-DHA) was assessed using a validated Food Frequency Questionnaire. Cox regression analyses were performed to evaluate the associations of EPA-DHA intake with all-cause and CV mortality. We included 627 RTR (age 53 ± 13 years). EPA-DHA intake was 102 (42–215) mg/day. During median follow-up of 5.4 years, 130 (21%) RTR died, with 52 (8.3%) due to CV causes. EPA-DHA intake was associated with lower risk of all-cause mortality (Hazard Ratio (HR) 0.85; 95% confidence interval (95% CI) 0.75–0.97). Age (p = 0.03) and smoking status (p = 0.01) significantly modified this association, with lower risk of all-cause and CV mortality particularly in older (HR 0.75, 95% CI 0.61–0.92; HR 0.68, 95% CI 0.48–0.95) and non-smoking RTR (HR 0.80, 95% CI 0.68–0.93; HR 0.74, 95% CI 0.56–0.98). In conclusion, marine-derived n-3 PUFA intake is inversely associated with risk of all-cause and CV mortality in RTR. The strongest associations were present in subgroups of patients, which adds further evidence to the plea for EPA-DHA supplementation, particularly in elderly and non-smoking RTR. PMID:28379169

  7. The Effects of Benzofuran-2-Carboxylic Acid Derivatives as Countermeasures in Immune Modulation and Cancer Cell Inhibition

    NASA Astrophysics Data System (ADS)

    Sundaresan, A.; Marriott, K.; Mao, J.; Bhuiyan, S.; Denkins, P.

    2015-06-01

    Microgravity and radiation exposure experienced during space flights result in immune system suppression. In long-term spaceflight, the crew is exposed to space radiation, microgravity, infectious agents from other crew members, and microbial contamination, all of which have a significant impact on the body's immune system and may contribute to the development of autoimmune diseases, allergic reactions, and/or cancer initiation. Many studies have revealed strong effects of microgravity on immune cell function, and microgravity is now considered as one of the major causes of immune dysfunction during space flight (Sundaresan, Int. J. Transp. Phenom. 12(1-2), 93-100, 2011; Martinelli et al., IEEE Eng. Biol. Med. 28(4), 85-90, 2009). We screened two newly synthetized derivatives of benzofuran 2-carboxylic acid, KMEG and KM12. The former KMEG was assessed for lymphoproliferative activities while the latter, KM12, was used in an array of cancer cell lines for testing its cancer inhibiting effects. For ground-based studies, synthetic benzofuran-2-carboxylic acid derivatives were assessed for biological effects in several scenarios, which involved exposure to modeled microgravity and radiation, as well as their immune enhancement and anti-cancer effects. Initial findings indicate that the benzofuran-2-carboxylic acid derivatives possibly have immune enhancing and anti-tumor properties in human lymphocytes and cancer cells exposed to analog spaceflight conditions modeled microgravity and γ-radiation).

  8. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study.

    PubMed

    Takebayashi, Jun; Tai, Akihiro; Gohda, Eiichi; Yamamoto, Itaru

    2006-04-01

    The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.

  9. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative

    PubMed Central

    Yoshida, Eriko; Hamano, Masako

    2013-01-01

    Summary The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid. PMID:23946839

  10. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids.

    PubMed

    Andrews, Casey T; Elcock, Adrian H

    2014-11-11

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions-which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)-quantitatively reproduced all of the "target" MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic ( PLoS Comput. Biol. 2014 , 5 , e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP's nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered

  11. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids

    PubMed Central

    2015-01-01

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically

  12. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  13. Relative and absolute reliability of measures of linoleic acid-derived oxylipins in human plasma.

    PubMed

    Gouveia-Figueira, Sandra; Bosson, Jenny A; Unosson, Jon; Behndig, Annelie F; Nording, Malin L; Fowler, Christopher J

    2015-09-01

    Modern analytical techniques allow for the measurement of oxylipins derived from linoleic acid in biological samples. Most validatory work has concerned extraction techniques, repeated analysis of aliquots from the same biological sample, and the influence of external factors such as diet and heparin treatment upon their levels, whereas less is known about the relative and absolute reliability of measurements undertaken on different days. A cohort of nineteen healthy males were used, where samples were taken at the same time of day on two occasions, at least 7 days apart. Relative reliability was assessed using Lin's concordance correlation coefficients (CCC) and intraclass correlation coefficients (ICC). Absolute reliability was assessed by Bland-Altman analyses. Nine linoleic acid oxylipins were investigated. ICC and CCC values ranged from acceptable (0.56 [13-HODE]) to poor (near zero [9(10)- and 12(13)-EpOME]). Bland-Altman limits of agreement were in general quite wide, ranging from ±0.5 (12,13-DiHOME) to ±2 (9(10)-EpOME; log10 scale). It is concluded that relative reliability of linoleic acid-derived oxylipins varies between lipids with compounds such as the HODEs showing better relative reliability than compounds such as the EpOMEs. These differences should be kept in mind when designing and interpreting experiments correlating plasma levels of these lipids with factors such as age, body mass index, rating scales etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis.

    PubMed

    DeLuca, Jennifer Aa; Allred, Kimberly F; Menon, Rani; Riordan, Rebekah; Weeks, Brad R; Jayaraman, Arul; Allred, Clinton D

    2018-06-01

    Inflammatory bowel disease is a complex collection of disorders. Microbial dysbiosis as well as exposure to toxins including xenoestrogens are thought to be risk factors for inflammatory bowel disease development and relapse. Bisphenol-A has been shown to exert estrogenic activity in the colon and alter intestinal function, but the role that xenoestrogens, such as bisphenol-A , play in colonic inflammation has been previously described but with conflicting results. We investigated the ability of bisphenol-A to exacerbate colonic inflammation and alter microbiota metabolites derived from aromatic amino acids in an acute dextran sulfate sodium-induced colitis model. Female C57BL/6 mice were ovariectomized and exposed to bisphenol-A daily for 15 days. Disease activity measures include body weight, fecal consistency, and rectal bleeding. Colons were scored for inflammation, injury, and nodularity. Alterations in the levels of microbiota metabolites derived from aromatic amino acids known to reflect phenotypic changes in the gut microbiome were analyzed. Bisphenol-A exposure increased mortality and worsened disease activity as well as inflammation and nodularity scores in the middle colon region following dextran sulfate sodium exposure. Unique patterns of metabolites were associated with bisphenol-A consumption. Regardless of dextran sulfate sodium treatment, bisphenol-A reduced levels of tryptophan and several metabolites associated with decreased inflammation in the colon. This is the first study to show that bisphenol-A treatment alone can reduce microbiota metabolites derived from aromatic amino acids in the colon which may be associated with increased colonic inflammation and inflammatory bowel disease. Impact statement As rates of inflammatory bowel disease rise, discovery of the mechanisms related to the development of these conditions is important. Environmental exposure is hypothesized to play a role in etiology of the disease, as are alterations in the gut

  15. Functional nucleic acid entrapment in sol-gel derived materials.

    PubMed

    Carrasquilla, Carmen; Brennan, John D

    2013-10-01

    Functional nucleic acids (FNAs) are single-stranded DNA or RNA molecules, typically generated through in vitro selection, that have the ability to act as receptors for target molecules (aptamers) or perform catalysis of a chemical reaction (deoxyribozymes and ribozymes). Fluorescence-signaling aptamers and deoxyribozymes have recently emerged as promising biological recognition and signaling elements, although little has been done to evaluate their potential for solid-phase assays, particularly with species made of RNA due to their lack of chemical stability and susceptibility to nuclease attack. Herein, we present a detailed overview of the methods utilized for solid-phase immobilization of FNAs using a sol-gel entrapment method that can provide protection from nuclease degradation and impart long-term chemical stability to the FNA reporter systems, while maintaining their signaling capabilities. This article will also provide a brief review of the results of such entrapment studies involving fluorescence-signaling versions of a DNA aptamer, selected RNA-cleaving deoxyribozymes, and two different RNA aptamers in a series of sol-gel derived composites, ranging from highly polar silica to hydrophobic methylsilsesquioxane-based materials. Given the ability to produce sol-gel derived materials in a variety of configurations, particularly as thin film coatings on electrodes, optical fibers, and other devices, this entrapment method should provide a useful platform for numerous solid-phase FNA-based biosensing applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method.

    PubMed

    Ncube, Efficient N; Mhlongo, Msizi I; Piater, Lizelle A; Steenkamp, Paul A; Dubery, Ian A; Madala, Ntakadzeni E

    2014-01-01

    Chlorogenic acids (CGAs) are a class of phytochemicals that are formed as esters between different derivatives of cinnamic acid and quinic acid molecules. In plants, accumulation of these compounds has been linked to several physiological responses against various stress factors; however, biochemical synthesis differs from one plant to another. Although structurally simple, the analysis of CGA molecules with modern analytical platforms poses an analytical challenge. The objective of the study was to perform a comparison of the CGA profiles and related derivatives from differentiated tobacco leaf tissues and undifferentiated cell suspension cultures. Using an UHPLC-Q-TOF-MS/MS fingerprinting method based on the in-source collision induced dissociation (ISCID) approach, a total of 19 different metabolites with a cinnamic acid core moiety were identified. These metabolites were either present in both leaf tissue and cell suspension samples or in only one of the two plant systems. Profile differences point to underlying biochemical similarities or differences thereof. Using this method, the regio- and geometric-isomer profiles of chlorogenic acids of the two tissue types of Nicotiana tabacum were achieved. The method was also shown to be applicable for the detection of other related molecules containing a cinnamic acid core.

  17. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation

    PubMed Central

    Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana

    2015-01-01

    A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393

  18. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives.

    PubMed

    Tham, S Y; Agatonovic-Kustrin, S

    2002-05-15

    Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.

  19. Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin

    NASA Technical Reports Server (NTRS)

    Bernards, M. A.; Lopez, M. L.; Zajicek, J.; Lewis, N. G.

    1995-01-01

    Suberin is an abundant, complex, intractable, plant cell wall polymeric network that forms both protective and wound-healing layers. Its function is, therefore, critical to the survival of all vascular plants. Its chemical structure and biosynthesis are poorly defined, although it is known to consist of both aromatic and aliphatic domains. While the composition of the aliphatic component has been fairly well characterized, that of the phenolic component has not. Using a combination of specific carbon-13 labeling techniques, and in situ solid state 13C NMR spectroscopic analysis, we now provide the first direct evidence for the nature of the phenolic domain of suberin and report here that it is almost exclusively comprised of a covalently linked, hydroxycinnamic acid-derived polymeric matrix.

  20. Benzimidazole derivatives: selective fluorescent chemosensors for the picogram detection of picric acid.

    PubMed

    Xiong, Jin-Feng; Li, Jian-Xiao; Mo, Guang-Zhen; Huo, Jing-Pei; Liu, Jin-Yan; Chen, Xiao-Yun; Wang, Zhao-Yang

    2014-12-05

    1,3,5-Tri(1H-benzo[d]imidazol-2-yl)benzene derivatives, as a new kind of fluorescent chemosensor for the detection of nitroaromatic explosives, are designed and synthesized by simple N-hydrocarbylation. Among 16 obtained compounds, compound 4g has the best capability for detection of picric acid (PA), having good selectivity and high sensitivity. The detection of PA with 4g solution-coated paper strips at the picogram level is developed. A simple, portable, and low-cost method is provided for detecting PA in solution and contact mode.

  1. Isocyanides Derived from α,α-Disubstituted Amino Acids: Synthesis and Antifouling Activity Assessment.

    PubMed

    Inoue, Yuki; Takashima, Shuhei; Nogata, Yasuyuki; Yoshimura, Erina; Chiba, Kazuhiro; Kitano, Yoshikazu

    2018-03-01

    Herein, we contribute to the development of environmentally friendly antifoulants by synthesizing eighteen isocyanides derived from α,α-disubstituted amino acids and evaluating their antifouling activity/toxicity against the cypris larvae of the Balanus amphitrite barnacle. Almost all isocyanides showed good antifouling activity without significant toxicity and exhibited EC 50 values of 0.07 - 7.30 μg/mL after 120-h exposure. The lowest EC 50 values were observed for valine-, methionine-, and phenylalanine-derived isocyanides, which achieved > 95% cypris larvae settlement inhibition at concentrations of less than 30 μg/mL without exhibiting significant toxicity. Thus, the prepared isocyanides should be useful for further research focused on the development of environmentally friendly antifouling agents. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  2. [Synthesis and physico-chemical characterisation of some new derivatives of rutoside and clofibric acid].

    PubMed

    Lupaşcu, D; Profire, Lenuţa; Dănilă, Gh

    2006-01-01

    Fibrates are drugs with efficacy in reducing blood cholesterol levels and especially, triglyceride plasma levels. Unfortunately, fibrates have a poor water-solubility and showed some adverse reactions at long treatment. The objective of this study was to obtain some new clofibric acid derivatives with rutin; some of these compounds contain a guanidine moiety, known as effective at cardiovascular level. All the compounds are soluble in water.

  3. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    NASA Astrophysics Data System (ADS)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  4. Synthesis of valproic acid amides of a melatonin derivative, a piracetam and amantadine for biological tests.

    PubMed

    Chatterjie, N; Alexander, G; Wang, H

    2001-10-01

    Three new amide derivatives of valproic acid have been synthesized and characterized by spectrophotometric studies. The rationale for the preparation of such agents has been based on the observation that chemical combination of the anticonvulsant pharmacophore, valproic acid with amine moieties produces more effective and less toxic amides. The amine components selected in this work also exhibit neuroactivity with the prospect of these agents being biologically active in controlling not just seizures and but also possessing neuroprotective properties. We report here the synthesis and properties of the valproylamides of 5-methoxytryptamine, related to melatonin (1), of N-substituted 2-pyrrolidinone related to piracetam (2), and of adamantylamine related to amantadine (3). In preliminary tests these compounds showed low toxicity and a variety of anticonvulsive properties, including a delay in onset of activity. These compounds and their derivatives are now available to be tested additionally for control of subclinical seizures, enhancement of cognition, behavior modification and alleviation of symptoms and disorders due to neuronal damage.

  5. Biolabeling with 2,4-dichlorophenoxyacetic acid derivatives: the 2,4-D tag.

    PubMed

    Bade, Steffen; Röckendorf, Niels; Franek, Milan; Gorris, Hans H; Lindner, Buko; Olivier, Verena; Schaper, Klaus-Jürgen; Frey, Andreas

    2009-12-01

    Many bioanalytic and diagnostic procedures rely on labels with which the molecule of interest can be tracked in or discriminated from accompanying like substances. Herein, we describe a new labeling and detection system based on derivatives of 2,4-dichlorophenoxyacetic acid (2,4-D) and anti-2,4-D antibodies. The 2,4-D system is highly sensitive with a K(D) of 7 x 10(-11) M for the hapten-antibody pair, can be used on a large variety of biomolecules such as proteins, peptides, carbohydrates, and nucleic acids, is not hampered by endogenous backgrounds because 2,4-D is a xenobiotic, and is robust because 2,4-D is a very stable compound that withstands the conditions of most reactions usually performed on biomolecules. With this unique blend of properties, the 2,4-D system compares favorably with its rivals digoxigenin (DIG)/anti-DIG and biotin/(strept)avidin and provides an interesting and powerful tool in biomolecular labeling.

  6. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  7. Bile acids and their oxo derivatives: Potential inhibitors of carbonic anhydrase I and II, androgen receptor antagonists and CYP3A4 substrates.

    PubMed

    Trifunović, Jovana; Borčić, Vladan; Mikov, Momir

    2017-05-01

    Some biological properties of bile acids and their oxo derivatives have not been sufficiently investigated, although the interest in bile acids as signaling molecules is rising. The aim of this work was to evaluate physico-chemical parametar b (slope) that represents the lipophilicity of the examined molecules and to investigate interactions of bile acids with carbonic anhydrase I, II, androgen receptor and CYP450s. Thirteen candidates were investigated using normal-phase thin-layer chromatography in two solvent systems. Retention parameters were used in further quantitative structure-activity relationship analysis and docking studies to predict interactions and binding affinities of examined molecules with enzymes and receptors. Prediction of activity on androgen receptor showed that compounds 3α-hydroxy-12-oxo-5β-cholanoic and 3α-hydroxy-7-oxo-5β-cholanoic acid have stronger antiandrogen activity than natural bile acids. The inhibitory potential for carbonic anhydrase I and II was tested and it was concluded that molecules 3α-hydroxy-12-oxo-5β-cholanoic, 3α-hydroxy-7-oxo-5β-cholanoic, 3,7,12-trioxo-5β-cholanoic acid and hyodeoxycholic acid show the best results. Substrate behavior for CYP3A4 was confirmed for all investigated compounds. Oxo derivatives of bile acids show stronger interactions with enzymes and receptors as classical bile acids and lower membranolytic activity compared with them. These significant observations could be valuable in consideration of oxo derivatives as building blocks in medicinal chemistry. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Hyaluronic acid increases tendon derived cell viability and proliferation in vitro: comparative study of two different hyaluronic acid preparations by molecular weight.

    PubMed

    Gallorini, Marialucia; Berardi, Anna C; Berardocco, Martina; Gissi, Clarissa; Maffulli, Nicola; Cataldi, Amelia; Oliva, Francesco

    2017-01-01

    Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate the effects of two different HA on human rotator cuff tendon derived cells in terms of cell viability, proliferation and apoptosis. An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of two different HA preparations: Sinovial HL® (High-Low molecular weight) (MW: 80-100 kDa) and KDa Sinovial Forte SF (MW: 800-1200), at various concentrations. Tendon derived cells morphology was evaluated after 0, 7 and 14 d of culture. Viability and proliferation were analyzed after 0, 24, and 48 h of culture and apoptosis occurrence was assessed after 24 h of culture. All the HAPs tested here increased viability and proliferation, in a dose-dependent manner and they reduced apoptosis at early stages (24 h) compared to control cells (without HAPs). HAPs enhanced viability and proliferation and counteracted apoptosis in tendon derived cells.

  9. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    PubMed

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  10. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  11. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.

    PubMed

    Doczekalska, Beata; Kuśmierek, Krzysztof; Świątkowski, Andrzej; Bartkowiak, Monika

    2018-05-04

    Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.

  12. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives.

    PubMed

    Vollmer, Maren; Schröter, David; Esders, Selma; Neugart, Susanne; Farquharson, Freda M; Duncan, Sylvia H; Schreiner, Monika; Louis, Petra; Maul, Ronald; Rohn, Sascha

    2017-10-01

    The almost forgotten crop amaranth has gained renewed interest in recent years due to its immense nutritive potential. Health beneficial effects of certain plants are often attributed to secondary plant metabolites such as phenolic compounds. As these compounds undergo significant metabolism after consumption and are in most cases not absorbed very well, it is important to gain knowledge about absorption, biotransformation, and further metabolism in the human body. Whilst being hardly found in other edible plants, caffeoylisocitric acid represents the most abundant low molecular weight phenolic compound in many leafy amaranth species. Given that this may be a potentially bioactive compound, gastrointestinal microbial degradation of this substance was investigated in the present study by performing in vitro fermentation tests using three different fecal samples as inocula. The (phenolic) metabolites were analyzed using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Furthermore, quantitative polymerase chain reaction (qPCR) analyses were carried out to study the influence on the microbiome and its composition. The in vitro fermentations led to different metabolite profiles depending on the specific donor. For example, the metabolite 3-(4-hydroxyphenyl)propionic acid was observed in one fermentation as the main metabolite, whereas 3-(3-hydroxyphenyl)propionic acid was identified in the other fermentations as important. A significant change in selected microorganisms of the gut microbiota however was not detected. In conclusion, caffeoylisocitric acid from amaranth, which is a source of several esterified phenolic acids in addition to chlorogenic acid, can be metabolized by the human gut microbiota, but the metabolites produced vary between individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. Copyright © 2013 International Metabolic Engineering Society. All rights reserved.

  14. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  15. Determination and confirmation of nicotinic acid and its analogues and derivates in pear and apple blossoms using high-performance liquid chromatography-diode array-electrospray ionization mass spectrometry.

    PubMed

    Paternoster, Thomas; Vrhovsek, Urska; Pertot, Ilaria; Duffy, Brion; Gessler, Cesare; Mattivi, Fulvio

    2009-11-11

    Erwinia amylovora causes fire blight, a serious disease of apple and pear. The bacterial pathogen colonizes the flower stigma and hypanthium, where it multiplies and then invades through natural openings (nectarthodes). E. amylovora requires nicotinic acid as growth factor, and competition for nicotinic acid is being explored as a novel biocontrol strategy. The ability of E. amylovora to substitute nicotinic acid with analogues or derivates as growth factors has not been investigated yet. Furthermore, the presence and/or variable concentration of nicotinic acid and its analogues/derivates in the hypanthium could be associated with the different susceptibilities to fire blight of hosts and nonhosts and with the differential sensitivity to the disease among apple and pear varieties. Currently, no methods to specifically quantify nicotinic acid and nicotinic acid analogues/derivates in the hypanthium of apple and pear blossoms are available. This study demonstrates that E. amylovora can grow using nicotinamide and 6-hydroxynicotinic acid as alternative growth factors to nicotinic acid, but not using 2-hydroxynicotinic acid. A novel HPLC/ES-MS method was developed for the detection and quantification of nicotinic acid and its analogues/derivates directly in the hypanthium of apple and pear blossoms. Analyses established the presence of nicotinic acid and nicotinamide, whereas no detectable amounts of 6-hydroxynicotinic acid and 2-hydroxynicotinic acid were observed. Mean nicotinic acid content in the pear hypanthium was found to be approximately 2 orders of magnitude higher than in the apple hypanthium, which may contribute to the differential susceptibility of these two host species to fire blight. Contents of nicotinamide were in contrast similar. Nicotinic acid can therefore be considered a relevant factor in the pathogen establishment in pear blossoms, whereas nicotinamide could cover a primary role in apple blossoms.

  16. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    USDA-ARS?s Scientific Manuscript database

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  17. Microbial production of hyaluronic acid from agricultural resource derivatives.

    PubMed

    Pires, Aline M B; Macedo, André C; Eguchi, Silvia Y; Santana, Maria H A

    2010-08-01

    Agricultural resource derivatives (ARDs) such as hydrolysate soy protein concentrate (HSPC), whey protein concentrate (WPC), and cashew apple juice (CAJ) were studied with focus on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Supplementation of the media with corn steep liquor (CSL) was also evaluated. Synthetic medium containing glucose and yeast extract was used as control. CAJ was a promising medium for the production of HA. It produced the highest amount of HA (0.89 g L(-1)), similar to that of the control (0.86 g L(-1)). WPC and HSPC media were the most effective for the production of biomass. CSL did not influence the production of HA when HSPC and WPC were used. However, in the synthetic medium it doubled the yield of HA from glucose. The average molecular weight of HA ranged from 10(3) to 10(4)Da for the ARDs and 10(7)Da for the synthetic medium. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Lithospermic acid derivatives from Lithospermum erythrorhizon increased expression of serine palmitoyltransferase in human HaCaT cells.

    PubMed

    Thuong, Phuong Thien; Kang, Keon Wook; Kim, Jeong Kee; Seo, Dae Bang; Lee, Sang Jun; Kim, Sung Han; Oh, Won Keun

    2009-03-15

    A MeOH extract of the dry root of Lithospermum erythrorhizon showed strong increasing effect on serine palmitoyltransferase (SPT) in normal human keratinocyte cells (HaCaT cells). Bioassay-guided separation on this extract using repeated chromatography resulted in the isolation of lithospermic acid (1) and two derivative esters, 9''-methyl lithospermate (2) and 9'-methyl lithospermate (3). Compounds 1-3 significantly increased SPT expressions in the relative quantity (%) of SPT1 mRNA as well as SPT2 mRNA. These constituents also raised the level of SPT protein in HaCaT cells in a dose-dependent manner, with the increased level of SPT protein in HaCaT cells of 55%, 23%, and 81% at the concentration of 100 microg/ml, respectively. This finding suggests that lithospermic acid and its derivatives from L. erythrorhizon might improve the permeability barrier by stimulating the protein level of SPT.

  19. New regioselective derivatives of sucrose with amino acid and acrylic groups.

    PubMed

    Anders, Jan; Buczys, Rachel; Lampe, Elmar; Walter, Martin; Yaacoub, Emile; Buchholz, Klaus

    2006-02-27

    We report here a range of new sucrose derivatives obtained from '3-ketosucrose' in aqueous medium with few reaction steps. As an intermediate, 3-amino-3-deoxy-alpha-D-allopyranosyl beta-D-fructofuranoside (1) was obtained via the classical route of reductive amination with much improved yield and high stereoselectivity. Building blocks for polymerization were synthesized by introduction of acrylic-type side chains, for example, with methacrylic anhydride. Corresponding polymers were synthesized. Aminoacyl and peptide conjugates were obtained through conventional peptide synthesis with activated and protected amino acids. Deprotection yielded new glycoderivatives having an unconventional substitution pattern, namely 3-(aminoacylamino) allosaccharides. Both mono- and di-peptide conjugates of allosucrose have been synthesized.

  20. Scaleable two-component gelator from phthalic acid derivatives and primary alkyl amines: acid-base interaction in the cooperative assembly.

    PubMed

    Su, Ting; Hong, Kwon Ho; Zhang, Wannian; Li, Fei; Li, Qiang; Yu, Fang; Luo, Genxiang; Gao, Honghe; He, Yu-Peng

    2017-06-07

    A series of phthalic acid derivatives (P) with a carbon-chain tail was designed and synthesized as single-component gelators. A combination of the single-component gelator P and a non-gelling additive n-alkylamine A through acid-base interaction brought about a series of novel phase-selective two-component gelators PA. The gelation capabilities of P and PA, and the structural, morphological, thermo-dynamic and rheological properties of the corresponding gels were investigated. A molecular dynamics simulation showed that the H-bonding network in PA formed between the NH of A and the carbonyl oxygen of P altered the assembly process of gelator P. Crude PA could be synthesized through a one-step process without any purification and could selectively gel the oil phase without a typical heating-cooling process. Moreover, such a crude PA and its gelation process could be amplified to the kilogram scale with high efficiency, which offers a practical economically viable solution to marine oil-spill recovery.

  1. Semi-Preparative Separation of 10 Caffeoylquinic Acid Derivatives Using High Speed Counter-Current Chromatogaphy Combined with Semi-Preparative HPLC from the Roots of Burdock (Arctium lappa L.).

    PubMed

    Zheng, Zhenjia; Wang, Xiao; Liu, Pengli; Li, Meng; Dong, Hongjing; Qiao, Xuguang

    2018-02-15

    Burdock roots are healthy dietary supplements and a kind of famous traditional Chinese medicine, which contains large amounts of caffeoylquinic acid derivatives. However, little research has been reported on the preparative separation of these compounds from burdock roots. In the present study, a combinative method of HSCCC and semi-preparative HPLC was developed for the semi-preparative separation of caffeoylquinic acid derivatives from the burdock roots. The ethyl acetate extract of burdock roots was first fractionated by MCI macroporous resin chromatography and give three fractions (Fr. 1-3) from the elution of 40% methanol. Then, these three fractions (120 mg) were separately subjected to HSCCC for purification with the solvent system composed of petroleum ether-ethyl acetate-methanol-water at different volume ratios, and the mixtures were further purified by semi-preparative HPLC. As a result, a total of eight known caffeoylquinic acid derivatives including 3- O -caffeoylquinic acid (32.7 mg, 95.7%), 1,5- O - dicaffeoylquinic acid (4.3 mg, 97.2%), 3- O -caffeoylquinic acid methyl ester (12.1 mg, 93.2%), 1,3- O -dicaffeoylquinic acid (42.9 mg, 91.1%), 1,5- O -dicaffeoyl-3- O -(4-maloyl)-quinic acid (4.3 mg, 84.5%), 4,5- O -dicaffeoylquinic acid (5.3 mg, 95.5%), 1,5- O -dicaffeoyl-3- O -succinylquinic acid (8.7 mg, 93.4%), and 1,5- O -dicaffeoyl-4- O -succinylquinic acid (1.7 mg, 91.8%), and two new compounds were obtained. The new compounds were 1,4- O -dicaffeoyl-3-succinyl methyl ester quinic acid (14.6 mg, 96.1%) and 1,5- O -dicaffeoyl-3- O -succinyl methyl ester quinic acid (3.1 mg, 92.6%), respectively. The research indicated that the combination of HSCCC and semi-preparative HPLC is a highly efficient approach for preparative separation of the instability and bioactive caffeoylquinic acid derivatives from natural products.

  2. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells.

    PubMed

    Im, Sung-Eun; Yoon, Hyungeun; Nam, Tae-Gyu; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2010-08-01

    In recent decades, romaine lettuce has been one of the fastest growing vegetables with respect to its consumption and production. An understanding is needed of the effect of major phenolic phytochemicals from romaine lettuce on biological protection for neuron-like PC-12 cells. Phenolics in fresh romaine lettuce were extracted, and then its total phenolics and total antioxidant capacity were measured spectrophotometrically. Neuroprotective effects of phenolic extract of romaine lettuce and its pure caffeic acid derivatives (caffeic, chicoric, chlorogenic, and isochlorogenic acids) in PC-12 cells were evaluated using two different in vitro methods: lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays. Total phenolics and total antioxidant capacity of 100 g of fresh romaine lettuce averaged 22.7 mg of gallic acid equivalents and 31.0 mg of vitamin C equivalents, respectively. The phenolic extract of romaine lettuce protected PC-12 cells against oxidative stress caused by H(2)O(2) in a dose-dependent manner. Isochlorogenic acid, one of the phenolics in romaine lettuce, showed stronger neuroprotection than the other three caffeic acid derivatives also found in the lettuce. Although romaine lettuce had lower levels of phenolics and antioxidant capacity compared to other common vegetables, its contribution to total antioxidant capacity and antineurodegenerative effect in human diets would be higher because of higher amounts of its daily per capita consumption compared to other common vegetables.

  3. Two novel dicarboxylic Acid derivatives and a new dimeric hydrolyzable tannin from walnuts.

    PubMed

    Ito, Hideyuki; Okuda, Takahiro; Fukuda, Toshiyuki; Hatano, Tsutomu; Yoshida, Takashi

    2007-02-07

    In addition to the 16 previously reported polyphenols including 3 new ellagitannins, 2 novel dicarboxylic acid derivatives, glansreginins A (1) and B (2), and a new dimeric hydrolyzable tannin, glansrin D (3), were isolated, together with 15 known compounds from walnuts, the seeds of Juglans regia. The structures of the new compounds were elucidated on the basis of 1D- and 2D-NMR analyses and chemical data. The antioxidant effect of these isolates was also evaluated by SOD-like and DPPH radical scavenging activities.

  4. Characterization and antioxidant activity of gallic acid derivative

    NASA Astrophysics Data System (ADS)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  5. Pharmacological evaluation of a novel cyclic phosphatidic acid derivative 3-S-cyclic phosphatidic acid (3-S-cPA).

    PubMed

    Nozaki, Emi; Gotoh, Mari; Tanaka, Ryo; Kato, Masaru; Suzuki, Takahiro; Nakazaki, Atsuo; Hotta, Harumi; Kobayashi, Susumu; Murakami-Murofushi, Kimiko

    2012-05-15

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator possessing cyclic phosphate ring, which is necessary for its specific biological activities. To stabilize cyclic phosphate ring of cPA, we synthesized a series of cPA derivatives. We have shown that racemic 3-S-cPA, with a phosphate oxygen atom replaced with a sulfur atom at the sn-3, was a more effective autotaxin (ATX) inhibitor than cPA. In this study, we showed that racemic 3-S-cPA also had potent biological activities such as inhibition of cancer cell migration, suppression of the nociceptive reflex, and attenuation of ischemia-induced delayed neuronal cell death in the hippocampal CA1. Moreover, we synthesized both enantiomers of palmitoleoyl derivative of 3-S-cPA, and found that the chirality of 3-S-cPA is not involved in ATX inhibition. Based on these findings, racemic 3-S-cPA is suggested as an effective therapeutic compound like cPA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes.

    PubMed

    Kikugawa, Masaki; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji

    2017-08-01

    We recently reported that two water-soluble derivatives of ferulic acid (1-feruloyl glycerol, 1-feruloyl diglycerol) previously developed by our group exhibited protective effects against amyloid-β-induced neurodegeneration in vitro and in vivo. In the current study, we aimed to further understand this process by examining the derivatives' ability to suppress abnormal activation of astrocytes, the key event of neurodegeneration. We investigated the effects of ferulic acid (FA) derivatives on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in rat primary astrocytes. The results showed that these compounds inhibited NO production and iNOS expression in a concentration-dependent manner and that the mechanism underlying these effects was the suppression of the nuclear factor-κB pathway. This evidence suggests that FA and its derivatives may be effective neuroprotective agents and could be useful in the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

  7. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.

    Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  8. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.

    Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the methodmore » is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  9. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE PAGES

    Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; ...

    2017-11-22

    Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  10. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  11. Synthesis of novel heterocyclic ring-fused 18β-glycyrrhetinic acid derivatives with antitumor and antimetastatic activity.

    PubMed

    Gao, Cheng; Dai, Fu-Jun; Cui, Hai-Wei; Peng, Shi-Hong; He, Yuan; Wang, Xue; Yi, Zheng-Fang; Qiu, Wen-Wei

    2014-08-01

    Glycyrrhetinic acid (GA) is one of the most important triterpenoic acids shows many pharmacological effects, especially antitumor activity. GA triggers apoptosis in various tumor cell lines. However, the antitumor activity of GA is weak, thus the synthesis of new synthetic analogs with enhanced potency is needed. By introducing various five-member fused heterocyclic rings at C-2 and C-3 positions, 18 novel GA derivatives were obtained. These compounds were evaluated for their inhibitory activity against the growth of eight different tumor cell lines using a SRB assay. The most active compound 37 showed IC50 between 5.19 and 11.72 μm, which was about 11-fold more potent than the lead compound GA. An apoptotic effect of GA and 37 was determined using flow cytometry and trypan blue exclusion assays. We also demonstrated here for the first time that GA and the synthetic derivatives exhibited inhibitory effect on migration of the tested tumor cells, especially 37 which was about 20-fold more potent than GA on antimetastatic activity. © 2014 John Wiley & Sons A/S.

  12. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  13. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.

  14. Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1.

    PubMed

    Sonntag, Frank; Buchhaupt, Markus; Schrader, Jens

    2014-05-01

    The ethylmalonyl-coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens, YciA from E. coli, Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.

  15. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis

    USDA-ARS?s Scientific Manuscript database

    Plakortide F acid (PFA) is a marine-derived polyketide endoperoxide exhibiting strong inhibitory activity against several clinically important fungal pathogens. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Sacch...

  17. α-Amino Acid Derived Benzimidazole-Linked Rhodamines: A Case of Substitution Effect at the Amino Acid Site toward Spiro Ring Opening for Selective Sensing of Al3+ Ions.

    PubMed

    Majumdar, Anupam; Mondal, Subhendu; Daniliuc, Constantin G; Sahu, Debashis; Ganguly, Bishwajit; Ghosh, Sourav; Ghosh, Utpal; Ghosh, Kumaresh

    2017-08-07

    α-Amino acid derived benzimidazole-linked rhodamines have been synthesized, and their metal ion sensing properties have been evaluated. Experimentally, l-valine- and l-phenylglycine-derived benzimidazole-based rhodamines 1 and 2 selectively recognize Al 3+ ion in aqueous CH 3 CN (CH 3 CN/H 2 O 4/1 v/v, 10 mM tris HCl buffer, pH 7.0) over the other cations by exhibiting color and "turn-on" emission changes. In contrast, glycine-derived benzimidazole 3 remains silent in the recognition event and emphasizes the role of α-substitution of amino acid undertaken in the design. The fact has been addressed on the basis of the single-crystal X-ray structures and theoretical calculations. Moreover, pink 1·Al 3+ and 2·Al 3+ ensembles selectively sensed F - ions over other halides through a discharge of color. Importantly, compounds 1 and 2 are cell permeable and have been used as imaging reagents for the detection of Al 3+ uptake in human lung carcinoma cell line A549.

  18. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  19. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    PubMed

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (<2 g/L) exerted a stimulating effect on the lactic acid production. When prehydrolysate containing total 25.45 g/L monosaccharide was fermented with B. coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  20. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.

    PubMed

    Yu, Tao; Zhou, Yongjin J; Wenning, Leonie; Liu, Quanli; Krivoruchko, Anastasia; Siewers, Verena; Nielsen, Jens; David, Florian

    2017-05-26

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C 22 H 46 O) by expressing a specific fatty acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l -1 in yeast. This approach will provide a universal strategy towards the production of similar high value chemicals in a more scalable, stable and sustainable manner.

  1. Self-assembly into soft materials of molecules derived from naturallyoccurring fatty-acids

    NASA Astrophysics Data System (ADS)

    Zhang, Mohan

    The self-assembly of molecular gelators has provided an attractive route for the construction of nanostructured materials with desired functionalities. A well-defined paradigm for the design of molecular gels is needed, but none has yet been established. One of the important challenges to defining this paradigm is the creation of structure-property correlations for gelators at different distance scales. This dissertation centers on gaining additional insights in the relationship between small changes in gelator structures derived from long-chain, naturally-occurring fatty acids and the properties of the corresponding gels. This approach offers a reasonable method to probe the rational design of molecular gelators. (Abstract shortened by ProQuest.).

  2. Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes.

    PubMed

    Avior, Yishai; Levy, Gahl; Zimerman, Michal; Kitsberg, Daniel; Schwartz, Robert; Sadeh, Ronen; Moussaieff, Arieh; Cohen, Merav; Itskovitz-Eldor, Joseph; Nahmias, Yaakov

    2015-07-01

    The liver is the main organ responsible for the modification, clearance, and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However, the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however, current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly, fetal hepatocytes acquire mature CYP450 expression only postpartum, suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid, a by-product of intestinal flora, activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes, while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive, permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells, compared to 0.62 for HepG2 cells. Finally, stem cell-derived hepatocytes demonstrate all toxicological endpoints examined, including steatosis, apoptosis, and cholestasis, when exposed to nine known hepatotoxins. Our work provides fresh insights into liver development, suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional, inducible, hPSC-derived hepatocyte for predictive toxicology. © 2015 by the American Association for the Study of Liver Diseases.

  3. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  4. Cytoprotective Effect of Caffeic Acid Phenethyl Ester (CAPE) and Catechol Ring-Fluorinated CAPE Derivatives Against Menadione-Induced Oxidative Stress in Human Endothelial Cells

    DTIC Science & Technology

    2006-03-31

    chlorogenic acid , and rosmari- nic acid did not display any cytoprotective effect in this assay at 15 lM (data not shown). Within the same pas- sage of HUVEC...Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative...accepted 13 March 2006 Available online 31 March 2006 Abstract—Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many

  5. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synthesis, evaluation and molecular docking studies of amino acid derived N-glycoconjugates as antibacterial agents.

    PubMed

    Baig, Noorullah; Singh, Rajnish Prakash; Chander, Subhash; Jha, Prabhat Nath; Murugesan, Sankaranarayanan; Sah, Ajay K

    2015-12-01

    Six amino acid derived N-glycoconjugates of d-glucose were synthesized, characterized and tested for antibacterial activity against G(+)ve (Bacillus cereus) as well as G(-)ve (Escherichia coli and Klebsiella pneumoniae) bacterial strains. All the tested compounds exhibited moderate to good antibacterial activity against these bacterial strains. The results were compared with the antibacterial activity of standard drug Chloramphenicol, where results of A5 (Tryptophan derived glycoconjugates) against E. coli and A4 (Isoleucine derived glycoconjugates) against K. pneumoniae bacterial strains are comparable with the standard drug molecule. In silico docking studies were also performed in order to understand the mode of action and binding interactions of these molecules. The docking studies revealed that, occupation of compound A5 at the ATP binding site of subunit GyrB (DNA gyrase, PDB ID: 3TTZ) via hydrophobic and hydrogen bonding interactions may be the reason for its significant in vitro antibacterial activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2013-10-01

    Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects...studies have not been carried out as yet. Our hypothesis is that novel polyunsaturated fatty acid derived lipid mediators of inflammation, i.e., lipoxins

  8. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    PubMed Central

    Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.

    2018-01-01

    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021

  9. Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis

    PubMed Central

    Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang

    2014-01-01

    Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. PMID:24829209

  10. Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis.

    PubMed

    Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang

    2014-06-17

    Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. © 2014 The Authors.

  11. Selective extraction of derivates of p-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer.

    PubMed

    Karasová, Gabriela; Lehotay, Jozef; Sádecká, Jana; Skacáni, Ivan; Lachová, Miroslava

    2005-12-01

    Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.

  12. Photo-cross-linked poly(thioether-co-carbonate) networks derived from the natural product quinic acid.

    PubMed

    Link, Lauren A; Lonnecker, Alexander T; Hearon, Keith; Maher, Cameron A; Raymond, Jeffery E; Wooley, Karen L

    2014-10-22

    Polycarbonate networks derived from the natural product quinic acid that can potentially return to their natural building blocks upon hydrolytic degradation are described herein. Solvent-free thiol-ene chemistry was utilized in the copolymerization of tris(alloc)quinic acid and a variety of multifunctional thiol monomers to obtain poly(thioether-co-carbonate) networks with a wide range of achievable thermomechanical properties including glass transition temperatures from -18 to +65 °C and rubbery moduli from 3.8 to 20 MPa. The network containing 1,2-ethanedithiol expressed an average toughness at 25 and 63 °C of 1.08 and 2.35 MJ/m(3), respectively, and an order-of-magnitude increase in the average toughness at 37 °C of 15.56 MJ/m(3).

  13. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    PubMed

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  14. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    PubMed Central

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases. PMID:29740575

  15. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  16. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  17. Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth

    PubMed Central

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth. PMID:24312480

  18. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  19. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  20. Safety assessment of azelaic acid and its derivatives entrapped in nanovesicles.

    PubMed

    Panyosak, A; Manosroi, J; Rojanasakul, Y; Manosroi, A

    2009-06-01

    The aim of this study was to determine the safety of azelaic acid (AA) and its derivatives in nanovesicles for pharmaceutical and cosmetic uses. The hydrophilic property of AA was modified by complexing AA with hydroxypropyl-beta-cyclodextrin (AACD). The lipophilic property of AA was improved to diethyl azelate (DA) by esterification with Fischer reaction. AA, AACD and DA were entrapped in liposomes and niosomes with the compositions of L-alpha-dipalmitoyl phosphatidylcholine/cholesterol = 7:3 and Tween 61/cholesterol = 1:1, respectively, by chloroform film method with sonication. The size of the vesicles ranged from 50 to 200 nm, indicating nanosize characteristics. The cytotoxicity of AA, AACD and DA entrapped nanovesicular formulations on mouse epidermal cell lines (JB6, normal cell lines) by the sulforhodamine B assay was modest when compared with cisplatin. Blank liposomes and niosomes gave no growth inhibitory effect. The irritation of AA, AACD and DA entrapped and not entrapped in nanovesicles on rabbit skin was examined according to the Environmental Protection Agency health effect test guidelines. The results showed no signs of erythema or edema within 72 h. AA and its derivatives were safe for topical use when entrapped in nanovesicles because of no toxicity to normal cell lines and no allergy on rabbit skin.

  1. Syntheses and structure characterization of ten acid-base hybrid crystals based on imidazole derivatives and mineral acids

    NASA Astrophysics Data System (ADS)

    Hu, Kaikai; Deng, Bowen; Jin, Shouwen; Ding, Aihua; Jin, Shide; Zhu, Jin; Zhang, Huan; Wang, Daqi

    2018-04-01

    Cocrystallization of the imidazole derivatives with a series of mineral acids gave a total of ten hybrid salts with the compositions: [(H2bzm)(Cl)2·3H2O] (1), [(H2bzm)(ClO4)2] (2), [(H2bze)(Cl)2·2H2O] (3), [(H2bze)(Br)2·2H2O] (4), [(H2bzp)(Cl)2·4H2O] (5), [(H2bzp)(Br)2·4H2O] (6), (2-(imidazol-1-yl)-1-phenylethanone): (phosphoric acid) [(Himpeta)+(H2PO4)-] (7), [(H2impd)(Br)2] (8), [(H2impd)(ClO4)2] (9), and [(Hbzml)(Cl)] (10). The ten salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N atoms of the imidazole are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical H-bonds between the NH+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different set of additional CHsbnd O, CH2sbnd O, CHsbnd Cl, CH2sbnd Cl, CHsbnd N, CHsbnd Br, CH2sbnd Br, Osbnd O, O-π, Br-π, CH-π, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R21(7), R22(7), R22(8), and R42(8), usually observed in the organic solids, were again shown to be involved in constructing some of these H-bonding networks.

  2. Discovery, synthesis, and pharmacological evaluation of spiropiperidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors.

    PubMed

    Varasi, Mario; Thaler, Florian; Abate, Agnese; Bigogno, Chiara; Boggio, Roberto; Carenzi, Giacomo; Cataudella, Tiziana; Dal Zuffo, Roberto; Fulco, Maria Carmela; Rozio, Marco Giulio; Mai, Antonello; Dondio, Giulio; Minucci, Saverio; Mercurio, Ciro

    2011-04-28

    New spiro[chromane-2,4'-piperidine] and spiro[benzofuran-2,4'-piperidine] hydroxamic acid derivatives as HDAC inhibitors have been identified by combining privileged structures with a hydroxamic acid moiety as zinc binding group. The compounds were evaluated for their ability to inhibit nuclear extract HDACs and for their in vitro antiproliferative activity on different tumor cell lines. This work resulted in the discovery of spirocycle 30d that shows good oral bioavailability and tumor growth inhibition in an HCT-116 murine xenograft model.

  3. Comparison between Soil- and Biochar-Derived Humic Acids: Composition, Conformation, and Phenanthrene Sorption.

    PubMed

    Jin, Jie; Sun, Ke; Yang, Yan; Wang, Ziying; Han, Lanfang; Wang, Xiangke; Wu, Fengchang; Xing, Baoshan

    2018-02-20

    Biochar-derived organic matter (BDOM) plays an important role in determining biochar's application potential in soil remediation. However, little is known about the physicochemical properties of BDOM and its sorption of hydrophobic organic compounds (HOCs). Humic acids (HAs) were extracted from oxidized biochars produced from plant straws and animal manures at 450 °C, and their sorption of phenanthrene, a representative of HOCs, was investigated. The organic carbon recovery of biochar-derived HAs (BDHAs) was 13.9-69.3%. The 13 C NMR spectra of BDHAs mainly consisted of aromatic and carboxylic C, while those of soil-derived HAs (SDHAs) contained abundant signals in aliphatic region. BDHAs and SDHAs had comparable CO 2 cumulative surface areas. BDHAs were found to exhibit higher phenanthrene sorption than SDHAs. After the removal of amorphous aromatic components, the logK oc values of BDHAs were significantly decreased, implying that amorphous aromatic C regulated phenanthrene sorption by BDHAs. In contrast, aliphatic moieties dominated phenanthrene sorption by SDHAs, as evidenced by the enhanced sorption after the removal of amorphous aromatics. This study clearly demonstrated the contrasting characteristics and sorption behaviors of BDHA and SDHA, indicating that biochar addition and subsequent weathering could greatly affect native organic matter properties and the fate of HOCs in biochar-amended soils.

  4. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  5. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE PAGES

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy; ...

    2017-04-19

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  6. A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation.

    PubMed

    Wang, Yanhan; Zhang, Lingjuan; Yu, Jinghua; Huang, Stephen; Wang, Zhenping; Chun, Kimberly Ann; Lee, Tammy Ling; Chen, Ying-Tung; Gallo, Richard L; Huang, Chun-Ming

    2017-01-01

    We show that Staphylococcus epidermidis, a commensal bacterium in the human skin microbiome, produces short-chain fatty acids by glycerol fermentation that can induce adipogenesis. Although the antimicrobial and anti-inflammatory activities of short-chain fatty acids have been previously well characterized, little is known about the contribution of short-chain fatty acids to the adipogenic differentiation of adipose-derived stem cells (ADSCs). We show that ADSCs differentiated into adipocytes and accumulated lipids in the cytoplasm when cultured with butyric acid, a principal short-chain fatty acid in the fermentation metabolites of S. epidermidis. Additionally, a co-drug, butyric acid 2-(2-butyryloxyethoxy) ethyl ester (BA-DEG-BA), released active butyric acid when it was intradermally injected into mouse ears and induced ADSC differentiation, characterized by an increased expression of cytoplasmic lipids and perilipin A. The BA-DEG-BA-induced adipogenic differentiation was mediated via peroxisome proliferator-activated receptor gamma. Furthermore, intradermal injection of ADSCs along with BA-DEG-BA into mouse ears markedly enhanced the adipogenic differentiation of ADSCs, leading to dermal augmentation. Our study introduces BA-DEG-BA as an enhancer of ADSC adipogenesis and suggests an integral interaction between the human skin microbiome and ADSCs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Chemometric modeling of 5-Phenylthiophenecarboxylic acid derivatives as anti-rheumatic agents.

    PubMed

    Adhikari, Nilanjan; Jana, Dhritiman; Halder, Amit K; Mondal, Chanchal; Maiti, Milan K; Jha, Tarun

    2012-09-01

    Arthritis involves joint inflammation, synovial proliferation and damage of cartilage. Interleukin-1 undergoes acute and chronic inflammatory mechanisms of arthritis. Non-steroidal anti-inflammatory drugs can produce symptomatic relief but cannot act through mechanisms of arthritis. Diseases modifying anti-rheumatoid drugs reduce the symptoms of arthritis like decrease in pain and disability score, reduction of swollen joints, articular index and serum concentration of acute phage proteins. Recently, some literature references are obtained on molecular modeling of antirheumatic agents. We have tried chemometric modeling through 2D-QSAR studies on a dataset of fifty-one compounds out of which forty-four 5-Phenylthiophenecarboxylic acid derivatives have IL-1 inhibitory activity and forty-six 5-Phenylthiophenecarboxylic acid derivatives have %AIA suppressive activity. The work was done to find out the structural requirements of these anti-rheumatic agents. 2D QSAR models were generated by 2D and 3D descriptors by using multiple linear regression and partial least square method where IL-1 antagonism was considered as the biological activity parameter. Statistically significant models were developed on the training set developed by k-means cluster analysis. Sterimol parameters, electronic interaction at atom number 9, 2D autocorrelation descriptors, information content descriptor, average connectivity index chi-3, radial distribution function, Balaban 3D index and 3D-MoRSE descriptors were found to play crucial roles to modulate IL-1 inhibitory activity. 2D autocorrelation descriptors like Broto-Moreau autocorrelation of topological structure-lag 3 weighted by atomic van der Waals volumes, Geary autocorrelation-lag 7 associated with weighted atomic Sanderson electronegativities and 3D-MoRSE descriptors like 3D-MoRSE-signal 22 related to atomic van der Waals volumes, 3D-MoRSE-signal 28 related to atomic van der Waals volumes and 3D-MoRSE-signal 9 which was unweighted

  8. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    PubMed

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  9. A general approach to quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides by UV spectrophotometry

    USDA-ARS?s Scientific Manuscript database

    A general method was developed for the quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides based on the UV molar relative response factors (MRRF) of the standards. Each of these phenolic compounds contains a cinnamoyl structure and has a maximum absorban...

  10. A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted α,β-Diamino Acid Derivatives To Hunt Hits.

    PubMed

    Lei, Ruirui; Wu, Yong; Dong, Suzhen; Jia, Kaili; Liu, Shunying; Hu, Wenhao

    2017-03-17

    A highly diasetereoselective Mannich-type multicomponent reaction was developed to rapidly construct alkynylamide-substituted α,β-diamino acid derivatives from simple starting materials under mild conditions in moderate to good yields for hit hunting. Most of the resulting products 4 exhibited good anticancer activity in HCT116, BEL7402, and SMMC7721 cells.

  11. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  12. Hyaluronic acid effect on adipose-derived stem cells. Biological in vitro evaluation.

    PubMed

    Moreno, A; Martínez, A; Olmedillas, S; Bello, S; de Miguel, F

    2015-01-01

    To evaluate the in vitro effects of hyaluronic acid (HA) on adipose-derived stem cells (ASC) in order to consider the possibility of their combined used in the treatment of knee arthrosis. The ASC cells were grown both in the presence and absence of AH, and several studies were carried out: proliferation (WST8) and cell viability studies (Alamar Blue® and Trypan Blue), possible chondrogenic differentiation (collagen type 2 expression) by RT-PCR, AH receptor expression (CD44) by flow cytometry and RT-QPCR, and expression of inflammatory and anti-inflammatory factors (IL-6, TGFß, IL-10) by RT-QPCR. The number of ASC significantly increased after 7 days with HA (158±39%, p <0.05). Additionally, the cell viability of the ASC treated with HA after 1, 3, 5 and 7 days was similar to that of the control cells, being considered non-toxic. There were no changes observed in the expression of CD44 and chondrogenic differentiation. TGFß expression was not modified after AH treatment, but there was a 4-fold decrease in IL-6 expression and IL-10 expression increased up to 2-fold compared to control cells. Hyaluronic acid favours ASC proliferation without causing cellular toxicity, and inducing an anti-inflammatory profile in these cells. Hyaluronic acid appears to be a suitable vehicle for the intra-articular administration of mesenchymal stem cells. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  13. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid

    NASA Astrophysics Data System (ADS)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Yamaguchi, Daizo; Kato, Hideki; Hayashi, Shigenobu; Hara, Michikazu

    2010-06-01

    SO 3H-bearing amorphous carbon, prepared by partial carbonization of cellulose followed by sulfonation in fuming H 2SO 4, was applied as a solid catalyst for the acid-catalyzed hydrolysis of β-1,4 glucan, including cellobiose and crystalline cellulose. Structural analyses revealed that the resulting carbon material consists of graphene sheets with 1.5 mmol g -1 of SO 3H groups, 0.4 mmol g -1 of COOH, and 5.6 mmol g -1 of phenolic OH groups. The carbon catalyst showed high catalytic activity for the hydrolysis of β-1,4 glycosidic bonds in both cellobiose and crystalline cellulose. Pure crystalline cellulose was not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, Nafion ® NR-50, and Amberlyst-15, whereas the carbon catalyst efficiently hydrolyzes cellulose into water-soluble saccharides. The catalytic performance of the carbon catalyst is due to the large adsorption capacity for hydrophilic reactants and the adsorption ability of β-1,4 glucan, which is not adsorbed to other solid acids.

  14. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    PubMed

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  16. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    PubMed

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Synthesis and Cytotoxicities of Royleanone Derivatives.

    PubMed

    Li, Cheng-Ji; Xia, Fan; Wu, Rong; Tan, Hong-Sheng; Xu, Hong-Xi; Xu, Gang; Qin, Hong-Bo

    2018-06-16

    Carnosic acid was used as starting material to synthesize royleanone derivatives featured C11-C14 para quinone. The importance of C-20 group of royleanone derivatives was verified by the cytotoxicity assay of royleanonic acid, miltionone I and deoxyneocrptotanshinone. Following our synthetic route, 15 amide derivatives were synthesized and 8 compounds exhibited moderate cytotoxic activities against three human cancer lines in vitro.

  18. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation

    PubMed Central

    Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  19. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    PubMed

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  20. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities.

    PubMed

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Ko, Wonmin; Kim, Dong-Cheol; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-15

    Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Mitra, Sivaprasad

    2011-03-01

    Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.

  2. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.

    PubMed

    Naziroglu, Hayriye Nevin; Durmaz, Mustafa; Bozkurt, Selahattin; Sirit, Abdulkadir

    2011-07-01

    Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids. Copyright © 2011 Wiley-Liss, Inc.

  3. NMR assignment of a PDZ domain in complex with a HPV51 E6 derived N-terminally pyroglutamic acid modified peptide.

    PubMed

    Mischo, André; Ohlenschläger, Oliver; Ramachandran, Ramadurai; Görlach, Matthias

    2013-04-01

    The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include (1)H, (13)C and (15)N resonances for the protein and peptide in the complex and all of the peptide's pyroglutamic acid nuclei.

  4. Highly Functionalized 1,2–Diamino Compounds through Reductive Amination of Amino Acid-Derived β–Keto Esters

    PubMed Central

    Pérez-Faginas, Paula; Aranda, M. Teresa; García-López, M. Teresa; Infantes, Lourdes; Fernández-Carvajal, Asia; González-Ros, José Manuel; Ferrer-Montiel, Antonio; González-Muñiz, Rosario

    2013-01-01

    1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically relevant compounds. In this respect, amino acid-derived β–keto esters are a suitable starting point for the synthesis of β,γ–diamino ester derivatives through a two-step reductive amination procedure with either simple amines or α–amino esters. AcOH and NaBH3CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be chromatographically separated. Transformation of the β,γ–diamino esters into pyrrolidinone derivatives allows the configuration assignment of the linear compounds, and constitutes an example of their potential application in the generation of molecular diversity. PMID:23308167

  5. Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp.

    PubMed

    Cheikh-Ali, Zakaria; Glynou, Kyriaki; Ali, Tahir; Ploch, Sebastian; Kaiser, Marcel; Thines, Marco; Bode, Helge B; Maciá-Vicente, Jose G

    2015-10-01

    Members of the fungal genus Exophiala are common saprobes in soil and water environments, opportunistic pathogens of animals, or endophytes in plant roots. Their ecological versatility could imply a capacity to produce diverse secondary metabolites, but only a few studies have aimed at characterizing their chemical profiles. Here, we assessed the secondary metabolites produced by five Exophiala sp. strains of a particular phylotype, isolated from roots of Microthlaspi perfoliatum growing in different European localities. Exophillic acid and two previously undescribed compounds were isolated from these strains, and their structures were elucidated by spectroscopic methods using MS, 1D and 2D NMR. Bioassays revealed a weak activity of these compounds against disease-causing protozoa and mammalian cells. In addition, 18 related structures were identified by UPLC/MS based on comparisons with the isolated structures. Three Exophiala strains produced derivatives containing a β-d-glucopyranoside moiety, and their colony morphology was distinct from the other two strains, which produced derivatives lacking β-d-glucopyranoside. Whether the chemical/morphological strain types represent variants of the same genotype or independent genetic populations within Exophiala remains to be evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Design, synthesis, antiviral bioactivity and three-dimensional quantitative structure-activity relationship study of novel ferulic acid ester derivatives containing quinazoline moiety.

    PubMed

    Wu, Zengxue; Zhang, Jian; Chen, Jixiang; Pan, Jianke; Zhao, Lei; Liu, Dengyue; Zhang, Awei; Chen, Jin; Hu, Deyu; Song, Baoan

    2017-10-01

    Ferulic acid and quinazoline derivatives possess good antiviral activities. In order to develop novel compounds with high antiviral activities, a series of ferulic acid ester derivatives containing quinazoline were synthesized and evaluated for their antiviral activities. Bioassays indicated that some of the compounds exhibited good antiviral activities in vivo against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). One of the compounds demonstrated significant curative and protective activities against TMV and CMV, with EC 50 values of 162.14, 114.61 and 255.49, 138.81 mg L -1 , respectively, better than those of ningnanmycin (324.51, 168.84 and 373.88, 272.70 mg L -1 ). The values of q 2 and r 2 for comparative molecular field analysis and comparative molecular similarity index analysis in the TMV (0.508, 0.663 and 0.992, 0.930) and CMV (0.530, 0.626 and 0.997, 0.981) models presented good predictive abilities. Some of the title compounds demonstrated good antiviral activities. Three-dimensional quantitative structure-activity relationship models revealed that the antiviral activities depend on steric and electrostatic properties. These results could provide significant structural insights for the design of highly active ferulic acid derivatives. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Singh, Abhishek K; Khan, Feroz; Srivastava, Santosh K; Pant, Aditya B

    2014-01-01

    In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18β-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.

  8. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    PubMed

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids.

    PubMed

    Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan

    2017-05-01

    Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    PubMed

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  11. Serum levels of marine-derived n-3 fatty acids in Icelanders, Japanese, Koreans, and Americans - A descriptive epidemiologic study

    PubMed Central

    Sekikawa, Akira; Steingrimsdottir, Laufey; Ueshima, Hirotsugu; Shin, Chol; Curb, J. David; Evans, Rhobert W.; Hauksdottir, Alda M.; Kadota, Aya; Choo, Jina; Masaki, Kamal; Thorsson, Bolli; Launer, Lenore J.; Garcia, Melisa E.; Maegawa, Hiroshi; Willcox, Bradley J.; Eiriksdottir, Gudny; Fujiyoshi, Akira; Miura, Katsuyuki; Harris, Tamara B.; Kuller, Lewis H.; Gudnason, Vilmundur

    2012-01-01

    Summary In the 1990’s Iceland and Japan were known as countries with high fish consumption whereas coronary heart disease (CHD) mortality in Iceland was high and that in Japan was low among developed countries. We described recent data fish consumption and CHD mortality from publicly available data. We also measured CHD risk factors and serum levels of marine-derived n-3 and other fatty acids from population-based samples of 1,324 men in Iceland, Japan, South Korea, and the US. CHD mortality in men in Iceland was almost 3 times as high as that in Japan and South Korea. Generally a profile of CHD risk factors in Icelanders compared to Japanese was more favorable. Serum marine-derived n-3 fatty acids in Iceland were significantly lower than in Japan and South Korea but significantly higher than in the US. PMID:22658580

  12. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity

    PubMed Central

    Zha, Weibin; Edin, Matthew L.; Vendrov, Kimberly C.; Schuck, Robert N.; Lih, Fred B.; Jat, Jawahar Lal; Bradbury, J. Alyce; DeGraff, Laura M.; Hua, Kunjie; Tomer, Kenneth B.; Falck, John R.; Zeldin, Darryl C.; Lee, Craig R.

    2014-01-01

    Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences. PMID:25114171

  13. Caffeoylquinic acid derived free radicals identified during antioxidant reactions of bitter tea (Ilex latifolia and Ilex kudincha).

    PubMed

    Pirker, Katharina Franziska; Goodman, Bernard Albert

    2010-12-01

    In order to provide some insight into the chemical basis for the antioxidant behaviour of bitter tea, the Chinese medicinal beverage derived from leaves of Ilex kudincha or Ilex latifolia, free radicals generated during the oxidation of aqueous extracts of dried leaves have been investigated by electron paramagnetic resonance (EPR) spectroscopy. With both beverages, the major components in the EPR spectra after accelerated autoxidation under alkaline conditions or oxidation with the superoxide anion radical were comparable to those derived from reactions of caffeoylquinic acids. Thus these reaction products have sufficient stability for biological activity, and the present results suggest that such molecules contribute appreciably to the antioxidant chemistry of these beverages.

  14. Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium.

    PubMed

    El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa

    2012-03-01

    Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.

  15. New ambuic acid derivatives from the solid culture of Pestalotiopsis neglecta and their nitric oxide inhibitory activity.

    PubMed

    Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei

    2015-05-19

    Four new ambuic acid derivatives (1-4), and four known derivatives (5-8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively.

  16. Fatty Acid Profile and Unigene-Derived Simple Sequence Repeat Markers in Tung Tree (Vernicia fordii)

    PubMed Central

    Zhang, Lin; Jia, Baoguang; Tan, Xiaofeng; Thammina, Chandra S.; Long, Hongxu; Liu, Min; Wen, Shanna; Song, Xianliang; Cao, Heping

    2014-01-01

    Tung tree (Vernicia fordii) provides the sole source of tung oil widely used in industry. Lack of fatty acid composition and molecular markers hinders biochemical, genetic and breeding research. The objectives of this study were to determine fatty acid profiles and develop unigene-derived simple sequence repeat (SSR) markers in tung tree. Fatty acid profiles of 41 accessions showed that the ratio of α-eleostearic acid was increasing continuously with a parallel trend to the amount of tung oil accumulation while the ratios of other fatty acids were decreasing in different stages of the seeds and that α-eleostearic acid (18∶3) consisted of 77% of the total fatty acids in tung oil. Transcriptome sequencing identified 81,805 unigenes from tung cDNA library constructed using seed mRNA and discovered 6,366 SSRs in 5,404 unigenes. The di- and tri-nucleotide microsatellites accounted for 92% of the SSRs with AG/CT and AAG/CTT being the most abundant SSR motifs. Fifteen polymorphic genic-SSR markers were developed from 98 unigene loci tested in 41 cultivated tung accessions by agarose gel and capillary electrophoresis. Genbank database search identified 10 of them putatively coding for functional proteins. Quantitative PCR demonstrated that all 15 polymorphic SSR-associated unigenes were expressed in tung seeds and some of them were highly correlated with oil composition in the seeds. Dendrogram revealed that most of the 41 accessions were clustered according to the geographic region. These new polymorphic genic-SSR markers will facilitate future studies on genetic diversity, molecular fingerprinting, comparative genomics and genetic mapping in tung tree. The lipid profiles in the seeds of 41 tung accessions will be valuable for biochemical and breeding studies. PMID:25167054

  17. Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps.

    PubMed

    Zhang, Jie; Sasaki, Tatsunori; Li, Wei; Nagata, Kazuya; Higai, Koji; Feng, Feng; Wang, Jian; Cheng, Maosheng; Koike, Kazuo

    2018-04-15

    Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (1-10) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC 50 11.1 μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCAmore » transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.« less

  19. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase.

    PubMed

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-02-01

    Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  20. Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase

    PubMed Central

    2017-01-01

    Summary Bionic acids are bioactive compounds demonstrating numerous interesting properties. They are widely produced by chemical or enzymatic oxidation of disaccharides. This paper focuses on the galactosyl derivative of gluconic acid as a result of a new method of bionic acid synthesis which utilises the transglycosylation properties of β-galactosidase and introduces lactose as a substrate. Products obtained in such a process are characterised by different structures (and, potentially, properties) than those resulting from traditional oxidation of disaccharides. The aim of this study is to determine the effect of selected parameters (concentration and ratio of substrates, dose of the enzyme, time, pH, presence of salts) on the course of the reaction carried out with the enzymatic preparation Lactozym, containing β-galactosidase from Kluyveromyces lactis. Research has shown that increased dry matter content in the baseline solution (up to 50%, by mass per volume) and an addition of NaCl contribute to higher yield. On the other hand, reduced content of the derivative is a result of increased pH from 7.0 to 9.0 and an addition of magnesium and manganese salts. Moreover, exceeding the β-galactosidase dose over approx. 35 000 U per 100 g of lactose also leads to reduced yield of the process. The most favourable molar ratio of sodium gluconate to lactose is 2.225:0.675. Depending on the conditions of the synthesis, the product concentration ranged between 17.3 and 118.3 g/L of the reaction mixture, which corresponded to the mass fraction of 6.64–23.7% of dry matter. The data obtained as a result of the present study may be useful for designing an industrial process. PMID:28867957

  1. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase.

    PubMed

    Kashif, Muhammad; Moreno-Herrera, Antonio; Villalobos-Rocha, Juan Carlos; Nogueda-Torres, Benjamín; Pérez-Villanueva, Jaime; Rodríguez-Villar, Karen; Medina-Franco, José Lius; de Andrade, Peterson; Carvalho, Ivone; Rivera, Gildardo

    2017-10-30

    Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans -sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans -sialidase (TS) inhibitors and anti-trypanosomal agents. Three compounds ( 14 , 18 , and 19 ) sharing a para -aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC 50 ) was <0.15 µM on the NINOA strain, and LC 50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47%) on the trans -sialidase enzyme and a binding model similar to DANA (pattern A).

  2. Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis.

    PubMed

    Endo, Satoshi; Hoshi, Manami; Matsunaga, Toshiyuki; Inoue, Takahiro; Ichihara, Kenji; Ikari, Akira

    2018-02-26

    Propolis, a resinous substance produced by honeybees, possesses various biological actions including anticancer activity towards tumor cells. Recently, the ethanol extract of Brazilian green propolis has been shown to induce autophagy, which is known to be induced in treatment of cancer cells with anticancer drugs, leading to cancer cell survival and decreased sensitivity to anticancer agents. In this study, we aimed to identify autophagy-inducing components of the propolis and elucidated the reciprocal relationship between anticancer cytotoxicity and protective autophagy in prostate cancer CWR22Rv1 cells. Among eight cinnamic acid derivatives [chlorogenic acid, p-coumaric acid, caffeic acid, 3,4-caffeoylquinic acid, artepillin C (ArtC), baccharin, drupanin and caffeic acid phenethyl ester] in propolis, only ArtC showed high autophagy-inducing activity accompanying LC3-II upregulation. ArtC was also induced apoptosis as revealed by DNA fragmentation and increases in cleaved caspase-3 and poly ADP-ribose polymerase. The apoptosis induced by ArtC was exacerbated by cotreatment with autophagy inhibitors (chloroquine, wortmannin and U0126). The cotreatment further induced necroptosis accompanying increased expression of receptor-interacting serine/threonine protein kinases 1 and 3. These data indicate that cytotoxicity of ArtC to the prostate cancer cells is dampened by induced autophagy, but is markedly augmented by inhibition of autophagy. Therefore, the combination of ArtC and autophagy inhibitors may be a novel complementary-alternative treatment for prostate cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  4. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    PubMed

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P < 0.05). During overnight sleep, myofibrillar protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P < 0.01), representing 18 ± 6% greater incorporation of presleep protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older

  5. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  6. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.

    PubMed

    Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori

    2016-01-01

    Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  7. The kinetics of the 2π+2π photodimerisation reactions of single-crystalline derivatives of trans-cinnamic acid: A study by infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Samantha L.; Almond, Matthew J.; Atkinson, Samantha D. M.; Drew, Michael G. B.; Hollins, Peter; Mortimore, Joanne L.; Tobin, Mark J.

    2006-04-01

    The kinetics of the photodimerisation reactions of the 2- and 4-β-halogeno-derivatives of trans-cinnamic acid (where the halogen is fluorine, chlorine or bromine) have been investigated by infrared microspectroscopy. It is found that none of the reactions proceed to 100% yield. This is in line with a reaction mechanism developed by Wernick and his co-workers that postulates the formation of isolated monomers within the solid, which cannot react. β-4-Bromo and β-4-chloro- trans-cinnamic acids show approximately first order kinetics, although in both cases the reaction accelerates somewhat as it proceeds. First order kinetics is explained in terms of a reaction between one excited- and one ground-state monomer molecule, while the acceleration of the reaction implies that it is promoted as defects are formed within the crystal. By contrast β-2-chloro- trans-cinnamic acid shows a strongly accelerating reaction which models closely to the contracting cube equation. β-2-Fluoro- and β-4-fluoro- trans-cinnamic acids show a close match to first order kinetics. The 4-fluoro-derivative, however, shows a reaction that proceeds via a structural intermediate. The difference in behaviour between the 2-fluoro- and 4-fluoro-derivative may be due to different C-H⋯F hydrogen bonds observed within these single-crystalline starting materials.

  8. Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans.

    PubMed

    Roowi, Suri; Mullen, William; Edwards, Christine A; Crozier, Alan

    2009-05-01

    Human urine was collected over a 24 h period after the consumption of 250 mL of (i) water, (ii) orange juice, and (iii) orange juice plus 150 mL of full fat natural yoghurt. The orange juice contained 168 micromol of hesperetin-7-O-rutinoside and 18 micromol of naringenin-7-O-rutinoside. GC-MS analysis of the urine identified nine phenolic acids, five of which, 3-hydroxyphenylacetic acid, 3-hydroxyphenylhydracrylic acid, dihydroferulic acid, 3-methoxy-4-hydroxyphenylhydracrylic acid and 3-hydroxyhippuric acid, were associated with orange juice consumption indicating that they were derived from colonic catabolism of hesperetin-7-O-rutinoside. The overall 0-24 h excretion of the five phenolic acids was 6.7 +/- 1.8 micromol after drinking water and this increased significantly (p < 0.05) to 62 +/- 18 micromol, equivalent to 37% of the ingested flavanones, following orange juice consumption. When the orange juice was ingested with yoghurt excretion fell back markedly to 9.3 +/- 4.4 micromol. This was not due to a difference in mouth to caecum transit time, as measured with breath hydrogen production, though possibly there may have been a slowing of the bulk of the meal reaching the large intestine which may then have altered the catabolism of the flavanones to phenolic acids by the colonic microbiota.

  9. [Antihypoxic effect of 3-hydroxypyridine and succinic acid derivatives and their nootropic action in alloxan diabetes].

    PubMed

    Volchegorskiĭ, I A; Rassokhina, L M; Miroshnichenko, I Iu

    2011-01-01

    Relationship between the antihypoxic effect of 3-hydroxypyridine and succinic acid derivatives (emoxipine, reamberin and mexidol) and their effect on conditional learning, glycemia, and lipidemia was studied in rats with alloxan-induced diabetes. In parallel, the analogous relationship was investigated for alpha-lipoic acid that is regarded as a "gold standard" in treatment of diabetic neuropathy. It was established that single administration of emoxipine and mexidol in mice in doses equivalent to therapeutic-range doses in humans produces antihypoxic effect manifested by increased resistance to acute hypoxic hypoxia in test animals. Alpha-lipoic acid is inferior to emoxipin and mexidol in the degree of antihypoxic action. Reamberin does not exhibit this effect. The introduction of emoxipin, reamberin, mexidol, and alpha-lipoic acid in rats with alloxan diabetes during 7 or 14 days in doses equivalent to therapeutic-range doses in humans corrects conditional learning disorders in direct relationship with the antihypoxic activity of these drugs. The development of the nootropic effect of emoxipin, mexidol, and alpha-lipoic acid is related to a decrease in hyperglycemia and hyperlipidemia in rats with alloxan diabetes. The nootropic action of reamberin is accompanied by a transient hypoglycemizing effect and aggravation of dyslipidemic disorders. The antihypoxic activity of investigated drugs determines the direction and expression of their lipidemic effect, but is not correlated with the hypoglycemizing action these drugs on test animals with alloxan diabetes.

  10. Nicotinic Acid Metabolism, V. A Cobamide Coenzyme-Dependent Conversion of α-Methyleneglutaric Acid to Dimethylmaleic Acid

    PubMed Central

    Kung, H. F.; Cederbaum, S.; Tsai, L.; Stadtman, T. C.

    1970-01-01

    A new B12-coenzyme-dependent isomerization, catalyzed by extracts of a nicotinate-fermenting clostridium, results in the conversion of α-methyleneglutaric acid to dimethylmaleic acid. These two acids are intermediates in the multistep anaerobic process wherein nicotinate is converted, ultimately, to one mole each of propionate, acetate, carbon dioxide, and ammonia. Dimethylmaleic acid reacts in its anhydride form with 2,4-dinitrophenylhydrazine to form N-2′,4′-dinitrophenyl-anilino-3,4-dimethylmaleimide. The characteristic reddish color exhibited by the latter derivative in alkaline solution serves as a convenient quantitative assay for dimethylmaleic acid. Comparison of the 2,4-dinitrophenylhydrazine derivatives of the product of the enzymic reaction and of synthetic dimethylmaleic anhydride showed them to be identical in every respect. PMID:5266166

  11. Molecular docking, synthesis and biological screening of mefenamic acid derivatives as anti-inflammatory agents.

    PubMed

    Savjani, Jignasa K; Mulamkattil, Suja; Variya, Bhavesh; Patel, Snehal

    2017-04-15

    Drug induced gastrointestinal ulceration, renal side effects and hepatotoxicity are the main causes of numerous Non-Steroidal Anti-inflammatory Drugs (NSAIDs). Cyclooxygenase-2 (COX-2) inhibitors discovered to decrease the gastrointestinal issues, but unfortunately, most of them are associated with major cardiovascular adverse effects. Along these lines, various new strategies and frameworks were developed wherein basic alterations of the present medications were accounted for. The aim of the study was to prepare derivatives of mefenamic acid to evaluate anti-inflammatory activity with fewer adverse reactions. In this study, molecular docking investigations of outlined derivatives were done utilizing Protein Data Bank (PDB ID-4PH9). Synthesis of heterocyclic compounds was carried out utilizing Dicyclohexylcarbodiimide/4-Dimethylaminopyridine (DCC/DMAP) coupling. Acute toxicity prediction was performed using free online GUSAR (General Unrestricted Structure-Activity Relationships) software. The study indicated most of the compounds under safe category. In-vitro pharmacological assessment of heterocyclic compounds was done for COX-1 and COX-2 enzymes for the determination of selectivity. In vivo pharmacological screening for anti-inflammatory activity and ED 50 value were determined utilizing carrageenan induced rat paw edema. Gastro intestinal safety study was carried out on selected compounds and found to be devoid of any gastric ulcer toxicity. Most of the compounds indicated high scores as compared to standard during molecular modelling, analysis and displayed interactions with active amino acids of a COX-2 enzyme. The pharmacological screening uncovered that compound substituted with p-bromophenyl indicated maximum potency. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Purine derivate content and amino acid profile in larval stages of three edible insects.

    PubMed

    Bednářová, Martina; Borkovcová, Marie; Komprda, Tomáš

    2014-01-15

    Considering their high content of protein, insects are a valuable alternative protein source. However, no evaluation of their purine content has so far been done. High content of purine derivates may lead to the exclusion of such food from the diet of people with specific diseases. The aim of this study was to analyse the content of selected purine derivates and amino acid profile in the three insect species most often used for entomophagy in Europe and compare them with the purine content in egg white and chicken breast. The content of individual purine derivates and their total content were significantly dependent on insect species. The purine content in all three species was significantly higher (P < 0.05) than in egg white, but some values were significantly lower (P < 0.05) than in chicken breast. The total protein content was 548.9 g kg(-1) dry matter (DM) in mealworm (Tenebrio molitor), 551.6 g kg(-1) DM in superworm (Zophobas atratus) and 564.9 g kg(-1) DM in cricket (Gryllus assimilis). Larvae of mealworm and superworm are protein-rich and purine-low meat alternatives. In contrast, cricket nymphs are protein-rich and purine-rich and cannot be recommended for people with hyperuricemia or gout. © 2013 Society of Chemical Industry.

  13. A Lipidomic Approach to Understanding Free Fatty Acid Lipogenesis Derived from Dissolved Inorganic Carbon within Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Dunn, Simon R.; Thomas, Michael C.; Nette, Geoffrey W.; Dove, Sophie G.

    2012-01-01

    The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs) were selected because of their multiple essential roles inclusive of energy storage (resource accumulation), membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic (13C) incorporation from dissolved inorganic carbon (DI13C) combined with HPLC-MS. FAs derived from DI13C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, 13C-enriched FA synthesis rates were attributed to only a complex integration of both n–3 and n–6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized 13C derivatives or DI13C being directly utilized, in host late n–6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with metabolite production and

  14. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis.

    PubMed

    Dunn, Simon R; Thomas, Michael C; Nette, Geoffrey W; Dove, Sophie G

    2012-01-01

    The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs) were selected because of their multiple essential roles inclusive of energy storage (resource accumulation), membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic ((13)C) incorporation from dissolved inorganic carbon (DI(13)C) combined with HPLC-MS. FAs derived from DI(13)C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, (13)C-enriched FA synthesis rates were attributed to only a complex integration of both n-3 and n-6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized (13)C derivatives or DI(13)C being directly utilized, in host late n-6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with metabolite

  15. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts.

    PubMed

    Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin

    2017-01-01

    Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.

  16. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    PubMed

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  17. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    PubMed

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid

  18. Fatty acids derived from a food frequency questionnaire and measured in the erythrocyte membrane in relation to adiponectin and leptin concentrations.

    PubMed

    Santos, S; Oliveira, A; Pinho, C; Casal, S; Lopes, C

    2014-05-01

    Evidence on the association between fatty acids and adiponectin and leptin concentrations is scarce and inconsistent, which may in part be due to limitations of dietary reporting methods. We aimed to estimate the association of fatty acids, derived from a food frequency questionnaire (FFQ) and measured in the erythrocyte membrane, with adiponectin and leptin concentrations. We studied 330 non-institutionalized inhabitants of Porto (52.4% women; age range: 26-64 years) evaluated in 2010-2011, as part of the EPIPorto cohort study. Fatty acids were derived from a validated semiquantitative FFQ and measured in the erythrocyte membrane by gas chromatography. Serum concentrations of adiponectin and leptin were determined through radioimmunoassay. Regression coefficients (β) and 95% confidence intervals (95% CI) were obtained from linear regression models, after controlling for gender, age, education, leisure time physical activity and total body fat percentage (obtained from dual energy X-ray absorptiometry). Fatty acids measured by FFQ showed no significant associations with both adipokines. Lauric and linoleic acids, measured in the erythrocyte membrane, were significantly and positively associated with adiponectin (β=0.292, 95% CI: 0.168-0.416; β=0.150, 95% CI: 0.020-0.280) and leptin (β=0.071, 95% CI: 0.003-0.138; β=0.071, 95% CI: 0.002-0.140), whereas total n-3, eicosapentaenoic and docosahexaenoic acids were significantly but negatively associated with adiponectin (β=-0.289, 95% CI: -0.420 to -0.159; β=-0.174, 95% CI -0.307 to -0.040; β=-0.253, 95% CI -0.383 to -0.124) and leptin (β=-0.151, 95% CI: -0.220 to -0.083; β=-0.080, 95% CI: -0.151 to -0.009; β=-0.146, 95% CI: -0.214 to -0.078). Positive significant associations of palmitic and trans-fatty acids with adiponectin were also observed. A positive association of lauric and linoleic acids and a negative association of total n-3 fatty acids with both adipokines were observed only with fatty acids

  19. Effect of lignocellulose-derived inhibitors on the growth and D-lactic acid production of Sporolactobacillus inulinus YBS1-5.

    PubMed

    Bai, Zhongzhong; Gao, Zhen; He, Bingfang; Wu, Bin

    2015-10-01

    The impact of lignocellulose-derived inhibitors on the cell growth and D-lactic production of Sporolactobacillus inulinus YBS1-5 was investigated. At high concentrations, both furans and phenolics, such as furfural, HMF, syringaldehyde and vanillin, affected cell growth and D-lactic acid production and syringaldehyde exhibited the highest. Further experiments showed that only vanillin caused cellular membrane damage. Based on the Biolog approach, in vivo studies on intact S. inulinus cells indicated that phenolics had a stronger inhibitory effect than furan derivatives on the metabolic activity of the concerned substrates related with the key enzymes of D-lactic acid fermentation. The direct in vitro inhibitory effect of the model compounds on the four key enzymes displayed similar patterns. Syringaldehyde was the strongest inhibitor. In general, comparison with published results for other microorganisms indicated that strain YBS1-5 was a robust microorganism against inhibitors of lignocellulose hydrolysate. Notably, in concentrated corn stover hydrolysate, S. inulinus YBS1-5 produced 70.7 g/L D-lactic acid, which was 87.7 % of the yield from the control experiment. However, the fermentation time was prolonged 36 h. In order to improve fermentation rate, a detoxification technology or more robust mutant to phenolics especially syringaldehyde should be developed.

  20. New ambuic acid derivatives from the solid culture of Pestalotiopsis neglecta and their nitric oxide inhibitory activity

    PubMed Central

    Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei

    2015-01-01

    Four new ambuic acid derivatives (1–4), and four known derivatives (5–8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively. PMID:25989228

  1. Evaluation of potential interactions between mycophenolic acid derivatives and proton pump inhibitors.

    PubMed

    Gabardi, Steven; Olyaei, Ali

    2012-01-01

    To evaluate the incidence of gastrointestinal (GI) complications in solid organ transplant (SOT) recipients, impact of the complications on transplant outcomes, and the potential interactions between mycophenolic acid (MPA) derivatives and proton pump inhibitors (PPIs). An unrestricted literature search (1980-January 2012) was performed with MEDLINE and EMBASE using the following key words: drug-drug interaction, enteric-coated mycophenolic acid, GI complications, mycophenolate mofetil, solid organ transplant, and proton pump inhibitor, including individual agents within the class. Abstracts from scientific meetings were also evaluated. Additionally, reference citations from identified publications were reviewed. Relevant English-language, original research articles and review articles were evaluated if they focused on any of the topics identified in the search or included substantial content addressing GI complications in SOT recipients or drug interactions. GI complications are frequent among SOT recipients, with some studies showing prevalence rates as high as 70%. Transplant outcomes among renal transplant recipients are significantly impacted by GI complications, especially in patients requiring immunosuppressant dosage reductions or premature discontinuation. To this end, PPI use among patients receiving transplants is common. Recent data demonstrate that PPIs significantly reduce the overall exposure to MPA after oral administration of mycophenolate mofetil. Similar studies show this interaction does not exist between PPIs and enteric-coated mycophenolic acid (EC-MPA). Unfortunately, most of the available data evaluating this interaction are pharmacokinetic analyses that do not investigate the clinical impact of this interaction. A significant interaction exists between PPIs and mycophenolate mofetil secondary to reduced dissolution of mycophenolate mofetil in higher pH environments. EC-MPA is not absorbed in the stomach; therefore, low intragastric acidity

  2. A tandem conjugate addition/cyclization protocol for the asymmetric synthesis of 2-aryl-4-aminotetrahydroquinoline-3-carboxylic acid derivatives.

    PubMed

    Davies, Stephen G; Mujtaba, Nadeam; Roberts, Paul M; Smith, Andrew D; Thomson, James E

    2009-05-07

    Condensation of tert-butyl (E)-3-(2'-aminophenyl)propenoate with a range of aromatic and heteroaromatic aldehydes gives the corresponding imines as single diastereoisomers (>98% de). Addition of lithium (R)-N-benzyl-N-(alpha-methylbenzyl)amide initiates a tandem conjugate addition/cyclization reaction to generate 2-aryl-4-aminotetrahydroquinoline-3-carboxylic acid derivatives in >98% de, >98% ee and high isolated yield. Hydrogenolysis of an N(1)-Boc protected derivative allows selective cleavage of the N-benzyl-N-alpha-methylbenzyl protecting groups without compromise of the diastereo- or enantiopurity.

  3. Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone.

    PubMed

    Jin, Xin; Zheng, Chang-Ji; Song, Ming-Xia; Wu, Yan; Sun, Liang-Peng; Li, Yin-Jing; Yu, Li-Jun; Piao, Hu-Ri

    2012-10-01

    Four novel series of compounds, including the l-phenylalanine-derived C5-substituted rhodanine (6a-q, 7a-j) and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone (9a-e, 11a-e) have been designed, synthesized, characterized, and evaluated for their antibacterial activity. Some of these compounds showed significant antibacterial activity against Gram-positive bacterias, especially against the strains of multidrug-resistant clinical isolates, among which compounds 6c-e, 6g, 6i, 6j and 6q exhibiting high levels of antimicrobial activity against Staphylococcus aureus RN4220 with minimum inhibitory concentration (MIC) values of 2 μg/mL. Compound 6q showed the most potent activity of all of the compounds against all of the test multidrug-resistant clinical isolates tested. Unfortunately, however, none of the compounds were active against Gram-negative bacteria at 64 μg/mL. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. New 1H-Benzo[f]indazole-4,9-diones Conjugated with C-Protected Amino Acids and Other Derivatives: Synthesis and in Vitro Antiproliferative Evaluation.

    PubMed

    Molinari, Aurora; Oliva, Alfonso; Arismendi-Macuer, Marlene; Guzmán, Leda; Fuentealba, Mauricio; Knox, Marcela; Vinet, Raúl; San Feliciano, Arturo

    2015-12-08

    1H-Benzo[f]indazole-4,9-dione derivatives conjugated with C-protected amino acids (glycine, l-alanine, l-phenylalanine and l-glutamic acid) 6a-l were prepared by chemically modifying the prenyl substituent of 3-methyl-7-(4-methylpent-3-enyl)-1H-benzo[f]indazole-4,9-dione 2 through epoxidation, degradative oxidation, oxidation and N-acyl condensation reactions. The chemical structures of the synthesized compounds were elucidated by analyzing their IR, ¹H-NMR and (13)C-NMR spectral data together with elemental analysis for carbon, hydrogen and nitrogen. The preliminary in vitro antiproliferative activity of the synthesized derivatives was evaluated on KATO-III and MCF-7 cell lines using a cell proliferation assay. The majority of the derivatives exhibited significant antiproliferative activity with IC50 values ranging from 25.5 to 432.5 μM. These results suggest that 1H-benzo[f]indazole-4,9-dione derivatives are promising molecules to be researched for developing new anticancer agents.

  5. Zoledronic acid modulates maturation of human monocyte-derived dendritic cells.

    PubMed

    Orsini, Giulia; Failli, Alessandra; Legitimo, Annalisa; Adinolfi, Barbara; Romanini, Antonella; Consolini, Rita

    2011-12-01

    Zoledronic acid (ZA) is a drug of the bisphosphonate class, which is widely used for the treatment of both osteoporosis and skeletal metastasis. Besides its main bone antiresorptive activity, ZA displays antitumor properties, by triggering the expansion and activation of γδ T-cells, which exert an antitumor effect through dendritic cells (DCs). Several studies have reported the interaction between ZA and γδ T-cells, but the potential immunoregulatory activity of this drug on DCs has scarcely been investigated. Therefore, in this paper, we evaluated the effects of a therapeutic dose of ZA on the in vitro generation and maturation of DCs derived from peripheral blood monocytes of healthy adult donors. We demonstrate that ZA treatment did not affect DC differentiation, but inhibited DC maturation on lipopolysaccharide activation, as shown by the impaired expression of maturation surface markers and reduced ability to induce allogeneic T-cell proliferation. Interestingly, IL-10 secretion by mature DCs was significantly lower in ZA-treated cells than in controls. We conclude that ZA exerts its immunological in vitro activity also by modulating the maturation of DCs.

  6. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    PubMed Central

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-01-01

    Objective(s): Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities. PMID:25810885

  7. Combinational treatment with retinoic acid derivatives in non-small cell lung carcinoma in vitro.

    PubMed

    Choi, Eun Jung; Whang, Young Mi; Kim, Seok Jin; Kim, Hyun Jin; Kim, Yeul Hong

    2007-09-01

    The growth inhibitory effects of four retinoic acid (RA) derivatives, 9-cis RA, 13-cis RA, N-(4-hydroxyphenyl) retinamide (4-HPR), and all-trans retinoic acid (ATRA) were compared. In addition, the effects of various combinations of these four agents were examined on non-small cell lung carcinoma (NSCLC) cell-lines, and on the expressions of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) on these cells. At the clinically achievable concentration of 1 microM, only 4-HPR inhibited the growths of H1299 and H460 cells-lines. However, retinoic acid receptor beta(RAR beta) expression was up-regulated on H460 and H1299 cells treated with 1 microM of ATRA, 13-cis RA, or 9-cis RA. All NSCLC cell lines showed growth inhibition when exposed sequentially to 1 microM ATRA and 0.1 microM 4-HPR. In particular, sequential treatment with 1 microM ATRA or 13-cis RA and 4-HPR markedly inhibited H1703 cell growth; these cells exhibited no basal RAR beta expression and were refractory to 4-HPR. However, in NSCLC cell lines that expressed RAR beta, the expressional levels of RAR beta were up-regulated by ATRA alone and by sequential treatment with ATRA and 4-HPR. 4-HPR was found to be the most active of the four agents in terms of NSCLC growth-inhibition. Moreover, sequential treatments with ATRA or 13-cis RA followed by 4-HPR were found to have synergistic growth-inhibitory effects and to regulate RAR expression.

  8. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Bandi Deepa; Padukudru, Mahesh A.; Kumari Chitturi, CH. M.; Vimalambike, Manjunath G.

    2017-01-01

    ABSTRACT Histone deacetylases (HDACs), which modulate the expression of genes, are potential therapeutic targets in several cancers. Targeted inhibition of HDAC prevents the expression of oncogenes thereby help in the treatment of cancers. Hence, several pharmaceutical companies developed inhibitors of HDAC and tested them in preclinical models and in clinical trials. SAHA (suberanilohydroxamic acid) is one such HDAC inhibitor developed for treating breast and colorectal carcinomas. However, due to poor efficacy in clinical trials the utility of SAHA for treating cancers was discouraged. Similarly another HDAC inhibitor Trichostatin-A (TSA) also showed promising results in clinical trials but exhibited severe adverse effects, which dampened the interest of using this molecule for cancer treatment. Therefore, search for developing a potent HDAC inhibitor with minimal side effects still continues. Hence, in this study we have screened benzoic acid and benzoic acid derivatives with hydroxylic (-OH) groups and methoxy (-OCH3) groups for their efficacy to bind to the TSA binding site of HDAC using molecular docking studies. Molecules that showed much stronger affinity (than TSA) to HDAC were tested for inhibiting HDAC expressing cultured cancer cells. DHBA but not Dimethoxy Benzoic Acid (DMBA) inhibited HDAC activity, leading to cancer cell growth inhibition through the induction of ROS and cellular apoptosis mediated by Caspase-3. In addition, DHBA arrested cells in G2/M phase of the cell cycle and elevated the levels of sub-G0-G1 cell population. In summary, results of this study report that DHBA could be a strong HDAC inhibitor and inhibit cancer cell growth more effectively. PMID:28506198

  9. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  10. Ascorbic acid derivatives as a new class of antiproliferative molecules.

    PubMed

    Bordignon, Benoit; Chiron, Julien; Fontés, Michel

    2013-09-28

    Ascorbic acid (AA) has long been described as an antiproliferative agent. However, the molecule has to be used at a very high concentrations, which necessitates i.v. injection, and the tight regulation of in-blood and in-cell AA concentrations making it impossible to hold very high concentrations for any substantial length of time. Here we report evidence that AA derivates are antiproliferative and cytotoxic molecules at an IC50 lower than AA itself. Among these new molecules, we selected K873 that has cytotoxic and antiproliferative effects on different human tumor cells at tenth micromolar concentration. In a further step, we demonstrated that K873 selectively to kills only cancer cells without being toxic for normal non-dividing (or poorly dividing) cells. Finally, we tested the effect of treatment with K873 (5-10 mg/kg/d by i.p. route) on tumor progression in xenografted immunodeficient mice (BALB/c Nude). Our data suggest that K873 administration strongly inhibits tumor progression. In a previous study using microarrays, we demonstrated that AA decreases the expression of two genes families involved in cell cycle progression, i.e. initiation factor of translation and tRNA synthetases. Here we show that K873 treatment also decreases the expression of four of these genes in xenografted tumors, in proportions similar to that previously observed with AA. Taken together, our data suggest that AA and K873 share similar action. Our findings suggest that AA derivatives could be a promising new class of anti-cancer drugs, either alone or in combination with other molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.

  12. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    PubMed

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  13. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  14. A polymeric prodrug of 5-fluorouracil-1-acetic acid using a multi-hydroxyl polyethylene glycol derivative as the drug carrier.

    PubMed

    Li, Man; Liang, Zhen; Sun, Xun; Gong, Tao; Zhang, Zhirong

    2014-01-01

    Macromolecular prodrugs obtained by covalently conjugating small molecular drugs with polymeric carriers were proven to accomplish controlled and sustained release of the therapeutic agents in vitro and in vivo. Polyethylene glycol (PEG) has been extensively used due to its low toxicity, low immunogenicity and high biocompatibility. However, for linear PEG macromolecules, the number of available hydroxyl groups for drug coupling does not change with the length of polymeric chain, which limits the application of PEG for drug conjugation purposes. To increase the drug loading and prolong the retention time of 5-fluorouracil (5-Fu), a macromolecular prodrug of 5-Fu, 5-fluorouracil-1 acid-PAE derivative (5-FA-PAE) was synthesized and tested for the antitumor activity in vivo. PEG with a molecular weight of 38 kDa was selected to synthesize the multi-hydroxyl polyethylene glycol derivative (PAE) through an addition reaction. 5-fluorouracil-1 acetic acid (5-FA), a 5-Fu derivative was coupled with PEG derivatives via ester bond to form a macromolecular prodrug, 5-FA-PAE. The in vitro drug release, pharmacokinetics, in vivo distribution and antitumor effect of the prodrug were investigated, respectively. The PEG-based prodrug obtained in this study possessed an exceedingly high 5-FA loading efficiency of 10.58%, much higher than the maximum drug loading efficiency of unmodified PEG with the same molecular weight, which was 0.98% theoretically. Furthermore, 5-FA-PAE exhibited suitable sustained release in tumors. This study provides a new approach for the development of the delivery to tumors of anticancer agents with PEG derivatives.

  15. Synthesis and description of intermolecular interactions in new sulfonamide derivatives of tranexamic acid

    NASA Astrophysics Data System (ADS)

    Ashfaq, Muhammad; Arshad, Muhammad Nadeem; Danish, Muhammad; Asiri, Abdullah M.; Khatoon, Sadia; Mustafa, Ghulam; Zolotarev, Pavel N.; Butt, Rabia Ayub; Şahin, Onur

    2016-01-01

    Tranexamic acid (4-aminomethyl-cyclohexanecarboxylic acid) was reacted with sulfonyl chlorides to produce structurally related four sulfonamide derivatives using simple and environmental friendly method to check out their three-dimensional behavior and van der Walls interactions. The molecules were crystallized in different possibilities, as it is/after alkylation at its O and N atoms/along with a co-molecule. All molecules were crystallized in monoclinic crystal system with space group P21/n, P21/c and P21/a. X-ray studies reveal that the molecules stabilized themselves by different kinds of hydrogen bonding interactions. The molecules are getting connected through O-H⋯O hydrogen bonds to form inversion dimers which are further connected through N-H⋯O interactions. The molecules in which N and O atoms were alkylated showed non-classical interaction and generated centro-symmetric R22(24) ring motif. The co-crystallized host and guest molecules are connected to each other via O-H⋯O interactions to generate different ring motifs. By means of the ToposPro software an analysis of the topologies of underlying nets that correspond to molecular packings and hydrogen-bonded networks in structures under consideration was carried out.

  16. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNiacid octaester porphyrins and their metal complexes very attractive for variant applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thyroid receptor ligands. Part 8: Thyromimetics derived from N-acylated-alpha-amino acid derivatives displaying modulated pharmacological selectivity compared with KB-141.

    PubMed

    Garg, Neeraj; Li, Yi-Lin; Garcia Collazo, Ana Maria; Litten, Chris; Ryono, Denis E; Zhang, Minsheng; Caringal, Yolanda; Brigance, Robert P; Meng, Wei; Washburn, William N; Agback, Peter; Mellström, Karin; Rehnmark, Stefan; Rahimi-Ghadim, Mahmoud; Norin, Thomas; Grynfarb, Marlena; Sandberg, Johnny; Grover, Gary; Malm, Johan

    2007-08-01

    Based on the scaffold of the pharmacologically selective thyromimetic 2b, structurally a close analog to KB-141 (2a), a number of novel N-acylated-alpha-amino acid derivatives were synthesized and tested in a TR radioligand binding assay as well as in a reporter cell assay. On the basis of TRbeta(1)-isoform selectivity and affinity, as well as affinity to the reporter cell assay, 3d was selected for further studies in the cholesterol-fed rat model. In this model 3d revealed an improved therapeutic window between cholesterol and TSH lowering but decreased margins versus tachycardia compared with 2a.

  18. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity.

    PubMed

    Zha, Weibin; Edin, Matthew L; Vendrov, Kimberly C; Schuck, Robert N; Lih, Fred B; Jat, Jawahar Lal; Bradbury, J Alyce; DeGraff, Laura M; Hua, Kunjie; Tomer, Kenneth B; Falck, John R; Zeldin, Darryl C; Lee, Craig R

    2014-10-01

    Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    PubMed

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  20. Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight.

    PubMed

    Kim, Sang Min; Jeon, Je-Seung; Kang, Suk Woo; Jung, Yu-Jin; Ly, Lin Na; Um, Byung-Hun

    2012-06-06

    Ligularia fischeri (Ledeb.) Turcz, a commercial leafy vegetable, contains caffeoylquinic acid derivatives (CQAs) as major phenolic constituents. The HPLC chromatograms of leaf extracts collected from different areas in Korea showed a significant variation in CQA amount, and two tri-O-caffeoylquinic acids (triCQAs) were purified and structurally identified by NMR and MS from this plant. Radical scavenging activities among CQAs were found to be increased in proportion to the number of caffeoyl groups. Since this plant prefers damp and shady growth conditions, the effects of sunlight were investigated by growing plantlets in sunlight and shade for four weeks. Greater leaf thickness and higher phenolic contents were found for leaves grown in sunlight than in shade. Four major CQAs-5-mono-O-caffeoylquinic acid (5-monoCQA), and 3,4-, 3,5-, and 4,5-di-O-caffeoylquinic acid (diCQA)-were induced by solar irradiation, whereas the content of these compounds decreased steadily in shade leaves. The leaves of L. fischeri clearly showed adaptation responses to sunlight, and these characteristics can be exploited for cultivation of this plant for potential use as a nutraceutical and functional food.

  1. [The effect of 3-oxypyridine and succinic acid derivatives on obsessive-compulsive activity of mice in marble-burying test].

    PubMed

    Volchegorskiĭ, I A; Miroshnichenko, I Iu; Rassokhina, L M; Faĭzullin, R M; Priakhina, K E

    2014-01-01

    The effect of domestic derivatives of 3-oxypyridine and succinic acid (emoxipine, reamberin, and mexidol) on obsessive-compulsive behavior of mice was studied in the marble-burying test. Additionally the effect of these drugs on the behavior of animals was assessed in the open field test. Amitriptylin and alpha-lipoic acid were used as reference drugs. It was established that single administration of the investigated drugs in optimal doses, corresponding to therapeutic range in humans, inhibits obsessive-compulsive behavior of mice in the marble-burying test. Amitriptylin and alpha-lipoic acid produced similar effects. It is established that emoxipine stimulates the behavior of mice in the open field after single administration. An increase in the emoxipine dose led to decrease of stimulation and gradual development of sedative effect. Reamberin and mexidol, as well as alpha-lipoic acid and amitriptyline, caused sedation in mice tested in the open field. Inhibiting effect of emoxipine, reamberin, mexidol and alpha-lipoic acid on the obsessive-compulsive behavior in mice directly depended on sedative action of these drugs.

  2. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts

    PubMed Central

    Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin

    2017-01-01

    Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects. PMID:28813533

  3. Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav

    2008-07-01

    Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.

  4. Determination of glycated albumin using boronic acid-derived agarose beads on paper-based devices.

    PubMed

    Ko, Euna; Tran, Van-Khue; Geng, Yanfang; Kim, Min Ki; Jin, Ga Hyun; Son, Seong Eun; Hur, Won; Seong, Gi Hun

    2018-01-01

    Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10  μ g/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1  μ g/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21-1.65 mg/ml (0.6%-3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.

  5. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  6. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  7. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation.

    PubMed

    Chen, Yan; Sit, Sing-Yuen; Chen, Jie; Swidorski, Jacob J; Liu, Zheng; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Lin, Zeyu; Li, Zhufang; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira D; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2018-05-15

    The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC 50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    PubMed

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  9. Colorimetric and fluorimetric detection of Hg2 + and Cr3 + by boronic acid conjugated rhodamine derivatives: Mechanistic aspects and their bio-imaging application in bacterial cells

    NASA Astrophysics Data System (ADS)

    Vallu, Rama Krishna; Velugula, Krishna; Doshi, Sejal; Chinta, Jugun Prakash

    2018-01-01

    Colorimetric and fluorimetric detection of toxic metal ions such as Hg2 + and Cr3 + has gained tremendous popularity over the conventional methods due to their operational simplicity, high selectivity, and speediness. Although numerous colorimetric and fluorescent receptors for Hg2 + or Cr3 + were reported in the literature, boronic acid-based receptors for these metal ions are rather scarce in the literature. Hence, in the present study dual function boronic acid conjugated rhodamine derivatives were developed, and their toxic metal ion detection abilities were studied by absorption, emission and visual detection methods. Absorption and emission spectral studies revealed that these derivatives displayed selectivity towards Hg2 +, Cr3 + and Fe3 + among the other metal ions studied by forming new absorption band. Both the derivatives exhibited colorimetric response towards Hg2 + and Cr3 + by the change in color of the solution to pink and reddish pink with Fe3 +. The detailed mechanism involved in the detection of Hg2 + was deduced by 1H NMR and ESI-MS studies. Further, these derivatives were used for fluorescence imaging of Hg2 + and Cr3 + in S. aureus bacterial cells. Thus the present manuscript demonstrated the use of boronic acid conjugated rhodamine derivatives as a dual function (colorimetric and fluorescent) probes and as imaging agents for Hg2 + and Cr3 +, which are known for their toxic influence on bacterial cells.

  10. Interaction of phenolic acids and their derivatives with human serum albumin: Structure-affinity relationships and effects on antioxidant activity.

    PubMed

    Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao

    2018-02-01

    In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.

  11. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment.

    PubMed

    Liang, Yanna; Jarosz, Kimberly; Wardlow, Ashley T; Zhang, Ji; Cui, Yi

    2014-08-01

    Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks.

  12. Induction of Fatty Acid Composition Modifications and Tolerance to Biocides in Salmonella enterica Serovar Typhimurium by Plant-Derived Terpenes▿

    PubMed Central

    Dubois-Brissonnet, Florence; Naïtali, Murielle; Mafu, Akier Assanta; Briandet, Romain

    2011-01-01

    To enhance food safety and stability, the food industry tends to use natural antimicrobials such as plant-derived compounds as an attractive alternative to chemical preservatives. Nonetheless, caution must be exercised in light of the potential for bacterial adaptation to these molecules, a phenomenon previously observed with other antimicrobials. The aim of this study was to characterize the adaptation of Salmonella enterica serovar Typhimurium to sublethal concentrations of four terpenes extracted from aromatic plants: thymol, carvacrol, citral, and eugenol, or combinations thereof. Bacterial adaptation in these conditions was demonstrated by changes in membrane fatty acid composition showing (i) limitation of the cyclization of unsaturated fatty acids to cyclopropane fatty acids when cells entered the stationary phase and (ii) bacterial membrane saturation. Furthermore, we demonstrated an increased cell resistance to the bactericidal activity of two biocides (peracetic acid and didecyl dimethyl ammonium bromide). The implications of membrane modifications in terms of hindering the penetration of antimicrobials through the bacterial membrane are discussed. PMID:21131520

  13. Sulfur-containing constituents and one 1H-pyrrole-2-carboxylic acid derivative from pineapple [Ananas comosus (L.) Merr.] fruit.

    PubMed

    Zheng, Zong-Ping; Ma, Jinyu; Cheng, Ka-Wing; Chao, Jianfei; Zhu, Qin; Chang, Raymond Chuen-Chung; Zhao, Ming; Lin, Zhi-Xiu; Wang, Mingfu

    2010-12-01

    Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Naphthalenemethyl ester derivative of dihydroxyhydrocinnamic acid, a component of cinnamon, increases glucose disposal by enhancing translocation of glucose transporter 4.

    PubMed

    Kim, W; Khil, L Y; Clark, R; Bok, S H; Kim, E E; Lee, S; Jun, H S; Yoon, J W

    2006-10-01

    Cinnamon extracts have anti-diabetic effects. Phenolic acids, including hydrocinnamic acids, were identified as major components of cinnamon extracts. Against this background we sought to develop a new anti-diabetic compound using derivatives of hydroxycinnamic acids purified from cinnamon. We purified hydroxycinnamic acids from cinnamon, synthesised a series of derivatives, and screened them for glucose transport activity in vitro. We then selected the compound with the highest glucose transport activity in epididymal adipocytes isolated from male Sprague-Dawley rats in vitro, tested it for glucose-lowering activity in vivo, and studied the mechanisms involved. A naphthalenemethyl ester of 3,4-dihydroxyhydrocinnamic acid (DHH105) showed the highest glucose transport activity in vitro. Treatment of streptozotocin-induced diabetic C57BL/6 mice and spontaneously diabetic ob/ob mice with DHH105 decreased blood glucose levels to near normoglycaemia. Further studies revealed that DHH105 increased the maximum speed of glucose transport and the translocation of glucose transporter 4 (GLUT4, now known as solute carrier family 2 [facilitated glucose transporter], member 4 [SLC2A4]) in adipocytes, resulting in increased glucose uptake. In addition, DHH105 enhanced phosphorylation of the insulin receptor-beta subunit and insulin receptor substrate-1 in adipocytes, both in vitro and in vivo. This resulted in the activation of phosphatidylinositol 3-kinase and Akt/protein kinase B, contributing to the translocation of GLUT4 to the plasma membrane. We conclude that DHH105 lowers blood glucose levels through the enhancement of glucose transport, mediated by an increase in insulin-receptor signalling. DHH105 may be a valuable candidate for a new anti-diabetic drug.

  15. Characterization of Long-Chain Fatty Acid as N-(4-Aminomethylphenyl) Pyridinium Derivative by MALDI LIFT-TOF/TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Frankfater, Cheryl; Jiang, Xuntian; Hsu, Fong-Fu

    2018-05-01

    Charge remote fragmentation (CRF) elimination of CnH2n+2 residues along the aliphatic tail of long chain fatty acid is hall mark of keV high-energy CID fragmentation process. It is an important fragmentation pathway leading to structural characterization of biomolecules by CID tandem mass spectrometry. In this report, we describe MALDI LIFT TOF-TOF mass spectrometric approach to study a wide variety of fatty acids (FAs), which were derivatized to N-(4-aminomethylphenyl) pyridinium (AMPP) derivative, and desorbed as M+ ions by laser with or without matrix. The high-energy MALDI LIFT TOF-TOF mass spectra of FA-AMPP contain fragment ions mainly deriving from CRF cleavages of CnH2n+2 residues, as expected. These ions together with ions from specific cleavages of the bond(s) involving the functional group within the molecule provide more complete structural identification than those produced by low-energy CID/HCD using a linear ion-trap instrument. However, this LIFT TOF-TOF mass spectrometric approach inherits low sensitivity, a typical feature of high-energy CID tandem mass spectrometry. Because of the lack of unit mass precursor ion selection with sufficient sensitivity of the current LIFT TOF-TOF technology, product ion spectra from same chain length fatty acids with difference in one or two double bonds in a mixture are not distinguishable.

  16. Tunable thermoresponsive pyrrolidone-based polymers from pyroglutamic acid, a bio-derived resource.

    PubMed

    Bhat, Rajani; Pietrangelo, Agostino

    2013-03-12

    A series of pyrrolidone-based polymers is prepared from pyroglutamic acid, a bio-derived resource. Polymers bearing simple alkoxy substituents (e.g., methoxy, ethoxy, and butoxy) are soluble in common organic solvents and possess glass transition temperatures that are dependent on the length of the alkoxy residue. Replacing these substituents with an ether moiety (CH3 OCH2 CH2 O-) affords a highly sensitive and reversible thermoresponsive polymer with a lower critical solution temperature (LCST) of 42 °C in water. Copolymers composed of repeat units bearing both the ether and simple alkoxy residues are found to exhibit LCSTs that are highly dependent on the nature of the hydrophobic alkoxy residue suggesting that the LCSTs of these polymers can be successfully tuned by simply tailoring the copolymer structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reduction of the nitro group to amine by hydroiodic acid to synthesize o-aminophenol derivatives as putative degradative markers of neuromelanin.

    PubMed

    Wakamatsu, Kazumasa; Tanaka, Hitomi; Tabuchi, Keisuke; Ojika, Makoto; Zucca, Fabio A; Zecca, Luigi; Ito, Shosuke

    2014-06-16

    Neuromelanin (NM) is produced in dopaminergic neurons of the substantia nigra (SN) and in noradrenergic neurons of the locus coeruleus (LC). The synthesis of NM in those neurons is a component of brain aging and there is the evidence that this pigment can be involved in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. NM is believed to derive from the oxidative polymerization of dopamine (DA) or norepinephrine (NE) with the participation of cysteine, dolichols and proteins. However, there are still unknown aspects in the chemical structure of NM from SN (SN-NM) and LC (LC-NM). In this study, we designed a new method to synthesize o-aminophenol compounds as putative degradation products of catecholamines and their metabolites which may be incorporated into NM. Those compounds are aminohydroxyphenylethylamine (AHPEA) isomers, aminohydroxyphenylacetic acid (AHPAA) isomers and aminohydroxyethylbenzene (AHEB) isomers, which are expected to arise from DA or NE, 3,4-dihydroxyphenylacetic acid (DOPAC) or 3,4-dihydroxyphenylmandelic acid (DOMA) and 3,4-dihydroxyphenylethanol (DOPE) or 3,4-dihydroxyphenylethyleneglycol (DOPEG), respectively. These o-aminophenol compounds were synthesized by the nitration of phenol derivatives followed by reduction with hydroiodic acid (HI), and they could be identified by HPLC in HI hydrolysates of SN-NM and LC-NM. This degradative approach by HI hydrolysis allows the identification of catecholic precursors unique to SN-NM and LC-NM, which are present in catecholaminergic neurons.

  18. Gas chromatography-mass spectrometry of hexafluoroacetone derivatives: First time utilization of a gaseous phase derivatizing agent for analysis of extraterrestrial amino acids.

    PubMed

    Geffroy-Rodier, C; Buch, A; Sternberg, R; Papot, S

    2012-07-06

    Within the perspective of the current and next space missions to Mars (MSL 2011 and Exomars 2016-2018), the detection and enantioselective separation of building blocks such as the amino acids are important subjects which are becoming fundamental for the search for traces of life on the surface and subsurface of Mars. In this work, we have developed and optimized a method adapted to space experimentation to derivatize and analyze amino acids, using hexafluoroacetone as the derivatizing agent. The temperature, duration of the derivative transfer to the analyser, and chromatographic separation parameters have been optimized to meet the instrument design constraints imposed on devices for extraterrestrial experiments. The work presented in this rationale has established that hexafluoroacetone, in addition to its intrinsic qualities, such as the production of light-weight derivatives (no racemization) and great resistance to the drastic operating conditions, has indeed facilitated simple and fast derivatization that appears to be suitable for in situ analysis in space. By using hexafluoroacetone as the derivatizing agent, we successfully identified, 21 amino acids including 12 of the 20 proteinic amino acids without stirring or extraction steps. Ten of these derivatized amino acids were enantioselectively separated. The precision and accuracy measurements for the D/L ratio showed that the proposed method was also suitable for the determination of both enantioselective forms of most of the tested amino acids. The limits of detection obtained were lower than the ppb level of organic molecules detected in Martian meteorites. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Implications for eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins as therapeutics for arthritis.

    PubMed

    Souza, Patricia R; Norling, Lucy V

    2016-08-15

    Omega-3 polyunsaturated fatty acids are essential for health and are known to possess anti-inflammatory properties, improving cardiovascular health as well as benefiting inflammatory diseases. Indeed, dietary supplementation with omega-3 polyunsaturated fatty acids has proved efficacious in reducing joint pain, morning stiffness and nonsteroidal anti-inflammatory drugs usage in rheumatoid arthritis patients. However, the mechanisms by which omega-3 polyunsaturated fatty acids exert their beneficial effects have not been fully explored. Seminal discoveries by Serhan and colleagues have unveiled a novel class of bioactive lipid mediators that are enzymatically biosynthesized in vivo from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), termed resolvins, protectins and maresins. These bioactive pro-resolving lipid mediators provide further rationale for the beneficial effects of fish-oil enriched diets. These endogenous lipid mediators are spatiotemporally biosynthesized to actively regulate resolution by acting on specific G protein-coupled receptors (GPCRs) to initiate anti-inflammatory and pro-resolving signals that terminate inflammation. In this review, we will discuss the mechanism of actions of these molecules, including their analgesic and bone-sparing properties making them ideal therapeutic agonists for the treatment of inflammatory diseases such as rheumatoid arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model.

    PubMed

    Ter Boo, Gert-Jan A; Arens, Daniel; Metsemakers, Willem-Jan; Zeiter, Stephan; Richards, R Geoff; Grijpma, Dirk W; Eglin, David; Moriarty, T Fintan

    2016-10-01

    Despite the use of systemic antibiotic prophylaxis, the surgical fixation of open fractures with osteosynthesis implants is associated with high infection rates. Antibiotic-loaded biomaterials (ALBs) are increasingly used in implant surgeries across medical specialties to deliver high concentrations of antibiotics to the surgical site and reduce the risk of implant-associated infection. ALBs which are either less or not restricted in terms of spatial distribution and which may be applied throughout complex wounds could offer improved protection against infection in open fracture care. A thermo-responsive hyaluronic acid derivative (hyaluronic acid-poly(N-isopropylacrylamide) (HApN)) was prepared by a direct amidation reaction between the tetrabutyl ammonium (TBA) salt of hyaluronic acid and amine-terminated poly(N-isopropylacrylamide) (pN). The degree of grafting, and gelation properties of this gel were characterized, and the composition was loaded with gentamicin. The rheological- and release properties of this gentamicin-loaded HApN composition were tested in vitro and its efficacy in preventing infection was tested in a rabbit model of osteosynthesis contaminated with Staphylococcus aureus. The gentamicin-loaded HApN composition was able to prevent bacterial colonization of the implant site as shown by quantitative bacteriology. This finding was supported by histopathological evaluation of the humeri samples where no bacteria were found in the stained sections. In conclusion, this gentamicin-loaded HApN hydrogel effectively prevents infection in a complex wound, simulating a contaminated fracture treated with plating osteosynthesis. Fracture fixation after trauma is associated with high infection rates. Antibiotic loaded biomaterials (ALBs) can provide high local concentrations without systemic side effects. However, the currently available ALBs have limited accessibility to contaminated tissues in open fractures because of predetermined shape. Thus, a novel

  1. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    PubMed

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  2. Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran.

    PubMed

    Elschner, Thomas; Obst, Franziska; Stana-Kleinschek, Karin; Kargl, Rupert; Heinze, Thomas

    2017-04-01

    Carbonic acid derivatives of dextran possessing furfuryl- and maleimido moieties were synthesized and processed into thin films by spin coating. First, products with different degrees of substitution (DS) of up to 3.0 and substitution patterns were obtained and characterized by NMR- and FTIR spectroscopy, as well as elemental analysis. Thin films possessing maleimide groups were obtained by spin coating of maleimido dextran (furan-protected) and dextran furfuryl carbamate that was converted with bismaleimide. The removal of the protecting group (furan) on the thin film was monitored by QCM-D and compared with gravimetric analysis of the bulk material. Film morphology and wettability were determined by means of AFM and contact angle measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Polymeric Prodrug of 5-Fluorouracil-1-Acetic Acid Using a Multi-Hydroxyl Polyethylene Glycol Derivative as the Drug Carrier

    PubMed Central

    Sun, Xun; Gong, Tao; Zhang, Zhirong

    2014-01-01

    Purpose Macromolecular prodrugs obtained by covalently conjugating small molecular drugs with polymeric carriers were proven to accomplish controlled and sustained release of the therapeutic agents in vitro and in vivo. Polyethylene glycol (PEG) has been extensively used due to its low toxicity, low immunogenicity and high biocompatibility. However, for linear PEG macromolecules, the number of available hydroxyl groups for drug coupling does not change with the length of polymeric chain, which limits the application of PEG for drug conjugation purposes. To increase the drug loading and prolong the retention time of 5-fluorouracil (5-Fu), a macromolecular prodrug of 5-Fu, 5-fluorouracil-1 acid-PAE derivative (5-FA-PAE) was synthesized and tested for the antitumor activity in vivo. Methods PEG with a molecular weight of 38 kDa was selected to synthesize the multi-hydroxyl polyethylene glycol derivative (PAE) through an addition reaction. 5-fluorouracil-1 acetic acid (5-FA), a 5-Fu derivative was coupled with PEG derivatives via ester bond to form a macromolecular prodrug, 5-FA-PAE. The in vitro drug release, pharmacokinetics, in vivo distribution and antitumor effect of the prodrug were investigated, respectively. Results The PEG-based prodrug obtained in this study possessed an exceedingly high 5-FA loading efficiency of 10.58%, much higher than the maximum drug loading efficiency of unmodified PEG with the same molecular weight, which was 0.98% theoretically. Furthermore, 5-FA-PAE exhibited suitable sustained release in tumors. Conclusion This study provides a new approach for the development of the delivery to tumors of anticancer agents with PEG derivatives. PMID:25389968

  4. Development and Optimisation of an HPLC-DAD-ESI-Q-ToF Method for the Determination of Phenolic Acids and Derivatives

    PubMed Central

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158

  5. Development and optimisation of an HPLC-DAD-ESI-Q-ToF method for the determination of phenolic acids and derivatives.

    PubMed

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.

  6. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  7. Effects of boron derivatives on extracellular matrix formation.

    PubMed

    Benderdour, M; Van Bui, T; Hess, K; Dicko, A; Belleville, F; Dousset, B

    2000-10-01

    Boric acid solution (3%) dramatically improves wound healing through action on the extracellular matrix, a finding that has been obtained in vitro. Consequently, investigations are presently underway to produce boronated compounds having a therapeutical effectiveness similar to that of boric acid. On the basis of experimental results obtained with boric acid, we examined the effects of boron derivatives on extracellular matrix formation and degradation and analyzed their potential toxicity by using two biological models (chick embryo cartilage and human fibroblasts). The four boron derivatives tested in this study (triethanolamine borate; N-diethyl-phosphoramidate-propylboronique acid; 2,2 dimethylhexyl-1,3-propanediol-aminopropylboronate and 1,2 propanediol-aminopropylboronate) mimicked the effects of boric acid. They induced a decrease of intracellular concentrations in extracellular matrix macromolecules (proteoglycans, proteins)-associated with an increase of their release in culture medium and stimulated the activity of intra- and extracellular proteases. Similarly to boric acid, these actions occurred after exposure of the cells to concentrations of all boron derivatives without apparent toxic effects. The compounds were found to be more toxic than boric acid itself when concentrations were calculated according to their molecular weight. Nevertheless, these in vitro preliminary results demonstrate effects of boron derivatives that may be of therapeutic benefit in wound repair.

  8. Methacrylate derivatives incorporating pyroglutamic acid.

    PubMed

    Smith, Tara J; Mathias, Lon J

    2002-01-01

    Methacrylates containing pyroglutamic acid were synthesized in good yields. Methyl alpha-pyroglutamyl methylacrylate (PyMM) and methyl alpha-pyroglutamidoundecanoyl methylacrylate (PyUM) give very fast photopolymerization rates both in homopolymerizations and with widely used commercial monomers N-vinyl pyrrolidinone (NVP) and hydroxyethyl methacrylate (HEMA). Soluble or cross-linked homopolymers can be obtained depending upon polymerization temperature. Pyroglutamic methacrylates polymerize without added initiator in the melt. Solution cast, photocured, and thermally cured coatings gave good to excellent adhesion to poly(ethylene terephthalate) and glass surfaces.

  9. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity.

    PubMed

    Al-Zaydi, Khadijah M; Khalil, Hosam H; El-Faham, Ayman; Khattab, Sherine N

    2017-05-10

    Replacement of chloride ions in cyanuric chloride give several variants of 1,3,5-triazine derivatives which were investigated as biologically active small molecules. These compounds exhibit antimalarial, antimicrobial, anti-cancer and anti-viral activities, among other beneficial properties. On the other hand, treatment of bacterial infections remains a challenging therapeutic problem because of the emerging infectious diseases and the increasing number of multidrug-resistant microbial pathogens. As multidrug-resistant bacterial strains proliferate, the necessity for effective therapy has stimulated research into the design and synthesis of novel antimicrobial molecules. 1,3,5-Triazine 4-aminobenzoic acid derivatives were prepared by conventional method or by using microwave irradiation. Using microwave irradiation gave the desired products in less time, good yield and higher purity. Esterification of the 4-aminobenzoic acid moiety afforded methyl ester analogues. The s-triazine derivatives and their methyl ester analogues were fully characterized by FT-IR, NMR ( 1 H-NMR and 13 C-NMR), mass spectra and elemental analysis. All the synthesized compounds were evaluated for their antimicrobial activity. Some tested compounds showed promising activity against Staphylococcus aureus and Escherichia coli. Three series of mono-, di- and trisubstituted s-triazine derivatives and their methyl ester analogues were synthesized and fully characterized. All the synthesized compounds were evaluated for their antimicrobial activity. Compounds (10), (16), (25) and (30) have antimicrobial activity against S. aureus comparable to that of ampicillin, while the activity of compound (13) is about 50% of that of ampicillin. Compounds (13) and (14) have antimicrobial activity against E. coli comparable to that of ampicillin, while the activity of compounds (9-12) and (15) is about 50% of that of ampicillin. Furthermore, minimum inhibitory concentrations values for clinical isolates of

  10. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  11. Coal-derived humus: plant growth effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, P.G.; Fowkes, W.W.

    The growth-promoting properties of coal-derived humus were tested by a variety of bioassay methods. Humate materials used included leonardite, a form of naturally oxidized lignite, and humic acids extracted from leonardite. It was found that the greatest effects were evident when water-soluble humic acid was applied to excised root tips. No significant short-term effect was noted when water-soluble humic acid was applied to stem or coleoptile sections. Root initiation was promoted in bean stems when high concentrations of coal-derived humate were applied. Gross weight of tomato plants was increased by up to 40 percent when coal-derived humates were added inmore » concentrations of 10/sup 1/ to 10/sup 4/ ppM to the nutrient in a hydroponic growth test of 6 weeks' duration. It is concluded that coal-derived humate promotes the uptake of minerals, specifically iron, by serving as a metal chelate.« less

  12. Racemic synthesis and solid phase peptide synthesis application of the chimeric valine/leucine derivative 2-amino-3,3,4-trimethyl-pentanoic acid.

    PubMed

    Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R

    2014-07-01

    The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.

  13. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs.

    PubMed

    Koh, Rachel H; Jin, Yinji; Kang, Byung-Jae; Hwang, Nathaniel S

    2017-04-15

    Current meniscus tissue repairing strategies involve partial or total meniscectomy, followed by allograft transplantation or synthetic material implantation. However, allografts and synthetic implants have major drawbacks such as the limited supply of grafts and lack of integration into host tissue, respectively. In this study, we investigated the effects of conditioned medium (CM) from meniscal fibrochondrocytes and TGF-β3 on tonsil-derived mesenchymal stem cells (T-MSCs) for meniscus tissue engineering. CM-expanded T-MSCs were encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogels and cultured in chondrogenic medium containing TGF-β3. In vitro results indicate that CM-expanded cells followed by TGF-β3 exposure stimulated the expression of fibrocartilage-related genes (COL2, SOX9, ACAN, COL1) and production of extracellular matrix components. Histological assessment of in vitro and subcutaneously implanted in vivo constructs demonstrated that CM-expanded cells followed by TGF-β3 exposure resulted in highest cell proliferation, GAG accumulation, and collagen deposition. Furthermore, when implanted into meniscus defect model, CM treatment amplified the potential of TGF-β3 and induced complete regeneration. Conditioned medium derived from chondrocytes have been reported to effectively prime mesenchymal stem cells toward chondrogenic lineage. Type I collagen is the main component of meniscus extracellular matrix and hyaluronic acid is known to promote meniscus regeneration. In this manuscript, we investigated the effects of conditioned medium (CM) and transforming growth factor-β3 (TGF-β3) on tonsil-derived mesenchymal stem cells (T-MSCs) encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogel. We employed a novel source of conditioned medium, derived from meniscal fibrochondrocytes. Our in vitro and in vivo results collectively illustrate that CM-expanded cells followed by

  14. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    PubMed

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  15. Determination of amino acids in grape-derived products: a review.

    PubMed

    Callejón, R M; Troncoso, A M; Morales, M L

    2010-06-15

    The amino acids present in foods and beverages affect the quality of these products and they play an important role in enology. Amino acids are consumed by yeasts as a source of nitrogen during alcoholic fermentation and are precursors of aroma compounds. In this review various chromatographic methodologies for the determination of amino acids are described, and specific applications for the analysis of amino acid content are discussed. Amino acids usually need to be derivatized to make them more detectable. Several derivatizing reagents have been employed for the determination of amino acids in enological applications, and each has its advantages and disadvantages.

  16. In vitro inhibitory effects of pulvinic acid derivatives isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity.

    PubMed

    Huang, Yu-Ting; Onose, Jun-ichi; Abe, Naoki; Yoshikawa, Kunie

    2009-04-23

    Increasing attention has been focused on food-drug interactions. We have investigated the inhibitory effect of Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 (CYP) 1A2, 2C9, 2D6, and 3A4, the main drug-metabolizing enzymes. Three pulvinic acid derivatives, atromentic acid (1), variegatic acid (2), and xerocomic acid (3), isolated from Boletus calopus and Suillus bovinus, revealed nonspecific inhibitory effects on all four CYPs. Using these compounds, the maximum IC50 values obtained with CYP3A4 in vitro were atromentic acid (1), 65.1+/-3.9 microM; variegatic acid (2), 2.2+/-0.1 microM; and xerocomic acid (3), 2.4+/-0.1 microM. Variegatic acid (2) and xerocomic acid (3) were effective inhibitors, comparable to cimetidine, dicoumarol, erythromycin, safrole, and uniconazole. Variegatic acid (2) and xerocomic acid (3) efficiently reduced ferryl myoglobin in CYPs. Reduction of ferryl heme to ferric heme is likely the mechanism of the nonspecific inhibitory effects of these compounds on CYPs.

  17. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the highermore » energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.« less

  18. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.

    PubMed

    Maynard, Daniel; Müller, Sara Mareike; Hahmeier, Monika; Löwe, Jana; Feussner, Ivo; Gröger, Harald; Viehhauser, Andrea; Dietz, Karl-Josef

    2018-04-01

    Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ 2 and PGA 2 , cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  20. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.