Sample records for label specification development

  1. 15 CFR 16.5 - Development of performance information labeling specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Development of performance information labeling specifications. 16.5 Section 16.5 Commerce and Foreign Trade Office of the Secretary of Commerce... methods do not exist, they will be developed by the Department of Commerce in cooperation with interested...

  2. 15 CFR 16.5 - Development of performance information labeling specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Development of performance information labeling specifications. 16.5 Section 16.5 Commerce and Foreign Trade Office of the Secretary of Commerce... methods do not exist, they will be developed by the Department of Commerce in cooperation with interested...

  3. 15 CFR 16.5 - Development of performance information labeling specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... parties and set out in full in the Specification; (3) A prototype label and directions for displaying the..., a notice either: (1) Giving the complete text of a final Specification, including conditions of use, and stating that any prospective participant in the program desiring voluntarily to use the Department...

  4. Efficient Site-Specific Labeling of Proteins via Cysteines

    PubMed Central

    Kim, Younggyu; Ho, Sam O.; Gassman, Natalie R.; Korlann, You; Landorf, Elizabeth V.; Collart, Frank R.; Weiss, Shimon

    2011-01-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70–90%, and specificities are better than ~95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis. PMID:18275130

  5. Efficient site-specific labeling of proteins via cysteines.

    PubMed

    Kim, Younggyu; Ho, Sam O; Gassman, Natalie R; Korlann, You; Landorf, Elizabeth V; Collart, Frank R; Weiss, Shimon

    2008-03-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.

  6. Improved specificity of hippocampal memory trace labeling.

    PubMed

    Cazzulino, Alejandro S; Martinez, Randy; Tomm, Nicole K; Denny, Christine A

    2016-06-01

    Recent studies have focused on the identification and manipulation of memory traces in rodent models. The two main mouse models utilized are either a CreER(T2) /loxP tamoxifen (TAM)- or a tetracycline transactivator/tetracycline-response element doxycycline-inducible system. These systems, however, could be improved to label a more specific population of activated neurons corresponding to behavior. Here, we sought to identify an improved selective estrogen receptor (ER) modulator (SERM) in which we could label an individual memory trace in ArcCreER(T2) mice. We found that 4-hydroxytamoxifen (4-OHT) is a selective SERM in the ArcCreER(T2) × Rosa26-CAG-stop(flox) -channelrhodospin (ChR2)-enhanced yellow fluorescent protein (eYFP) mice. The half-life of 4-OHT is shorter than TAM, allowing for more specificity of memory trace labeling. Furthermore, 4-OHT allowed for context-specific labeling in the dentate gyrus and CA3. In summary, we believe that 4-OHT improves the specificity of memory trace labeling and will allow for refined memory trace studies in the future. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Preparation of Labeled Aflatoxins with High Specific Activities

    PubMed Central

    Hsieh, D. P. H.; Mateles, R. I.

    1971-01-01

    Resting cells of Aspergillus parasiticus ATCC 15517 were used to prepare highly labeled aflatoxins from labeled acetate. High synthetic activity in growing cells was evidenced only during 40 to 70 hr of incubation. Glucose was required for high incorporation efficiency, whereas the concentration of the labeled acetate determined the specific activity of the product. When labeled acetate was continuously added to maintain a concentration near but not exceeding 10 mm, in a culture containing 30 g of glucose per liter, 2% of its labels could be recovered in the purified aflatoxins which have a specific activity more than three times that of the labeled acetate. PMID:4329435

  8. Adapter reagents for protein site specific dye labeling.

    PubMed

    Thompson, Darren A; Evans, Eric G B; Kasza, Tomas; Millhauser, Glenn L; Dawson, Philip E

    2014-05-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this acetophenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. © 2014 Wiley Periodicals, Inc.

  9. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  10. Hierarchical Multi-atlas Label Fusion with Multi-scale Feature Representation and Label-specific Patch Partition

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Sanroma, Gerard; Wang, Qian; Munsell, Brent C.; Shen, Dinggang

    2014-01-01

    Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images, after registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape appearance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that they often apply a fixed size image patch throughout the entire label fusion procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-art by adding three new label fusion contributions: First, each image patch now characterized by a multi-scale feature representation that encodes both local and semi-local image information. Doing so will increase the accuracy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity measurement being wrongly guided by the presence of multiple anatomical structures in the same image patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according to the existing labels. Since image information has now been semantically divided into different patterns, these new label-specific atlas patches make the label fusion process more specific and flexible. Lastly, in order to correct target points that are mislabeled during label fusion, a hierarchically approach is used to improve the

  11. HaloTag technology for specific and covalent labeling of fusion proteins.

    PubMed

    Benink, Hélène A; Urh, Marjeta

    2015-01-01

    Appending proteins of interest to fluorescent protein tags such as GFP has revolutionized how proteins are studied in the cellular environment. Over the last few decades many varieties of fluorescent proteins have been generated, each bringing new capability to research. However, taking full advantage of standard fluorescent proteins with advanced and differential features requires significant effort on the part of the researcher. This approach necessitates that many genetic fusions be generated and confirmed to function properly in cells with the same protein of interest. To lessen this burden, a newer category of protein fusion tags termed "self-labeling protein tags" has been developed. This approach utilizes a single protein tag, the function of which can be altered by attaching various chemical moieties (fluorescent labels, affinity handles, etc.). In this way a single genetically encoded protein fusion can easily be given functional diversity and adaptability as supplied by synthetic chemistry. Here we present protein labeling methods using HaloTag technology; comprised of HaloTag protein and the collection of small molecules designed to bind it specifically and provide it with varied functionalities. For imaging purposes these small molecules, termed HaloTag ligands, contain distinct fluorophores. Due to covalent and rapid binding between HaloTag protein and its ligands, labeling is permanent and efficient. Many of these ligands have been optimized for permeability across cellular membranes allowing for live cell labeling and imaging analysis. Nonpermeable ligands have also been developed for specific labeling of surface proteins. Overall, HaloTag is a versatile technology that empowers the end user to label a protein of interest with the choice of different fluorophores while alleviating the need for generation of multiple genetic fusions.

  12. Protein specific fluorescent microspheres for labelling a protein

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1982-01-01

    Highly fluorescent, stable and biocompatible microspheres are obtained by copolymerizing an acrylic monomer containing a covalent bonding group such as hydroxyl, amine or carboxyl, for example, hydroxyethylmethacrylate, with an addition polymerizable fluorescent comonomer such as dansyl allyl amine. A lectin or antibody is bound to the covalent site to provide cell specificity. When the microspheres are added to a cell suspension the marked microspheres will specifically label a cell membrane by binding to a specific receptor site thereon. The labeled membrane can then be detected by fluorescence of the fluorescent monomer.

  13. Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    PubMed Central

    2011-01-01

    Background With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles. Results RNA extracted from laboratory cultures of Porphyromonas gingivalis was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts. Conclusions An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more

  14. Specific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry.

    PubMed

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A; Schroeder, Charles M

    2012-09-19

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays, and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry.

  15. Consumer perceptions of specific design characteristics for front-of-package nutrition labels.

    PubMed

    Acton, R B; Vanderlee, L; Roberto, C A; Hammond, D

    2018-04-01

    An increasing number of countries are developing front-of-package (FOP) labels; however, there is limited evidence examining the impact of specific design characteristics for these labels. The current study investigated consumer perceptions of several FOP label design characteristics, including potential differences among sociodemographic sub-groups. Two hundred and thirty-four participants aged 16 years or older completed nine label rating tasks on a laptop at a local shopping mall in Canada. The rating tasks asked participants to rate five primary design characteristics (border, background presence, background colour, 'caution' symbol and government attribution) on their noticeability, readability, believability and likelihood of changing their beverage choice. FOP labels with a border, solid background and contrasting colours increased noticeability. A solid background increased readability, while a contrasting background colour reduced it. Both a 'caution' symbol and a government attribution increased the believability of the labels and the perceived likelihood of influencing beverage choice. The effect of the design characteristics was generally similar across sociodemographic groups, with modest differences in five of the nine outcomes. Label design characteristics, such as the use of a border, colour and symbols can enhance the salience of FOP nutrition labels and may increase the likelihood that FOP labels are used by consumers.

  16. 2'-modified nucleosides for site-specific labeling of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Krider, Elizabeth S.; Miller, Jeremiah E.; Meade, Thomas J.

    2002-01-01

    We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.

  17. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  18. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  19. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    PubMed

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  20. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  1. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    PubMed Central

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  2. Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*

    PubMed Central

    Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus

    2014-01-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872

  3. Development of a Ga-68 labeled PET tracer with short linker for prostate-specific membrane antigen (PSMA) targeting.

    PubMed

    Moon, Sung-Hyun; Hong, Mee Kyung; Kim, Young Ju; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Jeong, Jae Min

    2018-05-15

    Glu-Urea-Lys (GUL) derivatives have been reported as prostate-specific membrane antigen (PSMA) agent. We developed derivatives of GUL conjugated with NOTA or DOTA via a thiourea linker and tested their feasibility as PSMA imaging agents after labeling with 68 Ga. NOTA-GUL and DOTA-GUL were synthesized and labeled with 68 Ga using generator-eluted 68 GaCl 3 in 0.1 M HCl in the presence of 1 M NaOAc at pH 5.5. The stabilities of 68 Ga-labeled compounds in human serum were tested at 37.5 °C. A competitive binding assay was performed using the PSMA-positive prostate cancer cell line 22Rv1 and [ 125 I]MIP-1072 (PSMA-specific binding agent) as a tracer. Biodistribution and micro-PET studies were performed using 22Rv1-xenograft BALB/c nude mice. The radiolabeling efficiency of NOTA-GUL (>99%) was higher than that of DOTA-GUL (92%). The IC 50 of Ga-NOTA-GUL was 18.3 nM. In the biodistribution study, tumor uptake of 68 Ga-NOTA-GUL (5.40% ID/g) was higher than that of 68 Ga-DOTA-GUL (4.66% ID/g) at 1 h. Tumor/muscle and tumor/blood uptake ratios of 68 Ga-NOTA-GUL (31.8 and 135, respectively) were significantly higher than those of 68 Ga-DOTA-GUL (16.1 and 31.1, respectively). The tumor/kidney uptake ratio of 68 Ga-NOTA-GUL was 3.4-fold higher than that of 68 Ga-DOTA-GUL. 68 Ga-NOTA-GUL showed specific uptake to PSMA positive tumor xenograft and was blocked by co-injection of the cold ligand. In conclusion, we successfully synthesized 68 Ga-NOTA-GUL and 68 Ga-DOTA-GUL for prostate cancer imaging. 68 Ga-NOTA-GUL showed better radiochemical and biodistribution results. 68 Ga-NOTA-GUL may be a promising PSMA targeting radiopharmaceutical. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Development of a corn and soybean labeling procedure for use with profile parameter classification

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1982-01-01

    Some essential processes for the development of a green-number-based logic for identifying (labeling) crops in LANDSAT imagery are documented. The supporting data and subsequent conclusions that resulted from development of a specific labeling logic for corn and soybean crops in the United States are recorded.

  5. Specific language impairment: a convenient label for whom?

    PubMed Central

    Reilly, Sheena; Tomblin, Bruce; Law, James; McKean, Cristina; Mensah, Fiona K; Morgan, Angela; Goldfeld, Sharon; Nicholson, Jan M; Wake, Melissa

    2014-01-01

    Background The term ‘specific language impairment’ (SLI), in use since the 1980s, describes children with language impairment whose cognitive skills are within normal limits where there is no identifiable reason for the language impairment. SLI is determined by applying exclusionary criteria, so that it is defined by what it is not rather than by what it is. The recent decision to not include SLI in DSM-5 provoked much debate and concern from researchers and clinicians. Aims To explore how the term ‘specific language impairment’ emerged, to consider how disorders, including SLI, are generally defined and to explore how societal changes might impact on use the term. Methods & Procedures We reviewed the literature to explore the origins of the term ‘specific language impairment’ and present published evidence, as well as new analyses of population data, to explore the validity of continuing to use the term. Outcomes & Results and Conclusions & Implications We support the decision to exclude the term ‘specific language impairment’ from DSM-5 and conclude that the term has been a convenient label for researchers, but that the current classification is unacceptably arbitrary. Furthermore, we argue there is no empirical evidence to support the continued use of the term SLI and limited evidence that it has provided any real benefits for children and their families. In fact, the term may be disadvantageous to some due to the use of exclusionary criteria to determine eligibility for and access to speech pathology services. We propose the following recommendations. First, that the word ‘specific’ be removed and the label ‘language impairment’ be used. Second, that the exclusionary criteria be relaxed and in their place inclusionary criteria be adopted that take into account the fluid nature of language development particularly in the preschool period. Building on the goodwill and collaborations between the clinical and research communities we propose

  6. Specific language impairment: a convenient label for whom?

    PubMed

    Reilly, Sheena; Tomblin, Bruce; Law, James; McKean, Cristina; Mensah, Fiona K; Morgan, Angela; Goldfeld, Sharon; Nicholson, Jan M; Wake, Melissa

    2014-01-01

    The term 'specific language impairment' (SLI), in use since the 1980s, describes children with language impairment whose cognitive skills are within normal limits where there is no identifiable reason for the language impairment. SLI is determined by applying exclusionary criteria, so that it is defined by what it is not rather than by what it is. The recent decision to not include SLI in DSM-5 provoked much debate and concern from researchers and clinicians. To explore how the term 'specific language impairment' emerged, to consider how disorders, including SLI, are generally defined and to explore how societal changes might impact on use the term. We reviewed the literature to explore the origins of the term 'specific language impairment' and present published evidence, as well as new analyses of population data, to explore the validity of continuing to use the term. We support the decision to exclude the term 'specific language impairment' from DSM-5 and conclude that the term has been a convenient label for researchers, but that the current classification is unacceptably arbitrary. Furthermore, we argue there is no empirical evidence to support the continued use of the term SLI and limited evidence that it has provided any real benefits for children and their families. In fact, the term may be disadvantageous to some due to the use of exclusionary criteria to determine eligibility for and access to speech pathology services. We propose the following recommendations. First, that the word 'specific' be removed and the label 'language impairment' be used. Second, that the exclusionary criteria be relaxed and in their place inclusionary criteria be adopted that take into account the fluid nature of language development particularly in the preschool period. Building on the goodwill and collaborations between the clinical and research communities we propose the establishment of an international consensus panel to develop an agreed definition and set of criteria for

  7. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  8. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin.

    PubMed

    Hicks, G R; Rayle, D L; Jones, A M; Lomax, T L

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  9. Site-Specific Biomolecule Labeling with Gold Clusters

    PubMed Central

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  10. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolinmore » but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.« less

  11. 49 CFR 172.407 - Label specifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., numbers, and border must be shown in black on a label except that— (i) White may be used on a label with a one color background of green, red or blue. (ii) White must be used for the text and class number for the CORROSIVE label. (iii) White may be used for the symbol for the ORGANIC PEROXIDE label. (3) Black...

  12. 49 CFR 172.407 - Label specifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., numbers, and border must be shown in black on a label except that— (i) White may be used on a label with a one color background of green, red or blue. (ii) White must be used for the text and class number for the CORROSIVE label. (iii) White may be used for the symbol for the ORGANIC PEROXIDE label. (3) Black...

  13. 49 CFR 172.407 - Label specifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., numbers, and border must be shown in black on a label except that— (i) White may be used on a label with a one color background of green, red or blue. (ii) White must be used for the text and class number for the CORROSIVE label. (iii) White may be used for the symbol for the ORGANIC PEROXIDE label. (3) Black...

  14. Cardiolipin: a stereospecifically spin-labeled analogue and its specific enzymic hydrolysis.

    PubMed Central

    Cable, M B; Jacobus, J; Powell, G L

    1978-01-01

    The spin-labeled cardiolipin 1-(3-sn-phosphatidyl)-3-[1-acyl-2-(16-doxylstearoyl)glycero(3)phosphol]-sn-glycerol has been prepared. The stereoselective synthesis makes use of the monolysocardiolipin 1-(3-sn-phosphatidyl)-3-[1-acyl-2-lyso-sn-glycero(3)phospho]-sn-glycerol, available from the stereospecific hydrolysis of cardiolipin by phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) of Trimeresurus flavoviridis. The results of treatment of the spin-labeled cardiolipin with the cardiolipin-specific phospholipase D (phosphatidylcholine phosphatidohydrolase, EC 3.1.4.4) (Hemophilus parainfluenzae) of known specificity and with phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3) of Bacillus cereus are consistent with the assigned structure. The spin-labeled cardiolipin is further characterized and the unique features of this diastereomer are discussed in the context of the unusual stereochemistry of the natural phospholipid. PMID:274715

  15. Site-specific biomolecule labeling with gold clusters.

    PubMed

    Ackerson, Christopher J; Powell, Richard D; Hainfeld, James F

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: linker-mediated bioconjugation, direct gold-biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  17. Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina

    PubMed Central

    2009-01-01

    Background Development of a functional retina depends on regulated differentiation of several types of neurons and generation of a highly complex network between the different types of neurons. In addition, each type of retinal neuron includes several distinct morphological types. Very little is known about the mechanisms responsible for generating this diversity of retinal neurons, which may also display specific patterns of regional distribution. Results In a screen in zebrafish, using a trapping vector carrying an engineered yeast Gal4 transcription activator and a UAS:eGFP reporter cassette, we have identified two transgenic lines of zebrafish co-expressing eGFP and Gal4 in specific subsets of retinal bipolar cells. The eGFP-labelling facilitated analysis of axon terminals within the inner plexiform layer of the adult retina and showed that the fluorescent bipolar cells correspond to previously defined morphological types. Strong regional restriction of eGFP-positive bipolar cells to the central part of the retina surrounding the optic nerve was observed in adult zebrafish. Furthermore, we achieved specific ablation of the labelled bipolar cells in 5 days old larvae, using a bacterial nitroreductase gene under Gal4-UAS control in combination with the prodrug metronidazole. Following prodrug treatment, nitroreductase expressing bipolar cells were efficiently ablated without affecting surrounding retina architecture, and recovery occurred within a few days due to increased generation of new bipolar cells. Conclusion This report shows that enhancer trapping can be applied to label distinct morphological types of bipolar cells in the zebrafish retina. The genetic labelling of these cells yielded co-expression of a modified Gal4 transcription activator and the fluorescent marker eGFP. Our work also demonstrates the potential utility of the Gal4-UAS system for induction of other transgenes, including a bacterial nitroreductase fusion gene, which can facilitate

  18. Specificity of Facial Expression Labeling Deficits in Childhood Psychopathology

    ERIC Educational Resources Information Center

    Guyer, Amanda E.; McClure, Erin B.; Adler, Abby D.; Brotman, Melissa A.; Rich, Brendan A.; Kimes, Alane S.; Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2007-01-01

    Background: We examined whether face-emotion labeling deficits are illness-specific or an epiphenomenon of generalized impairment in pediatric psychiatric disorders involving mood and behavioral dysregulation. Method: Two hundred fifty-two youths (7-18 years old) completed child and adult facial expression recognition subtests from the Diagnostic…

  19. Evaluation of a maleimido derivative of CHX-A” DTPA for site-specific labeling of Affibody molecules

    PubMed Central

    Tolmachev, Vladimir; Xu, Heng; Wållberg, Helena; Ahlgren, Sara; Hjertman, Magnus; Sjöberg, Anna; Sandström, Mattias; Abrahmsén, Lars; Brechbiel, Martin W.; Orlova, Anna

    2008-01-01

    Affibody molecules are a new class of small targeting proteins based on a common threehelix bundle structure. Affibody molecules binding a desired target may be selected using phage-display technology. An Affibody molecule ZHER2:342 binding with subnanomolar affinity to the tumor antigen HER2 has recently been developed for radionuclide imaging in vivo. Introduction of a single cysteine into the cysteine-free Affibody scaffold provides a unique thiol group for site-specific labeling of recombinant Affibody molecules. The recently developed maleimido-CHX-A” DTPA was site-specifically conjugated at the C-terminal cysteine of ZHER2:2395-C, a variant of ZHER2:342, providing a homogenous conjugate with a dissociation constant of 56 pM. The yield of labeling with 111In was > 99% after 10 min at room temperature. In vitro cell tests demonstrated specific binding of 111In-CHX-A” DTPAZ2395-C to HER2-expressing cell-line SKOV-3 and good cellular retention of radioactivity. In normal mice, the conjugate demonstrated rapid clearance from all non-specific organs except kidney. In mice bearing SKOV-3 xenografts, the tumor uptake of 111In-CHX-A” DTPAZ2395-C was 17.3 ± 4.8 % IA/g and the tumor-to-blood ratio 86 ± 46 (4 h post-injection). HER2-exprssing xenografts were clearly visualized 1 h post-injection. In conclusion, coupling of maleimido-CHX-A” DTPA to cysteine-containing Affibody molecules provides welldefined uniform conjugate, which can be rapidly labeled at room temperature and provides high-contrast imaging of molecular targets in vivo. PMID:18620447

  20. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  1. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work.

    PubMed

    Büttner, Lea; Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2014-06-04

    A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.

  2. Nutrition labelling is a trade policy issue: lessons from an analysis of specific trade concerns at the World Trade Organization.

    PubMed

    Thow, Anne Marie; Jones, Alexandra; Hawkes, Corinna; Ali, Iqra; Labonté, Ronald

    2017-01-12

    Interpretive nutrition labels provide simplified nutrient-specific text and/or symbols on the front of pre-packaged foods, to encourage and enable consumers to make healthier choices. This type of labelling has been proposed as part of a comprehensive policy response to the global epidemic of non-communicable diseases. However, regulation of nutrition labelling falls under the remit of not just the health sector but also trade. Specific Trade Concerns have been raised at the World Trade Organization's Technical Barriers to Trade Committee regarding interpretive nutrition labelling initiatives in Thailand, Chile, Indonesia, Peru and Ecuador. This paper presents an analysis of the discussions of these concerns. Although nutrition labelling was identified as a legitimate policy objective, queries were raised regarding the justification of the specific labelling measures proposed, and the scientific evidence for effectiveness of such measures. Concerns were also raised regarding the consistency of the measures with international standards. Drawing on policy learning theory, we identified four lessons for public health policy makers, including: strategic framing of nutrition labelling policy objectives; pro-active policy engagement between trade and health to identify potential trade issues; identifying ways to minimize potential 'practical' trade concerns; and engagement with the Codex Alimentarius Commission to develop international guidance on interpretative labelling. This analysis indicates that while there is potential for trade sector concerns to stifle innovation in nutrition labelling policy, care in how interpretive nutrition labelling measures are crafted in light of trade commitments can minimize such a risk and help ensure that trade policy is coherent with nutrition action. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    PubMed

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantum dots as strain- and metabolism-specific microbiological labels

    NASA Technical Reports Server (NTRS)

    Kloepfer, J. A.; Mielke, R. E.; Wong, M. S.; Nealson, K. H.; Stucky, G.; Nadeau, J. L.

    2003-01-01

    Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organism's surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.

  5. Isomeric forms of specifically. beta. -subunit labeled mitochondrial F/sub 1/-adenosinetriphosphatase with different properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.H.; Wu, J.C.; Joshi, V.

    1986-05-01

    Treatment of the mitochondrial F/sub 1/-ATPase (MF/sub 1/) containing 1 specific 7-(4-nitro-2,1,3-(/sup 14/C)benzoxadiazolyl)-label (NBD) per enzyme molecule with acetylcysteine (AC) shows that the ratio r of specific ATPase activity of (O-NBD)/sub n/MF/sub 1/ to that of the control MF/sub 1/ increases linearly with the number of labels removed by AC from r < 0.1 to r > 0.9 and that dr/dn approx. = -1 as expected from specific labeling of an essential Tyr in the catalytic ..beta..' subunit. The r value of this labeled enzyme can also be increased 10-fold by LiCl-induced rearrangement of its subunits without removing any ofmore » the label. Similar treatment of the rearranged (O-NBD)/sub n/MF/sub 1/ shows that only a fraction of its radioactive labels can be removed at the normal rate by AC with dr/dn approx. = -1. The remaining labels have little inhibitory effect and are removed at much slower rates by AC with dr/dn approx. = 0. If the reaction with the rearranged (O-NBD)/sub n/MF/sub 1/ is terminated by gel-filtration when most of the labels on ..beta..' have been removed, an isomeric form of the covalently labeled enzyme is obtained with n > 0.5 but r approx. = 1, indicating that its labels are on the subunits (..beta..'') which do not catalyze directly. Incubation of O-..beta..'-NBD-MF/sub 1/ and O-BETA''-NBD-MF/sub 1/ at pH 8.95 gives N-..beta..'-NBD-MF/sub 1/ and N-..beta..''-NBD-MF/sub 1/ respectively with different fluorescence quenching characteristics.« less

  6. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor.

    PubMed

    Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Santhosh, Devakirubakaran Jayakar; Alagar, Muthukaruppan

    2011-10-01

    The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Site-specific protein labeling with PRIME and chelation-assisted Click chemistry

    PubMed Central

    Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.

    2016-01-01

    This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180

  8. 15 CFR 9.4 - Development of voluntary energy conservation specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Development of voluntary energy... PROCEDURES FOR A VOLUNTARY LABELING PROGRAM FOR HOUSEHOLD APPLIANCES AND EQUIPMENT TO EFFECT ENERGY CONSERVATION § 9.4 Development of voluntary energy conservation specifications. (a) The Secretary in...

  9. 15 CFR 9.4 - Development of voluntary energy conservation specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Development of voluntary energy... PROCEDURES FOR A VOLUNTARY LABELING PROGRAM FOR HOUSEHOLD APPLIANCES AND EQUIPMENT TO EFFECT ENERGY CONSERVATION § 9.4 Development of voluntary energy conservation specifications. (a) The Secretary in...

  10. 15 CFR 9.4 - Development of voluntary energy conservation specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Development of voluntary energy... PROCEDURES FOR A VOLUNTARY LABELING PROGRAM FOR HOUSEHOLD APPLIANCES AND EQUIPMENT TO EFFECT ENERGY CONSERVATION § 9.4 Development of voluntary energy conservation specifications. (a) The Secretary in...

  11. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  12. Stable isotope-labelled feed nutrients to assess nutrient-specific feed passage kinetics in ruminants.

    PubMed

    Warner, Daniel; Dijkstra, Jan; Hendriks, Wouter H; Pellikaan, Wilbert F

    2014-03-30

    Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic rumen models, but data on nutrient-specific FPR are scarce. Such models generally rely on conventional external marker techniques, which do not always describe digesta passage kinetics in a satisfactory manner. Here the use of stable isotope-labelled dietary nutrients as a promising novel tool to assess nutrient-specific passage kinetics is discussed. Some major limitations of this technique include a potential marker migration, a poor isotope distribution in the labelled feed and a differential disappearance rate of isotopes upon microbial fermentation in non-steady state conditions. Such limitations can often be circumvented by using intrinsically stable isotope-labelled plant material. Data are limited but indicate that external particulate markers overestimate rumen FPR of plant fibre compared with the internal stable isotope markers. Stable isotopes undergo the same digestive mechanism as the labelled feed components and are thus of particular interest to specifically measure passage kinetics of digestible dietary nutrients. © 2013 Society of Chemical Industry.

  13. Spin-labelling study of interactions of ovalbumin with multilamellar liposomes and specific anti-ovalbumin antibodies.

    PubMed

    Brgles, Marija; Mirosavljević, Krunoslav; Noethig-Laslo, Vesna; Frkanec, Ruza; Tomasić, Jelka

    2007-03-10

    Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.

  14. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes

    NASA Astrophysics Data System (ADS)

    Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.

    2014-11-01

    Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.

  15. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    PubMed

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  16. Specific tritium labeling of gangliosides at the 3-position of sphingosines.

    PubMed

    Ghidoni, R; Sonnino, S; Masserini, M; Orlando, P; Tettamanti, G

    1981-11-01

    GM1 and GD1a gangliosides, treated with 2,3-dichloro-5,6-dicyano benzoquinone (DDQ) in the presence of Triton X-100 and in a toluene medium were specifically oxidized at the 3-position of sphingosine. The maximum reaction yield (65%) was obtained after 40 hours at 37 degrees C with the following molar ratio of reactants: ganglioside-Triton X-100-DDQ 1:70:125. The formation of the 3-keto derivatives of GM1 and GD1a was demonstrated by: a) the appearance of a sharp peak at 1700 cm-1 and of a broad band at 1250 cm-1 (typical of allylic ketones and of carbonyl groups, respectively) in the infra-red spectrum; b) the appearance of an absorption maximum at 230 nm, identical to that featured by 3-keto-cerebrosides, in the ultraviolet spectrum; c) the degradation of long chain bases during the process of release from gangliosides and derivatization for analysis by gas-liquid chromatography (expected for long chain bases carrying a keto group in the 3-position); and d) the quantitative transformation of 3-keto-GM1 and 3-keto-GD1a to GM1 and GD1a, respectively, upon NaBH4 reduction. Reduction of 3-keto-GM1 and 3-keto-GD1a with [3H]-NaBH4 produced 3H-labeled GM1 and GD1a. [3H]GM1 and [3H]GD1a maintained the same carbohydrate and fatty acid composition of the original GM1 and GD1a, and did not contain any saturated long chain bases. Direct proof that the label was at C-3 of long chain bases was given by reoxidation with DDQ, which completely removed the label, and by ozonolysis, after which label was retained on the oligosaccharide-containing fragment. More than 99% of incorporated radioactivity was carried by the long chain bases. The radiochemical purity of labeled gangliosides was greater than 95% and the specific radioactivity was 1.25 and 1.28 Ci/m mol for [3H]GM1 and [3H]GD1a, respectively.

  17. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.

    PubMed

    Liu, Jiaquan; Hanne, Jeungphill; Britton, Brooke M; Shoffner, Matthew; Albers, Aaron E; Bennett, Jared; Zatezalo, Rachel; Barfield, Robyn; Rabuka, David; Lee, Jong-Bong; Fishel, Richard

    2015-11-19

    Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.

  18. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    NASA Astrophysics Data System (ADS)

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-06-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.

  19. Specifically and wash-free labeling of SNAP-tag fused proteins with a hybrid sensor to monitor local micro-viscosity.

    PubMed

    Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi

    2017-05-15

    Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins.

    PubMed

    Mas, Guillaume; Crublet, Elodie; Hamelin, Olivier; Gans, Pierre; Boisbouvier, Jérôme

    2013-11-01

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  1. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  3. Site-Specific Protein Labeling via Sortase-Mediated Transpeptidation

    PubMed Central

    Antos, John M.; Ingram, Jessica; Fang, Tao; Pishesha, Novalia; Truttmann, Matthias C.; Ploegh, Hidde L.

    2017-01-01

    Strategies for site-specific protein modification are highly desirable for the construction of conjugates containing non-genetically encoded functional groups. Ideally, these strategies should proceed under mild conditions, and be compatible with a wide range of protein targets and non-natural moieties. The transpeptidation reaction catalyzed by bacterial sortases is a prominent strategy for protein derivatization that possesses these features. Naturally occurring or engineered variants of sortase A from Staphylococcus aureus catalyze a ligation reaction between a five amino acid substrate motif (LPXTG) and oligoglycine nucleophiles. By pairing proteins and synthetic peptides that possess these ligation handles, it is possible to install modifications onto the protein N- or C-terminus in site-specific fashion. As described in this unit, the successful implementation of sortase-mediated labeling involves straightforward solid-phase synthesis and molecular biology techniques, and this method is compatible with proteins in solution or on the surface of live cells. PMID:19365788

  4. Bacterial Production of Site Specific 13C Labeled Phenylalanine and Methodology for High Level Incorporation into Bacterially Expressed Recombinant Proteins

    PubMed Central

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L.

    2016-01-01

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific 13C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct 13C chemical shifts and multiple magnetically equivalent 1H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with 13C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated 1H-13C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study. PMID:28028744

  5. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaibelet, Gérald; CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette; Tercé, François

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins couldmore » be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with

  6. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  7. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  8. International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Zheng, Nina; Fridley, David

    2012-02-28

    Appliance energy efficiency standards and labeling (S&L) programs have been important policy tools for regulating the efficiency of energy-using products for over 40 years and continue to expand in terms of geographic and product coverage. The most common S&L programs include mandatory minimum energy performance standards (MEPS) that seek to push the market for efficient products, and energy information and endorsement labels that seek to pull the market. This study seeks to review and compare some of the earliest and most well-developed S&L programs in three countries and one region: the U.S. MEPS and ENERGY STAR, Australia MEPS and Energymore » Label, European Union MEPS and Ecodesign requirements and Energy Label and Japanese Top Runner programs. For each program, key elements of S&L programs are evaluated and comparative analyses across the programs undertaken to identify best practice examples of individual elements as well as cross-cutting factors for success and lessons learned in international S&L program development and implementation. The international review and comparative analysis identified several overarching themes and highlighted some common factors behind successful program elements. First, standard-setting and programmatic implementation can benefit significantly from a legal framework that stipulates a specific timeline or schedule for standard-setting and revision, product coverage and legal sanctions for non-compliance. Second, the different MEPS programs revealed similarities in targeting efficiency gains that are technically feasible and economically justified as the principle for choosing a standard level, in many cases at a level that no product on the current market could reach. Third, detailed survey data such as the U.S. Residential Energy Consumption Survey (RECS) and rigorous analyses provide a strong foundation for standard-setting while incorporating the participation of different groups of stakeholders further strengthen the

  9. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    NASA Astrophysics Data System (ADS)

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-02-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 - 2.0 × 108 cells mL-1), a low limit of detection (79 cells mL-1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  10. Person Perception and Verbal Labeling: The Development of Social Labels.

    ERIC Educational Resources Information Center

    Brooks-Gunn, Jeanne; Lewis, Michael

    This study examined the social labels which are first used by infants, social differentiation on the basis of labeling behavior, and overgeneralization of social labels. Subjects were 81 infants from 9 to 36 months of age. The 9- to 24-month-olds were shown slides of themselves, their mothers, their fathers, and unfamiliar children, babies, and…

  11. Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies.

    PubMed

    Ahlqvist, Josefin; Kumar, Ashok; Sundström, Heléne; Ledung, Erika; Hörnsten, E Gunnar; Enfors, Sven-Olof; Mattiasson, Bo

    2006-03-23

    A new chromatographic method based on affinity supermacroporous monolithic cryogels is developed for binding and analyzing inclusion bodies during fermentation. The work demonstrated that it is possible to bind specific IgG and IgY antibodies to the 15 and 17 amino acids at the terminus ends of a 33 kDa target protein aggregated as inclusion bodies. The antibody treated inclusion bodies from lysed fermentation broth can be specifically retained in protein A and pseudo-biospecific ligand sulfamethazine modified supermacroporous cryogels. The degree of binding of IgG and IgY treated inclusion bodies to the Protein A and sulfamethazine gels are investigated, as well as the influence of pH on the sulfamethazine ligand. Optimum binding of 78 and 72% was observed on both protein A and sulfamethazine modified cryogel columns, respectively, using IgG labeling of the inclusion bodies. The antibody treated inclusion bodies pass through unretained in the sulfamethazine supermacroporous gel at pH that does not favour the binding between the ligand on the gel and the antibodies on the surface of inclusion bodies. Also the unlabeled inclusion bodies went through the gel unretained, showing no non-specific binding or trapping within the gel. These findings may very well be the foundation for the building of a powerful analytical tool during fermentation of inclusion bodies as well as a convenient way to purify them from fermentation broth. These results also support our earlier findings [Kumar, A., Plieva, F.M., Galaev, I.Yu., Mattiasson, B., 2003. Affinity fractionation of lymphocytes using a monolithic cyogel. J. Immunol. Methods 283, 185-194] with mammalian cells that were surface labeled with specific antibodies and recognized on protein A supermacroporous gels. A general binding and separation system can be established on antibody binding cryogel affinity matrices.

  12. Co-Labeling for Multi-View Weakly Labeled Learning.

    PubMed

    Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W

    2016-06-01

    It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi

  13. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos.

    PubMed

    Takase, Yuta; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2013-12-01

    To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo-wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink-infused embryos were further subjected to histological sections, and double stained with antibodies including QH-1 (quail), α smooth muscle actin (αSMA), and PECAM-1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter-labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)-lectin and Rhodamine-dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink-infused embryos visualized fine vascular structures of both embryo proper and extra-embryonic plexus in a Z-stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  14. Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences.

    PubMed

    van Gijlswijk, R P; Wiegant, J; Vervenne, R; Lasan, R; Tanke, H J; Raap, A K

    1996-01-01

    We present a sensitive and rapid fluorescence in situ hybridization (FISH) strategy for detecting chromosome-specific repeat sequences. It uses horseradish peroxidase (HRP)-labeled oligonucleotide sequences in combination with fluorescent tyramide-based detection. After in situ hybridization, the HRP conjugated to the oligonucleotide probe is used to deposit fluorescently labeled tyramide molecules at the site of hybridization. The method features full chemical synthesis of probes, strong FISH signals, and short processing periods, as well as multicolor capabilities.

  15. Incidental Detection of Type B2 Thymoma on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT Imaging.

    PubMed

    Krishnaraju, Venkata Subramanian; Basher, Rajender Kumar; Singh, Harmandeep; Singh, Shrawan Kumar; Bal, Amanjit; Mittal, Bhagwant Rai

    2018-05-01

    Ga-labeled prostate-specific membrane antigen is a novel radiotracer for imaging of prostate cancer. We report a hormonally treated patient with prostate carcinoma, presenting with lower urinary tract symptoms and rising prostate-specific antigen levels, who underwent Ga-labeled prostate-specific membrane antigen PET/CT for suspected recurrence. No tracer avid lesion was noted in the prostate gland and locoregional area. However, intense tracer avid heterogeneously enhancing soft tissue lesion with cystic areas and coarse calcifications was seen in the anterior mediastinum. PET/CT-guided biopsy from the mediastenal lesion revealed type B2 thymoma.

  16. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye.

    PubMed

    Gerasov, Andriy; Shandura, Mykola; Kovtun, Yuriy; Losytskyy, Mykhaylo; Negrutska, Valentyna; Dubey, Igor

    2012-01-15

    A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 1: Cysteine Residues and Glycans.

    PubMed

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M

    2016-02-01

    Due to their remarkable selectivity and specificity for cancer biomarkers, immunoconjugates have emerged as extremely promising vectors for the delivery of diagnostic radioisotopes and fluorophores to malignant tissues. Paradoxically, however, these tools for precision medicine are synthesized in a remarkably imprecise way. Indeed, the vast majority of immunoconjugates are created via the random conjugation of bifunctional probes (e.g., DOTA-NCS) to amino acids within the antibody (e.g., lysines). Yet antibodies have multiple copies of these residues throughout their macromolecular structure, making control over the location of the conjugation reaction impossible. This lack of site specificity can lead to the formation of poorly defined, heterogeneous immunoconjugates with suboptimal in vivo behavior. Over the past decade, interest in the synthesis and development of site-specifically labeled immunoconjugates--both antibody-drug conjugates as well as constructs for in vivo imaging--has increased dramatically, and a number of reports have suggested that these better defined, more homogeneous constructs exhibit improved performance in vivo compared to their randomly modified cousins. In this two-part review, we seek to provide an overview of the various methods that have been developed to create site-specifically modified immunoconjugates for positron emission tomography, single photon emission computed tomography, and fluorescence imaging. We will begin with an introduction to the structure of antibodies and antibody fragments. This is followed by the core of the work: sections detailing the four different approaches to site-specific modification strategies based on cysteine residues, glycans, peptide tags, and unnatural amino acids. These discussions will be divided into two installments: cysteine residues and glycans will be detailed in Part 1 of the review, while peptide tags and unnatural amino acids will be addressed in Part 2. Ultimately, we sincerely hope

  18. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development.

    PubMed

    Krauser, Joel A

    2013-01-01

    Tritium ((3) H) and carbon-14 ((14) C) labels applied in pharmaceutical research and development each offer their own distinctive advantages and disadvantages coupled with benefits and risks. The advantages of (3) H have a higher specific activity, shorter half-life that allows more manageable waste remediation, lower material costs, and often more direct synthetic routes. The advantages of (14) C offer certain analytical benefits and less potential for label loss. Although (3) H labels offer several advantages, they might be overlooked as a viable option because of the concerns about its drawbacks. A main drawback often challenged is metabolic liability. These drawbacks, in some cases, might be overstated leading to underutilization of a perfectly viable option. As a consequence, label selection may automatically default to (14) C, which is a more conservative approach. To challenge this '(14) C-by-default' approach, pharmaceutical agents with strategically selected (3) H-labeling positions based on non-labeled metabolism data have been successfully implemented and evaluated for (3) H loss. From in-house results, the long term success of projects clearly would benefit from a thorough, objective, and balanced assessment regarding label selection ((3) H or (14) C). This assessment should be based on available project information and scientific knowledge. Important considerations are project applicability (preclinical and clinical phases), synthetic feasibility, costs, and timelines. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Maternal Label and Gesture Use Affects Acquisition of Specific Object Names

    ERIC Educational Resources Information Center

    Zammit, Maria; Schafer, Graham

    2011-01-01

    Ten mothers were observed prospectively, interacting with their infants aged 0 ; 10 in two contexts (picture description and noun description). Maternal communicative behaviours were coded for volubility, gestural production and labelling style. Verbal labelling events were categorized into three exclusive categories: label only; label plus…

  20. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes.

    PubMed

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker

    2016-10-01

    Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.

  1. Study and development of label-free optical biosensors for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.

    For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of

  2. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities.

    PubMed

    Massa, Sam; Vikani, Niravkumar; Betti, Cecilia; Ballet, Steven; Vanderhaegen, Saskia; Steyaert, Jan; Descamps, Benedicte; Vanhove, Christian; Bunschoten, Anton; van Leeuwen, Fijs W B; Hernot, Sophie; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Xavier, Catarina; Devoogdt, Nick

    2016-09-01

    A generic site-specific conjugation method that generates a homogeneous product is of utmost importance in tracer development for molecular imaging and therapy. We explored the protein-ligation capacity of the enzyme Sortase A to label camelid single-domain antibody-fragments, also known as nanobodies. The versatility of the approach was demonstrated by conjugating independently three different imaging probes: the chelating agents CHX-A"-DTPA and NOTA for single-photon emission computed tomography (SPECT) with indium-111 and positron emission tomography (PET) with gallium-68, respectively, and the fluorescent dye Cy5 for fluorescence reflectance imaging (FRI). After a straightforward purification process, homogeneous single-conjugated tracer populations were obtained in high yield (30-50%). The enzymatic conjugation did not affect the affinity of the tracers, nor the radiolabeling efficiency or spectral characteristics. In vivo, the tracers enabled the visualization of human epidermal growth factor receptor 2 (HER2) expressing BT474M1-tumors with high contrast and specificity as soon as 1 h post injection in all three imaging modalities. These data demonstrate Sortase A-mediated conjugation as a valuable strategy for the development of site-specifically labeled camelid single-domain antibody-fragments for use in multiple molecular imaging modalities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. 21 CFR 862.2050 - General purpose laboratory equipment labeled or promoted for a specific medical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL... human body and that is labeled or promoted for a specific medical use. (b) Classification. Class I...

  4. 21 CFR 862.2050 - General purpose laboratory equipment labeled or promoted for a specific medical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL... human body and that is labeled or promoted for a specific medical use. (b) Classification. Class I...

  5. 21 CFR 862.2050 - General purpose laboratory equipment labeled or promoted for a specific medical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL... human body and that is labeled or promoted for a specific medical use. (b) Classification. Class I...

  6. 21 CFR 862.2050 - General purpose laboratory equipment labeled or promoted for a specific medical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... human body and that is labeled or promoted for a specific medical use. (b) Classification. Class I..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL...

  7. 21 CFR 862.2050 - General purpose laboratory equipment labeled or promoted for a specific medical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... human body and that is labeled or promoted for a specific medical use. (b) Classification. Class I..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL...

  8. Fab fragment labeled with ICG-derivative for detecting digestive tract cancer.

    PubMed

    Yano, Hiromi; Muguruma, Naoki; Ito, Susumu; Aoyagi, Eriko; Kimura, Tetsuo; Imoto, Yoshitaka; Cao, Jianxin; Inoue, Shohei; Sano, Shigeki; Nagao, Yoshimitsu; Kido, Hiroshi

    2006-09-01

    In previous studies, we generated infrared ray fluorescence-labeled monoclonal antibodies and developed an infrared ray fluorescence endoscope capable of detecting the monoclonal antibodies to establish a novel diagnostic technique for gastrointestinal cancer. Although the whole IgG molecule has commonly been used for preparation of labeled antibodies, labeled IgG displays insufficient sensitivity and specificity, probably resulting from non-specific binding of the Fc fragment to target cells or interference between fluorochromes on the identical labeled antibody, which might be caused by molecular structure. In this in vitro study, we characterized an Fc-free fluorescence-labeled Fab fragment, which was expected to yield more specific binding to target cells than the whole IgG molecule. An anti-mucin antibody and ICG-ATT, an ICG derivative, were used as the labeled antibody and labeling compound, respectively. Paraffin sections of excised gastric cancer tissues were subjected to staining. The labeled whole IgG molecule (ICG-ATT-labeled IgG) and the labeled Fab fragment (ICG-ATT-labeled Fab) were prepared according to a previous report, and the fluorescence properties, antibody activities, and features of fluorescence microscope images obtained from paraffin sections were compared. Both ICG-ATT-labeled Fab and ICG-ATT-labeled IgG were excited by a near infrared ray of 766nm, and maximum emission occurred at 804nm. Antibody activities of ICG-ATT-labeled Fab were shown to be similar to those of unlabeled anti-MUC1 antibody. The fluorescence intensity obtained from paraffin sections of excised gastric cancer tissues revealed a tendency to be greater with ICG-ATT-labeled Fab than with ICG-ATT-labeled IgG. The infrared ray fluorescence-labeled Fab fragment was likely to be more specific than the conventionally labeled antibodies. Fragmentation of antibodies is considered to contribute to improved sensitivity and specificity of labeled antibodies for detection of micro

  9. 49 CFR 172.407 - Label specifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... one color background of green, red or blue. (ii) White must be used for the text and class number for... Hazardous Materials Safety, Office of Hazardous Materials Standards, Room 8422, Nassif Building, 400 Seventh... markings and hazard warning labels and placards: (i) For Red—Use PANTONE ® 186 U (ii) For Orange—Use...

  10. Novel Peptide Sequence (“IQ-tag”) with High Affinity for NIR Fluorochromes Allows Protein and Cell Specific Labeling for In Vivo Imaging

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2007-01-01

    Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285

  11. Site-specific labeling of proteins by using biotin protein ligase conjugated with fluorophores.

    PubMed

    Sueda, Shinji; Yoneda, Sawako; Hayashi, Hideki

    2011-06-14

    Biotin protein ligase (BPL) mediates the covalent attachment of biotin to a specific lysine residue of biotin carboxyl carrier protein (BCCP). This biotinylation in Sulfolobus tokodaii is unique in that BPL forms a tight complex with the product, biotinylated BCCP, and this property was exploited for fluorescent labeling of a membrane protein. Thus, the truncated form of BCCP (BCCPΔ100, 69 residues) was fused to either the N or C terminus of the bradykinin B2 receptor (B2R). The resulting fusion proteins, BCCPΔ100-B2R and B2R-BCCPΔ100, respectively, were separately expressed in mammalian HEK293 cells, and labeled with BPL conjugated with a fluorophore: either fluorescein, DyLight549 or green fluorescent protein. The fusion proteins were biotinylated and bound to BPL, thereby giving rise to strong fluorescence along the periphery of the cell. Some were capable of binding bradykinin and an antagonist. When stimulated with the former, the receptor translocated to the cytosol; this suggests that the labeled receptor retains its integrity in terms of ligand-binding and translocation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The "Speedy" Synthesis of Atom-Specific (15)N Imino/Amido-Labeled RNA.

    PubMed

    Neuner, Sandro; Santner, Tobias; Kreutz, Christoph; Micura, Ronald

    2015-08-10

    Although numerous reports on the synthesis of atom-specific (15)N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of (15)N(1) adenosine and (15)N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve (15)N(3) uridine and (15)N(3) cytidine amidites in order to tap full potential of (1)H/(15)N/(15)N-COSY experiments for directly monitoring individual Watson-Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Developments in label-free microfluidic methods for single-cell analysis and sorting.

    PubMed

    Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L

    2018-04-24

    Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.

  14. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation

    PubMed Central

    Pleiner, Tino; Bates, Mark; Trakhanov, Sergei; Lee, Chung-Tien; Schliep, Jan Erik; Chug, Hema; Böhning, Marc; Stark, Holger; Urlaub, Henning; Görlich, Dirk

    2015-01-01

    Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target. DOI: http://dx.doi.org/10.7554/eLife.11349.001 PMID:26633879

  15. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    PubMed

    Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K

    2011-01-01

    Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.

  16. Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system.

    PubMed

    Germier, Thomas; Sylvain, Audibert; Silvia, Kocanova; David, Lane; Kerstin, Bystricky

    2018-06-01

    Spatio-temporal organization of the cell nucleus adapts to and regulates genomic processes. Microscopy approaches that enable direct monitoring of specific chromatin sites in single cells and in real time are needed to better understand the dynamics involved. In this chapter, we describe the principle and development of ANCHOR, a novel tool for DNA labelling in eukaryotic cells. Protocols for use of ANCHOR to visualize a single genomic locus in eukaryotic cells are presented. We describe an approach for live cell imaging of a DNA locus during the entire cell cycle in human breast cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes.

    PubMed

    Schnell, Christian; Shahmoradi, Ali; Wichert, Sven P; Mayerl, Steffen; Hagos, Yohannes; Heuer, Heike; Rossner, Moritz J; Hülsmann, Swen

    2015-01-01

    Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex.

  18. The Role of Labeling in Chemical Health and Safety: Recent Developments.

    ERIC Educational Resources Information Center

    Young, Jay A.

    1983-01-01

    The purpose of constructing labels is to communicate those scientific facts related to hazards and to select and describe the reasonable precautions that should be taken to prevent otherwise unforseeable harm. Recent developments in the use of combined numeric and pictorial symbols in chemical label construction are described. (JN)

  19. Site-Specific Three-Color Labeling of α-Synuclein via Conjugation to Uniquely Reactive Cysteines during Assembly by Native Chemical Ligation.

    PubMed

    Lee, Taehyung C; Moran, Crystal R; Cistrone, Philip A; Dawson, Philip E; Deniz, Ashok A

    2018-04-12

    Single-molecule fluorescence is widely used to study conformational complexity in proteins, and has proven especially valuable with intrinsically disordered proteins (IDPs). Protein studies using dual-color single-molecule Förster resonance energy transfer (smFRET) are now quite common, but many could benefit from simultaneous measurement of multiple distances through multi-color labeling. Such studies, however, have suffered from limitations in site-specific incorporation of more than two dyes per polypeptide. Here we present a fully site-specific three-color labeling scheme for α-synuclein, an IDP with important putative functions and links to Parkinson disease. The convergent synthesis combines native chemical ligation with regiospecific cysteine protection of expressed protein fragments to permit highly controlled labeling via standard cysteine-maleimide chemistry, enabling more global smFRET studies. Furthermore, this modular approach is generally compatible with recombinant proteins and expandable to accommodate even more complex experiments, such as by labeling with additional colors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model

    NASA Astrophysics Data System (ADS)

    Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael

    2018-03-01

    Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.

  1. Progress of new label-free techniques for biosensors: a review.

    PubMed

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  2. (99m)Tc-labeled SWL specific peptide for targeting EphA2 receptor.

    PubMed

    Liu, Yu; Lan, Xiaoli; Wu, Tao; Lang, Juntao; Jin, Xueyan; Sun, Xun; Wen, Qiong; An, Rui

    2014-07-01

    EphA2, one member of the Eph receptor family, is widely expressed in multiple aggressive cancers. SWL, a small peptide identified by phage display, has high binding affinity to EphA2, suggesting that it could be exploited for targeted molecular imaging. Therefore, a novel peptide-based probe, (99m)Tc-HYNIC-SWL, was developed and its potential to specifically target EphA2-positive tumors was investigated. The SWL peptide was labeled with hydrazinonicotinic acid (HYNIC), followed by (99m)Tc labeling. Immunofluorescence staining was carried out to detect the expression of EphA2 in A549 lung cancer cells and OCM-1 melanoma cells. Saturation binding experiments were performed by incubating A549 cells with increasing concentrations of radiolabeled peptide in vitro. To test the probe in vivo, nude mice bearing either A549 or OCM-1 derived tumors were established, injected with (99m)Tc-HYNIC-SWL, and subjected to SPECT imaging. Mice injected with excess unlabeled SWL were used as a specific control. Ex vivo γ-counting of dissected tissues from the mice was also performed to evaluate biodistribution. Immunofluorescence staining showed that A549 cells intensively expressed EphA2, while OCM-1 cells had little expression. (99m)Tc-HYNIC-SWL displayed high binding affinity with A549 cells (KD=2.6±0.7nM). From the SPECT images and the results of the biodistribution study, significantly higher uptake of the tracer was seen in A549 tumors (1.44±0.12 %ID/g) than in OCM-1 tumors (0.43±0.20 %ID/g) at 1h after injection. Pre-injection with excess unlabeled peptide in A549-bearing nude mice, significantly reduced tumor uptake of the radiolabeled probe (0.58±0.20 %ID/g) was seen. These data suggest that (99m)Tc-HYNIC-SWL specifically targets EphA2 in tumors. The expression of EphA2 can be noninvasively investigated using (99m)Tc-HYNIC-SWL by SPECT imaging. The in vitro and in vivo characteristics of (99m)Tc-HYNIC-SWL make it a promising probe for EphA2-positive tumor imaging

  3. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled 14C-cobalamin

    PubMed Central

    Carkeet, Colleen; Dueker, Stephen R.; Lango, Jozsef; Buchholz, Bruce A.; Miller, Joshua W.; Green, Ralph; Hammock, Bruce D.; Roth, John R.; Anderson, Peter J.

    2006-01-01

    There is a need for an improved test of human ability to assimilate dietary vitamin B12. Assaying and understanding absorption and uptake of B12 is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry is uniquely suited for assessing absorption and kinetics of carbon-14 (14C)-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of 14C in microliter volumes of biological samples with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B12 in the range of normal dietary intake. The B12 used was quantitatively labeled with 14C at one particular atom of the dimethylbenzimidazole (DMB) moiety by exploiting idiosyncrasies of Salmonella metabolism. To grow aerobically on ethanolamine, Salmonella enterica must be provided with either preformed B12 or two of its precursors, cobinamide and DMB. When provided with 14C-DMB specifically labeled in the C2 position, cells produced 14C-B12 of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) (1 Ci = 37 GBq) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 μg, 2.2 kBq/59 nCi) of purified 14C-B12 was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B12 assimilation. PMID:16585531

  4. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  5. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific 68Ga- and 44Sc-labeled DOTA-NAPamide in melanoma imaging.

    PubMed

    Nagy, Gábor; Dénes, Noémi; Kis, Adrienn; Szabó, Judit P; Berényi, Ervin; Garai, Ildikó; Bai, Péter; Hajdu, István; Szikra, Dezső; Trencsényi, György

    2017-08-30

    Alpha melanocyte stimulating hormone (α-MSH) enhances melanogenesis in melanoma malignum by binding to melanocortin-1 receptors (MC1-R). Earlier studies demonstrated that alpha-MSH analog NAPamide molecule specifically binds to MC1-R receptor. Radiolabeled NAPamide is a promising radiotracer for the non-invasive detection of melanin producing melanoma tumors by Positron Emission Tomography (PET). In this present study the MC1-R selectivity of the newly developed Sc-44-labeled DOTA-NAPamide was investigated in vitro and in vivo using melanoma tumors. DOTA-NAPamide was labeled with Ga-68 and Sc-44 radionuclides. The MC1-R specificity of Ga-68- and Sc-44-labeled DOTA-NAPamide was investigated in vitro and in vivo using MC1-R positive (B16-F10) and negative (A375) melanoma cell lines. For in vivo imaging studies B16-F10 and A375 tumor-bearing mice were injected with 44 Sc/ 68 Ga-DOTA-NAPamide (in blocking studies with α-MSH) and whole body PET/MRI scans were acquired. Radiotracer uptake was expressed in terms of standardized uptake values (SUVs). 44 Sc/ 68 Ga-labeled DOTA-NAPamide were produced with high specific activity (approx. 19 GBq/μmol) and with excellent radiochemical purity (99%<). MC1-R positive B16-F10 cells showed significantly (p≤0.01) higher in vitro radiotracer accumulation than that of receptor negative A375 melanoma cells. In animal experiments, also significantly (p≤0.01) higher Ga-68-DOTA-NAPamide (SUVmean: 0.38±0.02), and Sc-44-DOTA-NAPamide (SUVmean: 0.52±0.13) uptake was observed in subcutaneously growing B16-F10 tumors, than in receptor negative A375 tumors, where the SUVmean values of Ga-68-DOTA-NAPamide and Sc-44-DOTA-NAPamide were 0.04±0.01 and 0.07±0.01, respectively. Tumor-to-muscle (T/M SUVmean) ratios were approximately 15-fold higher in B16-F10 tumor-bearing mice, than that of A375 tumors, and this difference was also significant (p≤0.01) using both radiotracers after 60 min incubation time. Our newly synthesized 44 Sc-labeled

  6. Dynamics of Dengue Virus (DENV)–Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions

    PubMed Central

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R.; Srikiatkhachorn, Anon; Macareo, Louis R.; Green, Sharone; Jarman, Richard G.; Rothman, Alan L.; Mathew, Anuja

    2016-01-01

    Background. The development of reagents to identify and characterize antigen-specific B cells has been challenging. Methods. We recently developed Alexa Fluor–labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. Results. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV+ class-switched memory B cells (IgD−CD27+ CD19+ cells) reached up to 8% during acute infection and early convalescence. AF DENV–labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38−CD27+) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. Conclusions. AF DENVs reveal changes in the phenotype of DENV serotype–specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. PMID:27443614

  7. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations

  8. Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions.

    PubMed

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R; Srikiatkhachorn, Anon; Macareo, Louis R; Green, Sharone; Jarman, Richard G; Rothman, Alan L; Mathew, Anuja

    2016-10-01

    The development of reagents to identify and characterize antigen-specific B cells has been challenging. We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.

    PubMed

    Lang, Kathrin; Davis, Lloyd; Wallace, Stephen; Mahesh, Mohan; Cox, Daniel J; Blackman, Melissa L; Fox, Joseph M; Chin, Jason W

    2012-06-27

    Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.

  10. 99mTc: Labeling Chemistry and Labeled Compounds

    NASA Astrophysics Data System (ADS)

    Alberto, R.; Abram, U.

    This chapter reviews the radiopharmaceutical chemistry of technetium related to the synthesis of perfusion agents and to the labeling of receptor-binding biomolecules. To understand the limitations of technetium chemistry imposed by future application of the complexes in nuclear medicine, an introductory section analyzes the compulsory requirements to be considered when facing the incentive of introducing a novel radiopharmaceutical into the market. Requirements from chemistry, routine application, and market are discussed. In a subsequent section, commercially available 99mTc-based radiopharmaceuticals are treated. It covers the complexes in use for imaging the most important target organs such as heart, brain, or kidney. The commercially available radiopharmaceuticals fulfill the requirements outlined earlier and are discussed with this background. In a following section, the properties and perspectives of the different generations of radiopharmaceuticals are described in a general way, covering characteristics for perfusion agents and for receptor-specific molecules. Technetium chemistry for the synthesis of perfusion agents and the different labeling approaches for target-specific biomolecules are summarized. The review comprises a general introduction to the common approaches currently in use, employing the N x S4-x , [3+1] and 2-hydrazino-nicotinicacid (HYNIC) method as well as more recent strategies such as the carbonyl and the TcN approach. Direct labeling without the need of a bifunctional chelator is briefly reviewed as well. More particularly, recent developments in the labeling of concrete targeting molecules, the second generation of radiopharmaceuticals, is then discussed and prominent examples with antibodies/peptides, neuroreceptor targeting small molecules, myocardial imaging agents, vitamins, thymidine, and complexes relevant to multidrug resistance are given. In addition, a new approach toward peptide drug development is described. The section

  11. SYNTHESIS OF H$sup 3$-LABELED AMINO ACIDS WITH HIGH SPECIFIC ACTIVITY AND THEIR APPLICATION FOR HISTOAUTORADIOGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, K.

    1962-01-01

    New methods for synthesis of tritium-labeled amino acids with high specific activity (1000 mc/m mole and above) are described. Changes in tritium- labeled amino acids during storage are studied. An absorbed BETA energy of 10/ sup 5/ rad results in radiochemical disintegration of 1.5%. Autoradiographic studies were made with several amino acids. It was demonstrated that protein production is 2 to 3 times higher in butter-vellux, tumors than in liver tissue. Synthesis of melanine was studied in vivo with melanineproducing tumors. (Gmelin Inst.)

  12. Application of the Stable Isotope Label Approach in Clinical Development-Supporting Dissolution Specifications for a Commercial Tablet Product with Tafenoquine, a Long Half-life Compound.

    PubMed

    Goyal, Navin; Mohamed, Khadeeja; Rolfe, Katie; Sahota, Satty; Ernest, Terry; Duparc, Stephan; Taylor, Maxine; Casillas, Linda; Koh, Gavin C K W

    2018-06-04

    Bioavailability/bioequivalence studies supporting clinical drug development or commercial supply of drug formulations are often time, cost, and resource intensive. The drug's pharmacokinetic (PK) variability, systemic half-life, and safety issues may pose additional challenges. The stable isotope label (SIL) approach provides a useful tool to significantly reduce the study size in clinical PK studies. Tafenoquine (TQ) is an 8-aminoquinoline under development for preventing Plasmodium vivax malaria relapse. This SIL study assessed the impact of differences in the in vitro dissolution profiles on in vivo exposure of TQ tablets. Fourteen healthy volunteers received a single dose of 300 mg TQ Intermediate Aged or 300 mg TQ Control formulations in this single-center, two-arm, randomized, open-label, parallel-group study. Endpoints included the geometric means ratio of the area under the concentration-time curve (AUC (0-t) and AUC (0-∞) ; primary endpoint) and maximum plasma concentration (C max ) for Intermediate Aged versus Control TQ; correlation of PK parameters for venous versus peripheral (via microsample) blood samples; and safety and tolerability endpoints. Geometric mean ratios for PK parameters (AUC and C max ) and their 90% confidence intervals fell well within standard bioequivalence limits (0.80-1.25). Only one mild adverse event (skin abrasion) was reported. In summary, this SIL methodology-based study demonstrates that the observed differences in the in vitro dissolution profiles between the Control and Intermediate Aged TQ tablets have no clinically relevant effect on systemic TQ exposure. The SIL approach was successfully implemented to enable the setting of a clinically relevant dissolution specification. This study (GSK study number 201780) is registered at clinicaltrials.gov with identifier NCT02751294.

  13. Simultaneous neuron- and astrocyte-specific fluorescent marking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignmentmore » of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.« less

  14. [Academic production on food labeling in Brazil].

    PubMed

    Câmara, Maria Clara Coelho; Marinho, Carmem Luisa Cabral; Guilam, Maria Cristina; Braga, Ana Maria Cheble Bahia

    2008-01-01

    To review and discuss academic production (theses and dissertations) on the topic of labeling of prepackaged foods in Brazil. A search of the database maintained by the Coordination for the Development of Higher Education Professionals (CAPES), one of the two Brazilian government research funding and support agencies, was conducted on the following keywords: "rotulagem" (labeling), "rotulagem nutricional" (food labeling) and "rótulo de alimentos" (food labels). The search covered the years 1987 (earliest year available) to 2004. We identified 49 studies on this topic. Content analysis identified three major themes: the extent to which food labels meet specific legal requirements (57.2%); the degree to which consumers understand the information on labels (22.4%); and the labeling of transgenic or genetically-modified foods (20.4%). Food labeling is a frequent topic and is adequately covered by the Brazilian academic production. In most of the studies, ineffective law enforcement appears to be the main factor in the lack of compliance with and disrespect for the food labeling rules and regulations in Brazil.

  15. Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.

    PubMed

    Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian

    2017-06-15

    A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Subunit-Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases.

    PubMed

    Crowe, Sean O; Pham, Grace H; Ziegler, Jacob C; Deol, Kirandeep K; Guenette, Robert G; Ge, Ying; Strieter, Eric R

    2016-08-17

    Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ferritin conjugates as specific magnetic labels. Implications for cell separation.

    PubMed Central

    Odette, L L; McCloskey, M A; Young, S H

    1984-01-01

    Concanavalin A coupled to the naturally occurring iron storage protein ferritin is used to label rat erythrocytes and increase the cells' magnetic susceptibility. Labeled cells are introduced into a chamber containing spherical iron particles and the chamber is placed in a uniform 5.2 kG (gauss) magnetic field. The trajectory of cells in the inhomogeneous magnetic field around the iron particles and the polar distributions of cells bound to the iron particles compare well with the theoretical predictions for high gradient magnetic systems. On the basis of these findings we suggest that ferritin conjugated ligands can be used for selective magnetic separation of labeled cells. Images FIGURE 2 PMID:6743752

  18. Labelling and Self-Esteem: The Impact of Using Specific vs. Generic Labels

    ERIC Educational Resources Information Center

    Taylor, Laura Marie; Hume, Ian Robert; Welsh, Nikki

    2010-01-01

    The aim of this study is to investigate the relationship between being labelled either as having dyslexia or as having general special educational needs (SEN) and a child's self-esteem. Seventy-five children aged between 8 and 15 years categorised as having dyslexia (N = 26), as having general SEN (N = 26) or as having no learning difficulties (N…

  19. Targeted, Site-specific quantitation of N- and O-glycopeptides using 18O-labeling and product ion based mass spectrometry.

    PubMed

    Srikanth, Jandhyam; Agalyadevi, Rathinasamy; Babu, Ponnusamy

    2017-02-01

    The site-specific quantitation of N- and O-glycosylation is vital to understanding the function(s) of different glycans expressed at a given site of a protein under physiological and disease conditions. Most commonly used precursor ion intensity based quantification method is less accurate and other labeled methods are expensive and require enrichment of glycopeptides. Here, we used glycopeptide product (y and Y0) ions and 18 O-labeling of C-terminal carboxyl group as a strategy to obtain quantitative information about fold-change and relative abundance of most of the glycoforms attached to the glycopeptides. As a proof of concept, the accuracy and robustness of this targeted, relative quantification LC-MS method was demonstrated using Rituximab. Furthermore, the N-glycopeptide quantification results were compared with a biosimilar of Rituximab and validated with quantitative data obtained from 2-AB-UHPLC-FL method. We further demonstrated the intensity fold-change and relative abundance of 46 unique N- and O-glycopeptides and aglycopeptides from innovator and biosimilar samples of Etanercept using both the normal-MS and product ion based quantitation. The results showed a very similar site-specific expression of N- and O-glycopeptides between the samples but with subtle differences. Interestingly, we have also been able to quantify macro-heterogeneity of all N- and O-glycopetides of Etanercept. In addition to applications in biotherapeutics, the developed method can also be used for site-specific quantitation of N- and O-glycopeptides and aglycopeptides of glycoproteins with known glycosylation pattern.

  20. Nutrition labelling: purpose, scientific issues and challenges.

    PubMed

    Van den Wijngaart, Annoek W E M

    2002-01-01

    Nutrition labels describe the nutrient content of a food and are intended to guide the consumer in food selection. The nutrition information provided must be selected on the basis of consistency with dietary recommendations. Selection of the specific nutrients or food components to be listed should further take into account label space, the analytical feasibility of measuring the particular nutritional component within the food matrix, and the relative costs of such analyses. Nutrition information provided on labels should be truthful and not mislead consumers. At the same time, labelling regulations should provide incentives to manufacturers to develop products that promote public health and assist consumers in following dietary recommendations. It is likely that in many countries, there would be some segments of the population that would benefit from information about the composition of foods. In these cases, countries should consider the need to provide for appropriate labelling and its presentation relative to existing guidelines and approaches. As nutrition-labelling efforts have evolved, different approaches and legal requirements have been established. These create difficulties in developing and harmonizing nutrition information listings, which have broad international applications. For these reasons, the Codex Guidelines on Nutrition Labeling play an important role to provide guidance to member countries when they want to develop or update their national regulations and to encourage harmonization of national standards with international standards. These Guidelines are based on the principle that no food should be described or presented in a manner that is false, misleading or deceptive. The Guidelines include provisions for voluntary nutrient declaration, calculation and presentation of nutrient information. The Guidelines on Claims establish general principles to be followed and leave the definition of specific claims to national regulations. Definitions

  1. In vivo biotinylation and incorporation of a photo-inducible unnatural amino acid to an antibody-binding domain improve site-specific labeling of antibodies.

    PubMed

    Kanje, Sara; Hober, Sophia

    2015-04-01

    Antibodies are important molecules in many research fields, where they play a key role in various assays. Antibody labeling is therefore of great importance. Currently, most labeling techniques take advantage of certain amino acid side chains that commonly appear throughout proteins. This makes it hard to control the position and exact degree of labeling of each antibody. Hence, labeling of the antibody may affect the antibody-binding site. This paper presents a novel protein domain based on the IgG-binding domain C2 of streptococcal protein G, containing the unnatural amino acid BPA, that can cross-link other molecules. This novel domain can, with improved efficiency compared to previously reported similar domains, site-specifically cross-link to IgG at the Fc region. An efficient method for simultaneous in vivo incorporation of BPA and specific biotinylation in a flask cultivation of Escherichia coli is described. In comparison to a traditionally labeled antibody sample, the C2-labeled counterpart proved to have a higher proportion of functional antibodies when immobilized on a solid surface and the same limit of detection in an ELISA. This method of labeling is, due to its efficiency and simplicity, of high interest for all antibody-based assays where it is important that labeling does not interfere with the antibody-binding site. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An exploratory study of drinkers views of health information and warning labels on alcohol containers.

    PubMed

    Thomson, Lisa M; Vandenberg, Brian; Fitzgerald, John L

    2012-03-01

    To identify general and specific features of health information warning labels on alcohol beverage containers that could potentially inform the development and implementation of a new labelling regime in Australia. Mixed methods, including a cross-sectional population survey and a qualitative study of knowledge, attitudes and behaviours regarding alcohol beverage labelling. The population survey used computer-assisted telephone interviews of 1500 persons in Victoria, Australia to gauge the level of support for health information and warning labels. The qualitative study used six focus groups to test the suitability of 12 prototype labels that were placed in situ on a variety of alcohol beverage containers. The telephone survey found 80% to 90% support for a range of information that could potentially be mandated by government authorities for inclusion on labels (nutritional information, alcohol content, health warning, images). Focus group testing of the prototype label designs found that labels should be integrated with other alcohol-related health messages, such as government social advertising campaigns, and specific labels should be matched appropriately to specific consumer groups and beverage types. There are high levels of public support for health information and warning labels on alcohol beverages. This study contributes much needed empirical guidance for developing alcohol beverage labelling strategies in an Australian context. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  3. A universal procedure for primer labelling of amplicons.

    PubMed Central

    Neilan, B A; Wilton, A N; Jacobs, D

    1997-01-01

    Detection and visualisation of nucleic acids is integral to genome analyses. Exponential amplification procedures have provided the means for the manipulation of nucleic acid sequences, which were otherwise inaccessible. We describe the development and application of a universal method for the labelling of any PCR product using a single end-labelled primer. Amplification was performed in a single reaction with the resulting amplicon labelled to a high specific activity. The method was adapted to a wide range of PCRs and significantly reduced the expense of such analyses. PMID:9207046

  4. Interfacial Polymerization for Colorimetric Labeling of Protein Expression in Cells

    PubMed Central

    Lilly, Jacob L.; Sheldon, Phillip R.; Hoversten, Liv J.; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J.

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium. PMID:25536421

  5. Interfacial polymerization for colorimetric labeling of protein expression in cells.

    PubMed

    Lilly, Jacob L; Sheldon, Phillip R; Hoversten, Liv J; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium.

  6. Autofluorescence and non-specific immunofluorescent labeling in frozen bovine intestinal tissue sections: Solutions for multi-color immunofluorescence experiments

    USDA-ARS?s Scientific Manuscript database

    Autofluorescence and non-specific immunofluorescent labeling are common challenges associated with immunofluorescence experiments. Autofluorescence typically demonstrates a broad emission spectrum, increasing the potential for overlap with experiments that utilize multiple fluorophores. During immun...

  7. Development and evaluation of an automatic labeling technique for spring small grains

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Malila, W. A. (Principal Investigator)

    1981-01-01

    A labeling technique is described which seeks to associate a sampling entity with a particular crop or crop group based on similarity of growing season and temporal-spectral patterns of development. Human analyst provide contextual information, after which labeling decisions are made automatically. Results of a test of the technique on a large, multi-year data set are reported. Grain labeling accuracies are similar to those achieved by human analysis techniques, while non-grain accuracies are lower. Recommendations for improvments and implications of the test results are discussed.

  8. Simple synthesis of carbon-11 labeled styryl dyes as new potential PET RNA-specific, living cell imaging probes.

    PubMed

    Wang, Min; Gao, Mingzhang; Miller, Kathy D; Sledge, George W; Hutchins, Gary D; Zheng, Qi-Huang

    2009-05-01

    A new type of styryl dyes have been developed as RNA-specific, live cell imaging probes for fluorescent microscopy technology to study nuclear structure and function. This study was designed to develop carbon-11 labeled styryl dyes as new probes for biomedical imaging technique positron emission tomography (PET) imaging of RNA in living cells. Precursors (E)-2-(2-(1-(triisopropylsilyl)-1H-indol-3-yl)vinyl)quinoline (2), (E)-2-(2,4,6-trimethoxystyryl)quinoline (3) and (E)-4-(2-(6-methoxyquinolin-2-yl)vinyl)-N,N-diemthylaniline (4), and standards styryl dyes E36 (6), E144 (7) and F22 (9) were synthesized in multiple steps with moderate to high chemical yields. Precursor 2 was labeled by [(11)C]CH(3)OTf, trapped on a cation-exchange CM Sep-Pak cartridge following a quick deprotecting reaction by addition of (n-Bu)(4)NF in THF, and isolated by solid-phase extraction (SPE) purification to provide target tracer [(11)C]E36 ([(11)C]6) in 40-50% radiochemical yields, decay corrected to end of bombardment (EOB), based on [(11)C]CO(2). The target tracers [(11)C]E144 ([(11)C]7) and [(11)C]F22 ([(11)C]9) were prepared by N-[(11)C]methylation of the precursors 3 and 4, respectively, using [(11)C]CH(3)OTf and isolated by SPE method in 50-70% radiochemical yields at EOB. The specific activity of the target tracers [(11)C]6, [(11)C]7 and [(11)C]9 was in a range of 74-111GBq/mumol at the end of synthesis (EOS).

  9. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.

    PubMed

    Christiansen, Eric M; Yang, Samuel J; Ando, D Michael; Javaherian, Ashkan; Skibinski, Gaia; Lipnick, Scott; Mount, Elliot; O'Neil, Alison; Shah, Kevan; Lee, Alicia K; Goyal, Piyush; Fedus, William; Poplin, Ryan; Esteva, Andre; Berndl, Marc; Rubin, Lee L; Nelson, Philip; Finkbeiner, Steven

    2018-04-19

    Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA

    PubMed Central

    Lukinavičius, Gražvydas; Lapinaitė, Audronė; Urbanavičiūtė, Giedrė; Gerasimaitė, Rūta; Klimašauskas, Saulius

    2012-01-01

    DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. PMID:23042683

  11. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    PubMed

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Saturation Fluorescence Labeling of Proteins for Proteomic Analyses

    PubMed Central

    Pretzer, Elizabeth; Wiktorowicz, John E.

    2008-01-01

    We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations including a disulfide reducing agent (TCEP), pH, incubation time, linearity of labeling, and saturating dye: protein thiol ratio with protein standards to gauge specific and non-specific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific vs. non-specific labeling in the presence of thiourea are also discussed. We have found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, α-lactalbumin) is achieved at 50-100-fold excess of the uncharged maleimide-functionalized BODIPY™ dyes over Cys. We confirm our previous findings and those of others that the maleimide dyes are not impacted by the presence of 2M thiourea. Moreover, we establish that 2 mM TCEP used as reductant is optimal. We also establish further that labeling is optimal at pH 7.5 and complete after 30 min. Low non-specific labeling was gauged by the inclusion of non-Cys containing proteins (horse myoglobin, bovine carbonic anhydrase) to the labeling mixture. We also show that the dye exhibits little to no effect on the two dimensional mobilities of labeled proteins derived from cells. PMID:18191033

  13. Nicotinic acetylcholine receptor probed with a photoactivatable agonist: improved labeling specificity by addition of CeIV/glutathione. Extension to laser flash photolabeling.

    PubMed

    Grutter, T; Goeldner, M; Kotzyba-Hibert, F

    1999-06-08

    The molecular structure of Torpedo marmorata acetylcholine binding sites has been investigated previously by photoaffinity labeling. However, besides the nicotine molecule [Middleton et al. (1991) Biochemistry 30, 6987-6997], all other photosensitive probes used for this purpose interacted only with closed receptor states. In the perspective of mapping the functional activated state, we synthesized and developed a new photoactivatable agonist of nAChR capable of alkylation of the acetylcholine (ACh) binding sites, as reported previously [Kotzyba-Hibert et al. (1997) Bioconjugate Chem. 8, 472-480]. Here, we describe the setup of experimental conditions that were made in order to optimize the photolabeling reaction and in particular its specificity. We found that subsequent addition of the oxidant ceric ion (CeIV) and reduced glutathione before the photolabeling step lowered considerably nonspecific labeling (over 90% protection with d-tubocurarine) without affecting the binding properties of the ACh binding sites. As a consequence, irradiation at 360 nm for 20 min in these new conditions gave satisfactory coupling yields (7.5%). A general mechanism was proposed to explain the successive reactions occurring and their drastic effect on the specificity of the labeling reaction. Last, these incubation conditions can be extended to nanosecond pulsed laser photolysis leading to the same specific photoincorporation as for usual irradiations (8.5% coupling yield of ACh binding sites, 77% protection with carbamylcholine). Laser flash photocoupling of a diazocyclohexadienoyl probe on nAChR was achieved for the first time. Taken together, these data indicate that future investigation of the molecular dynamics of allosteric transitions occurring at the activated ACh binding sites should be possible.

  14. Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.

    PubMed

    Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P

    2017-05-01

    Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  16. Developing alternative over-the-counter medicine label formats: How do they compare when evaluated by consumers?

    PubMed

    Tong, Vivien; Raynor, David K; Aslani, Parisa

    2018-03-01

    In recent years, the Australian Therapeutic Goods Administration (TGA) has proposed implementing a standardized over-the-counter (OTC) medicine label. However, there were mixed consumer opinions regarding a label proposed in 2012 and limited evidence demonstrating the usability of the revised (2014) format. To develop and examine the usability of alternative OTC medicine label formats for standardization, and explore consumer perspectives on the labels. Four alternative labels were developed for the exemplar medicine diclofenac. One was based on the Medicine Information label proposed by the TGA ('Medicine Information'), one was based on the U.S. Drug Facts label ('Drug Facts'), and two were based on suggestions proposed by consumers in the earlier needs analysis phase of this research (referred to as the 'Medicine Facts' and 'Consumer Desires' label formats). Five cohorts of 10 participants were recruited. Each cohort was assigned to user test one of the alternative labels or an existing label for a proprietary diclofenac product (which acted as a comparator) for diagnostic purposes. Each participant then provided feedback on all 5 labels. Each interview consisted of the administration of a user testing questionnaire, measuring consumers' ability to find and understand key points of information, and a semi-structured interview exploring consumer perspectives. Overall, all 4 alternative label formats supported consumers' ability to find and understand key points. The existing comparator label was the poorer label with respect to participants' ability to find and understand key points. Factors such as perceived usability, color, design, content, and/or content ordering impacted consumer preferences. The 'Consumer Desires' or 'Drug Facts' label formats were most often preferred by consumers for use as the standardized OTC label over the TGA proposed format. All alternative label formats demonstrated satisfactory usability and could be considered for use in OTC label

  17. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  18. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 2: Peptide Tags and Unnatural Amino Acids.

    PubMed

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M

    2016-04-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  19. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  20. A highly sensitive capillary electrophoresis immunoassay strategy based on dual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen.

    PubMed

    Li, Shuting; Shi, Min; Zhao, Jingjin; Zhang, Liangliang; Huang, Yong; Zhao, Shulin

    2017-07-01

    An enzyme and antibody dual labeled gold nanoparticles enhancing chemiluminescence strategy was developed for highly sensitive CE immunoassay (IA) of prostate-specific antigen (PSA). In this work, gold nanoparticles were labeled with horseradish peroxidase and antiprostate specific antigen-antibody, and used as the marker (Ab * ). After PSA (antigen, Ag) was added into the system, a noncompetitive immune reaction was happen between Ab * and Ag to form an immune complex (Ag-Ab * ). Subsequently, the obtained Ag-Ab * and unreacted Ab * were separated by CE, and the chemiluminescence intensity of Ag-Ab * was used to estimate PSA concentration. The calibration curve showed a good linearity in the range of 0.25-10 ng/mL. Based on a S/N of 3, the detection limit for PAS was estimated to be 0.092 ng/mL. Proposed CE method was applied for PSA quantification in human serum samples from healthy volunteers and patients with prostate cancer. The obtained results demonstrated that the proposed CE method may serve as an alternative tool for clinical analysis of PSA. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Probing metabolic processes of intact soil microbial communities using position-specific 13C-labeled glucose

    NASA Astrophysics Data System (ADS)

    Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.

    2012-12-01

    Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.

  2. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors

    DOE PAGES

    Su, Xinhui; Cheng, Kai; Jeon, Jongho; ...

    2014-06-27

    The epidermal growth factor receptor (EGFR) serves as an attractive target for cancer molecular imaging and therapy. Our previous positron emission tomography (PET) studies showed that the EGFR-targeting affibody molecules 64Cu-DOTA-Z EGFR:1907 and 18F-FBEM-Z EGFR:1907 can discriminate between high and low EGFR-expression tumors and have the potential for patient selection for EGFR-targeted therapy. Compared with 64Cu, 18F may improve imaging of EGFR-expression and is more suitable for clinical application, but the labeling reaction of 18F-FBEM-Z EGFR:1907 requires a long synthesis time. The aim of the present study is to develop a new generation of 18F labeled affibody probes (Al 18F-NOTA-Zmore » EGFR:1907 and 18F-CBT-Z EGFR:1907) and to determine whether they are suitable agents for imaging of EGFR expression. The first approach consisted of conjugating Z EGFR:1907 with NOTA and radiolabeling with Al 18F to produce Al 18F-NOTA-Z EGFR:1907. In a second approach the prosthetic group 18F-labeled-2-cyanobenzothiazole ( 18F-CBT) was conjugated to Cys-Z EGFR:1907 to produce 18F-CBT-Z EGFR:1907. Binding affinity and specificity of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 to EGFR were evaluated using A431 cells. Biodistribution and PET studies were conducted on mice bearing A431 xenografts after injection of Al 18F-NOTA-Z EGFR:1907 or 18F-CBT-Z EGFR:1907 with or without coinjection of unlabeled affibody proteins. The radiosyntheses of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 were completed successfully within 40 and 120 min with a decay-corrected yield of 15% and 41% using a 2-step, 1-pot reaction and 2-step, 2-pot reaction, respectively. Both probes bound to EGFR with low nanomolar affinity in A431 cells. Although 18F-CBT-Z EGFR:1907 showed instability in vivo, biodistribution studies revealed rapid and high tumor accumulation and quick clearance from normal tissues except the bones. In contrast, Al 18F-NOTA-Z EGFR:1907 demonstrated high in vitro and in

  3. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xinhui; Cheng, Kai; Jeon, Jongho

    The epidermal growth factor receptor (EGFR) serves as an attractive target for cancer molecular imaging and therapy. Our previous positron emission tomography (PET) studies showed that the EGFR-targeting affibody molecules 64Cu-DOTA-Z EGFR:1907 and 18F-FBEM-Z EGFR:1907 can discriminate between high and low EGFR-expression tumors and have the potential for patient selection for EGFR-targeted therapy. Compared with 64Cu, 18F may improve imaging of EGFR-expression and is more suitable for clinical application, but the labeling reaction of 18F-FBEM-Z EGFR:1907 requires a long synthesis time. The aim of the present study is to develop a new generation of 18F labeled affibody probes (Al 18F-NOTA-Zmore » EGFR:1907 and 18F-CBT-Z EGFR:1907) and to determine whether they are suitable agents for imaging of EGFR expression. The first approach consisted of conjugating Z EGFR:1907 with NOTA and radiolabeling with Al 18F to produce Al 18F-NOTA-Z EGFR:1907. In a second approach the prosthetic group 18F-labeled-2-cyanobenzothiazole ( 18F-CBT) was conjugated to Cys-Z EGFR:1907 to produce 18F-CBT-Z EGFR:1907. Binding affinity and specificity of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 to EGFR were evaluated using A431 cells. Biodistribution and PET studies were conducted on mice bearing A431 xenografts after injection of Al 18F-NOTA-Z EGFR:1907 or 18F-CBT-Z EGFR:1907 with or without coinjection of unlabeled affibody proteins. The radiosyntheses of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 were completed successfully within 40 and 120 min with a decay-corrected yield of 15% and 41% using a 2-step, 1-pot reaction and 2-step, 2-pot reaction, respectively. Both probes bound to EGFR with low nanomolar affinity in A431 cells. Although 18F-CBT-Z EGFR:1907 showed instability in vivo, biodistribution studies revealed rapid and high tumor accumulation and quick clearance from normal tissues except the bones. In contrast, Al 18F-NOTA-Z EGFR:1907 demonstrated high in vitro and in

  4. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  5. "Why Mama and Papa?" The Development of Social Labels.

    ERIC Educational Resources Information Center

    Brooks-Gunn, Jeanne; Lewis, Michael

    1979-01-01

    Examined social labels first used for parents, differentiation of parents and others on the basis of labeling behavior, and overgeneralization of social labels in 71 infants ranging in age from 9 to 24 months. (JMB)

  6. CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding.

    PubMed

    Chen, Bin; Longhini, Andrew P; Nußbaumer, Felix; Kreutz, Christoph; Dinman, Jonathan D; Dayie, T Kwaku

    2018-04-11

    Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MYB Labeling by Immunohistochemistry Is More Sensitive and Specific for Breast Adenoid Cystic Carcinoma than MYB Labeling by FISH.

    PubMed

    Poling, Justin S; Yonescu, Raluca; Subhawong, Andrea P; Sharma, Rajni; Argani, Pedram; Ning, Yi; Cimino-Mathews, Ashley

    2017-07-01

    Breast adenoid cystic carcinoma (ACC) is a primary breast carcinoma that, like salivary gland ACC, displays the t(6;9) translocation resulting in the MYB-NFIB gene fusion and immunopositivity for MYB by immunohistochemistry (IHC). However, it is not well established whether MYB immunoreactivity or rearrangement can be used to support a diagnosis of ACC in a malignant basaloid or benign cribriform breast lesion. Whole sections of primary breast ACC (n=11), collagenous spherulosis (CS; n=7), and microglandular adenosis (MGA; n=5) and tissue microarrays containing 16 basal-like, triple-negative breast carcinomas (TNBC) were labeled for MYB by IHC and underwent MYB fluorescence in situ hybridization using a break-apart probe. Strong, diffuse nuclear MYB labeling was seen in 100% ACC compared with no cases of basal-like TNBC, CS, or MGA (P=0.0001). Any degree of nuclear MYB labeling was seen in 100% ACC compared with 54% of all other cases (P=0.007), with any labeling seen in 71% CS, 63% basal-like TNBC, and 0% MGA. MYB rearrangement was detected in 89% (8/9) of evaluable ACC compared with 4% (1/26) of all other evaluable cases (P=0.0001), with a rearrangement detected in 1 (7%; n=1/15) evaluable basal-like TNBC. Strong, diffuse nuclear labeling for MYB is more sensitive than MYB fluorescence in situ hybridization for breast ACC and can be used to support a diagnosis of ACC in a cribriform or basaloid lesion in the breast. However, weak and focal labeling should be interpreted with caution as it can be seen in other benign cribriform and malignant basaloid lesions.

  8. Specific in vivo labeling with GFP retroviruses, lentiviruses, and adenoviruses for imaging

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.; Kishimoto, Hiroyuki; Fujiwara, Toshiyoshi

    2008-02-01

    Fluorescent proteins have revolutionized the field of imaging. Our laboratory pioneered in vivo imaging with fluorescent proteins. Fluorescent proteins have enabled imaging at the subcellular level in mice. We review here the use of different vectors carrying fluorescent proteins to selectively label normal and tumor tissue in vivo. We show that a GFP retrovirus and telomerase-driven GFP adenovirus can selectively label tumors in mice. We also show that a GFP lentivirus can selectively label the liver in mice. The practical application of these results are discussed.

  9. WaterSense Labeled New Homes

    EPA Pesticide Factsheets

    Homes built to meet EPA's specification can earn the WaterSense label. EPA criteria include WaterSense labeled plumbing fixtures, efficient hot water delivery systems, water-smart landscape design, and other features.

  10. The Development of Ethnic/Racial Self-Labeling: Individual Differences in Context.

    PubMed

    Cheon, Yuen Mi; Bayless, Sara Douglass; Wang, Yijie; Yip, Tiffany

    2018-03-15

    Ethnic/racial self-labeling represents one's knowledge of and preference for ethnic/racial group membership, which is related to, but distinguishable from, ethnic/racial identity. This study examined the development of ethnic/racial self-labeling over time by including the concept of elaboration among a diverse sample of 297 adolescents (Time 1 mean age 14.75, 67% female, 37.4% Asian or Asian American, 10.4% Black, African American, or West Indian, 23.2% Hispanic or Latinx, 24.2% White, 4.4% other). Growth mixture modeling revealed two distinct patterns-low and high self-labeling elaboration from freshman to sophomore year of high school. Based on logistic regression analyses, the level of self-labeling elaboration was generally low among the adolescents who were foreign-born, reported low levels of ethnic/racial identity exploration, or attended highly diverse schools. We also found a person-by-context interaction where the impact of school diversity varied for foreign-born and native-born adolescents (b = 12.81, SE = 6.30, p < 0.05) and by the level of ethnic/racial identity commitment (b = 14.32, SE = 6.65, p < 0.05). These findings suggest varying patterns in ethnic/racial self-labeling elaboration among adolescents from diverse backgrounds and their linkage to individual and contextual factors.

  11. Everyone Feels Empowered: Understanding Feminist Self-Labeling

    ERIC Educational Resources Information Center

    Liss, Miriam; Erchull, Mindy J.

    2010-01-01

    Research findings raise questions about whether the feminist identity development model provides information about women's social identification as a feminist. Specifically, the penultimate stage, Synthesis, has been theorized to capture when feminist identity formation coalesces and women take on the feminist label. However, available data have…

  12. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  13. Synthesis of γ-Phosphate-Labeled and Doubly Labeled Adenosine Triphosphate Analogs.

    PubMed

    Hacker, Stephan M; Welter, Moritz; Marx, Andreas

    2015-03-09

    This unit describes the synthesis of γ-phosphate-labeled and doubly labeled adenosine triphosphate (ATP) analogs and their characterization using the phosphodiesterase I from Crotalus adamanteus (snake venom phosphodiesterase; SVPD). In the key step of the synthesis, ATP or an ATP analog, bearing a linker containing a trifluoroacetamide group attached to the nucleoside, are modified with an azide-containing linker at the terminal phosphate using an alkylation reaction. Subsequently, different labels are introduced to the linkers by transformation of one functional group to an amine and coupling to an N-hydroxysuccinimide ester. Specifically, the Staudinger reaction of the azide is employed as a straightforward means to obtain an amine in the presence of various labels. Furthermore, the fluorescence characteristics of a fluorogenic, doubly labeled ATP analog are investigated following enzymatic cleavage by SVPD. Copyright © 2015 John Wiley & Sons, Inc.

  14. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  15. New Method for Producing Significant Amounts of RNA Labeled at Specific Sites | Center for Cancer Research

    Cancer.gov

    Among biomacromolecules, RNA is the most versatile, and it plays indispensable roles in almost all aspects of biology. For example, in addition to serving as mRNAs coding for proteins, RNAs regulate gene expression, such as controlling where, when, and how efficiently a gene gets expressed, participate in RNA processing, encode the genetic information of some viruses, serve as scaffolds, and even possess enzymatic activity. To study these RNAs and their biological functions and to make use of those RNA activities for biomedical applications, researchers first need to make various types of RNA. For structural biologists incorporating modified or labeled nucleotides at specific sites in RNA molecules of interest is critical to gain structural insight into RNA functions. However, placing labeled or modified residue(s) in desired positions in a large RNA has not been possible until now.

  16. 16 CFR 300.14 - Substitute label requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Substitute label requirement. 300.14 Section 300.14 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.14 Substitute label...

  17. 16 CFR 300.3 - Required label information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Required label information. 300.3 Section 300.3 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.3 Required label...

  18. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.

    PubMed

    Stöhr, Katharina; Siegberg, Daniel; Ehrhard, Tanja; Lymperopoulos, Konstantinos; Öz, Simin; Schulmeister, Sonja; Pfeifer, Andrea C; Bachmann, Julie; Klingmüller, Ursula; Sourjik, Victor; Herten, Dirk-Peter

    2010-10-01

    Recent developments in fluorescence microscopy raise the demands for bright and photostable fluorescent tags for specific and background free labeling in living cells. Aside from fluorescent proteins and other tagging methods, labeling of SNAP-tagged proteins has become available thereby increasing the pool of potentially applicable fluorescent dyes for specific labeling of proteins. Here, we report on novel conjugates of benzylguanine (BG) which are quenched in their fluorescence and become highly fluorescent upon labeling of the SNAP-tag, the commercial variant of the human O(6)-alkylguanosyltransferase (hAGT). We identified four conjugates showing a strong increase, i.e., >10-fold, in fluorescence intensity upon labeling of SNAP-tag in vitro. Moreover, we screened a subset of nine BG-dye conjugates in living Escherichia coli and found them all suited for labeling of the SNAP-tag. Here, quenched BG-dye conjugates yield a higher specificity due to reduced contribution from excess conjugate to the fluorescence signal. We further extended the application of these conjugates by labeling a SNAP-tag fusion of the Tar chemoreceptor in live E. coli cells and the eukaryotic transcription factor STAT5b in NIH 3T3 mouse fibroblast cells. Aside from the labeling efficiency and specificity in living cells, we discuss possible mechanisms that might be responsible for the changes in fluorescence emission upon labeling of the SNAP-tag, as well as problems we encountered with nonspecific labeling with certain conjugates in eukaryotic cells.

  19. Bottlenose dolphins can use learned vocal labels to address each other

    PubMed Central

    King, Stephanie L.; Janik, Vincent M.

    2013-01-01

    In animal communication research, vocal labeling refers to incidents in which an animal consistently uses a specific acoustic signal when presented with a specific object or class of objects. Labeling with learned signals is a foundation of human language but is notably rare in nonhuman communication systems. In natural animal systems, labeling often occurs with signals that are not influenced by learning, such as in alarm and food calling. There is a suggestion, however, that some species use learned signals to label conspecific individuals in their own communication system when mimicking individually distinctive calls. Bottlenose dolphins (Tursiops truncatus) are a promising animal for exploration in this area because they are capable of vocal production learning and can learn to use arbitrary signals to report the presence or absence of objects. Bottlenose dolphins develop their own unique identity signal, the signature whistle. This whistle encodes individual identity independently of voice features. The copying of signature whistles may therefore allow animals to label or address one another. Here, we show that wild bottlenose dolphins respond to hearing a copy of their own signature whistle by calling back. Animals did not respond to whistles that were not their own signature. This study provides compelling evidence that a dolphin’s learned identity signal is used as a label when addressing conspecifics. Bottlenose dolphins therefore appear to be unique as nonhuman mammals to use learned signals as individually specific labels for different social companions in their own natural communication system. PMID:23878217

  20. GEO Label: User and Producer Perspectives on a Label for Geospatial Data

    NASA Astrophysics Data System (ADS)

    Lush, V.; Lumsden, J.; Masó, J.; Díaz, P.; McCallum, I.

    2012-04-01

    One of the aims of the Science and Technology Committee (STC) of the Group on Earth Observations (GEO) was to establish a GEO Label- a label to certify geospatial datasets and their quality. As proposed, the GEO Label will be used as a value indicator for geospatial data and datasets accessible through the Global Earth Observation System of Systems (GEOSS). It is suggested that the development of such a label will significantly improve user recognition of the quality of geospatial datasets and that its use will help promote trust in datasets that carry the established GEO Label. Furthermore, the GEO Label is seen as an incentive to data providers. At the moment GEOSS contains a large amount of data and is constantly growing. Taking this into account, a GEO Label could assist in searching by providing users with visual cues of dataset quality and possibly relevance; a GEO Label could effectively stand as a decision support mechanism for dataset selection. Currently our project - GeoViQua, - together with EGIDA and ID-03 is undertaking research to define and evaluate the concept of a GEO Label. The development and evaluation process will be carried out in three phases. In phase I we have conducted an online survey (GEO Label Questionnaire) to identify the initial user and producer views on a GEO Label or its potential role. In phase II we will conduct a further study presenting some GEO Label examples that will be based on Phase I. We will elicit feedback on these examples under controlled conditions. In phase III we will create physical prototypes which will be used in a human subject study. The most successful prototypes will then be put forward as potential GEO Label options. At the moment we are in phase I, where we developed an online questionnaire to collect the initial GEO Label requirements and to identify the role that a GEO Label should serve from the user and producer standpoint. The GEO Label Questionnaire consists of generic questions to identify whether

  1. Capillary electrophoretic separation-based approach to determine the labeling kinetics of oligodeoxynucleotides

    PubMed Central

    Kanavarioti, Anastassia; Greenman, Kevin L.; Hamalainen, Mark; Jain, Aakriti; Johns, Adam M.; Melville, Chris R.; Kemmish, Kent; Andregg, William

    2014-01-01

    With the recent advances in electron microscopy (EM), computation, and nanofabrication, the original idea of reading DNA sequence directly from an image can now be tested. One approach is to develop heavy atom labels that can provide the contrast required for EM imaging. While evaluating tentative labels for the respective nucleobases in synthetic oligodeoxynucleotides (oligos), we developed a streamlined capillary electrophoresis (CE) protocol to assess the label stability, reactivity, and selectivity. We report our protocol using osmium tetroxide 2,2′-bipyridine (Osbipy) as a thymidine (T) specific label. The observed rates show that the labeling process is kinetically independent of both the oligo length, and the base composition. The conditions, i.e. temperature, optimal Osbipy concentration, and molar ratio of reagents, to promote 100% conversion of the starting oligo to labeled product were established. Hence the optimized conditions developed with the oligos could be leveraged to allow osmylation of effectively all Ts in single-stranded (ss) DNA, while achieving minimal mislabeling. In addition, the approach and methods employed here may be adapted to the evaluation of other prospective contrasting agents/labels to facilitate next-generation DNA sequencing by EM. PMID:23147698

  2. From Position-Specific Labeling to Environmental Fluxomics: Elucidating Biogeochemical Cycles from the Metabolic Perspective (BG Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Apostel, Carolin; Dijkstra, Paul; Kuzyakov, Yakov

    2017-04-01

    Understanding soil and sedimentary organic matter (SOM) dynamics is one of the most important challenges in biogeoscience. To disentangle the fluxes and transformations of C in soils a detailed knowledge on the biochemical pathways and its controlling factors is required. Biogeochemists' view on the C transformation of microorganisms in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the microbial anabolism. Biochemists, however, thoroughly identified in the past decades the individual reactions of glycolysis, pentose-phosphate pathway and citric acid cycle underlying the microbial catabolism. At various points within that metabolic network the anabolic fluxes feeding biomass formation branch off. Recent studies on metabolic flux tracing by position-specific isotope labeling allowed tracing these C transformations in soils in situ, an approach which is qunatitatively complemented by metabolic flux modeling. This approach has reached new impact by the cutting-edge combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites which allows 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. Thus, the combination of position-specific labeling, compound-specific isotope incorporation in biomarkers and quantitative metabolic flux modelling provide the toolbox for quantitative soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in citric acid cycle. Thus

  3. Emerging applications of label-free optical biosensors

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco

    2017-01-01

    Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  4. Development of Fluorophore-Labeled Thailanstatin Antibody-Drug Conjugates for Cellular Trafficking Studies.

    PubMed

    Kulkarni, Chethana; Finley, James E; Bessire, Andrew J; Zhong, Xiaotian; Musto, Sylvia; Graziani, Edmund I

    2017-04-19

    As the antibody-drug conjugate (ADC) field grows increasingly important for cancer treatment, it is vital for researchers to establish a firm understanding of how ADCs function at the molecular level. To gain insight into ADC uptake, trafficking, and catabolism-processes that are critical to ADC efficacy and toxicity-imaging studies have been performed with fluorophore-labeled conjugates. However, such labels may alter the properties and behavior of the ADC under investigation. As an alternative approach, we present here the development of a "clickable" ADC bearing an azide-functionalized linker-payload (LP) poised for "click" reaction with alkyne fluorophores; the azide group represents a significantly smaller structural perturbation to the LP than most fluorophores. Notably, the clickable ADC shows excellent potency in target-expressing cells, whereas the fluorophore-labeled product ADC suffers from a significant loss of activity, underscoring the impact of the label itself on the payload. Live-cell confocal microscopy reveals robust uptake of the clickable ADC, which reacts selectively in situ with a derivatized fluorescent label. Time-course trafficking studies show greater and more rapid net internalization of the ADCs than the parent antibody. More generally, the application of chemical biology tools to the study of ADCs should improve our understanding of how ADCs are processed in biological systems.

  5. Synthesis and Labeling of RNA In Vitro

    PubMed Central

    Huang, Chao; Yu, Yi-Tao

    2013-01-01

    This unit discusses several methods for generating large amounts of uniformly labeled, end-labeled, and site-specifically labeled RNAs in vitro. The methods involve a number of experimental procedures, including RNA transcription, 5′ dephosphorylation and rephosphorylation, 3′ terminal nucleotide addition (via ligation), site-specific RNase H cleavage directed by 2′-O-methyl RNA-DNA chimeras, and 2-piece splint ligation. The applications of these RNA radiolabeling approaches are also discussed. PMID:23547015

  6. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carkeet, C; Dueker, S R; Lango, J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake.more » The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.« less

  7. Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine

    NASA Astrophysics Data System (ADS)

    Bröermann, Andreas; Steinhoff, Heinz-Jürgen; Schlücker, Sebastian

    2014-09-01

    The site-specific pH is an experimental probe for assessing models of structural folding and function of a protein as well as protein-protein and protein-ligand interactions. It can be determined by various techniques such as NMR, FT-IR, fluorescence and EPR spectroscopy. The latter require the use of external labels, i.e., employ pH-dependent dyes and spin labels, respectively. In this contribution, we outline an approach to a label-free and site-specific method for determining the local pH using deep ultraviolet resonance Raman (UVRR) spectroscopic fingerprints of the aromatic amino acids histidine and tyrosine in combination with a robust algorithm that determines the pH value using three UVRR reference spectra and without prior knowledge of the pKa.

  8. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with atmore » least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.« less

  9. LABEL-FREE DETECTION OF Pb2+ USING SPECIFIC DNAZYME AND UNMODIFIED Au NANOPARTICLE PROBE

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; Zhao, Zike; Liu, Yaoqian; Lv, Lulu; Qi, Bing; Lin, Haixia; He, Lei; Sun, Shengli

    A simple and sensitive Pb2+ sensor is developed based on label-free 17E DNAzyme and unmodified Au nanoparticles. On this basis, Pb2+ concentration can be judged according to the color variation of Au nanoparticles. The detection limit is 100nM and linear range is 100nM-16μM. It can serve as a measurement tool for Pb2+ rapid detection, which provides reference for the development of sensors in environmental monitoring and food safety.

  10. Specific uptake, dissociation, and degradation of /sup 125/I-labeled insulin in isolated turtle (Chrysemys dorbigni) thyroid glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, M.; da Silva, R.S.; Turyn, D.

    1985-11-01

    Thyroid glands from turtles (Chrysemys dorbigni) pretreated with potassium iodide were incubated with /sup 125/I-insulin in the presence or absence of unlabeled insulin, in order to study its specific uptake. At 24 degrees, the specific uptake reached a plateau at 180 min of incubation. The dose of bovine insulin that inhibited 50% of the /sup 125/I-insulin uptake was 2 micrograms/ml of incubation medium. Most of the radioactive material (71%) extracted from the gland, after 30 min incubation with /sup 125/I-insulin, eluted in the same position as labeled insulin on Sephadex G-50. Only 24% eluted in the salt position. After 240more » min incubation, increased amount of radioactivity appeared in the Na/sup 125/I position. When bovine insulin was added together with the labeled hormone, a substantial reduction of radioactivity was observed in the insulin and Na/sup 125/I elution positions. Dissociation studies were performed at 6 degrees in glands preincubated with /sup 125/I-insulin either at 24 or 6 degrees. The percentage of trichloroacetic acid (TCA)-soluble radioactive material in the dissociation medium increased with incubation time at both temperatures. However, the degradation activity was lower at 6 than at 24 degrees. The addition of bovine insulin to the incubation buffer containing /sup 125/I-insulin reduced the radioactive degradation products in the dissociated medium. Chloroquine or bacitracin inhibited the degradation activity. Incubation of thyroid glands with /sup 125/I-hGH or /sup 125/I-BSA showed values of uptake, dissociation, and degradation similar to those experiments in which an excess of bovine insulin was added together with the labeled hormone. Thus, by multiple criteria, such as specific uptake, dissociation, and degradation, the presence of insulin-binding sites in the turtle thyroid gland may be suggested.« less

  11. Label-free resistive-pulse cytometry.

    PubMed

    Chapman, M R; Sohn, L L

    2011-01-01

    Numerous methods have recently been developed to characterize cells for size, shape, and specific cell-surface markers. Most of these methods rely upon exogenous labeling of the cells and are better suited for large cell populations (>10,000). Here, we review a label-free method of characterizing and screening cells based on the Coulter-counter technique of particle sizing: an individual cell transiting a microchannel (or "pore") causes a downward pulse in the measured DC current across that "pore". Pulse magnitude corresponds to the cell size, pulse width to the transit time needed for the cell to pass through the pore, and pulse shape to how the cell traverses across the pore (i.e., rolling or tumbling). When the pore is functionalized with an antibody that is specific to a surface-epitope of interest, label-free screening of a specific marker is possible, as transient binding between the two results in longer time duration than when the pore is unfunctionalized or functionalized with a nonspecific antibody. While this method cannot currently compete with traditional technology in terms of throughput, there are a number of applications for which this technology is better suited than current commercial cytometry systems. Applications include the rapid and nondestructive analysis of small cell populations (<100), which is not possible with current technology, and a platform for providing true point-of-care clinical diagnostics, due to the simplicity of the device, low manufacturing costs, and ease of use. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Development of a highly specific enzyme immunoassay for oxytocin and its use in plasma samples.

    PubMed

    Haraya, Shiomi; Karasawa, Koji; Sano, Yoshihiro; Ozawa, Kimiko; Kato, Nobumasa; Arakawa, Hidetoshi

    2017-01-01

    Background The peptide hormone oxytocin acts in the central nervous system and plays an important role in various complex social behaviours. We report the production of a high affinity and specificity antibody for oxytocin and its use in a highly sensitive enzyme immunoassay. Biotin that was chemically bound to oxytocin derivative containing zero to six lysines as bridge was the labelled antigen. Seven labelled antigens were used to develop a highly sensitive enzyme immunoassay. Methods Antioxytocin antiserum was obtained by immunization of oxytocin-bovine thyrogloblin conjugate to rabbit. Oxytocin sample was added to the second antibody-coated microtitre plate and allowed to react overnight at 4℃, then biotinylated oxytocin was added 1 h at 4℃, and horseradish peroxidase-labelled avidin was added and incubated for 1 h at room temperature. The plate was then washed. Horseradish peroxidase activity was measured by a colorimetric method using o-phenylenediamine (490 nm). Results The sensitivity of the enzyme immunoassay improved as the number of lysine residues increased; consequently, biotinylated oxytocin bridged with five lysines was used. A standard curve for oxytocin ranged from 1.0 to 1000 pg/assay. The detection limit of the assay was 2.36 pg, and the reproducibility was 3.6% as CV% ( n = 6). Cross-reactivity with vasopressin and vasotocin was less than 0.01%. Conclusion The sensitivity of the enzyme immunoassay could be improved by increasing the number of lysine residues on the biotin-labelled antigen. The proposed method is sensitive and more specific than conventional immunoassays for oxytocin and can be used to determine plasma oxytocin concentrations.

  13. Examination of the evidence for off-label use of gabapentin.

    PubMed

    Mack, Alicia

    2003-01-01

    (1) Describe the relevance of off-label use of gabapentin to managed care pharmacy; (2) summarize recent FDA warnings and media reports related to off-label gabapentin use; (3) review medical information pertaining to the off-label use of gabapentin; (4) outline alternatives to off-label use of gabapentin in an evidence-based fashion, where literature exists to support such alternatives; and (5) encourage key clinicians and decision makers in managed care pharmacy to develop and support programs that restrict the use of gabapentin to specific evidence-based situations. Gabapentin is approved by the U.S. Food and Drug Administration (FDA) for adjunctive therapy in treatment of partial seizures and postherpetic neuralgia. Various off-label (unapproved) uses have been reported, and the use of gabapentin for off-label purposes has reportedly exceeded use for FDAapproved indications. Pharmaceutical marketing practices and physician dissatisfaction with currently available pharmacological treatment options may be key factors that contribute to this prescribing trend. Recently, the media has focused on these issues, noting that many cases of reported safety and effectiveness of gabapentin for off-label use may have been fabricated. A thorough review of the medical and pharmacy literature related to off-label use of gabapentin was performed, and a summary of the literature for the following conditions is presented: bipolar disorder, peripheral neuropathy, diabetic neuropathy, complex regional pain syndrome, attention deficit disorder, restless legs syndrome, trigeminal neuralgia, periodic limb movement disorder of sleep, migraine headaches, and alcohol withdrawal syndrome. A common theme in the medical literature for gabapentin is the prevalence of open-label studies and a lack of randomized controlled clinical trials for all but a small number of indications. In the majority of circumstances where it has reported potential for.off-label. use, gabapentin is not the optimal

  14. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay.

    PubMed

    Dolati, Somayeh; Ramezani, Mohammad; Nabavinia, Maryam Sadat; Soheili, Vahid; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2018-05-15

    Specific ssDNA aptamers for the antibiotic enrofloxacin (ENR) were isolated from an enriched nucleotide library by SELEX (Systematic Evolution of Ligands by EXponential enrichment) method with high binding affinity. After seven rounds, five aptamers were selected and identified. Apt58 with highest affinity and sensitivity (K d  = 14.19 nM) was employed to develop a label-free fluorescent biosensing approach based on aptamer, graphene oxide (GO) and native fluorescence of ENR for determination of ENR residue in raw milk samples. Under optimized experimental conditions, the linear range was from 5 nM to 250 nM and LOD was calculated to be 3.7 nM, and the recovery rate was between 94.1% and 108.5%. The integration of aptamer and GO in this bioassay provides a promising way for rapid, sensitive and cost-effective detection of ENR in real samples like raw milk. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Pesticide Label Review Training

    EPA Pesticide Factsheets

    This training will help ensure that reviewers evaluate labels according to four core principles. It also will help pesticide registrants developing labels understand what EPA expects of pesticide labels, and what the Agency generally finds acceptable.

  16. Novel Fitc-Labeled Igy Antibody: Fluorescence Imaging Toxoplasma Gondii In Vitro.

    PubMed

    Sert, Mehtap; Cakir Koc, Rabia; Budama Kilinc, Yasemin

    2017-04-12

    Toxoplasmosis is caused by T. gondii and can create serious health problems in humans and also worldwide economic harm. Because of the clinical and veterinary importance of toxoplasmosis, its timely and accurate diagnosis has a major impact on disease-fighting strategies. T. gondii surface antigen 1 (SAG1), an immunodominant-specific antigen, is often used as a diagnostic tool. Therefore, the aim of this study was the optimization of novel fluorescein isothiocyanate (FITC) labeling of the SAG1-specific IgY antibody to show the potential for immunofluorescence imaging of T. gondii in vitro. The specificity of IgY antibodies was controlled by an enzyme-linked immunosorbent assay (ELISA), and the concentration of the IgY antibody was detected using a spectrophotometer. The optimum incubation time and FITC concentration were determined with a fluorescence spectrometer. The obtained FITC-labeled IgY was used for marking T. gondii tachyzoites, which were cultured in vitro and viewed using light microscopy. The interaction of the fluorescence-labeled antibody and the T. gondii tachyzoites was examined with a fluorescence microscope. In this study, for the first time, a FITC-labeled anti-SAG1 IgY antibody was developed according to ELISA, fluorescence spectrometer, and fluorescence imaging of cell culture. In the future, the obtained FITC-labeled T. gondii tachyzoites' specific IgY antibodies may be used as diagnostic tools for the detection of T. gondii infections in different samples.

  17. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids.

    PubMed

    Knief, Claudia; Altendorf, Karlheinz; Lipski, André

    2003-11-01

    A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.

  18. Validation of laboratory-scale recycling test method of paper PSA label products

    Treesearch

    Carl Houtman; Karen Scallon; Richard Oldack

    2008-01-01

    Starting with test methods and a specification developed by the U.S. Postal Service (USPS) Environmentally Benign Pressure Sensitive Adhesive Postage Stamp Program, a laboratory-scale test method and a specification were developed and validated for pressure-sensitive adhesive labels, By comparing results from this new test method and pilot-scale tests, which have been...

  19. Disambiguation of Novel Labels and Referential Facts: A Developmental Perspective

    ERIC Educational Resources Information Center

    Kalashnikova, Marina; Mattock, Karen; Monaghan, Padraic

    2014-01-01

    Disambiguation refers to children's tendency to assign novel labels to unfamiliar rather than familiar referents. It is employed as a word-learning strategy, but it remains unknown whether it is a domain-specific phenomenon or a manifestation of more general pragmatic competence. To assess the domain-specificity and development of disambiguation,…

  20. Measuring and modeling C flux rates through the central metabolic pathways in microbial communities using position-specific 13C-labeled tracers

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.

    2012-12-01

    The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.

  1. Classroom Labels That Young Children Can Use: Enhancing Biliteracy Development in a Dual Language Classroom

    ERIC Educational Resources Information Center

    Salinas-Gonzalez, Irasema; Arreguin-Anderson, Maria G.; Alanís, Iliana

    2015-01-01

    This article focuses on biliteracy development of English and Spanish through the practical strategy of systematically labeling the classroom within the context of daily classroom activities and providing children with various opportunities to use the words throughout the day. Using the foundational work related to classroom labels from Pinnell…

  2. Chemical biology-based approaches on fluorescent labeling of proteins in live cells.

    PubMed

    Jung, Deokho; Min, Kyoungmi; Jung, Juyeon; Jang, Wonhee; Kwon, Youngeun

    2013-05-01

    Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive

  3. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  4. Developing consumer-centered, nonprescription drug labeling a study in acetaminophen.

    PubMed

    King, Jennifer P; Davis, Terry C; Bailey, Stacy Cooper; Jacobson, Kara L; Hedlund, Laurie A; Di Francesco, Lorenzo; Parker, Ruth M; Wolf, Michael S

    2011-06-01

    In the U.S., acetaminophen overdose has surpassed viral hepatitis as the leading cause of acute liver failure, and misuse contributes to more than 30,000 hospitalizations annually. Half to two thirds of acetaminophen overdoses are unintentional, suggesting the root cause is likely poor understanding of medication labeling or failure to recognize the consequences of exceeding the recommended maximum daily dosage. Elicit subject feedback about active ingredient and dosing information on over-the-counter (OTC) acetaminophen and elicit feedback on proposed plain-language text and icons. Six focus groups, preceded by individual interviews, were conducted in April 2010 among 45 adults in two cities from two clinics and an adult basic education center. The individual interviews evaluated knowledge of OTC pain relievers, attention to product label information and literacy level while the group discussion elicited preference for label messages and icons. Analyses were conducted from April to June 2010. Forty-four percent read at or below the 6th-grade level. Individual interviews revealed that <50% of participants routinely examine product label information. Only 31% know acetaminophen is in Tylenol®. The groups achieved consensus on a preferred icon for acetaminophen, desired explicit statement of potential liver damage in the warning against simultaneous use of acetaminophen products, and indicated preference for an icon and wording for maximum dose. With the high prevalence of OTC use, a consumer-centered approach to developing icons and messages to promote awareness and safe use of acetaminophen could benefit consumers. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. 16 CFR 300.30 - Deceptive labeling in general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Deceptive labeling in general. 300.30 Section 300.30 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.30 Deceptive labeling...

  6. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Specific and nonspecific immunoassays to detect HAMA after administration of indium-111-labeled OV-TL 3 F(ab')2 monoclonal antibody to patients with ovarian cancer.

    PubMed

    Massuger, L F; Thomas, C M; Segers, M F; Corstens, F H; Verheijen, R H; Kenemans, P; Poels, L G

    1992-11-01

    The development of human anti-mouse antibodies (HAMA) may cause problems in radioimmunotargeting studies, but may also improve survival of patients. To identify the presence of HAMA in blood samples from patients intravenously injected with 1 mg of 111In-labeled OV-TL3-F(ab')2, we developed three specific OV-TL 3-based HAMA assays and tested these along with two commercially available nonspecific HAMA assays (Sorin and Immunomedics). The specific assays were positive for HAMA with 10 postinjection serum samples from 7 patients. Eight of the 10 samples were also HAMA positive with one or both nonspecific HAMA assays. Conflicting results were observed with half the number of samples. The two nonspecific assays also reacted positively with another 11 serum samples from 5 patients including their preinjection samples. Despite some contradictory results, the nonspecific HAMA assays identify both pre-existent and Mab-induced HAMA, whereas the specific OV-TL3-based HAMA assays identify specific immune-responses occurring after the OV-TL 3 injection.

  8. 21 CFR 101.36 - Nutrition labeling of dietary supplements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Nutrition labeling of dietary supplements. 101.36... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.36 Nutrition labeling of dietary supplements. (a) The label of a dietary supplement that is...

  9. 21 CFR 101.36 - Nutrition labeling of dietary supplements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Nutrition labeling of dietary supplements. 101.36... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.36 Nutrition labeling of dietary supplements. (a) The label of a dietary supplement that is...

  10. 21 CFR 101.36 - Nutrition labeling of dietary supplements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Nutrition labeling of dietary supplements. 101.36... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.36 Nutrition labeling of dietary supplements. (a) The label of a dietary supplement that is...

  11. 21 CFR 101.36 - Nutrition labeling of dietary supplements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Nutrition labeling of dietary supplements. 101.36... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.36 Nutrition labeling of dietary supplements. (a) The label of a dietary supplement that is...

  12. 21 CFR 101.36 - Nutrition labeling of dietary supplements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Nutrition labeling of dietary supplements. 101.36... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.36 Nutrition labeling of dietary supplements. (a) The label of a dietary supplement that is...

  13. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    PubMed

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  14. Off-label use of vaccines.

    PubMed

    Neels, Pieter; Southern, James; Abramson, Jon; Duclos, Philippe; Hombach, Joachim; Marti, Melanie; Fitzgerald-Husek, Alanna; Fournier-Caruana, Jacqueline; Hanquet, Germaine

    2017-04-25

    This article reviews the off-label recommendations and use of vaccines, and focuses on the differences between the labelled instructions on how to use the vaccine as approved by the regulatory authorities (or "label" 1 ), and the recommendations for use issued by public health advisory bodies at national and international levels. Differences between public health recommendations and the product label regarding the vaccine use can lead to confusion at the level of vaccinators and vaccinees and possibly result in lower compliance with national vaccination schedules. In particular, in many countries, the label may contain regulatory restrictions and warnings against vaccination of specific population groups (e.g. pregnant women) due to a lack of evidence of safety from controlled trials at the time of initial licensure of the vaccine, while public health authorities may recommend the same vaccine for that group, based on additional post-marketing data and benefit risk analyses. We provide an overview of the different responsibilities between regulatory authorities and public health advisory bodies, and the rationale for off-label use 2 of vaccines, the challenges involved based on the impact of off-label use in real-life. We propose to reduce off-label use of vaccines by requiring the manufacturer to regularly adapt the label as much as possible to the public health needs as supported by new evidence. This would require manufacturers to collect and report post-marketing data, communicate them to all stakeholders and regulators to extrapolate existing evidence (when acceptable) to other groups or to other brands of a vaccine (class effect 3 ). Regulatory authorities have a key role to play by requesting additional post-marketing data, e.g. in specific target groups. When public health recommendations for vaccine use that are outside labelled indications are considered necessary, good communication between regulatory bodies, public health authorities, companies and

  15. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    PubMed

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  16. 16 CFR 300.6 - Labels to be avoided.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Labels to be avoided. 300.6 Section 300.6 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.6 Labels to be avoided. Stamps, tags...

  17. High-coverage quantitative proteomics using amine-specific isotopic labeling.

    PubMed

    Melanson, Jeremy E; Avery, Steven L; Pinto, Devanand M

    2006-08-01

    Peptide dimethylation with isotopically coded formaldehydes was evaluated as a potential alternative to techniques such as the iTRAQ method for comparative proteomics. The isotopic labeling strategy and custom-designed protein quantitation software were tested using protein standards and then applied to measure proteins levels associated with Alzheimer's disease (AD). The method provided high accuracy (10% error), precision (14% RSD) and coverage (70%) when applied to the analysis of a standard solution of BSA by LC-MS/MS. The technique was then applied to measure protein abundance levels in brain tissue afflicted with AD relative to normal brain tissue. 2-D LC-MS analysis identified 548 unique proteins (p<0.05). Of these, 349 were quantified with two or more peptides that met the statistical criteria used in this study. Several classes of proteins exhibited significant changes in abundance. For example, elevated levels of antioxidant proteins and decreased levels of mitochondrial electron transport proteins were observed. The results demonstrate the utility of the labeling method for high-throughput quantitative analysis.

  18. Technetium-99m-labeled rituximab for use as a specific tracer of sentinel lymph node biopsy: a translational research study.

    PubMed

    Wang, Xuejuan; Yang, Zhi; Lin, Baohe; Zhang, Yan; Zhai, Shizhen; Zhao, Qichao; Xie, Qing; Liu, Fei; Han, Xuedi; Li, Jinfeng; Ouyang, Tao

    2016-06-21

    We aimed to develop and translate a CD20-antigen-targeted radiopharmaceutical, Technetium-99 m-labeled (99mTc) rituximab, for sentinel lymph node (SLN) detection. 99mTc-rituximab was synthesized and tested for stability in human serum. The binding affinity to CD20 was evaluated in Raji cells by flow cytometric analysis. Biodistribution and sentinel node mapping were carried out in bal b/c mice. Eighty-five patients with breast cancer participated in this study. Dynamic sentinel lymphoscintigraphy was first assessed in 12 patients before planar lymphoscintigraphy was assessed in a larger cohort. All patients underwent sentinel lymph node biopsy (SLNB), followed by axillary lymph node dissection. The cell-binding study showed that 99mTc-rituximab possessed compatible affinity to human CD20. In the mechanism study, 99mTc-labeled anti-mouse CD20 monoclonal antibodies could bind to mouse CD20 and accumulate in the SLN with 2.62±1.25 % of the percentage of injected activity, which could be blocked by excessive unlabeled antibody. Low uptake of non-sentinel nodes and fast clearance from the injection site were observed in the mice. Sentinel nodes were identified in 82 of 85 breast cancer patients (96.5%) by lymphoscintigraphy and SLNB. The sensitivity, specificity, and accuracy were 96.8% (30/31), 100% (51/51), and 98.8% (81/82), respectively. 99mTc-rituximab, specifically binding to CD20, met most of the requirements of an ideal sentinel mapping agent for use in clinical settings.

  19. 40 CFR 86.1606 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Control Information Update; (2) Full corporate name and trademark of the vehicle manufactuer; (3... tuneup specifications (if changed from the original label specifications) at the applicable altitude. ...

  20. 40 CFR 86.1606 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Control Information Update; (2) Full corporate name and trademark of the vehicle manufactuer; (3... tuneup specifications (if changed from the original label specifications) at the applicable altitude. ...

  1. 40 CFR 86.1606 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission Control Information Update; (2) Full corporate name and trademark of the vehicle manufactuer; (3... tuneup specifications (if changed from the original label specifications) at the applicable altitude. ...

  2. 40 CFR 86.1606 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Control Information Update; (2) Full corporate name and trademark of the vehicle manufactuer; (3... tuneup specifications (if changed from the original label specifications) at the applicable altitude. ...

  3. 40 CFR 86.1606 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Control Information Update; (2) Full corporate name and trademark of the vehicle manufactuer; (3... tuneup specifications (if changed from the original label specifications) at the applicable altitude. ...

  4. 16 CFR 309.17 - Labels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contents of the label that you wish to use, and the reasons that you want to use it. (3) Electric vehicle... electric vehicle fuel dispensing systems. All type should be set in upper case (all caps) “Helvetica Black... ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Label Specifications...

  5. 16 CFR 309.17 - Labels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contents of the label that you wish to use, and the reasons that you want to use it. (3) Electric vehicle... electric vehicle fuel dispensing systems. All type should be set in upper case (all caps) “Helvetica Black... ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Label Specifications...

  6. 16 CFR 309.17 - Labels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contents of the label that you wish to use, and the reasons that you want to use it. (3) Electric vehicle... electric vehicle fuel dispensing systems. All type should be set in upper case (all caps) “Helvetica Black... ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Label Specifications...

  7. Superposition and alignment of labeled point clouds.

    PubMed

    Fober, Thomas; Glinca, Serghei; Klebe, Gerhard; Hüllermeier, Eyke

    2011-01-01

    Geometric objects are often represented approximately in terms of a finite set of points in three-dimensional euclidean space. In this paper, we extend this representation to what we call labeled point clouds. A labeled point cloud is a finite set of points, where each point is not only associated with a position in three-dimensional space, but also with a discrete class label that represents a specific property. This type of model is especially suitable for modeling biomolecules such as proteins and protein binding sites, where a label may represent an atom type or a physico-chemical property. Proceeding from this representation, we address the question of how to compare two labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover, we consider the problem of establishing an alignment of the structures in the sense of a one-to-one correspondence between their basic constituents. From a biological point of view, alignments of this kind are of great interest, since mutually corresponding molecular constituents offer important information about evolution and heredity, and can also serve as a means to explain a degree of similarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments of labeled point clouds. To this end, we proceed from an optimal superposition of the corresponding point clouds and construct an alignment which is as much as possible in agreement with the neighborhood structure established by this superposition. We apply our methods to the structural analysis of protein binding sites.

  8. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    PubMed Central

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  9. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments.

    PubMed

    Eng, Lars; Nygren-Babol, Linnéa; Hanning, Anders

    2016-10-01

    Surface plasmon resonance (SPR) is a well-established method for studying interactions between small molecules and biomolecules. In particular, SPR is being increasingly applied within fragment-based drug discovery; however, within this application area, the limited sensitivity of SPR may constitute a problem. This problem can be circumvented by the use of label-enhanced SPR that shows a 100-fold higher sensitivity as compared with conventional SPR. Truly label-free interaction data for small molecules can be obtained by applying label-enhanced SPR in a surface competition assay format. The enhanced sensitivity is accompanied by an increased specificity and inertness toward disturbances (e.g., bulk refractive index disturbances). Label-enhanced SPR can be used for fragment screening in a competitive assay format; the competitive format has the added advantage of confirming the specificity of the molecular interaction. In addition, label-enhanced SPR extends the accessible kinetic regime of SPR to the analysis of very fast fragment binding kinetics. In this article, we demonstrate the working principles and benchmark the performance of label-enhanced SPR in a model system-the interaction between carbonic anhydrase II and a number of small-molecule sulfonamide-based inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Attitude and Behavior Factors Associated with Front-of-Package Label Use with Label Users Making Accurate Product Nutrition Assessments.

    PubMed

    Roseman, Mary G; Joung, Hyun-Woo; Littlejohn, Emily I

    2018-05-01

    Front-of-package (FOP) labels are increasing in popularity on retail products. Reductive FOP labels provide nutrient-specific information, whereas evaluative FOP labels summarize nutrient information through icons. Better understanding of consumer behavior regarding FOP labels is beneficial to increasing consumer use of nutrition labeling when making grocery purchasing decisions. We aimed to determine FOP label format effectiveness in aiding consumers at assessing nutrient density of food products. In addition, we sought to determine relationships between FOP label use and attitude toward healthy eating, diet self-assessment, self-reported health and nutrition knowledge, and label and shopping behaviors. A between-subjects experimental design was employed. Participants were randomly assigned to one of four label conditions: Facts Up Front, Facts Up Front Extended, a binary symbol, and no-label control. One hundred sixty-one US primary grocery shoppers, aged 18 to 69 years. Participants were randomly invited to the online study. Participants in one of four label condition groups viewed three product categories (cereal, dairy, and snacks) with corresponding questions. Adults' nutrition assessment of food products based on different FOP label formats, along with label use and attitude toward healthy eating, diet self-assessment, self-reported health and nutrition knowledge, and label and shopping behaviors. Data analyses included descriptive statistics, χ 2 tests, and logistical regression. Significant outcomes were set to α=.05. Participants selected the more nutrient-dense product in the snack food category when it contained an FOP label. Subjective health and nutrition knowledge and frequency of selecting food for healthful reasons were associated with FOP label use (P<0.01 and P<0.05, respectively). Both Facts Up Front (reductive) and binary (evaluative) FOP labels appear effective for nutrition assessment of snack products compared with no label. Specific

  11. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei.

    PubMed

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes) or TINA-DNA (Twisted Intercalating Nucleic Acids). Gene targets can be specifically labelled with at least about 20 probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. Copyright © 2016. Published by Elsevier Inc.

  12. An Overview of Advanced SILAC-Labeling Strategies for Quantitative Proteomics.

    PubMed

    Terzi, F; Cambridge, S

    2017-01-01

    Comparative, quantitative mass spectrometry of proteins provides great insight to protein abundance and function, but some molecular characteristics related to protein dynamics are not so easily obtained. Because the metabolic incorporation of stable amino acid isotopes allows the extraction of distinct temporal and spatial aspects of protein dynamics, the SILAC methodology is uniquely suited to be adapted for advanced labeling strategies. New SILAC strategies have emerged that allow deeper foraging into the complexity of cellular proteomes. Here, we review a few advanced SILAC-labeling strategies that have been published during last the years. Among them, different subsaturating-labeling as well as dual-labeling schemes are most prominent for a range of analyses including those of neuronal proteomes, secretion, or cell-cell-induced stimulations. These recent developments suggest that much more information can be gained from proteomic analyses if the labeling strategies are specifically tailored toward the experimental design. © 2017 Elsevier Inc. All rights reserved.

  13. Hierarchy, determinism, and specificity in theories of development and evolution.

    PubMed

    Deichmann, Ute

    2017-10-16

    The concepts of hierarchical organization, genetic determinism and biological specificity (for example of species, biologically relevant macromolecules, or genes) have played a crucial role in biology as a modern experimental science since its beginnings in the nineteenth century. The idea of genetic information (specificity) and genetic determination was at the basis of molecular biology that developed in the 1940s with macromolecules, viruses and prokaryotes as major objects of research often labelled "reductionist". However, the concepts have been marginalized or rejected in some of the research that in the late 1960s began to focus additionally on the molecularization of complex biological structures and functions using systems approaches. This paper challenges the view that 'molecular reductionism' has been successfully replaced by holism and a focus on the collective behaviour of cellular entities. It argues instead that there are more fertile replacements for molecular 'reductionism', in which genomics, embryology, biochemistry, and computer science intertwine and result in research that is as exact and causally predictive as earlier molecular biology.

  14. Category Label Effects on Chinese Children's Inductive Inferences: Modulation by Perceptual Detail and Category Specificity

    ERIC Educational Resources Information Center

    Long, Changquan; Lu, Xiaoying; Zhang, Li; Li, Hong; Deak, Gedeon O.

    2012-01-01

    Inductive generalization of novel properties to same-category or similar-looking objects was studied in Chinese preschool children. The effects of category labels on generalizations were investigated by comparing basic-level labels, superordinate-level labels, and a control phrase applied to three kinds of stimulus materials: colored photographs…

  15. Mindtagger: A Demonstration of Data Labeling in Knowledge Base Construction.

    PubMed

    Shin, Jaeho; Ré, Christopher; Cafarella, Michael

    2015-08-01

    End-to-end knowledge base construction systems using statistical inference are enabling more people to automatically extract high-quality domain-specific information from unstructured data. As a result of deploying DeepDive framework across several domains, we found new challenges in debugging and improving such end-to-end systems to construct high-quality knowledge bases. DeepDive has an iterative development cycle in which users improve the data. To help our users, we needed to develop principles for analyzing the system's error as well as provide tooling for inspecting and labeling various data products of the system. We created guidelines for error analysis modeled after our colleagues' best practices, in which data labeling plays a critical role in every step of the analysis. To enable more productive and systematic data labeling, we created Mindtagger, a versatile tool that can be configured to support a wide range of tasks. In this demonstration, we show in detail what data labeling tasks are modeled in our error analysis guidelines and how each of them is performed using Mindtagger.

  16. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    PubMed Central

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  17. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.

  18. A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.

    PubMed

    Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen

    2014-03-26

    Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.

  19. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins.

    PubMed

    Tang, Jin-Bao; Tang, Ying; Yang, Hong-Ming

    2015-02-15

    Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag-BirA system. Through the high streptavidin (SA)-biotin interaction, the divalent biotinylated APs were clustered in the SA-biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ-AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable for the ZZ protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Robust multi-atlas label propagation by deep sparse representation

    PubMed Central

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2016-01-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared

  1. Robust multi-atlas label propagation by deep sparse representation.

    PubMed

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2017-03-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures

  2. Small-molecule-based protein-labeling technology in live cell studies: probe-design concepts and applications.

    PubMed

    Mizukami, Shin; Hori, Yuichiro; Kikuchi, Kazuya

    2014-01-21

    The use of genetic engineering techniques allows researchers to combine functional proteins with fluorescent proteins (FPs) to produce fusion proteins that can be visualized in living cells, tissues, and animals. However, several limitations of FPs, such as slow maturation kinetics or issues with photostability under laser illumination, have led researchers to examine new technologies beyond FP-based imaging. Recently, new protein-labeling technologies using protein/peptide tags and tag-specific probes have attracted increasing attention. Although several protein-labeling systems are com mercially available, researchers continue to work on addressing some of the limitations of this technology. To reduce the level of background fluorescence from unlabeled probes, researchers have pursued fluorogenic labeling, in which the labeling probes do not fluoresce until the target proteins are labeled. In this Account, we review two different fluorogenic protein-labeling systems that we have recently developed. First we give a brief history of protein labeling technologies and describe the challenges involved in protein labeling. In the second section, we discuss a fluorogenic labeling system based on a noncatalytic mutant of β-lactamase, which forms specific covalent bonds with β-lactam antibiotics such as ampicillin or cephalosporin. Based on fluorescence (or Förster) resonance energy transfer and other physicochemical principles, we have developed several types of fluorogenic labeling probes. To extend the utility of this labeling system, we took advantage of a hydrophobic β-lactam prodrug structure to achieve intracellular protein labeling. We also describe a small protein tag, photoactive yellow protein (PYP)-tag, and its probes. By utilizing a quenching mechanism based on close intramolecular contact, we incorporated a turn-on switch into the probes for fluorogenic protein labeling. One of these probes allowed us to rapidly image a protein while avoiding washout. In

  3. Prospects of medium specific activity (177) Lu in targeted therapy of prostate cancer using (177) Lu-labeled PSMA inhibitor.

    PubMed

    Chakraborty, Sudipta; Chakravarty, Rubel; Shetty, Priyalata; Vimalnath, K V; Sen, Ishita B; Dash, Ashutosh

    2016-07-01

    Targeted radionuclide therapy using (177) Lu-labeled peptidomimetic inhibitor of prostate specific membrane antigen (PSMA) viz. PSMA-617 is emerging as one the most effective strategies for management of metastatic prostate cancer, which is one of the leading causes of cancer related death. The aim of the present study is to develop a robust and easily adaptable protocol for formulation of therapeutic dose of (177) Lu-PSMA-617 at hospital radiopharmacy using moderate specific activity (177) Lu available at an affordable cost. Extensive radiochemical studies were performed to optimize the required [PSMA-617] / [Lu] ratio and other parameters to formulate 7.4 GBq dose of (177) Lu-PSMA-617. Based on these, 7.4 GBq therapeutic dose of (177) Lu-PSMA-617 was formulated by incubating 160 µg of PSMA-617 with indigenously produced (177) LuCl3 (555 GBq/µg specific activity of (177) Lu) at 90 °C for 30 min. The radiochemical purity of the formulation was 98.3 ± 0.6% (n = 7) which was retained to the extent of >95% after 7 d in normal saline at room temperature and >96% after 2 d in human serum at 37 °C. Preliminary clinical studies showed specific targeting of the agent in the lesion sites and similar physiological distribution as in diagnostic (68) Ga-PSMA-11 PET scans performed earlier. The developed optimized protocol for formulating therapeutic dose of (177) Lu-PSMA-617 could be useful for large number of nuclear medicine therapy clinics across the world having access to moderate specific activity (177) Lu at an affordable cost. Copyright © 2016 John Wiley & Sons, Ltd.

  4. 46 CFR 160.037-5 - Labeling and marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Orange Smoke Distress Signals § 160.037-5 Labeling and marking. (a) Labeling. Each hand orange smoke distress signal shall bear a label securely affixed thereto...: (Company brand or style designation) Hand Orange Smoke Distress Signal For daytime use—50 seconds burning...

  5. 46 CFR 160.037-5 - Labeling and marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Orange Smoke Distress Signals § 160.037-5 Labeling and marking. (a) Labeling. Each hand orange smoke distress signal shall bear a label securely affixed thereto...: (Company brand or style designation) Hand Orange Smoke Distress Signal For daytime use—50 seconds burning...

  6. 46 CFR 160.037-5 - Labeling and marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Orange Smoke Distress Signals § 160.037-5 Labeling and marking. (a) Labeling. Each hand orange smoke distress signal shall bear a label securely affixed thereto...: (Company brand or style designation) Hand Orange Smoke Distress Signal For daytime use—50 seconds burning...

  7. 46 CFR 160.037-5 - Labeling and marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand Orange Smoke Distress Signals § 160.037-5 Labeling and marking. (a) Labeling. Each hand orange smoke distress signal shall bear a label securely affixed thereto...: (Company brand or style designation) Hand Orange Smoke Distress Signal For daytime use—50 seconds burning...

  8. 16 CFR 300.11 - Improper methods of labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Improper methods of labeling. 300.11 Section 300.11 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.11 Improper methods of...

  9. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  10. Category labels versus feature labels: category labels polarize inferential predictions.

    PubMed

    Yamauchi, Takashi; Yu, Na-Yung

    2008-04-01

    What makes category labels different from feature labels in predictive inference? This study suggests that category labels tend to make inductive reasoning polarized and homogeneous. In two experiments, participants were shown two schematic pictures of insects side by side and predicted the value of a hidden feature of one insect on the basis of the other insect. Arbitrary verbal labels were shown above the two pictures, and the meanings of the labels were manipulated in the instructions. In one condition, the labels represented the category membership of the insects, and in the other conditions, the same labels represented attributes of the insects. When the labels represented category membership, participants' responses became substantially polarized and homogeneous, indicating that the mere reference to category membership can modify reasoning processes.

  11. Development of a label-free immunosensor system for detecting plasma cortisol levels in fish.

    PubMed

    Wu, Haiyun; Ohnuki, Hitoshi; Hibi, Kyoko; Ren, Huifeng; Endo, Hideaki

    2016-02-01

    Fishes display a wide variation in their physiological responses to stress, which is clearly evident in the plasma corticosteroid changes, chiefly cortisol levels in fish. In the present study, we describe a novel label-free immunosensor for detecting plasma cortisol levels. The method is based on immunologic reactions and amperometric measurement using cyclic voltammetry. For the immobilization of the antibody on the surface of sensing electrode, we used a self-assembled monolayer of thiol-containing compounds. Using this electrode, we detect the CV signal change caused by the generation of antigen-antibody complex. The immunosensor showed a response to cortisol levels, and the anodic peak value linearly decreased with a correlation coefficient of 0.990 in diluted plasma. The specificity of the label-free immunosensor system was investigated using other steroid hormones, such as 17α, 20β-dihydroxy-4-pregnen-3-one, progesterone, estriol, estradiol, and testosterone. The specific detection of cortisol was suggested by a minimal change from -0.32 to 0.51 μA in the anodic peak value of the other steroid hormones. The sensor system was used to determine the plasma cortisol levels in Nile tilapia (Oreochromis niloticus), and the results were compared with those of the same samples determined using the conventional method (ELISA). A good correlation was obtained between values determined using both methods (correlation coefficient 0.993). These findings suggest that the proposed label-free immunosensor could be useful for rapid and convenient analysis of cortisol levels in fish plasma samples.

  12. Educational Labeling System for Atmospheres (ELSA): Python Tool Development for Archiving Under the PDS4 Standard

    NASA Astrophysics Data System (ADS)

    Neakrase, Lynn; Hornung, Danae; Sweebe, Kathrine; Huber, Lyle; Chanover, Nancy J.; Stevenson, Zena; Berdis, Jodi; Johnson, Joni J.; Beebe, Reta F.

    2017-10-01

    The Research and Analysis programs within NASA’s Planetary Science Division now require archiving of resultant data with the Planetary Data System (PDS) or an equivalent archive. The PDS Atmospheres Node is developing an online environment for assisting data providers with this task. The Educational Labeling System for Atmospheres (ELSA) is being designed with Django/Python coding to provide an easier environment for facilitating not only communication with the PDS node, but also streamlining the process of learning, developing, submitting, and reviewing archive bundles under the new PDS4 archiving standard. Under the PDS4 standard, data are archived in bundles, collections, and basic products that form an organizational hierarchy of interconnected labels that describe the data and relationships between the data and its documentation. PDS4 labels are implemented using Extensible Markup Language (XML), which is an international standard for managing metadata. Potential data providers entering the ELSA environment can learn more about PDS4, plan and develop label templates, and build their archive bundles. ELSA provides an interface to tailor label templates aiding in the creation of required internal Logical Identifiers (URN - Uniform Resource Names) and Context References (missions, instruments, targets, facilities, etc.). The underlying structure of ELSA uses Django/Python code that make maintaining and updating the interface easy to do for our undergraduate/graduate students. The ELSA environment will soon provide an interface for using the tailored templates in a pipeline to produce entire collections of labeled products, essentially building the user’s archive bundle. Once the pieces of the archive bundle are assembled, ELSA provides options for queuing the completed bundle for peer review. The peer review process has also been streamlined for online access and tracking to help make the archiving process with PDS as transparent as possible. We discuss the

  13. A multicenter study benchmarks software tools for label-free proteome quantification.

    PubMed

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  14. Segmentation of anterior cruciate ligament in knee MR images using graph cuts with patient-specific shape constraints and label refinement.

    PubMed

    Lee, Hansang; Hong, Helen; Kim, Junmo

    2014-12-01

    We propose a graph-cut-based segmentation method for the anterior cruciate ligament (ACL) in knee MRI with a novel shape prior and label refinement. As the initial seeds for graph cuts, candidates for the ACL and the background are extracted from knee MRI roughly by means of adaptive thresholding with Gaussian mixture model fitting. The extracted ACL candidate is segmented iteratively by graph cuts with patient-specific shape constraints. Two shape constraints termed fence and neighbor costs are suggested such that the graph cuts prevent any leakage into adjacent regions with similar intensity. The segmented ACL label is refined by means of superpixel classification. Superpixel classification makes the segmented label propagate into missing inhomogeneous regions inside the ACL. In the experiments, the proposed method segmented the ACL with Dice similarity coefficient of 66.47±7.97%, average surface distance of 2.247±0.869, and root mean squared error of 3.538±1.633, which increased the accuracy by 14.8%, 40.3%, and 37.6% from the Boykov model, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 16 CFR 309.21 - Labeling requirements for used covered vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... visible surface of each such vehicle. (b) Layout. Figure 6 of appendix A is the prototype label that... consistent with the prototype label. The label required by this section is one-sided and rectangular in shape... label. Specific type sizes and faces to be used are indicated on the prototype label (Figure 6 of...

  16. Development of Intrinsically Labeled Eggs and Poultry Meat for Use in Human Metabolic Research.

    PubMed

    van Vliet, Stephan; Beals, Joseph W; Parel, Justin T; Hanna, Christina D; Utterback, Pamela L; Dilger, Anna C; Ulanov, Alexander V; Li, Zhong; Paluska, Scott A; Moore, Daniel R; Parsons, Carl M; Burd, Nicholas A

    2016-07-01

    Stable isotope amino acids are regularly used as tracers to examine whole-body and muscle protein metabolism in humans. To accurately assess in vivo dietary protein digestion and absorption kinetics, the amino acid tracer is required to be incorporated within the dietary protein food source (i.e., intrinsically labeled protein). We assessed the practicality of producing eggs and poultry meat intrinsically labeled with l-[5,5,5-(2)H3]leucine through noninvasive oral tracer administration. A specifically formulated diet containing 0.52% leucine was supplemented with 0.3% l-[5,5,5-(2)H3]leucine and subsequently fed to 3 laying hens (Lohmann LSL Whites) for 55 d. On day 55, the hens were slaughtered and their meat, bones, and organs were harvested to determine tissue labeling. In Expt. 1, 2 healthy young men [mean ± SEM age: 22 ± 1.5 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23.7 ± 0.5] ingested 18 g l-[5,5,5-(2)H3]leucine-labeled egg protein. In Expt. 2, 2 healthy young men (mean ± SEM age: 20.0 ± 0.0 y; mean ± SEM BMI: 26.4 ± 3.1) ingested 28 g l-[5,5,5-(2)H3]leucine-labeled poultry meat protein. Plasma samples (Expts. 1 and 2) and muscle biopsies (Expt. 1) were collected before and after labeled-food ingestion. High tracer labeling [>20 mole percent excess (MPE)] in the eggs was obtained after 7 d and maintained throughout the feeding protocol (P < 0.05). Over a 55-d period, ∼850 g egg protein (145 eggs) was produced, with a mean ± SEM tracer enrichment of 22.0 ± 0.8 MPE. Mean ± SEM l-[5,5,5-(2)H3]leucine enrichment in the meat was 9.6 ± 0.1 MPE. In Expts. 1 and 2, the consumption of labeled eggs and poultry meat protein increased plasma l-[5,5,5-(2)H3]leucine enrichment, with mean ± SEM peak values of 6.7 ± 0.1 MPE and 4.0 ± 0.9 MPE, respectively. The mean ± SEM 5-h postprandial increase in myofibrillar l-[5,5,5-(2)H3]leucine enrichment after egg ingestion in healthy young men was 0.051 ± 0.008 MPE (Expt. 1). We demonstrated the

  17. Gene-specific cell labeling using MiMIC transposons

    PubMed Central

    Gnerer, Joshua P.; Venken, Koen J. T.; Dierick, Herman A.

    2015-01-01

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. PMID:25712101

  18. Development And Evaluation Of Stable Isotope And Fluorescent Labeling And Detection Methodologies For Tracking Injected Bacteria During In Situ Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark E. Fuller; Tullis C. Onstott

    2003-12-17

    This report summarizes the results of a research project conducted to develop new methods to label bacterial cells so that they could be tracked and enumerated as they move in the subsurface after they are introduced into the groundwater (i.e., during bioaugmentation). Labeling methods based on stable isotopes of carbon (13C) and vital fluorescent stains were developed. Both approaches proved successful with regards to the ability to effectively label bacterial cells. Several methods for enumeration of fluorescently-labeled cells were developed and validated, including near-real time microplate spectrofluorometry that could be performed in the field. However, the development of a novelmore » enumeration method for the 13C-enriched cells, chemical reaction interface/mass spectrometry (CRIMS), was not successful due to difficulties with the proposed instrumentation. Both labeling methodologies were successfully evaluated and validated during laboratory- and field-scale bacterial transport experiments. The methods developed during this research should be useful for future bacterial transport work as well as other microbial ecology research in a variety of environments. A full bibliography of research articles and meeting presentations related to this project is included (including web links to abstracts and full text reprints).« less

  19. Development of High-Performance Chemical Isotope Labeling LC-MS for Profiling the Carbonyl Submetabolome.

    PubMed

    Zhao, Shuang; Dawe, Margot; Guo, Kevin; Li, Liang

    2017-06-20

    Metabolites containing a carbonyl group represent several important classes of molecules including various forms of ketones and aldehydes such as steroids and sugars. We report a high-performance chemical isotope labeling (CIL) LC-MS method for profiling the carbonyl submetabolome with high coverage and high accuracy and precision of relative quantification. This method is based on the use of dansylhydrazine (DnsHz) labeling of carbonyl metabolites to change their chemical and physical properties to such an extent that the labeled metabolites can be efficiently separated by reversed phase LC and ionized by electrospray ionization MS. In the analysis of six standards representing different carbonyl classes, acetaldehyde could be ionized only after labeling and MS signals were significantly increased for other 5 standards with an enhancement factor ranging from ∼15-fold for androsterone to ∼940-fold for 2-butanone. Differential 12 C- and 13 C-DnsHz labeling was developed for quantifying metabolic differences in comparative samples where individual samples were separately labeled with 12 C-labeling and spiked with a 13 C-labeled pooled sample, followed by LC-MS analysis, peak pair picking, and peak intensity ratio measurement. In the replicate analysis of a 1:1 12 C-/ 13 C-labeled human urine mixture (n = 6), an average of 2030 ± 39 pairs per run were detected with 1737 pairs in common, indicating the possibility of detecting a large number of carbonyl metabolites as well as high reproducibility of peak pair detection. The average RSD of the peak pair ratios was 7.6%, and 95.6% of the pairs had a RSD value of less than 20%, demonstrating high precision for peak ratio measurement. In addition, the ratios of most peak pairs were close to the expected value of 1.0 (e.g., 95.5% of them had ratios of between 0.67 and 1.5), showing the high accuracy of the method. For metabolite identification, a library of DnsHz-labeled standards was constructed, including 78 carbonyl

  20. Effect of calorie or exercise labels on menus on calories and macronutrients ordered and calories from specific foods in Hispanic participants: a randomized study.

    PubMed

    Shah, Meena; Bouza, Brooke; Adams-Huet, Beverley; Jaffery, Manall; Esposito, Phil; Dart, Lyn

    2016-12-01

    The effect of menu labels on food choices is unknown in Hispanics. This study evaluated the impact of menu labels on calories and macronutrients ordered in Hispanics. 372 Hispanics (18-65 years) were randomly assigned to menus with no labels (NL) (n=127), rank-ordered calorie labels plus a statement on energy needs per meal (CL) (n=123), or rank-ordered exercise labels showing minutes of brisk walking necessary to burn the food calories (EL) (n=122). The menus had identical food choices. Participants were instructed to select foods from the assigned menu as if having lunch in a fast food restaurant. One-way analysis of variance found no difference in calories ordered (median (25th and 75th centiles)) by menu condition (NL: 785.0 (465.0, 1010.0) kcal; CL: 790.0 (510.0, 1020.0) kcal; EL: 752.5 (520.0, 1033.8) kcal; p=0.75). Calories from specific foods and macronutrient intake were not different by menu condition. Menu label use was 26.8% in the CL and 25.4% in the EL condition. Calories ordered were not different between those who used and those who did not use the labels. Regression analysis showed that perception of being overweight (p=0.02), selecting foods based on health value (p<0.0001), and meeting exercise guidelines (p<0.0001) were associated with fewer calories ordered. Logistic regression showed that selecting foods based on health value (p=0.01) was associated with higher food label use. Menu labels did not affect food choices in Hispanic participants. Future studies should determine if nutrition, exercise, and weight perception counseling prior to menu labels intervention would result in better food choices. NCT02804503; post-results. Copyright © 2016 American Federation for Medical Research.

  1. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    NASA Astrophysics Data System (ADS)

    Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha

    2012-12-01

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody-colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.

  2. Audit of manufactured products: use of allergen advisory labels and identification of labeling ambiguities.

    PubMed

    Pieretti, Mariah M; Chung, Danna; Pacenza, Robert; Slotkin, Todd; Sicherer, Scott H

    2009-08-01

    The Food Allergy Labeling and Consumer Protection Act became effective January 1, 2006, and mandates disclosure of the 8 major allergens in plain English and as a source of ingredients in the ingredient statement. It does not regulate advisory labels. We sought to determine the frequency and language used in voluntary advisory labels among commercially available products and to identify labeling ambiguities affecting consumers with allergy. Trained surveyors performed a supermarket survey of 20,241 unique manufactured food products (from an original assessment of 49,604 products) for use of advisory labels. A second detailed survey of 744 unique products evaluated additional labeling practices. Overall, 17% of 20,241 products surveyed contain advisory labels. Chocolate candy, cookies, and baking mixes were the 3 categories of 24 with the greatest frequency (> or = 40%). Categorically, advisory warnings included "may contain" (38%), "shared equipment" (33%), and "within plant" (29%). The subsurvey disclosed 25 different types of advisory terminology. Nonspecific terms, such as "natural flavors" and "spices," were found on 65% of products and were not linked to a specific ingredient for 83% of them. Additional ambiguities included unclear sources of soy (lecithin vs protein), nondisclosure of sources of gelatin and lecithin, and simultaneous disclosure of "contains" and "may contain" for the same allergen, among others. Numerous products have advisory labeling and ambiguities that present challenges to consumers with food allergy. Additional allergen labeling regulation could improve safety and quality of life for individuals with food allergy.

  3. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm-1) and lipid (~2845 cm-1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  4. Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells

    PubMed Central

    Stagge, Franziska; Mitronova, Gyuzel Y.; Belov, Vladimir N.; Wurm, Christian A.; Jakobs, Stefan

    2013-01-01

    Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6′-carboxy isomers and not the 5′-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of 1H NMR spectra to discriminate between 6′- and 5′-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae. PMID:24205303

  5. Using label-free screening technology to improve efficiency in drug discovery.

    PubMed

    Halai, Reena; Cooper, Matthew A

    2012-02-01

    Screening assays have traditionally utilized reporter labels to quantify biological responses relevant to the disease state of interest. However, there are limitations associated with the use of labels that may be overcome with temporal measurements possible with label-free. This review comprises general and system-specific information from literature searches using PubMed, published books and the authors' personal experience. This review highlights the label-free approaches in the context of various applications. The authors also note technical issues relevant to the development of label-free assays and their application to HTS. The limitations associated with the use of transfected cell lines and the use of label-based assays are gradually being realized. As such, greater emphasis is being placed on label-free biophysical techniques using native cell lines. The introduction of 96- and 384-well plate label-free systems is helping to broker a wider acceptance of these approaches in high-throughput screening. However, potential users of the technologies remain skeptical, primarily because the physical basis of the signals generated, and their contextual relevance to cell biology and signal transduction, has not been fully elucidated. Until this is done, these new technology platforms are more likely to complement, rather than replace, traditional screening platforms.

  6. Gene-specific cell labeling using MiMIC transposons.

    PubMed

    Gnerer, Joshua P; Venken, Koen J T; Dierick, Herman A

    2015-04-30

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Dynamic map labeling.

    PubMed

    Been, Ken; Daiches, Eli; Yap, Chee

    2006-01-01

    We address the problem of filtering, selecting and placing labels on a dynamic map, which is characterized by continuous zooming and panning capabilities. This consists of two interrelated issues. The first is to avoid label popping and other artifacts that cause confusion and interrupt navigation, and the second is to label at interactive speed. In most formulations the static map labeling problem is NP-hard, and a fast approximation might have O(nlogn) complexity. Even this is too slow during interaction, when the number of labels shown can be several orders of magnitude less than the number in the map. In this paper we introduce a set of desiderata for "consistent" dynamic map labeling, which has qualities desirable for navigation. We develop a new framework for dynamic labeling that achieves the desiderata and allows for fast interactive display by moving all of the selection and placement decisions into the preprocessing phase. This framework is general enough to accommodate a variety of selection and placement algorithms. It does not appear possible to achieve our desiderata using previous frameworks. Prior to this paper, there were no formal models of dynamic maps or of dynamic labels; our paper introduces both. We formulate a general optimization problem for dynamic map labeling and give a solution to a simple version of the problem. The simple version is based on label priorities and a versatile and intuitive class of dynamic label placements we call "invariant point placements". Despite these restrictions, our approach gives a useful and practical solution. Our implementation is incorporated into the G-Vis system which is a full-detail dynamic map of the continental USA. This demo is available through any browser.

  8. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.

    PubMed

    Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan

    2009-06-30

    Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.

  9. 16 CFR 300.5 - Required label and method of affixing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Required label and method of affixing. 300.5 Section 300.5 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.5 Required label and...

  10. Labeling of Chromosomes in Cell Development and the Appearance of Monozygotic Twins.

    PubMed

    Jim, Carol; Berkovich, Simon

    2015-01-01

    Understanding the mechanism behind the structure of the internal cellular clock can lead to advances in the knowledge of origins of pairs of monozygotic twins and higher order multiples as well as other biological phenomena. To gain insight into this mechanism, we analyze possible cell labeling schemes that model an organism's development. Our findings lead us to predict that monozygotic quadruplets are not quadruplets in the traditional sense but rather two pairs of monozygotic twins where the pairs slightly differ-a situation we coin quadruplet twins. From the considered model, the probability of monozygotic twins is found to be (1/2) (K) , and we discover that the probability of monozygotic quadruplets, or triplets as in the case of the death of an embryo, is (1/8) (K) , where K is a species-specific integer representing the number of pairs of homologous chromosomes. The parameter K may determine cancerization with a probability threshold that is approximately inversely proportional to the Hayflick limit. Exposure to some cancerization factors such as small levels of ionizing radiation and chemical pollution may not produce cancer.

  11. Labeling of Chromosomes in Cell Development and the Appearance of Monozygotic Twins

    PubMed Central

    Berkovich, Simon

    2015-01-01

    Understanding the mechanism behind the structure of the internal cellular clock can lead to advances in the knowledge of origins of pairs of monozygotic twins and higher order multiples as well as other biological phenomena. To gain insight into this mechanism, we analyze possible cell labeling schemes that model an organism's development. Our findings lead us to predict that monozygotic quadruplets are not quadruplets in the traditional sense but rather two pairs of monozygotic twins where the pairs slightly differ—a situation we coin quadruplet twins. From the considered model, the probability of monozygotic twins is found to be (1/2)K, and we discover that the probability of monozygotic quadruplets, or triplets as in the case of the death of an embryo, is (1/8)K, where K is a species-specific integer representing the number of pairs of homologous chromosomes. The parameter K may determine cancerization with a probability threshold that is approximately inversely proportional to the Hayflick limit. Exposure to some cancerization factors such as small levels of ionizing radiation and chemical pollution may not produce cancer. PMID:26185760

  12. Label-Free Aptasensors for the Detection of Mycotoxins

    PubMed Central

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-01-01

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins. PMID:27999353

  13. In vivo labeling and specific magnetic bead separation of RNA for biofilm characterization and stress-induced gene expression analysis in bacteria.

    PubMed

    Stankiewicz, Nikolai; Gold, Andrea; Yüksel, Yousra; Berensmeier, Sonja; Schwartz, Thomas

    2009-12-01

    The method of in vivo labeling and separation of bacterial RNA was developed as an approach to elucidating the stress response of natural bacterial populations. This technique is based on the incorporation of digoxigenin-11-uridine-5'-triphosphate (DIG-11-UTP) in the RNA of active bacteria. The digoxigenin fulfills a dual role as a label of de novo synthesized RNA and a target for magnetic bead separation from a total RNA extract. Depending on the growth conditions and the population's composition, the assembly rate of DIG-11-UTP ranged from 1.2% to 12.5% of the total RNA in gram-positive and gram-negative reference bacteria as well as in natural biofilms from drinking water, surface water, and lake sediment. Separation of DIG-RNA from total RNA extracts was performed with a biotinylated anti-digoxigenin antibody and streptavidin-functionalized magnetic particles. The average separation yield from total RNA extracts was about 95% of labeled RNA. The unspecific bindings of non-labeled nucleic acids were smaller than 0.2%, as was evaluated by spiking experiments with an unmarked DNA amplicon. Applicability of the method developed was demonstrated by rRNA-directed PCR-DGGE population analysis of natural biofilms and expression profiling of two stress-induced genes (vanA and rpoS) in reference bacteria.

  14. Selective in vivo metabolic cell-labeling-mediated cancer targeting

    PubMed Central

    Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun

    2017-01-01

    Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414

  15. 16 CFR 300.10 - Disclosure of information on labels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Disclosure of information on labels. 300.10 Section 300.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.10 Disclosure of...

  16. Probabilistic cluster labeling of imagery data

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1980-01-01

    The problem of obtaining the probabilities of class labels for the clusters using spectral and spatial information from a given set of labeled patterns and their neighbors is considered. A relationship is developed between class and clusters conditional densities in terms of probabilities of class labels for the clusters. Expressions are presented for updating the a posteriori probabilities of the classes of a pixel using information from its local neighborhood. Fixed-point iteration schemes are developed for obtaining the optimal probabilities of class labels for the clusters. These schemes utilize spatial information and also the probabilities of label imperfections. Experimental results from the processing of remotely sensed multispectral scanner imagery data are presented.

  17. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.

    PubMed

    Thomas, A P; Halestrap, A P

    1981-05-15

    1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. Exposure of mitochondrial to unlabelled N-phenylmaleimide in the presence of alpha-cyanocinnamate, followed by removal of alpha-cyanocinnamate and exposure to [3H]N-phenylmaleimide, produced specific labelling of the same protein. 4. Both labelling and kinetic experiments with inhibitors gave values for the approximate amount of carrier present in liver and heart mitochondria of 100 and 450 pmol/mg of mitochondrial protein respectively. 5. The turnover numbers for net pyruvate transport and pyruvate exchange at 0 degrees C were 6 and 200 min-1 respectively.

  18. Pushing the limits for amplifying BrdU-labeled DNA encoding 16S rRNA: DNA polymerase as the determining factor.

    PubMed

    Roux-Michollet, Dad D; Schimel, Joshua P; Holden, Patricia A

    2010-12-01

    Identifying microorganisms that are active under specific conditions in ecosystems is a challenge in microbial ecology. Recently, the bromodeoxyuridine (BrdU) technique was developed to label actively growing cells. BrdU, a thymidine analog, is incorporated into newly synthesized DNA, and the BrdU-labeled DNA is then isolated from total extractable DNA by immunocapture using a BrdU-specific antibody. Analyzing the BrdU-labeled DNA allows for assessing the actively growing community, which can then be compared to the unlabeled DNA that represents the total community. However, applying the BrdU approach to study soils has been problematic due to low DNA amounts and soil contaminants. To address these challenges, we developed a protocol, optimizing specificity and reproducibility, to amplify BrdU-labeled gene fragments encoding 16S rRNA. We found that the determining factor was the DNA polymerase: among the 13 different polymerases we tested, only 3 provided adequate yields with minimal contamination, and only two of those three produced similar amplification patterns of community DNA. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Carbon-13 and carbon-14 labeled dabigatran etexilate and tritium labeled dabigatran.

    PubMed

    Latli, Bachir; Kiesling, Ralf; Aßfalg, Stefan; Chevliakov, Max; Hrapchak, Matt; Campbell, Scot; Gonnella, Nina; Busacca, Carl A; Senanayake, Chris H

    2016-12-01

    Dabigatran etexilate or pradaxa, a novel oral anticoagulant, is a reversible, competitive, direct thrombin inhibitor. It is used to prevent strokes in patients with atrial fibrillation and the formation of blood clots in the veins (deep venous thrombosis) in adults who have had an operation to replace a hip or a knee. Pradaxa is the only novel oral anticoagulant available with both proven superiority to warfarin and a specific reversal agent for use in rare emergency situations. The detailed description of the synthesis of carbon-13 and carbon-14 labeled dabigatran etexilate, and tritium labeled dabigatran is described. The synthesis of carbon-13 dabigatran etexilate was accomplished in eight steps and in 6% overall yield starting from aniline- 13 C 6 . Ethyl bromoacetate-1- 14 C was the reagent of choice in the synthesis of carbon-14 labeled dabigatran etexilate in six steps and 17% overall yield. Tritium labeled dabigatran was prepared using either direct tritium incorporation under Crabtree's catalytic conditions or tritium-dehalogenation of a diiodo-precursor of dabigatran. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Learning with imperfectly labeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.

  1. Labeling and Functionalizing Amphipols for Biological Applications

    PubMed Central

    Bon, Christel Le; Popot, Jean-Luc; Giusti, Fabrice

    2014-01-01

    Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes. PMID:24696186

  2. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    PubMed

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  3. Labeling and tracking exosomes within the brain using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Betzer, Oshra; Perets, Nisim; Barnoy, Eran; Offen, Daniel; Popovtzer, Rachela

    2018-02-01

    Cell-to-cell communication system involves Exosomes, small, membrane-enveloped nanovesicles. Exosomes are evolving as effective therapeutic tools for different pathologies. These extracellular vesicles can bypass biological barriers such as the blood-brain barrier, and can function as powerful nanocarriers for drugs, proteins and gene therapeutics. However, to promote exosomes' therapy development, especially for brain pathologies, a better understanding of their mechanism of action, trafficking, pharmacokinetics and bio-distribution is needed. In this research, we established a new method for non-invasive in-vivo neuroimaging of mesenchymal stem cell (MSC)-derived exosomes, based on computed tomography (CT) imaging with glucose-coated gold nanoparticle (GNP) labeling. We demonstrated that the exosomes were efficiently and directly labeled with GNPs, via an energy-dependent mechanism. Additionally, we found the optimal parameters for exosome labeling and neuroimaging, wherein 5 nm GNPs enhanced labeling, and intranasal administration produced superior brain accumulation. We applied our technique in a mouse model of focal ischemia. Imaging and tracking of intranasally-administered GNP-labeled exosomes revealed specific accumulation and prolonged presence at the lesion area, up to 24 hrs. We propose that this novel exosome labeling and in-vivo neuroimaging technique can serve as a general platform for brain theranostics.

  4. Studies related to the development of the Viking 1975 labeled release experiment

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.; Deal, P. H.

    1976-01-01

    The labeled release life detection experiment on the Viking 1975 Mars mission is based on the concept that microorganisms will metabolize radioactive organic substrates in a nutrient medium and release radioactive carbon dioxide. Several experiments, using laboratory equipment, were carried out to evaluate various aspects of the concept. Results indicate: (1) label is released by sterilization-treated soil, (2) substantial quantities of label are retained in solution under basic conditions, (3) the substrate used, as well as position of label in the molecule, affect release of label, (4) label release is depressed by radiolytic decomposition of substrates, and (5) About 100,000 organisms are required to produce a detectable response. These results, suggest additional areas for testing, add to the data base for interpretation of flight results, and have significance for broader application of this technique for assessing microbial activity.

  5. Herniated Thoracic Spleen Mimicking Lung Metastasis on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT in a Patient With Prostate Cancer.

    PubMed

    Malik, Dharmender; Basher, Rajender K; Sood, Apurva; Devana, Sudheer Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-06-01

    We report a case of clinically asymptomatic patient of prostate cancer who was previously subjected to radical prostatectomy presenting with a rising serum prostate-specific antigen level of 6.6 ng/mL. Whole-body PET/CT with Ga-labeled prostate-specific membrane antigen ligand was performed to assess for disease recurrence, which revealed an intense tracer uptake in a soft tissue mass in left hemithorax mimicking lung metastasis; which later turned out to be splenic tissue.

  6. Toward improved pregnancy labelling.

    PubMed

    Koren, Gideon; Sakaguchi, Sachi; Klieger, Chagit; Kazmin, Alex; Osadchy, Alla; Yazdani-Brojeni, Parvaneh; Matok, Ilan

    2010-01-01

    Information about the use of a medication in pregnancy is part of overall drug labelling as prepared by the pharmaceutical company and approved by the regulators. It is aimed at assisting clinicians in prescribing, however, very few drugs are labelled for specific indications in pregnancy, since there is rarely information about the use of a drug in this condition. Recently the FDA has drafted new guidelines for the labeling of drugs in pregnancy and breastfeeding, to replace the A,B,C,D,X system that was used for more than 30 years. Here we document the use of the new system through 3 different medications; each representing a different clinical situation in pregnancy--acute infection, chronic pain, and drug use during labor. Advantages and challenges in the new system are being highlighted.

  7. “Smart” RCTs: Development of a Smartphone App for Fully Automated Nutrition-Labeling Intervention Trials

    PubMed Central

    Li, Nicole; Dunford, Elizabeth; Eyles, Helen; Crino, Michelle; Michie, Jo; Ni Mhurchu, Cliona

    2016-01-01

    Background There is substantial interest in the effects of nutrition labels on consumer food-purchasing behavior. However, conducting randomized controlled trials on the impact of nutrition labels in the real world presents a significant challenge. Objective The Food Label Trial (FLT) smartphone app was developed to enable conducting fully automated trials, delivering intervention remotely, and collecting individual-level data on food purchases for two nutrition-labeling randomized controlled trials (RCTs) in New Zealand and Australia. Methods Two versions of the smartphone app were developed: one for a 5-arm trial (Australian) and the other for a 3-arm trial (New Zealand). The RCT protocols guided requirements for app functionality, that is, obtaining informed consent, two-stage eligibility check, questionnaire administration, randomization, intervention delivery, and outcome assessment. Intervention delivery (nutrition labels) and outcome data collection (individual shopping data) used the smartphone camera technology, where a barcode scanner was used to identify a packaged food and link it with its corresponding match in a food composition database. Scanned products were either recorded in an electronic list (data collection mode) or allocated a nutrition label on screen if matched successfully with an existing product in the database (intervention delivery mode). All recorded data were transmitted to the RCT database hosted on a server. Results In total approximately 4000 users have downloaded the FLT app to date; 606 (Australia) and 1470 (New Zealand) users met the eligibility criteria and were randomized. Individual shopping data collected by participants currently comprise more than 96,000 (Australia) and 229,000 (New Zealand) packaged food and beverage products. Conclusions The FLT app is one of the first smartphone apps to enable conducting fully automated RCTs. Preliminary app usage statistics demonstrate large potential of such technology, both for

  8. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.

    PubMed

    Chahrour, Osama; Cobice, Diego; Malone, John

    2015-09-10

    Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Labelling of histone H5 and its interaction with DNA. 1. Histone H5 labelling with fluorescein isothiocyanate.

    PubMed

    Favazza, M; Lerho, M; Houssier, C

    1990-06-01

    Histone H5 has been labelled with fluorescein isothiocyanate (FITC) with particular attention to the reaction conditions (pH, reaction time and input FITC/H5 molar ratio) and to the complete elimination of non-covalently bound dye. We preferred to use reaction conditions which yielded non-specific uniform labelling rather than specific alpha-NH2 terminal labelling, in order to obtain higher sensitivity in further studies dealing with the detection of perturbation at the binding sites of H5 on DNA. FITC-labelled H5 was further characterized by absorption and circular dichroism spectroscopy, and the fluorescein probe titrated in the 4-8 pH range. The structural integrity of H5 was found to be preserved after labelling. The positive electrostatic potential of the environment in which the FITC probe is embedded in the arginine/lysine-rich tails of H5 is believed to be responsible for the drop of pK of 1 unit found for H5-FITC as compared to free FITC. For the globular part of H5, the pK of covalently-bound FITC was only slightly lowered; this is a consequence of the much lower content in positively-charged amino-acid side chains in this region.

  10. Expedited Synthesis of Fluorine-18 Labeled Phenols. A Missing Link in PET Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzenellenbogen, John A.; Zhou, Dong

    Fluorine-18 (F-18) is arguably the most valuable radionuclide for positron emission tomographic (PET) imaging. However, while there are many methods for labeling small molecules with F-18 at aliphatic positions and on electron-deficient aromatic rings, there are essentially no reliable and practical methods to label electron-rich aromatic rings such as phenols, with F-18 at high specific activity. This is disappointing because fluorine-labeled phenols are found in many drugs; there are also many interesting plant metabolites and hormones that contain either phenols or other electron-rich aromatic systems such as indoles whose metabolism, transport, and distribution would be interesting to study if theymore » could readily be labeled with F-18. Most approaches to label phenols with F-18 involve the labeling of electron-poor precursor arenes by nucleophilic aromatic substitution, followed by subsequent conversion to phenols by oxidation or other multi-step sequences that are often inefficient and time consuming. Thus, the lack of good methods for labeling phenols and other electron-rich aromatics with F-18 at high specific activity represents a significant methodological gap in F-18 radiochemistry that can be considered a “Missing Link in PET Radiochemistry”. The objective of this research project was to develop and optimize a series of unusual synthetic transformations that will enable phenols (and other electron-rich aromatic systems) to be labeled with F-18 at high specific activity, rapidly, reliably, and conveniently, thereby bridging this gap. Through the studies conducted with support of this project, we have substantially advanced synthetic methodology for the preparation of fluorophenols. Our progress is presented in detail in the sections below, and much has been published or presented publication; other components are being prepared for publication. In essence, we have developed a completely new method to prepare o-fluorophenols from non

  11. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and p<0.001 for the 750 dyes). Human pancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (p<0.001 for the 650 dyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  12. Recognition memory for hue: Prototypical bias and the role of labeling.

    PubMed

    Kelly, Laura Jane; Heit, Evan

    2017-06-01

    How does the concurrent use of language affect perception and memory for exemplars? Labels cue more general category information than a specific exemplar. Applying labels can affect the resulting memory for an exemplar. Here 3 alternative hypotheses are proposed for the role of labeling an exemplar at encoding: (a) labels distort memory toward the label prototype, (b) labels guide the level of specificity needed in the current context, and (c) labels direct attention to the label's referent among all possible features within a visual scene. University students were shown hues on object silhouettes that they either labeled with basic color categories, made preference judgments about, or indicated the animacy of its category. Experiments 1 and 2 established that there are response shifts toward the category prototype regardless of labeling, showing a pervasive influence of category knowledge on response bias. They also established an effect of labeling whereby labeling decreases the magnitude of shifts. Experiments 3 and 4 investigated the uniqueness and necessity of language in causing the decreased shift-neither of which proved to be the case. Overall, category-relative bias was pervasive and labeling appears to direct attention to the feature resulting in less biased memory. The results highlight that the context at encoding affects how memory is formed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen.

    PubMed

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.

  14. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a 68Ga-THP-scFv targeting the prostate-specific membrane antigen.

    PubMed

    Nawaz, Saima; Mullen, Gregory E D; Sunassee, Kavitha; Bordoloi, Jayanta; Blower, Philip J; Ballinger, James R

    2017-10-25

    Labelling proteins with gallium-68 using bifunctional chelators is often problematic because of unsuitably harsh labelling conditions such as low pH or high temperature and may entail post-labelling purification. To determine whether tris(hydroxypyridinone) (THP) bifunctional chelators offer a potential solution to this problem, we have evaluated the labelling and biodistribution of a THP conjugate with a new single-chain antibody against the prostate-specific membrane antigen (PSMA), an attractive target for staging prostate cancer (PCa). A single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, was prepared in order to achieve biokinetics matched to the half-life of gallium-68. The scFv, J591c-scFv, was engineered with a C-terminal cysteine. J591c-scFv was produced in HEK293T cells and purified by size-exclusion chromatography. A maleimide THP derivative (THP-mal) was coupled site-specifically to the C-terminal cysteine residue. The THP-mal-J591c-scFv conjugate was labelled with ammonium acetate-buffered gallium-68 from a 68 Ge/ 68 Ga generator at room temperature and neutral pH. The labelled conjugate was evaluated in the PCa cell line DU145 and its PSMA-overexpressing variant in vitro and xenografted in SCID mice. J591c-scFv was produced in yields of 4-6 mg/l culture supernatant and efficiently coupled with the THP-mal bifunctional chelator. Labelling yields > 95% were achieved at room temperature following incubation of 5 μg conjugate with gallium-68 for 5 min without post-labelling purification. 68 Ga-THP-mal-J591c-scFv was stable in serum and showed selective binding to the DU145-PSMA cell line, allowing an IC50 value of 31.5 nM to be determined for unmodified J591c-scFv. Serial PET/CT imaging showed rapid, specific tumour uptake and clearance via renal elimination. Accumulation in DU145-PSMA xenografts at 90 min post-injection was 5.4 ± 0.5%ID/g compared with 0.5 ± 0.2%ID/g in DU145

  15. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes

    NASA Astrophysics Data System (ADS)

    Qi, Yingying; Li, Li; Li, Baoxin

    2009-09-01

    A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV-vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10 -13 to 4.5 × 10 -6 mol/L. The detection limit (3 σ) of this method has decreased to pico-molar level.

  16. Recognition Memory for Hue: Prototypical Bias and the Role of Labeling

    ERIC Educational Resources Information Center

    Kelly, Laura Jane; Heit, Evan

    2017-01-01

    How does the concurrent use of language affect perception and memory for exemplars? Labels cue more general category information than a specific exemplar. Applying labels can affect the resulting memory for an exemplar. Here 3 alternative hypotheses are proposed for the role of labeling an exemplar at encoding: (a) labels distort memory toward the…

  17. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    NASA Astrophysics Data System (ADS)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  18. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy.

    PubMed

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    2017-07-01

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.

  19. Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats.

    PubMed

    Oliveira, Bruno L; Blasi, Francesco; Rietz, Tyson A; Rotile, Nicholas J; Day, Helen; Caravan, Peter

    2015-10-01

    We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F PET probes for noninvasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and SPECT. In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in 2 animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. Radiotracers were synthesized using a known fibrin-binding peptide conjugated to 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DOTA-MA), or a diethylenetriamine ligand (DETA-propanoic acid [PA]), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA), or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics, and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a nonbinding control probe using SPECT/PET/CT imaging. All 3 radiotracers showed affinity similar to soluble fibrin fragment DD(E) (inhibition constant=0.53-0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0±0.2 percentage injected dose per gram), with low off-target accumulation. Both radiotracers underwent fast systemic elimination (half-life, 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation or degradation. Triple-isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu

  20. Multimodal molecular imaging reveals high target uptake and specificity of 111In and 68Ga labeled fibrin-binding probes for thrombus detection in rats

    PubMed Central

    Oliveira, Bruno L.; Blasi, Francesco; Rietz, Tyson A.; Rotile, Nicholas J.; Day, Helen; Caravan, Peter

    2016-01-01

    We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F positron emission tomography (PET) probes for non-invasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and single-photon emission computed tomography (SPECT). In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in two animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. Methods Radiotracers were synthesized using a known fibrin-binding peptide conjugated to NODAGA, DOTA-MA, or a diethylenetriamine ligand (DETA-PA), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA) or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a non-binding control probe using SPECT/PET/CT imaging. Results All three radiotracers showed similar affinity to soluble fibrin fragment DD(E) (Ki = 0.53–0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0 ± 0.2% ID/g) with low off-target accumulation. Both radiotracers underwent fast systemic elimination (t1/2 = 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation and/or degradation. Triple isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu-D-Cys-FBP8, detected the location of the 125I-labeled thrombus, confirming high target

  1. The recovery of 13C-labeled oleic acid in rat lymph after administration of long chain triacylglycerols or specific structured triacylglycerols.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Consumption of specific structured triacylglycerols, MLM (M = medium chain fatty acid, L = long chain fatty acid), delivers fast energy and long chain fatty acids to the organism. The purpose of the present study was to compare lymphatic absorption of (13)C-labeled MLM and (13)C-labeled LLL in rats. Stable isotope labeling enables the separation of the endogenous and exogenous fatty acids. Lymph was collected during 24 h following administration of MLM or LLL. Lymph fatty acid composition and (13)C-enrichment were determined and quantified by gas chromatography combustion isotope ratio mass spectrometry. The recovery of 18:1n-9 was higher after administration of LLL compared with MLM (58.1% +/- 7.4% and 29.1% +/- 3.9%, respectively, P < 0.001). This may be due to a higher chylomicron formation stimulated by a higher amount of long chain fatty acids in the intestine after LLL compared with MLM administration. This was confirmed by the tendencies of higher lymphatic transport of endogenous fatty acids. The study revealed a higher lymphatic recovery of the administered long chain fatty acids after LLL compared with MLM consumption.

  2. A multi-center study benchmarks software tools for label-free proteome quantification

    PubMed Central

    Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan

    2016-01-01

    The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404

  3. Fluorescein-labeled β-Glucosidase as a Bacterial Stain

    PubMed Central

    Pital, Abe; Janowitz, Sheldon L.; Hudak, Charles E.; Lewis, Evelyn E.

    1967-01-01

    Fluorescein isothiocyanate-labeled β-glucosidase was used as a simple staining reagent with selected gram-positive and gram-negative organisms. Staining in situ appeared to be dependent on the presence of accessible glycosidic-type linkages in the bacterial cell wall. Extensive wall damage or lysis did not occur when stained cells were suspended in washing and mounting solutions. The apparent specificity of labeled enzyme for wall substance was tested by blocking reactions, staining of isolated cell walls, and failure to stain substances lacking appropriate glycosidic linkages. Severe cell wall lesions were produced after prolonged contact with labeled enzyme, and this phenomenon may also be related to staining specificity. Gram-negative organisms and spores were poorly stained unless protected glycopeptide substrate was previously exposed by treatment of cells with thioglycolic acid or dilute alkaline sodium hypochlorite solution. A potential for staining tissues and cell lines may also exist. Some possible applications of labeled enzymes are briefly discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4169543

  4. FDA drug labeling: rich resources to facilitate precision medicine, drug safety, and regulatory science.

    PubMed

    Fang, Hong; Harris, Stephen C; Liu, Zhichao; Zhou, Guangxu; Zhang, Guoping; Xu, Joshua; Rosario, Lilliam; Howard, Paul C; Tong, Weida

    2016-10-01

    Here, we provide a concise overview of US Food and Drug Administration (FDA) drug labeling, which details drug products, drug-drug interactions, adverse drug reactions (ADRs), and more. Labeling data have been collected over several decades by the FDA and are an important resource for regulatory research and decision making. However, navigating through this data is challenging. To aid such navigation, the FDALabel database was developed, which contains a set of approximately 80000 labeling data. The full-text searching capability of FDALabel and querying based on any combination of specific sections, document types, market categories, market date, and other labeling information makes it a powerful and attractive tool for a variety of applications. Here, we illustrate the utility of FDALabel using case scenarios in pharmacogenomics biomarkers and ADR studies. Published by Elsevier Ltd.

  5. 21 CFR 101.42 - Nutrition labeling of raw fruit, vegetables, and fish.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Nutrition labeling of raw fruit, vegetables, and... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.42 Nutrition labeling of raw fruit, vegetables, and fish. (a) The Food and Drug...

  6. 21 CFR 101.42 - Nutrition labeling of raw fruit, vegetables, and fish.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Nutrition labeling of raw fruit, vegetables, and... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.42 Nutrition labeling of raw fruit, vegetables, and fish. (a) The Food and Drug...

  7. 21 CFR 101.42 - Nutrition labeling of raw fruit, vegetables, and fish.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Nutrition labeling of raw fruit, vegetables, and... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.42 Nutrition labeling of raw fruit, vegetables, and fish. (a) The Food and Drug...

  8. 21 CFR 101.42 - Nutrition labeling of raw fruit, vegetables, and fish.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Nutrition labeling of raw fruit, vegetables, and... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.42 Nutrition labeling of raw fruit, vegetables, and fish. (a) The Food and Drug...

  9. 21 CFR 101.42 - Nutrition labeling of raw fruit, vegetables, and fish.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Nutrition labeling of raw fruit, vegetables, and... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.42 Nutrition labeling of raw fruit, vegetables, and fish. (a) The Food and Drug...

  10. Improving the design of nutrition labels to promote healthier food choices and reasonable portion sizes.

    PubMed

    Roberto, C A; Khandpur, N

    2014-07-01

    Accurate and easy-to-understand nutrition labeling is a worthy public health goal that should be considered an important strategy among many to address obesity and poor diet. Updating the Nutrition Facts Panel on packaged foods, developing a uniform front-of-package labeling system and providing consumers with nutrition information on restaurant menus offer important opportunities to educate people about food's nutritional content, increase awareness of reasonable portion sizes and motivate consumers to make healthier choices. The aims of this paper were to identify and discuss: (1) current concerns with nutrition label communication strategies; (2) opportunities to improve the communication of nutrition information via food labels, with a specific focus on serving size information; and (3) important future areas of research on nutrition labeling as a tool to improve diet. We suggest that research on nutrition labeling should focus on ways to improve food labels' ability to capture consumer attention, reduce label complexity and convey numeric nutrition information in simpler and more meaningful ways, such as through interpretive food labels, the addition of simple text, reduced use of percentages and easy-to-understand presentation of serving size information.

  11. Availability of Oral Formulations Labeled for Use in Young Children in Serbia, Germany and the USA.

    PubMed

    Bajcetic, Milica; Kearns, Gregory L; Jovanovic, Ida; Brajovic, Milan; van den Anker, John N

    2015-01-01

    47.7%. Moreover, there were striking differences between the three countries in the availability of labeled age-appropriate formulations for certain drug groups such as cardiovascular (absent in Serbia) and antiparasitic drugs (absent in Serbia and Germany). Our data suggest that significant country-to-country differences continue to exist in both the number and type of oral drug formulations that have pediatric labeling. Potential contributing factors include country-specific differences in the drug regulatory process, capacity for pharmaceutical development and the regulatory lag time associated with the implementation of drug regulation specifically addressing pediatric product development and labeling. We hypothesize that the new European regulation concerning medicines and children will improve the current unacceptable situation.

  12. Rapid Covalent Fluorescence Labeling of Membrane Proteins on Live Cells via Coiled-Coil Templated Acyl Transfer.

    PubMed

    Reinhardt, Ulrike; Lotze, Jonathan; Mörl, Karin; Beck-Sickinger, Annette G; Seitz, Oliver

    2015-10-21

    Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments.

  13. Data Availability in Appliance Standards and Labeling Program Development and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romankiewicz, John; Khanna, Nina; Vine, Edward

    2013-05-01

    In this report, we describe the necessary data inputs for both standards development and program evaluation and perform an initial assessment of the availability and uncertainty of those data inputs in China. For standards development, we find that China and its standards and labeling program administrators currently has access to the basic market and technical data needed for conducting market and technology assessment and technological and economic analyses. Some data, such as shipments data, is readily available from the China Energy Label product registration database while the availability of other data, including average unit energy consumption, prices and design options,more » needs improvement. Unlike some other countries such as the United States, most of the necessary data for conducting standards development analyses are not publicly available or compiled in a consolidated data source. In addition, improved data on design and efficiency options as well as cost data (e.g., manufacturing costs, mark-ups, production and product use-phase costs) – key inputs to several technoeconomic analyses – are particularly in need given China’s unconsolidated manufacturing industry. For program evaluation, we find that while China can conduct simple savings evaluations on its incentive programs with the data it currently has available from the Ministry of Finance – the program administrator, the savings estimates produced by such an evaluation will carry high uncertainty. As such, China could benefit from an increase in surveying and metering in the next one to three years to decrease the uncertainty surrounding key data points such as unit energy savings and free ridership.« less

  14. Homosexual Labeling by University Youths

    ERIC Educational Resources Information Center

    Nyberg, Kenneth L.; Alston, Jon P.

    1977-01-01

    Details the responses of young, urban, college-educated people on their attitudes toward homosexuals, specifically focusing on issues of public identification and negative labeling as it effects homosexual persons and their behaviors. (Author/RK)

  15. Development of a facile and sensitive HPLC-FLD method via fluorescence labeling for triterpenic acid bioavailability investigation.

    PubMed

    You, Jinmao; Wu, Di; Zhao, Mei; Li, Guoliang; Gong, Peiwei; Wu, Yueyue; Guo, Yu; Chen, Guang; Zhao, Xianen; Sun, Zhiwei; Xia, Lian; Wu, Yongning

    2017-06-01

    Triterpenic acids are widely distributed in many fruits and are known for their medicinal benefits. The study of bioavailability has been an important task for a better understanding of the triterpenic acids. Although many methods based on fluorescence labeling for triterpenic acid determination have been established, these reported methods needed anhydrous conditions, which are not suitable for the convenient study of triterpenic acid bioavailability. Inspired by that, a versatile method, which overcomes the difficulty of the reported methods, has been first developed in this study. The novel method using 2-[12-benzo[b]acridin-5- (12H)-yl]-acetohydrazide (BAAH) as the fluorescence labeling reagent coupled with high-performance liquid chromatography with fluorescence detection was first developed for the study of triterpenic acid bioavailability. Furthermore, the labeling conditions have been optimized in order to achieve the best fluorescence labeling yield. Under the optimal conditions, the quantitative linear range of analytes was 2-1000 ng mL -1 , and the correlation coefficients were >0.9998. The detection limits for all triterpenic acid derivatives were achieved within the range of 0.28-0.29 ng mL -1 . The proposed method was successfully applied to the study of triterpenic acid bioavailability with excellent applicability and good reproducibility. Copyright © 2016 John Wiley & Sons, Ltd.

  16. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods.

    PubMed

    Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib

    2017-03-15

    A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Labeling of monoclonal antibodies with a 67Ga-phenolic aminocarboxylic acid chelate. Part I. Chemistry and labeling technique.

    PubMed

    Schuhmacher, J; Matys, R; Hauser, H; Maier-Borst, W; Matzku, S

    1986-01-01

    As a chelating agent for labeling antibodies (Abs) with metallic radionuclides, a propionic acid substituted ethylenediamine N,N'-di-[(o-hydroxyphenyl) acetic acid] (P-EDDHA), which tightly complexes 67Ga, was synthesized. The 67Ga-P-EDDHA chelate was coupled in aqueous solution to IgG at a molar ratio of 1:1 via carbodiimide. The average coupling yield was 15%. A specific activity of 4 mCi/mg IgG could be obtained with commercially supplied 67Ga. In vitro stability was evaluated in human serum at 37 degrees C and showed a half-life of about 120 h for the release of 67Ga from the labeled Ab during the initial phase of incubation. This in vitro halflife is similar to that measured for 111In-DTPA labeled Abs. Because of the high stability of the 67Ga-P-EDDHA chelate, the in vivo formation of radioactive labeled transferrin by transchelation, as described for 111In-DTPA labeled Abs, should, however, be reduced by this labeling technique.

  18. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Semiportable, Marine Type § 162.039-4 Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a...

  19. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Semiportable, Marine Type § 162.039-4 Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a...

  20. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Semiportable, Marine Type § 162.039-4 Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a...

  1. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Semiportable, Marine Type § 162.039-4 Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a...

  2. 46 CFR 162.039-4 - Marine type label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Marine type label. 162.039-4 Section 162.039-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Semiportable, Marine Type § 162.039-4 Marine type label. (a) In addition to all other marking, every semiportable extinguisher shall bear a...

  3. Development and implementation of energy efficiency standards and labeling programs in China: Progress and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Khanna, Nina Zheng; Fridley, David

    Over the last twenty years, with growing policy emphasis on improving energy efficiency and reducing environmental pollution and carbon emissions, China has implemented a series of new minimum energy performance standards (MEPS) and mandatory and voluntary energy labels to improve appliance energy efficiency. As China begins planning for the next phase of standards and labeling (S&L) program development under the 12th Five Year Plan, an evaluation of recent program developments and future directions is needed to identify gaps that still exist when compared with international best practices. The review of China’s S&L program development and implementation in comparison with majormore » findings from international experiences reveal that there are still areas of improvement, particularly when compared to success factors observed across leading international S&L program. China currently lacks a formalized regulatory process for standard-setting and do not have any legal or regulatory guidance on elements of S&L development such as stakeholder participation or the issue of legal precedence between conflicting national, industrial and local standards. Consequently, China’s laws regarding standard-setting and management of the mandatory energy label program could be updated, as they have not been amended or revised recently and no longer reflects the current situation. While China uses similar principles for choosing target products as the U.S., Australia, EU and Japan, including high energy-consumption, mature industry and testing procedure and stakeholder support, recent MEPS revisions have generally aimed at only eliminating the bottom 20% efficiency of the market. Setting a firm principle based on maximizing energy savings that are technically feasible and economically justified may help improve the stringency of China’s MEPS program and reduce the need for frequent revisions. China also lacks robust survey data and relies primarily on market research data in

  4. Denture labeling: A new approach

    PubMed Central

    Bansal, Pardeep K.; Sharma, Akshey; Bhanot, Rajesh

    2011-01-01

    The need for denture labeling is important for forensic and social reasons in case patients need to be identified individually. The importance of denture marking has long been acknowledged by the dental profession. Over the years, various denture marking systems have been reported in the literature, but none till date fulfills all the prescribed ADA specifications. A simple, easy, inexpensive procedure for marking accurate identification marks on dentures with a lead foil is described here. The label caring the patient information is incorporated in the acrylic resin during the denture processing. PMID:21957379

  5. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type § 162.028-4 Marine... containing the “marine type” listing manifest issued by a recognized laboratory. This label will include the...

  6. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type § 162.028-4 Marine... containing the “marine type” listing manifest issued by a recognized laboratory. This label will include the...

  7. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type § 162.028-4 Marine... containing the “marine type” listing manifest issued by a recognized laboratory. This label will include the...

  8. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type § 162.028-4 Marine... containing the “marine type” listing manifest issued by a recognized laboratory. This label will include the...

  9. 46 CFR 162.028-4 - Marine type label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Marine type label. 162.028-4 Section 162.028-4 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type § 162.028-4 Marine... containing the “marine type” listing manifest issued by a recognized laboratory. This label will include the...

  10. Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics

    PubMed Central

    Frost, Dustin C.; Greer, Tyler; Xiang, Feng; Liang, Zhidan; Li, Lingjun

    2015-01-01

    Rationale Relative quantification of proteins via their enzymatically digested peptide products determines disease biomarker candidate lists in discovery studies. Isobaric label-based strategies using TMT and iTRAQ allow for up to 10 samples to be multiplexed in one experiment, but their expense limits their use. The demand for cost-effective tagging reagents capable of multiplexing many samples led us to develop an 8-plex version of our isobaric labeling reagent, DiLeu. Methods The original 4-plex DiLeu reagent was extended to an 8-plex set by coupling isotopic variants of dimethylated leucine to an alanine balance group designed to offset the increasing mass of the label’s reporter group. Tryptic peptides from a single protein digest, a protein mixture digest, and Saccharomyces cerevisiae lysate digest were labeled with 8-plex DiLeu and analyzed via nanoLC-MS2 on a Q-Exactive Orbitrap mass spectrometer. Characteristics of 8-plex DiLeu-labeled peptides, including quantitative accuracy and fragmentation, were examined. Results An 8-plex set of DiLeu reagents with 1 Da-spaced reporters was synthesized at a yield of 36%. The average cost to label eight 100 μg peptide samples was calculated to be approximately $15. Normalized collision energy tests on the Q-Exactive revealed that a higher-energy collisional dissociation value of 27 generated the optimum number of high-quality spectral matches. Relative quantification of DiLeu-labeled peptides yielded normalized median ratios accurate to within 12% of their expected values. Conclusions Cost-effective 8-plex DiLeu reagents can be synthesized and applied to relative peptide and protein quantification. These labels increase the multiplexing capacity of our previous 4-plex implementation without requiring high-resolution instrumentation to resolve reporter ion signals. PMID:25981542

  11. Sequence-specific sepsis-related DNA capture and fluorescent labeling in monoliths prepared by single-step photopolymerization in microfluidic devices.

    PubMed

    Knob, Radim; Hanson, Robert L; Tateoka, Olivia B; Wood, Ryan L; Guerrero-Arguero, Israel; Robison, Richard A; Pitt, William G; Woolley, Adam T

    2018-05-21

    Fast determination of antibiotic resistance is crucial in selecting appropriate treatment for sepsis patients, but current methods based on culture are time consuming. We are developing a microfluidic platform with a monolithic column modified with oligonucleotides designed for sequence-specific capture of target DNA related to the Klebsiella pneumoniae carbapenemase (KPC) gene. We developed a novel single-step monolith fabrication method with an acrydite-modified capture oligonucleotide in the polymerization mixture, enabling fast monolith preparation in a microfluidic channel using UV photopolymerization. These prepared columns had a threefold higher capacity compared to monoliths prepared in a multistep process involving Schiff-base DNA attachment. Conditions for denaturing, capture and fluorescence labeling using hybridization probes were optimized with synthetic 90-mer oligonucleotides. These procedures were applied for extraction of a PCR amplicon from the KPC antibiotic resistance gene in bacterial lysate obtained from a blood sample spiked with E. coli. The results showed similar eluted peak areas for KPC amplicon extracted from either hybridization buffer or bacterial lysate. Selective extraction of the KPC DNA was verified by real time PCR on eluted fractions. These results show great promise for application in an integrated microfluidic diagnostic system that combines upstream blood sample preparation and downstream single-molecule counting detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    PubMed

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  13. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    PubMed Central

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  14. Submissions to the Australian and New Zealand Review of Food Labelling Law and Policy support traffic light nutrition labelling.

    PubMed

    White, John; Signal, Louise

    2012-10-01

    Food labels to support healthier choices are an important potential intervention for improving population health by reducing obesity and diet-related disease. This study examines the use of research evidence about traffic light nutrition labelling in submissions to the Review of Food Labelling Law and Policy conducted in Australia and New Zealand. Content analysis of final submissions to the Review and a literature review of documents reporting research evidence about traffic light labelling. Sixty-two submitters to the Review were categorised as 'supporters' of traffic light labelling and 29 as 'opponents'. Supporters focused on studies showing traffic light labels were better than other systems at helping consumers identify healthier food options. Opponents cited evidence that traffic light labels were no better than other systems in this respect and noted a lack of evidence that they led to changes in food consumption. A literature review demonstrated that, as a group, submitters had drawn attention to most of the relevant research evidence on traffic light labelling. Both supporters and opponents were, however, selective in their use of evidence. The weight of evidence suggested that traffic light labelling has strengths in helping consumers to identify healthier food options. Further research would be valuable in informing the development of an interpretive front-of-pack labelling system. The findings have significant implications for the development of front-of-pack nutrition labelling currently being considered in Australia and New Zealand. © 2012 The Authors. ANZJPH © 2012 Public Health Association of Australia.

  15. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  16. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    PubMed

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  17. Disclaimer labels on fashion magazine advertisements: effects on social comparison and body dissatisfaction.

    PubMed

    Tiggemann, Marika; Slater, Amy; Bury, Belinda; Hawkins, Kimberley; Firth, Bonny

    2013-01-01

    Recent proposals across a number of Western countries have suggested that idealised media images should carry some sort of disclaimer informing readers when these images have been digitally enhanced. The present studies aimed to experimentally investigate the impact on women's body dissatisfaction of the addition of such warning labels to fashion magazine advertisements. Participants were 120 and 114 female undergraduate students in Experiment 1 and Experiment 2 respectively. In both experiments, participants viewed fashion magazine advertisements with either no warning label, a generic warning label, or a specific more detailed warning label. In neither experiment was there a significant effect of type of label. However, state appearance comparison was found to predict change in body dissatisfaction irrespective of condition. Unexpectedly, trait appearance comparison moderated the effect of label on body dissatisfaction, such that for women high on trait appearance comparison, exposure to specific warning labels actually resulted in increased body dissatisfaction. In sum, the present results showed no benefit of warning labels in ameliorating the known negative effect of viewing thin-ideal media images, and even suggested that one form of warning (specific) might be harmful for some individuals. Accordingly, it was concluded that more extensive research is required to guide the most effective use of disclaimer labels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating

    NASA Astrophysics Data System (ADS)

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-08-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications.

  19. Flow-aggregated traffic-driven label mapping in label-switching networks

    NASA Astrophysics Data System (ADS)

    Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu

    1998-12-01

    Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.

  20. Information Measures of Degree Distributions with an Application to Labeled Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Purvine, Emilie AH

    2016-01-11

    The problem of describing the distribution of labels over a set of objects is relevant to many domains. For example: cyber security, social media, and protein interactions all care about the manner in which labels are distributed among different objects. In this paper we present three interacting statistical measures on label distributions, inspired by entropy and information theory. Labeled graphs are discussed as a specific case of labels distributed over a set of edges. We describe a use case in cyber security using a labeled directed multi-graph of IPFLOW. Finally we show how these measures respond when labels are updatedmore » in certain ways.« less

  1. Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling.

    PubMed

    Neville, David C A; Coquard, Virginie; Priestman, David A; te Vruchte, Danielle J M; Sillence, Daniel J; Dwek, Raymond A; Platt, Frances M; Butters, Terry D

    2004-08-15

    Interest in cellular glycosphingolipid (GSL) function has necessitated the development of a rapid and sensitive method to both analyze and characterize the full complement of structures present in various cells and tissues. An optimized method to characterize oligosaccharides released from glycosphingolipids following ceramide glycanase digestion has been developed. The procedure uses the fluorescent compound anthranilic acid (2-aminobenzoic acid; 2-AA) to label oligosaccharides prior to analysis using normal-phase high-performance liquid chromatography. The labeling procedure is rapid, selective, and easy to perform and is based on the published method of Anumula and Dhume [Glycobiology 8 (1998) 685], originally used to analyze N-linked oligosaccharides. It is less time consuming than a previously published 2-aminobenzamide labeling method [Anal. Biochem. 298 (2001) 207] for analyzing GSL-derived oligosaccharides, as the fluorescent labeling is performed on the enzyme reaction mixture. The purification of 2-AA-labeled products has been improved to ensure recovery of oligosaccharides containing one to four monosaccharide units, which was not previously possible using the Anumula and Dhume post-derivatization purification procedure. This new approach may also be used to analyze both N- and O-linked oligosaccharides.

  2. Nutrition Label Viewing during a Food-Selection Task: Front-of-Package Labels vs Nutrition Facts Labels.

    PubMed

    Graham, Dan J; Heidrick, Charles; Hodgin, Katie

    2015-10-01

    Earlier research has identified consumer characteristics associated with viewing Nutrition Facts labels; however, little is known about those who view front-of-package nutrition labels. Front-of-package nutrition labels might appeal to more consumers than do Nutrition Facts labels, but it might be necessary to provide consumers with information about how to locate and use these labels. This study quantifies Nutrition Facts and front-of-package nutrition label viewing among American adult consumers. Attention to nutrition information was measured during a food-selection task. One hundred and twenty-three parents (mean age=38 years, mean body mass index [calculated as kg/m(2)]=28) and one of their children (aged 6 to 9 years) selected six foods from a university laboratory-turned-grocery aisle. Participants were randomized to conditions in which front-of-package nutrition labels were present or absent, and signage explaining front-of-package nutrition labels was present or absent. Adults' visual attention to Nutrition Facts labels and front-of-package nutrition labels was objectively measured via eye-tracking glasses. To examine whether there were significant differences in the percentages of participants who viewed Nutrition Facts labels vs front-of-package nutrition labels, McNemar's tests were conducted across all participants, as well as within various sociodemographic categories. To determine whether hypothesized factors, such as health literacy and education, had stronger relationships with front-of-package nutrition label vs Nutrition Facts label viewing, linear regression assessed the magnitude of relationships between theoretically and empirically derived factors and each type of label viewing. Overall, front-of-package nutrition labels were more likely to be viewed than Nutrition Facts labels; however, for all subgroups, higher rates of front-of-package nutrition label viewership occurred only when signage was present drawing attention to the presence and

  3. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-02

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.

  4. Development and testing of a new disposable sterile device for labelling white blood cells.

    PubMed

    Signore, A; Glaudemans, A W J M; Malviya, G; Lazzeri, E; Prandini, N; Viglietti, A L; De Vries, E F J; Dierckx, R A J O

    2012-08-01

    White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well equipped laboratories with trained personnel. We invented, developed and tested a disposable, sterile, closed device for blood manipulation, WBC purification and radionuclide labelling without exposing patient's blood and the operator to contamination risks. This device prototype and a final industrialized device (Leukokit®) were tested for WBC labelling and compared to standard procedure. Leukokit® was also tested in an international multi-centre study for easiness of WBC purification and labelling. On the device prototype we tested in parallel, with blood samples from 7 volunteers, the labelling procedure compared to the standard procedure of the International Society of Radiolabeled Blood Elements (ISORBE) consensus protocol with respect to cell recovery, labelling efficiency (LE), cell viability (Trypan Blue test) and sterility (haemoculture). On the final Leukokit® we tested the biocompatibility of all components, and again the LE, erythro-sedimentation rate, cell viability, sterility and apyrogenicity. ACD-A, HES and PBS provided by Leukokit® were also compared to Heparin, Dextran and autologous plasma, respectively. In 4 samples, we tested the chemotactic activity of purified WBC against 1 mg/ml of lipopolysaccharide (LPS) and chemotaxis of 99mTc-HMPAO-labelled WBC (925 MBq) was compared to that of unlabelled cells. For the multi-centre study, 70 labellings were performed with the Leukokit® by 9 expert operators and 3 beginners from five centers using blood from both patients and volunteers. Finally, Media-Fill tests were performed by 3 operators on two different days (11 procedures) by replacing blood and kit reagents with bacterial culture media (Tryptic Soy Broth

  5. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    PubMed

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  6. Generation and characterization of Tbx1-AmCyan1 transgenic reporter mouse line that selectively labels developing thymus primordium.

    PubMed

    Kimura, Wataru; Sharkar, Mohammad Tofael Kabir; Sultana, Nishat; Islam, Mohammod Johirul; Uezato, Tadayoshi; Miura, Naoyuki

    2013-06-01

    Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.

  7. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging.

    PubMed

    Wang, Yuqi; An, Ruibing; Luo, Zhiliang; Ye, Deju

    2018-04-17

    Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Deep Learning in Label-free Cell Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  9. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  10. Deep Learning in Label-free Cell Classification

    DOE PAGES

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  11. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  12. The legibility of prescription medication labelling in Canada

    PubMed Central

    Ahrens, Kristina; Krishnamoorthy, Abinaya; Gold, Deborah; Rojas-Fernandez, Carlos H.

    2014-01-01

    Introduction: The legibility of medication labelling is a concern for all Canadians, because poor or illegible labelling may lead to miscommunication of medication information and poor patient outcomes. There are currently few guidelines and no regulations regarding print standards on medication labels. This study analyzed sample prescription labels from Ontario, Canada, and compared them with print legibility guidelines (both generic and specific to medication labels). Methods: Cluster sampling was used to randomly select a total of 45 pharmacies in the tri-cities of Kitchener, Waterloo and Cambridge. Pharmacies were asked to supply a regular label with a hypothetical prescription. The print characteristics of patient-critical information were compared against the recommendations for prescription labels by pharmaceutical and health organizations and for print accessibility by nongovernmental organizations. Results: More than 90% of labels followed the guidelines for font style, contrast, print colour and nonglossy paper. However, only 44% of the medication instructions met the minimum guideline of 12-point print size, and none of the drug or patient names met this standard. Only 5% of the labels were judged to make the best use of space, and 51% used left alignment. None of the instructions were in sentence case, as is recommended. Discussion: We found discrepancies between guidelines and current labels in print size, justification, spacing and methods of emphasis. Conclusion: Improvements in pharmacy labelling are possible without moving to new technologies or changing the size of labels and would be expected to enhance patient outcomes. PMID:24847371

  13. Tritium labeling of antisense oligonucleotides by exchange with tritiated water.

    PubMed Central

    Graham, M J; Freier, S M; Crooke, R M; Ecker, D J; Maslova, R N; Lesnik, E A

    1993-01-01

    We describe a simple, efficient, procedure for labeling oligonucleotides to high specific activity (< 1 x 10(8) cpm/mumol) by hydrogen exchange with tritiated water at the C8 positions of purines in the presence of beta-mercaptoethanol, an effective radical scavenger. Approximately 90% of the starting material is recovered as intact, labeled oligonucleotide. The radiolabeled compounds are stable in biological systems; greater than 90% of the specific activity is retained after 72 hr incubation at 37 degrees C in serum-containing media. Data obtained from in vitro cellular uptake experiments using oligonucleotides labeled by this method are similar to those obtained using 35S or 14C-labeled compounds. Because this protocol is solely dependent upon the existence of purine residues, it should be useful for radiolabeling modified as well as unmodified phosphodiester oligonucleotides. Images PMID:8367289

  14. Inulin determination for food labeling.

    PubMed

    Zuleta, A; Sambucetti, M E

    2001-10-01

    Inulin and oligofructose exhibit valuable nutritional and functional attributes, so they are used as supplements as soluble fiber or as macronutrient substitutes. As classic analytical methods for dietary fiber measurement are not effective, several specific methods have been proposed. These methods measure total fructans and are based on one or more enzymatic sample treatments and determination of released sugars. To determine inulin for labeling purposes, we developed an easy and rapid anion-exchange high-performance liquid chromatography (HPLC) method following water extraction of inulin. HPLC conditions included an Aminex HPX- 87C column (Bio-Rad), deionized water at 85 degrees C as the mobile phase and a refractive index detector. The tested foods included tailor-made food products containing known amounts of inulin and commercial products (cookies, milk, ice creams, cheese, and cereal bars). The average recovery was 97%, and the coefficient of variation ranged from 1.1 to 5% in the food matrixes. The obtained results showed that this method provides an easier, faster and cheaper alternative than previous techniques for determining inulin with enough accuracy and precision for routine labeling purposes by direct determination of inulin by HPLC with refractive index detection.

  15. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit

    PubMed Central

    Beshir, Wasiye F.; Mbong, Victor B. M.; Hertog, Maarten L. A. T. M.; Geeraerd, Annemie H.; Van den Ende, Wim; Nicolaï, Bart M.

    2017-01-01

    In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom) using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development. PMID:29093725

  16. What good is labeling what's good? A field experimental investigation of parental labeled praise and child compliance.

    PubMed

    Leijten, Patty; Thomaes, Sander; Orobio de Castro, Bram; Dishion, Thomas J; Matthys, Walter

    2016-12-01

    There is a need to identify the "effective ingredients" of evidence-based behavior therapies. We tested the effects of one of the most common ingredients in parenting interventions for preventing disruptive child behavior, referred to as labeled praise (e.g., "well done picking up your toys"), which is typically recommended in preference to unlabeled praise (e.g., "well done"). We compared the effects of labeled praise, unlabeled praise, and no praise on child compliance in two experiments. Experiment 1 included 161 4 to 8 year-old community sample children and tested immediate effects of praise. Experiment 2 included 132 3 to 9 year-old children with varying levels of disruptive behavior and tested immediate and two-week effects of praise. In Experiment 1, teaching parents to use labeled praise did not increase immediate child compliance, whereas teaching them to use unlabeled praise did. In Experiment 2, teaching parents to use labeled praise for two weeks reduced disruptive child behavior, but this effect was of a similar magnitude to that for unlabeled praise. Parents preferred the use of unlabeled over labeled praise. These findings suggest that parental praise promotes child compliance, but the addition of labeling the specific positive behavior may not be of incremental value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Disentangling the Origin of the Kok Effect Using Position Specific Glucose Labeling in Sunflower Leaves

    NASA Astrophysics Data System (ADS)

    Gauthier, P. P.; Bender, M. L.; Saenz, N.

    2015-12-01

    In plants, leaf mitochondrial respiratory CO2 release is inhibited by light. Bessel Kok first demonstrated this inhibition in 1948. Based on curves of CO2 assimilation vs irradiance, it is understood that respiration is maximal in the dark. It then frequently decreases linearly with irradiance until reaching some value around the compensation point, beyond which it is constant. CO2 released by mitochondrial respiration is the result of decarboxylation through pyruvate dehydrogenase (PDH), the tricarboxylic acid pathway (TCAP) and the oxydative pentose phosphate pathway (OPPP). The overall activity of these three reactions is reduced by light. However, their individual contributions to the Kok effect are unknown. We measured the rate of decarboxylation of glucose, position-specifically labeled with 13C, to evaluate the participation of PDH, TCAP and OPPP in the Kok effect of sunflower. Leaves were fed with labeled glucose through their transpiration stream. The δ13C of the CO2 released by the leaf was then measured as a function of irradiance. The results showed that the inhibition of the decarboxylation of carbon positions 3 and 4 in glucose is at the origin of the Kok effect. These are the positions of carbon atoms decarboxylated by PDH. In addition, the rate of decarboxylation of position 1 was not different in the light and in the dark. Thus OPPP plays no role in the Kok effect in sunflower leaves. This work improves our current understanding of leaf mitochondrial respiratory metabolism in the light. Invoking the Kok effect in plant physiology models should improve our ability to simulate carbon fluxes of terrestrial ecosystems.

  18. Dietary Supplement Label Database (DSLD)

    Science.gov Websites

    Intakes (DRIs) Definitions Frequently Asked Questions (FAQ) Information Sources Release Notes Help Search full label derived information from dietary supplement products marketed in the U.S. with a Web-based user interface that provides ready access to label information. It was developed to serve the research

  19. 64Cu-Labeled Inhibitors of Prostate-Specific Membrane Antigen for PET Imaging of Prostate Cancer

    PubMed Central

    2015-01-01

    Prostate-specific membrane antigen (PSMA) is a well-recognized target for identification and therapy of a variety of cancers. Here we report five 64Cu-labeled inhibitors of PSMA, [64Cu]3–7, which are based on the lysine–glutamate urea scaffold and utilize a variety of macrocyclic chelators, namely NOTA(3), PCTA(4), Oxo-DO3A(5), CB-TE2A(6), and DOTA(7), in an effort to determine which provides the most suitable pharmacokinetics for in vivo PET imaging. [64Cu]3–7 were prepared in high radiochemical yield (60–90%) and purity (>95%). Positron emission tomography (PET) imaging studies of [64Cu]3–7 revealed specific accumulation in PSMA-expressing xenografts (PSMA+ PC3 PIP) relative to isogenic control tumor (PSMA– PC3 flu) and background tissue. The favorable kinetics and high image contrast provided by CB-TE2A chelated [64Cu]6 suggest it as the most promising among the candidates tested. That could be due to the higher stability of [64Cu]CB-TE2A as compared with [64Cu]NOTA, [64Cu]PCTA, [64Cu]Oxo-DO3A, and [64Cu]DOTA chelates in vivo. PMID:24533799

  20. Development of cadmium-free quantum dot for intracellular labelling through electroporation or lipid-calcium-phosphate

    NASA Astrophysics Data System (ADS)

    Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.

    2016-04-01

    Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.

  1. Reductive methods for isotopic labeling of antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champney, W.S.

    1989-08-15

    Methods for the reductive methylation of the amino groups of eight different antibiotics using {sup 3}HCOH or H{sup 14}COH are presented. The reductive labeling of an additional seven antibiotics by NaB{sub 3}H{sub 4} is also described. The specific activity of the methyl-labeled drugs was determined by a phosphocellulose paper binding assay. Two quantitative assays for these compounds based on the reactivity of the antibiotic amino groups with fluorescamine and of the aldehyde and ketone groups with 2,4-dinitrophenylhydrazine are also presented. Data on the cellular uptake and ribosome binding of these labeled compounds are also presented.

  2. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.

    PubMed

    Rowland, Meng M; Bostic, Heidi E; Gong, Denghuang; Speers, Anna E; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F; Best, Michael D

    2011-12-27

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265

  3. Label Review Training: Module 1: Label Basics, Page 21

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about types of labels.

  4. Patient-reported outcomes to support medical product labeling claims: FDA perspective.

    PubMed

    Patrick, Donald L; Burke, Laurie B; Powers, John H; Scott, Jane A; Rock, Edwin P; Dawisha, Sahar; O'Neill, Robert; Kennedy, Dianne L

    2007-01-01

    This article concerns development and use of patient-reported outcomes (PROs) in clinical trials to evaluate medical products. A PRO is any report coming directly from patients, without interpretation by physicians or others, about how they function or feel in relation to a health condition and its therapy. PRO instruments are used to measure these patient reports. PROs provide a unique perspective on medical therapy, because some effects of a health condition and its therapy are known only to patients. Properly developed and evaluated PRO instruments also have the potential to provide more sensitive and specific measurements of the effects of medical therapies, thereby increasing the efficiency of clinical trials that attempt to measure the meaningful treatment benefits of those therapies. Poorly developed and evaluated instruments may provide misleading conclusions or data that cannot be used to support product labeling claims. We review selected major challenges from Food and Drug Administration's perspective in using PRO instruments, measures, and end points to support treatment benefit claims in product labeling. These challenges highlight the need for sponsors to formulate desired labeling claim(s) prospectively, to acquire and document information needed to support these claim(s), and to identify existing instruments or develop new and more appropriate PRO instruments for evaluating treatment benefit in the defined population in which they will seek claims.

  5. Development and evaluation of pictograms on medication labels for patients with limited literacy skills in a culturally diverse multiethnic population.

    PubMed

    Kheir, Nadir; Awaisu, Ahmed; Radoui, Amina; El Badawi, Aya; Jean, Linda; Dowse, Ros

    2014-01-01

    Much of the migrant workforce in Qatar is of low literacy level and does not understand Arabic or English, presenting a significant challenge to health care professionals. Medicine labels are typically in Arabic and English and are therefore poorly understood by these migrant workers. To develop pictograms illustrating selected medicine label instructions and to evaluate comprehension of the pictograms or conventional text supported with verbal instructions in foreign workers with low literacy skills. A range of common labeling instructions were identified and pictograms depicting these were developed using visual concepts and ideas from the literature. The process involved a consultative approach with input from the researchers, a local graphic artist, and members of the target population. The final set was evaluated for comprehension in participants who were randomized to one of three study groups: text plus verbal instructions, pictogram-only label, and pictogram with verbal instructions. One-way ANOVA and Chi-square tests were used to assess differences between group variables. Statistical significance was set at P ≤ 0.05. Of 23 label instructions screened, 11 were selected for the study. A total of 123 participants took part in this study. Pictogram plus verbal instructions group achieved better results in interpreting the majority of the label instructions (P ≤ 0.05). The best interpreted pictograms with verbal instructions included: "Take two tablets three times a day," "Take one tablet in the morning and one tablet at night," and "Instill one drop in the eye." The worst interpreted pictograms with verbal instructions were: "Do not take with dairy products" and "Do not use by mouth." Some pictograms were difficult to interpret even when accompanied with verbal instructions, suggesting the need to thoroughly pilot them among users prior to implementation. Medication labels consisting of simple pictorials supported by verbal instructions were better

  6. Label Review Training: Module 1: Label Basics, Page 20

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section focuses on supplemental labeling.

  7. Label Review Training: Module 1: Label Basics, Page 22

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about what labels require review.

  8. Label Review Training: Module 1: Label Basics, Page 19

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section covers supplemental distributor labeling.

  9. User Interface Technology for Formal Specification Development

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  10. 16 CFR 305.11 - Labeling for refrigerators, refrigerator-freezers, freezers, dishwashers, clothes washers, water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... immediate consumer recognition and readability. Trim size dimensions for all labels shall be as follows... on the label. Specific sizes and faces to be used are indicated on the prototype labels. No...

  11. Label Review Training: Module 1: Label Basics, Page 18

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section discusses the types of labels.

  12. Label Review Training: Module 1: Label Basics, Page 26

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about mandatory and advisory label statements.

  13. Label Review Training: Module 1: Label Basics, Page 15

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the consequences of improper labeling.

  14. Label Review Training: Module 1: Label Basics, Page 14

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about positive effects from proper labeling.

  15. Label-free imaging and spectroscopy for early detection of cervical cancer.

    PubMed

    Jing, Yueyue; Wang, Yulan; Wang, Xinyi; Song, Chuan; Ma, Jiong; Xie, Yonghui; Fei, Yiyan; Zhang, Qinghua; Mi, Lan

    2018-05-01

    The label-free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label-free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    PubMed

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  17. 46 CFR 162.028-7 - Procedure for listing and labeling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and motorboats may make application for listing and labeling as a marine-type portable fire..., AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type § 162.028-7 Procedure for listing and labeling. (a) Manufacturers having a marine-type portable...

  18. Label Review Training: Module 1: Label Basics, Page 24

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is about which labels require review.

  19. Label Review Training: Module 1: Label Basics, Page 17

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See an overview of the importance of labels.

  20. Label Review Training: Module 1: Label Basics, Page 27

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See examples of mandatory and advisory label statements.

  1. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples.

    PubMed

    Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok

    2015-08-04

    Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.

  2. Protein labelling: Playing tag with proteins

    NASA Astrophysics Data System (ADS)

    Romanini, Dante W.; Cornish, Virginia W.

    2012-04-01

    Fluorescent labels can now be attached to a specific protein on the surface of live cells using a two-step method that reacts a norbornene -- introduced using genetic encoding -- with a variety of dyes.

  3. Label Review Training: Module 1: Label Basics, Page 23

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Lists types of labels that do not require review.

  4. Development of a (99m)Tc-labeled lactam bridge-cyclized alpha-MSH derivative peptide as a possible single photon imaging agent for melanoma tumors.

    PubMed

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad

    2015-10-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.

  5. Site-Specific 64Cu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N3), Using Copper Free Click Chemistry.

    PubMed

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H; Petersen, Lars C; Kristensen, Jesper B; Behrens, Carsten; Madsen, Jacob; Kjaer, Andreas

    2018-01-17

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with 64 Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration, and survival of cancer cells. First a single azide moiety was introduced in the active site of this 50 kDa protease. Then a NOTA moiety was introduced via a strain promoted azide-alkyne reaction and the corresponding conjugate was labeled with 64 Cu. Binding to TF and the stability was evaluated in vitro. TF targeting capability of the radiolabeled conjugate was tested in vivo by positron emission tomography (PET) imaging in pancreatic human xenograft cancer mouse models with various TF expressions. The conjugate showed good stability (>91% at 16 h), an immunoreactivity of 93.5%, and a mean tumor uptake of 2.1 ± 0.2%ID/g at 15 h post injection. In conclusion, FVIIai was radiolabeled with 64 Cu in single well-defined position of the protein. This method can be utilized to prepare conjugates from serine proteases with the label at a specific position.

  6. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.

    PubMed

    Ma, Jin-Liang; Yin, Bin-Cheng; Le, Huynh-Nhu; Ye, Bang-Ce

    2015-06-17

    We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved.

  7. Label Review Training: Module 1: Label Basics, Page 16

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the importance of labels and the role in enforcement.

  8. 16 CFR 300.15 - Labeling of containers or packaging of wool products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Labeling of containers or packaging of wool products. 300.15 Section 300.15 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.15...

  9. [Usage of food and beverage labels by supermarket shoppers in Brasilia, Brazil].

    PubMed

    Monteiro, Renata Alves; Coutinho, Janine Giuberti; Recine, Elisabetta

    2005-09-01

    To investigate whether adults who shop in supermarkets in one part of Brasilia, the capital city of Brazil, use the information contained in food and beverage labels, as well as to characterize this usage. This study was done in five supermarkets in the Plano Piloto (Pilot Plan) central core area of Brasilia. The research was carried out in two stages: (1) a quantitative stage, based on a cross-sectional study, during which 250 individuals were randomly selected and surveyed in the supermarkets; and (2) a qualitative stage, in which 25 individuals who had participated in the first stage underwent more extensive individual interviews. Of the 250 persons surveyed, 187 of them (74.8%) reported that they usually read food and beverage labels. However, only 25.7% of the consumers who consulted the labels did so for all foods and beverages. Of the persons who read the labels, the majority (59.9%) only read the labels for specific foods, including milk, dairy products, canned foods, sausages, and diet products. The information that shoppers most often wanted to know from the labels was the number of calories and the fat and sodium content. Our study shows the need to utilize our findings in improving the existing educational strategies for promoting healthy eating. We suggest that consumers, food producers, and food distributors all be involved in developing strategies for nutrition education.

  10. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  11. A novel facile method of labeling octreotide with (18)F-fluorine.

    PubMed

    Laverman, Peter; McBride, William J; Sharkey, Robert M; Eek, Annemarie; Joosten, Lieke; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C

    2010-03-01

    Several methods have been developed to label peptides with (18)F. However, in general these are laborious and require a multistep synthesis. We present a facile method based on the chelation of (18)F-aluminum fluoride (Al(18)F) by 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The method is characterized by the labeling of NOTA-octreotide (NOTA-d-Phe-cyclo[Cys-Phe-d-Trp-Lys-Thr-Cys]-Throl (MH(+) 1305) [IMP466]) with (18)F. Octreotide was conjugated with the NOTA chelate and labeled with (18)F in a 2-step, 1-pot method. The labeling procedure was optimized with regard to the labeling buffer, peptide, and aluminum concentration. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice and compared with that of (68)Ga-labeled IMP466. In addition, small-animal PET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 50% yield. The labeled product was purified by high-performance liquid chromatography to remove unbound Al(18)F and unlabeled peptide. The radiolabeling, including purification, was performed in 45 min. The specific activity was 45,000 GBq/mmol, and the peptide was stable in serum for 4 h at 37 degrees C. Labeling was performed at pH 4.1 in sodium citrate, sodium acetate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 2-(N-morpholino)ethanesulfonic acid buffer and was optimal in sodium acetate buffer. The apparent 50% inhibitory concentration of the (19)F-labeled IMP466 determined on AR42J cells was 3.6 nM. Biodistribution studies at 2 h after injection showed a high tumor uptake of (18)F-IMP466 (28.3 +/- 5.2 percentage injected dose per gram [%ID/g]; tumor-to-blood ratio, 300 +/- 90), which could be blocked by an excess of unlabeled peptide (8.6 +/- 0.7 %ID/g), indicating that the accumulation in the tumor was receptor-mediated. Biodistribution of (68)Ga-IMP466 was similar to that of (18)F-IMP466. (18)F

  12. The efficiency of 18F labelling of a prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity.

    PubMed

    Wang, Mengzhe; McNitt, Christopher D; Wang, Hui; Ma, Xiaofen; Scarry, Sarah M; Wu, Zhanhong; Popik, Vladimir V; Li, Zibo

    2018-06-27

    Here we report the 18F labeling of a prostate specific membrane antigen (PSMA) ligand via a strain promoted oxa-dibenzocyclooctyne (ODIBO)- or bicyclo[6.1.0]nonyne (BCN)-azide reaction. Although ODIBO reacts with azide 20 fold faster than BCN, in vivo PET imaging suggests that 18F-BCN-azide-PSMA demonstrated much higher tumor uptake and a much higher tumor to background contrast.

  13. [Visualization and Functional Regulation of Live Cell Proteins Based on Labeling Probe Design].

    PubMed

    Mizukami, Shin; Kikuchi, Kazuya

    2016-01-01

      There are several approaches to understanding the physiological roles of biomolecules: (1) by observing the localization or activities of biomolecules (based on microscopic imaging experiments with fluorescent proteins or fluorescent probes) and (2) by investigating the cellular response via activation or suppression of functions of the target molecule (by using inhibitors, antagonists, siRNAs, etc.). In this context, protein-labeling technology serves as a powerful tool that can be used in various experiments, such as for fluorescence imaging of target proteins. Recently, we developed a protein-labeling technology that uses a mutant β-lactamase (a bacterial hydrolase) as the tag protein. In this protein-labeling technology, also referred to as the BL-tag technology, various β-lactam compounds were used as specific ligands that were covalently labeled to the tag. One major advantage of this labeling technology is that various functions can be carried out by suitably designing both the functional moieties such as the fluorophore and the β-lactam ligand structure. In this review, we briefly introduce the BL-tag technology and describe our future outlook for this technology, such as in fluorescence imaging of biomolecules and functional regulation of cellular proteins in living cells.

  14. 2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification

    PubMed Central

    2016-01-01

    Photoaffinity labels are powerful tools for dissecting ligand–protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C–H/X–H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery. PMID:27740749

  15. 2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification.

    PubMed

    Herner, András; Marjanovic, Jasmina; Lewandowski, Tracey M; Marin, Violeta; Patterson, Melanie; Miesbauer, Laura; Ready, Damien; Williams, Jon; Vasudevan, Anil; Lin, Qing

    2016-11-09

    Photoaffinity labels are powerful tools for dissecting ligand-protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C-H/X-H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery.

  16. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    PubMed

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. FLUORESCENT IN SITU DETECTION OF ENCEPHALITOZOON HELLEM SPORES WITH A 6-CARBOXYFLUORESCEIN-LABELED RNA-TARGETED OLIGONUCLEOTIDE PROBE

    EPA Science Inventory

    A fluorescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem, in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligo...

  18. Obstacles to nutrition labeling in restaurants.

    PubMed

    Almanza, B A; Nelson, D; Chai, S

    1997-02-01

    This study determined the major obstacles that foodservices face regarding nutrition labeling. Survey questionnaire was conducted in May 1994. In addition to demographic questions, the directors were asked questions addressing willingness, current practices, and perceived obstacles related to nutrition labeling. Sixty-eight research and development directors of the largest foodservice corporations as shown in Restaurants & Institutions magazine's list of the top 400 largest foodservices (July 1993). P tests were used to determine significance within a group for the number of foodservices that were currently using nutrition labeling, perceived impact of nutrition labeling on sales, and perceived responsibility to add nutrition labels. Regression analysis was used to determine the importance of factors on willingness to label. Response rate was 45.3%. Most companies were neutral about their willingness to use nutrition labeling. Two thirds of the respondents were not currently using nutrition labels. Only one third thought that it was the foodservice's responsibility to provide such information. Several companies perceived that nutrition labeling would have a potentially negative effect on annual sales volume. Major obstacles were identified as menu or personnel related, rather than cost related. Menu-related obstacles included too many menu variations, limited space on the menu for labeling, and loss of flexibility in changing the menu. Personnel-related obstacles included difficulty in training employees to implement nutrition labeling, and not enough time for foodservice personnel to implement nutrition labeling. Numerous opportunities will be created for dietetics professionals in helping foodservices overcome these menu- or personnel-related obstacles.

  19. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  20. Searching for flavor labels in food products: the influence of color-flavor congruence and association strength.

    PubMed

    Velasco, Carlos; Wan, Xiaoang; Knoeferle, Klemens; Zhou, Xi; Salgado-Montejo, Alejandro; Spence, Charles

    2015-01-01

    Prior research provides robust support for the existence of a number of associations between colors and flavors. In the present study, we examined whether congruent (vs. incongruent) combinations of product packaging colors and flavor labels would facilitate visual search for products labeled with specific flavors. The two experiments reported here document a Stroop-like effect between flavor words and packaging colors. The participants were able to search for packaging flavor labels more rapidly when the color of the packaging was congruent with the flavor label (e.g., red/tomato) than when it was incongruent (e.g., yellow/tomato). In addition, when the packaging color was incongruent, those flavor labels that were more strongly associated with a specific color yielded slower reaction times and more errors (Stroop interference) than those that were less strongly tied to a specific color. Importantly, search efficiency was affected both by color/flavor congruence and association strength. Taken together, these results therefore highlight the role of color congruence and color-word association strength when it comes to searching for specific flavor labels.

  1. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  2. Subjective Responses to Emotional Stimuli During Labeling, Reappraisal, and Distraction

    PubMed Central

    Lieberman, Matthew D.; Inagaki, Tristen K.; Tabibnia, Golnaz; Crockett, Molly J.

    2011-01-01

    Although multiple neuroimaging studies suggest that affect labeling (i.e., putting feelings into words) can dampen affect-related responses in the amygdala, the consequences of affect labeling have not been examined in other channels of emotional responding. We conducted four studies examining the effect of affect labeling on self-reported emotional experience. In study one, self-reported distress was lower during affect labeling, compared to passive watching, of negative emotional pictures. Studies two and three added reappraisal and distraction conditions, respectively. Affect labeling showed similar effects on self-reported distress as both of these intentional emotion regulation strategies. In each of the first three studies, however, participant predictions about the effects of affect labeling suggest that unlike reappraisal and distraction, people do not believe affect labeling to be an effective emotion regulation strategy. Even after having the experience of affect labels leading to lower distress, participants still predicted that affect labeling would increase distress in the future. Thus, affect labeling is best described as an incidental emotion regulation process. Finally, study four employed positive emotional pictures and here, affect labeling was associated with diminished self-reported pleasure, relative to passive watching. This suggests that affect labeling tends to dampen affective responses in general, rather than specifically alleviating negative affect. PMID:21534661

  3. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells.

    PubMed

    Ackerman, G A; Wolken, K W

    1981-10-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.

  4. Phosphatidylinositol (3,4,5)-Trisphosphate Activity Probes for the Labeling and Proteomic Characterization of Protein Binding Partners

    PubMed Central

    Rowland, Meng M.; Bostic, Heidi E.; Gong, Denghuang; Speers, Anna E.; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F.; Best, Michael D.

    2013-01-01

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane-association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins as well as a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by on-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analog as well as through protein denaturation, indicating specific labeling. In addition, probes featuring different linker lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts, labeled proteins were observed by in-gel detection and characterized using post-labeling with biotin, affinity chromatography and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins

  5. Sika deer (Cervus nippon)-specific real-time PCR method to detect fraudulent labelling of meat and meat products.

    PubMed

    Kaltenbrunner, Maria; Hochegger, Rupert; Cichna-Markl, Margit

    2018-05-08

    Since game meat is more valuable and expensive than meat from domesticated animal species it is a potential target for adulteration. Analytical methods must allow the identification and quantification of meat species to be applicable for the detection of fraudulent labelling. We developed a real-time PCR assay for the authentication of sika deer (Cervus nippon) and products thereof. The primer/probe system amplifies a 71 bp fragment of the kappa-casein precursor gene. Since the target sequence contained only one sika deer-specific base, we introduced a deliberate base mismatch in the forward primer. The real-time PCR assay did not show cross-reactivity with 19 animal and 49 plant species tested. Low cross-reactivity was observed with red deer, fallow deer, reindeer and moose. However, with a ΔCt value of ≥11.79 between sika deer and the cross-reacting species, cross-reactivity will not affect the accuracy of the method. LOD and LOQ, determined by analysing serial dilutions of a DNA extract containing 1% (w/w) sika deer DNA in pig DNA, were 0.3% and 0.5%, respectively. The accuracy was evaluated by analysing DNA mixtures and DNA isolates from meat extract mixtures and meat mixtures. In general, recoveries were in the range from 70 to 130%.

  6. DNA-labeled clay: A sensitive new method for tracing particle transport

    USGS Publications Warehouse

    Mahler, B.J.; Winkler, M.; Bennett, P.; Hillis, D.M.

    1998-01-01

    The behavior of mobile colloids and sediment in most natural environments remains poorly understood, in part because characteristics of existing sediment tracers limit their wide-spread use. Here we describe the development of a new approach that uses a DNA-labeled montmorillonite clay as a highly sensitive and selective sediment tracer that can potentially characterize sediment and colloid transport in a wide variety of environments, including marine, wetland, ground-water, and atmospheric systems. Characteristics of DNA in natural systems render it unsuitable as an aqueous tracer but admirably suited as a label for tracing particulates. The DNA-labeled-clay approach, using techniques developed from molecular biology, has extremely low detection limits, very specific detection, and a virtually infinite number of tracer signatures. Furthermore, DNA-labeled clay has the same physical characteristics as the particles it is designed to trace, it is environmentally benign, and it can be relatively inexpensively produced and detected. Our initial results show that short (500 base pair) strands of synthetically produced DNA reversibly adsorb to both Na-montmorillonite and powdered silica surfaces via a magnesium bridge. The DNA-montmorillonite surface complexes are stable in calcium-bicarbonate spring waters for periods of up to 18 days and only slowly desorb to the aqueous phase, whereas the silica surface complex is stable only in distilled water. Both materials readily release the adsorbed DNA in dilute EDTA solutions for amplification by the polymerase chain reaction (PCR) and quantification. The stability of the DNA-labeled clay complex suggests that this material would be appropriate for use as an extremely sensitive sediment tracer for flow periods of as long as 2 weeks, and possibly longer.

  7. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  8. An ultrasensitive label-free biosensor for assaying of sequence-specific DNA-binding protein based on amplifying fluorescent conjugated polymer.

    PubMed

    Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei

    2013-03-15

    Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. 21 CFR 660.55 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... identify antibody specificities other than anti-IgG and anti-C3d but the reactivity of the Anti-Human... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Anti-Human Globulin § 660.55 Labeling. In addition...

  10. 21 CFR 660.55 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identify antibody specificities other than anti-IgG and anti-C3d but the reactivity of the Anti-Human... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Anti-Human Globulin § 660.55 Labeling. In addition...

  11. 21 CFR 660.55 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identify antibody specificities other than anti-IgG and anti-C3d but the reactivity of the Anti-Human... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Anti-Human Globulin § 660.55 Labeling. In addition...

  12. 21 CFR 660.55 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identify antibody specificities other than anti-IgG and anti-C3d but the reactivity of the Anti-Human... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Anti-Human Globulin § 660.55 Labeling. In addition...

  13. Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy.

    PubMed

    Ding, Bei; Laaser, Jennifer E; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T; Chen, Zhan

    2013-11-27

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.

  14. Site-specific Orientation of an α-helical Peptide Ovispirin-1 from Isotope Labeled SFG Spectroscopy

    PubMed Central

    Ding, Bei; Laaser, Jennifer E.; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T.; Chen, Zhan

    2013-01-01

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single isotope labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138 degrees from the surface normal, and the transition dipole of the isotope labeled C=O group is tilted at 23 degrees from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrated that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution. PMID:24228619

  15. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    PubMed

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  16. Development of a novel, fibrin-specific PET tracer.

    PubMed

    van Mourik, Tiemen R; Claesener, Michael; Nicolay, Klaas; Grüll, Holger

    2017-05-30

    Fibrin deposition is observed in several diseases such as atherosclerosis, deep vein thrombosis, and also tumors, where it contributes to the formation of mature tumor stroma. The aim of this study was to develop a gallium-labeled peptide tracer on the basis of the fibrin-targeting peptide Epep for PET imaging of fibrin deposition. For this purpose, the peptide Epep was modified with a NOTA moiety for radiolabeling with 67 Ga and 68 Ga and compared with the earlier validated 111 In-DOTA-Epep tracer. In vitro binding assays of 67 Ga-NOTA-Epep displayed an enhanced retention as compared to previously published data showing binding of 111 In-DOTA-Epep to human (84.0 ± 0.6 vs 66.6 ± 1.4 %Dose) and mouse derived fibrin clots (83.5 ± 1.7 vs 74.2 ± 2.4% Dose). In vivo blood kinetics displayed a bi-phasic elimination profile (t 1/2 , α  = 2.6 ± 1.0 minutes and t 1/2 , β  = 15.8 ± 1.3 minutes) and ex vivo biodistribution showed low blood values at 4 hours post injection and a low uptake in nontarget tissue (<0.2 %ID/g; kidneys, 1.9%ID/g). In conclusion, taking into account the ease of radiolabeling and the promising in vitro and in vivo studies, gallium-labeled Epep displays the potential for further development towards a PET tracer for fibrin deposition. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Developing a Community of Critically Literate Consumers . . . One Close Label-Reading at a Time

    ERIC Educational Resources Information Center

    Reissman, Rose Cherie

    2012-01-01

    This article focuses on middle school students analyzing product labels. The labels were analyzed in terms of which facts they purported to impart and to what extent these so-called facts tallied with actual data and scientific/health analyses of the products. Students then reworded the labels to include only documented facts. They also shared the…

  18. Fluorine-18 labeled tracers for PET studies in the neurosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yu-Shin; Fowler, J.S.

    This chapter focuses on fluorine-18, the positron emitter with the longest half-life, the lowest positron energy and probably, the most challenging chemistry. The incorporation of F-18 into organic compounds presents many challenges, including: the need to synthesize and purify the compound within a 2--3 hour time frame; the limited number of labeled precursor molecules; the need to work on a microscale; and the need to produce radiotracers which are chemically and radiochemically pure, sterile and pyrogen-free, and suitable for intravenous injection. The PET method and F-18 labeling of organic molecules are described followed by highlights of the applications of F-18more » labeled compounds in the neurosciences and neuropharmacology. It is important to emphasize the essential and pivotal role that organic synthesis has played in the progression of the PET field over the past twenty years from one in which only a handful of institutions possessed the instrumentation and staff to carry out research to the present-day situation where there are more than 200 PET centers worldwide. During this period PET has become an important scientific tool in the neurosciences, cardiology and oncology. It is important to point out that PET is by no means a mature field. The fact that a hundreds of different F-18 labeled compounds have been developed but only a few possess the necessary selectivity and sensitivity in vivo to track a specific biochemical process illustrates this and underscores a major difficulty in radiotracer development, namely the selection of priority structures for synthesis and the complexities of the interactions between chemical compounds and living systems. New developments in rapid organic synthesis are needed in order to investigate new molecular targets and to improve the quantitative nature of PET experiments.« less

  19. Progress in developing analytical and label-based dietary supplement databases at the NIH Office of Dietary Supplements

    PubMed Central

    Dwyer, Johanna T.; Picciano, Mary Frances; Betz, Joseph M.; Fisher, Kenneth D.; Saldanha, Leila G.; Yetley, Elizabeth A.; Coates, Paul M.; Milner, John A.; Whitted, Jackie; Burt, Vicki; Radimer, Kathy; Wilger, Jaimie; Sharpless, Katherine E.; Holden, Joanne M.; Andrews, Karen; Roseland, Janet; Zhao, Cuiwei; Schweitzer, Amy; Harnly, James; Wolf, Wayne R.; Perry, Charles R.

    2013-01-01

    Although an estimated 50% of adults in the United States consume dietary supplements, analytically substantiated data on their bioactive constituents are sparse. Several programs funded by the Office of Dietary Supplements (ODS) at the National Institutes of Health enhance dietary supplement database development and help to better describe the quantitative and qualitative contributions of dietary supplements to total dietary intakes. ODS, in collaboration with the United States Department of Agriculture, is developing a Dietary Supplement Ingredient Database (DSID) verified by chemical analysis. The products chosen initially for analytical verification are adult multivitamin-mineral supplements (MVMs). These products are widely used, analytical methods are available for determining key constituents, and a certified reference material is in development. Also MVMs have no standard scientific, regulatory, or marketplace definitions and have widely varying compositions, characteristics, and bioavailability. Furthermore, the extent to which actual amounts of vitamins and minerals in a product deviate from label values is not known. Ultimately, DSID will prove useful to professionals in permitting more accurate estimation of the contribution of dietary supplements to total dietary intakes of nutrients and better evaluation of the role of dietary supplements in promoting health and well-being. ODS is also collaborating with the National Center for Health Statistics to enhance the National Health and Nutrition Examination Survey dietary supplement label database. The newest ODS effort explores the feasibility and practicality of developing a database of all dietary supplement labels marketed in the US. This article describes these and supporting projects. PMID:25346570

  20. MEASURING OF PROTEIN SYNTHESIS USING METABOLIC 2H-LABELING, HIGH-RESOLUTION MASS SPECTROMETRY AND AN ALGORITHM

    PubMed Central

    Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen

    2013-01-01

    We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107

  1. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    PubMed

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  2. Consumer preferences for food allergen labeling.

    PubMed

    Marra, Carlo A; Harvard, Stephanie; Grubisic, Maja; Galo, Jessica; Clarke, Ann; Elliott, Susan; Lynd, Larry D

    2017-01-01

    Food allergen labeling is an important tool to reduce risk of exposure and prevent anaphylaxis for individuals with food allergies. Health Canada released a Canadian food allergen labeling regulation (2008) and subsequent update (2012) suggesting that research is needed to guide further iterations of the regulation to improve food allergen labeling and reduce risk of exposure. The primary objective of this study was to examine consumer preferences in food labeling for allergy avoidance and anaphylaxis prevention. A secondary objective was to identify whether different subgroups within the consumer population emerged. A discrete choice experiment using a fractional factorial design divided into ten different versions with 18 choice-sets per version was developed to examine consumer preferences for different attributes of food labeling. Three distinct subgroups of Canadian consumers with different allergen considerations and food allergen labeling needs were identified. Overall, preferences for standardized precautionary and safety symbols at little or no increased cost emerged. While three distinct groups with different preferences were identified, in general the results revealed that the current Canadian food allergen labeling regulation can be improved by enforcing the use of standardized precautionary and safety symbols and educating the public on the use of these symbols.

  3. Interpreting labels of abuse-deterrent opioid analgesics.

    PubMed

    Webster, Lynn R

    To provide an overview of available abuse-deterrent opioids (ADOs) and the labeling text that describes abuse-deterrent (AD) properties. A nonsystematic review of ADO literature and regulatory documents guiding their development. A critical assessment and discussion of common routes of opioid abuse, AD methods and properties, US Food and Drug Administration (FDA) study requirements to achieve AD labeling, and brief guide to understanding AD labels. The FDA has issued guidance as incentive and direction to industry to develop ADOs as one component of a multi-pronged public-health strategy to combat opioid abuse and misuse. The guidance describes separate categories of premarket and postmarket studies and makes recommendations for claims that may be made based on study findings. Ten ADOs have FDA-approved labeling attesting to AD properties. Available formulations that fail to conform to FDA guidance in study and labeling recommendations cannot be considered ADO. Formulations with AD properties are expected to reduce risk compared to the same agents without AD properties but cannot prevent all abuse and adverse clinical outcomes.

  4. Probabilistic atlas based labeling of the cerebral vessel tree

    NASA Astrophysics Data System (ADS)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  5. The Role of Linguistic Labels in Inductive Generalization

    ERIC Educational Resources Information Center

    Deng, W.; Sloutsky, Vladimir M.

    2013-01-01

    What is the role of linguistic labels in inductive generalization? According to one approach labels denote categories and differ from object features, whereas according to another approach labels start out as features and may become category markers in the course of development. This issue was addressed in four experiments with 4- and 5-year-olds…

  6. Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.

    PubMed

    Sunbul, Murat; Nacheva, Lora; Jäschke, Andres

    2015-08-19

    Labeling of proteins with fluorescent dyes in live cells enables the investigation of their roles in biological systems by fluorescence microscopy. Because the labeling procedure should not disturb the native function of the protein of interest, it is of high importance to find the optimum labeling method for the problem to be studied. Here, we developed a rapid one-step method to covalently and site-specifically label proteins with a TexasRed fluorophore in vitro and in live bacteria. To this end, a genetically encodable TexasRed fluorophore-binding peptide (TR512) was converted into a reactive tag (ReacTR) by adjoining a cysteine residue which rapidly reacts with N-α-chloroacetamide-conjugated TexasRed fluorophore owing to the proximity effect; ReacTR tag first binds to the TexasRed fluorophore and this interaction brings the nucleophilic cysteine and the electrophilic N-α-chloroacetamide groups in close proximity. Our method has several advantages over existing methods: (i) it utilizes a peptide tag much smaller than fluorescent proteins, the SNAP, CLIP, or HaLo tags; (ii) it allows for labeling of proteins with a small, photostable, red-emitting TexasRed fluorophore; (iii) the probe used is very easy to synthesize; (iv) no enzyme is required to transfer the fluorophore to the peptide tag; and (v) labeling yields a stable covalent product in a very fast reaction.

  7. Simulation of spin label structure and its implication in molecular characterization

    PubMed Central

    Fajer, Piotr; Fajer, Mikolai; Zawrotny, Michael; Yang, Wei

    2016-01-01

    Interpretation of EPR from spin labels in terms of structure and dynamics requires knowledge of label behavior. General strategies were developed for simulation of labels used in EPR of proteins. The criteria for those simulations are: (a) exhaustive sampling of rotamer space; (b) consensus of results independent of starting points; (c) inclusion of entropy. These criteria are satisfied only when the number of transitions in any dihedral angle exceeds 100 and the simulation maintains thermodynamic equilibrium. Methods such as conventional MD do not efficiently cross energetic barriers, Simulated Annealing, Monte Carlo or popular Rotamer Library methodologies are potential energy based and ignore entropy (in addition to their specific shortcomings: environment fluctuations, fixed environment or electrostatics). Simulated Scaling method, avoids above flaws by modulating the forcefields between 0 (allowing crossing energy barriers) and full potential (sampling minima). Spin label diffuses on this surface while remaining in thermodynamic equilibrium. Simulations show that: (a) single conformation is rare, often there are 2–4 populated rotamers; (b) position of the NO varies up to 16Å. These results illustrate necessity for caution when interpreting EPR signals in terms of molecular structure. For example the 10–16Å distance change in DEER should not be interpreted as a large conformational change, it can well be a flip about Cα -Cβ bond. Rigorous exploration of possible rotamer structures of a spin label is paramount in signal interpretation. We advocate use of bifunctional labels, which motion is restricted 10,000-fold and the NO position is restricted to 2–5Å. PMID:26478501

  8. 21 CFR 201.57 - Specific requirements on content and format of labeling for human prescription drug and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 201.56(b)(1) and must be implemented according to the schedule specified in § 201.56(c), except for the requirement in paragraph (c)(18) of this section to reprint any FDA-approved patient labeling at... to the labeling sections described in paragraphs (c)(1), (c)(2), (c)(3), (c)(5), and (c)(6) of this...

  9. 21 CFR 201.57 - Specific requirements on content and format of labeling for human prescription drug and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 201.56(b)(1) and must be implemented according to the schedule specified in § 201.56(c), except for the requirement in paragraph (c)(18) of this section to reprint any FDA-approved patient labeling at... to the labeling sections described in paragraphs (c)(1), (c)(2), (c)(3), (c)(5), and (c)(6) of this...

  10. Development of genomic microsatellite multiplex PCR using dye-labeled universal primer and its validation in pedigree analysis of Pacific oyster ( Crassostrea gigas)

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Li, Qi; Song, Junlin; Yu, Hong

    2017-02-01

    There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.

  11. Experience with the use of the Codonics Safe Label System(™) to improve labelling compliance of anaesthesia drugs.

    PubMed

    Ang, S B L; Hing, W C; Tung, S Y; Park, T

    2014-07-01

    The Codonics Safe Labeling System(™) (http://www.codonics.com/Products/SLS/flash/) is a piece of equipment that is able to barcode scan medications, read aloud the medication and the concentration and print a label of the appropriate concentration in the appropriate colour code. We decided to test this system in our facility to identify risks, benefits and usability. Our project comprised a baseline survey (25 anaesthesia cases during which 212 syringes were prepared from 223 drugs), an observational study (47 cases with 330 syringes prepared) and a user acceptability survey. The baseline compliance with all labelling requirements was 58%. In the observational study the compliance using the Codonics system was 98.6% versus 63.8% with conventional labelling. In the user acceptability survey the majority agreed the Codonics machine was easy to use, more legible and adhered with better security than the conventional preprinted label. However, most were neutral when asked about the likelihood of flexibility and customisation and were dissatisfied with the increased workload. Our findings suggest that the Codonics labelling machine is user-friendly and it improved syringe labelling compliance in our study. However, staff need to be willing to follow proper labelling workflow rather than batch label during preparation. Future syringe labelling equipment developers need to concentrate on user interface issues to reduce human factor and workflow problems. Support logistics are also an important consideration prior to implementation of any new labelling system.

  12. Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus.

    PubMed

    Yu, Cui; Yang, Cuiyun; Song, Shaoyi; Yu, Zixiang; Zhou, Xueping; Wu, Jianxiang

    2018-04-04

    Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.

  13. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    PubMed Central

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  14. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  15. Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan

    2008-03-01

    China first adopted minimum energy performance standards (MEPS) in 1989. Today, there are standards for a wide range of domestic, commercial and selected industrial equipment. In 1999, China launched a voluntary endorsement label, which has grown to cover over 40 products including water-saving products (See Figure 1). Further, in 2005, China started a mandatory energy information label (also referred to as the 'Energy Label'). Today, the Energy Label is applied to four products including: air conditioners; household refrigerators; clothes washers; and unitary air conditioners (See Figure 2). MEPS and the voluntary endorsement labeling specifications have been updated and revised inmore » order to reflect technology improvements to those products in the market. These programs have had an important impact in reducing energy consumption of appliances in China. Indeed, China has built up a strong infrastructure to develop and implement product standards. Historically, however, the government's primary focus has been on the technical requirements for efficiency performance. Less attention has been paid to monitoring and enforcement with a minimal commitment of resources and little expansion of administrative capacity in this area. Thus, market compliance with both mandatory standards and labeling programs has been questionable and actual energy savings may have been undermined as a result. The establishment of a regularized monitoring system for tracking compliance with the mandatory standard and energy information label in China is a major area for program improvement. Over the years, the Collaborative Labeling and Appliance Standards Program (CLASP) has partnered with several Chinese institutions to promote energy-efficient products in China. CLASP, together with its implementing partner Lawrence Berkeley National Laboratory (LBNL), has assisted China in developing and updating the above-mentioned standards and labeling programs. Because of the increasing need for

  16. 16 CFR 300.13 - Name or other identification required to appear on labels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... appear on labels. 300.13 Section 300.13 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300... in § 300.4 of this part (Rule 4), may be used for identification purposes in lieu of the required...

  17. Color pattern specific proteins in black scales in developing wings ofPrecis coenia Hübner (Nymphalidae, Lepidoptera).

    PubMed

    Koch, P Bernhardt; Nijhout, H Frederik

    1990-05-01

    A set of stage specific proteins of approximally 86 to 90 kDal are synthesized by isolated wings ofPrecis coenia on day 5 of the pupal stage. They are named "B proteins". They are synthesized in presumptive black wing areas in higher amounts than in presumptive white wing areas and are the major proteins synthesized on day 5. Wings from 5 days old pupae, which were incubated with 35 S-methionine for 2 or 4 hours, incorporate radiolabel into presumptive black pattern elements. This is probably due to the localized synthesis of the above mentioned proteins. Injection of 35 S-methionine into whole pupae on day 5 resulted in the labelling of the mature black and grey scales but not white scales. This radiolabel incorporation pattern corresponds exactly to the incorporation of the melanin precursor 14 C-tyrosine into the scales. The results indicate that the "B proteins" are specifically related to the formation of black and grey portions of thePrecis wing pattern. Injection of 35 S-methionine into whole pupae on day 6 resulted in the labelling of the mature red scales probably due to labelling of "R proteins", which may be involved in the formation of red pattern elements.

  18. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

    PubMed Central

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.

    2018-01-01

    Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425

  19. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.

    PubMed

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E

    2018-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

  20. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  1. Methods for nanoparticle labeling of ricin and effect on toxicity

    NASA Astrophysics Data System (ADS)

    Wark, Alastair W.; Yu, Jun; Lindsay, Christopher D.; Nativo, Paola; Graham, Duncan

    2009-09-01

    The unique optical properties associated with nanostructured materials that support the excitation of surface plasmons offer many new opportunities for the enhanced optical investigation of biological materials that pose a security threat. In particular, ricin is considered a significant bioterrorism risk due to its high toxicity combined with its ready availability as a byproduct in castor oil production. Therefore, the development of optical techniques capable of rapid on-site toxin detection with high molecular specificity and sensitivity continues to be of significant importance. Furthermore, understanding of the ricin cell entry and intracellular pathways remains poor due to a lack of suitable bioanalytical techniques. Initial work aimed at simultaneously tackling both these issues is described where different approaches for the nanoparticle labeling of ricin are investigated along with changes in ricin toxicity associated with the labeling process.

  2. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Labeling. 660.28 Section 660.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL... Reagents may be color coded with the specified color which shall be a visual match to a specific color...

  3. Food Labels

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Food Labels KidsHealth / For Teens / Food Labels What's in ... to have at least 95% organic ingredients. Making Food Labels Work for You The first step in ...

  4. Dual-process theory and consumer response to front-of-package nutrition label formats.

    PubMed

    Sanjari, S Setareh; Jahn, Steffen; Boztug, Yasemin

    2017-11-01

    Nutrition labeling literature yields fragmented results about the effect of front-of-package (FOP) nutrition label formats on healthy food choice. Specifically, it is unclear which type of nutrition label format is effective across different shopping situations. To address this gap, the present review investigates the available nutrition labeling literature through the prism of dual-process theory, which posits that decisions are made either quickly and automatically (system 1) or slowly and deliberately (system 2). A systematically performed review of nutrition labeling literature returned 59 papers that provide findings that can be explained according to dual-process theory. The findings of these studies suggest that the effectiveness of nutrition label formats is influenced by the consumer's dominant processing system, which is a function of specific contexts and personal variables (eg, motivation, nutrition knowledge, time pressure, and depletion). Examination of reported findings through a situational processing perspective reveals that consumers might prefer different FOP nutrition label formats in different situations and can exhibit varying responses to the same label format across situations. This review offers several suggestions for policy makers and researchers to help improve current FOP nutrition label formats. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Label Review Training: Module 1: Label Basics, Page 25

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review: clarity, accuracy, consistency with EPA policy, and enforceability.

  6. Label Review Training: Module 1: Label Basics, Page 29

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is a quiz on Module 1.

  7. Consumer perceptions of front-of-package labelling systems and healthiness of foods.

    PubMed

    Savoie, Nathalie; Barlow Gale, Karine; Harvey, Karen L; Binnie, Mary Ann; Pasut, Laura

    2013-09-19

    The purpose of this study was to assess the impact of four different front-of-package (FOP) labelling systems on consumer perception and purchasing intent of food, and whether these systems help consumers select a balanced pattern of eating. The four FOP labelling systems studied included two nutrient-specific systems ‒ the Traffic Light (TL) and the Guideline Daily Amount (GDA) ‒ and two summary indicator systems ‒ NuVal(®) and My-5(®). Phase 1 was a small study with 36 participants to determine consumer understanding of the four FOP labelling systems and to inform the development of the questions for Phase 2, which consisted of a survey of 2,200 adults obtained through an online panel. Although the TL and GDA were rated similar to the Nutrition Facts table in terms of attributes, these FOP systems were considered more visually appealing. Consumers indicated that the numeric summary indicator systems did not provide sufficient information. Approximately half of the respondents indicated that the FOP systems would help them make healthier choices. However, due to the limitations of each, consumers often misinterpreted a food's healthiness compared to their baseline perceptions. Similarly, consumers' intent to purchase based on the FOP system did not show a consistent pattern. Although well received by consumers, FOP labelling systems can lead to confusion depending on perceived understanding of the system used. The nutrient-specific systems tend to be preferred by most consumers; however, the overall impact on selecting healthier eating patterns has yet to be demonstrated.

  8. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA.

    PubMed

    Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F

    2011-11-01

    Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.

  9. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    PubMed

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  10. 21 CFR 801.420 - Hearing aid devices; professional and patient labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.420 Hearing aid devices; professional and patient labeling. (a) Definitions for the purposes of this section... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hearing aid devices; professional and patient...

  11. 21 CFR 801.420 - Hearing aid devices; professional and patient labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.420 Hearing aid devices; professional and patient labeling. (a) Definitions for the purposes of this section... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hearing aid devices; professional and patient...

  12. Associations Between Ethnic Labels and Substance Use Among Hispanic/Latino Adolescents in Los Angeles

    PubMed Central

    Unger, Jennifer B; Thing, James; Soto, Daniel Wood; Baezconde-Garbanati, Lourdes

    2014-01-01

    Self-identification with ethnic-specific labels may indicate successful ethnic identity formation, which could protect against substance use. Alternatively, it might indicate affiliation with oppositional subcultures, a potential risk factor. This study examined longitudinal associations between ethnic labels and substance use among 1,575 Hispanic adolescents in Los Angeles. Adolescents who identified as Cholo or La Raza in 9th grade were at increased risk of past-month substance use in 11th grade. Associations were similar across gender and were not confounded by socioeconomic status, ethnic identity development, acculturation, or language use. Targeted prevention interventions for adolescents who identify with these subcultures may be warranted. PMID:24779500

  13. A Generalized Mixture Framework for Multi-label Classification

    PubMed Central

    Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos

    2015-01-01

    We develop a novel probabilistic ensemble framework for multi-label classification that is based on the mixtures-of-experts architecture. In this framework, we combine multi-label classification models in the classifier chains family that decompose the class posterior distribution P(Y1, …, Yd|X) using a product of posterior distributions over components of the output space. Our approach captures different input–output and output–output relations that tend to change across data. As a result, we can recover a rich set of dependency relations among inputs and outputs that a single multi-label classification model cannot capture due to its modeling simplifications. We develop and present algorithms for learning the mixtures-of-experts models from data and for performing multi-label predictions on unseen data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods. PMID:26613069

  14. Evidence for label-retaining tumour-initiating cells in human glioblastoma

    PubMed Central

    Deleyrolle, Loic P.; Harding, Angus; Cato, Kathleen; Siebzehnrubl, Florian A.; Rahman, Maryam; Azari, Hassan; Olson, Sarah; Gabrielli, Brian; Osborne, Geoffrey; Vescovi, Angelo

    2011-01-01

    Individual tumour cells display diverse functional behaviours in terms of proliferation rate, cell–cell interactions, metastatic potential and sensitivity to therapy. Moreover, sequencing studies have demonstrated surprising levels of genetic diversity between individual patient tumours of the same type. Tumour heterogeneity presents a significant therapeutic challenge as diverse cell types within a tumour can respond differently to therapies, and inter-patient heterogeneity may prevent the development of general treatments for cancer. One strategy that may help overcome tumour heterogeneity is the identification of tumour sub-populations that drive specific disease pathologies for the development of therapies targeting these clinically relevant sub-populations. Here, we have identified a dye-retaining brain tumour population that displays all the hallmarks of a tumour-initiating sub-population. Using a limiting dilution transplantation assay in immunocompromised mice, label-retaining brain tumour cells display elevated tumour-initiation properties relative to the bulk population. Importantly, tumours generated from these label-retaining cells exhibit all the pathological features of the primary disease. Together, these findings confirm dye-retaining brain tumour cells exhibit tumour-initiation ability and are therefore viable targets for the development of therapeutics targeting this sub-population. PMID:21515906

  15. Combination of DiOlistic Labeling with Retrograde Tract Tracing and Immunohistochemistry

    PubMed Central

    Diana Neely, M.; Stanwood, Gregg D; Deutch, Ariel Y.

    2009-01-01

    Neuronal staining techniques have played a crucial role in the analysis of neuronal function. Several different staining techniques have been developed to allow morphological analyses of neurons. Recently diOlistic labeling, in which beads are coated with a lipophilic dye and then ballistically ejected onto brain tissue, has been developed as a useful and simple means to label neurons and glia in their entirety. Although diOlistic labeling provides detailed information on the morphology of neurons, combining this approach with other staining methods is a significant advance. We have developed protocols that result in high quality diOlistically- and retrogradely-labeled or diOlistically-immunohistochemically labeled neurons. These dual-label methods require modification of fixation parameters and the use of detergents for tissue permeabilization, and are readily applicable to a wide range of tracers and antibodies. PMID:19712695

  16. Development of functional agricultural products utilizing the new health claim labeling system in Japan.

    PubMed

    Maeda-Yamamoto, Mari; Ohtani, Toshio

    2018-04-01

    In April 2015, Consumer Affairs Agency of Japan launched a new food labeling system known as "Foods with Function Claims (FFC)." Under this system, the food industry independently evaluates scientific evidence on foods and describes their functional properties. As of May 23, 2017, 1023 FFC containing 8 fresh foods have been launched. Meanwhile, to clarify the health-promoting effects of agricultural products, National Agriculture and Food Research Organization (NARO) implemented the "Research Project on Development of Agricultural Products" and demonstrated the risk reduction of osteoporosis of β-cryptoxanthin rich Satsuma mandarins and the anti-allergic effect of the O-methylated catechin rich tea cultivar Benifuuki. These foods were subsequently released as FFC. Moreover, NARO elucidated the health-promoting effects of various functional agricultural products (β-glucan rich barley, β-conglycinin rich soybean, quercetin rich onion, etc.) and a healthy boxed lunch. This review focuses on new food labeling system or research examining functional aspects of agricultural products.

  17. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    PubMed

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  18. [Off-label drug prescriptions among outpatient children and adolescents in Germany--a database analysis].

    PubMed

    Sonntag, D; Trebst, D; Kiess, W; Kapellen, T; Bertsche, T; Kostev, K

    2013-10-01

    Due to lack of respective studies children often receive medication that is applied beyond the approved indication. The consequence of this off-label use is often an increased risk of unexpected and undesirable side effects. This study deals with the amount of off-label drug prescriptions among children and adolescents receiving outpatient treatment in Germany. The aim is to outline age-, gender-, region-, and insurance specific differences and to determine risk factors for an off-label prescription. This is a retrospective study that has been conducted by means of the IMS Patient Database Disease Analyzer for the year 2010 considering three therapy classes (analgesics, antibiotics and antidepressants). The evaluation of the risk factors for an off-label prescription resulted from a multivariate logistic regression. Age- and dose-specific prescriptions were analyzed but not indication-specific prescriptions. In total 189,285 children and adolescents with analgesics-, 147,089 with antibiotics-, and 15,405 with antidepressants prescriptions were identified. The percentage of patients with off-label prescriptions amounted to 0.9 % for analgesics, 2.5 % for antibiotics and 8.5 % for antidepressants. The off-label prescriptions made by general practitioners were significantly higher than those made by pediatricians and child psychiatrists. The number of off-label prescriptions in country sides was higher than in cities. In eastern states more off-label prescriptions were made than in western states of Germany. The study shows that outpatient treatment of children and adolescents occurs widely with drugs corresponding to age and dosage. Off-label prescriptions not conform to indication were not determined. However, off-label drug use should be reduced further for outpatient treatment to ensure a safe and low-risk medical treatment for children and adolescents. © Georg Thieme Verlag KG Stuttgart · New York.

  19. A label distance maximum-based classifier for multi-label learning.

    PubMed

    Liu, Xiaoli; Bao, Hang; Zhao, Dazhe; Cao, Peng

    2015-01-01

    Multi-label classification is useful in many bioinformatics tasks such as gene function prediction and protein site localization. This paper presents an improved neural network algorithm, Max Label Distance Back Propagation Algorithm for Multi-Label Classification. The method was formulated by modifying the total error function of the standard BP by adding a penalty term, which was realized by maximizing the distance between the positive and negative labels. Extensive experiments were conducted to compare this method against state-of-the-art multi-label methods on three popular bioinformatic benchmark datasets. The results illustrated that this proposed method is more effective for bioinformatic multi-label classification compared to commonly used techniques.

  20. 'Snack' versus 'meal': The impact of label and place on food intake.

    PubMed

    Ogden, Jane; Wood, Chloe; Payne, Elise; Fouracre, Hollie; Lammyman, Frances

    2018-01-01

    Eating behaviour is influenced by both cognitions and triggers in the environment. The potential difference between a 'snack' and a 'meal' illustrates these factors and the way in which they interact, particularly in terms of the label used to describe food and the way it is presented. To date no research has specifically explored the independent and combined impact of label and presentation on eating behaviour. Using a preload/taste test design this experimental study evaluated the impact of label ('snack' vs. 'meal') and place ('snack' vs. 'meal') of a preload on changes in desire to eat and subsequent food intake. Eighty female participants consumed a pasta preload which labelled as either a 'snack' or a 'meal' and presented as either a 'snack' (standing and eating from a container) or a 'meal' (eating at a table from a plate), generating four conditions. The results showed main effects of label and place with participants consuming significantly more sweet mass (specifically chocolate) at the taste test when the preload had been labelled a 'snack' and more total mass and calories when the preload had been presented as a 'snack'. No label by place interactions were found. The results also showed a combined effect of both label and place with those who had eaten the preload both labelled and presented as a 'snack' consuming significantly more in terms of nearly all measures of food intake than those in the other conditions. To conclude, label and presentation influence subsequent food intake both independently and combined which is pertinent given the increase in 'snacking' in contemporary culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Less label, more free: approaches in label-free quantitative mass spectrometry.

    PubMed

    Neilson, Karlie A; Ali, Naveid A; Muralidharan, Sridevi; Mirzaei, Mehdi; Mariani, Michael; Assadourian, Gariné; Lee, Albert; van Sluyter, Steven C; Haynes, Paul A

    2011-02-01

    In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro

    2008-06-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.

  3. CdSe/ZnS Quantum Dot-Labeled Lateral Flow Strips for Rapid and Quantitative Detection of Gastric Cancer Carbohydrate Antigen 72-4

    NASA Astrophysics Data System (ADS)

    Yan, Xinyu; Wang, Kan; Lu, Wenting; Qin, Weijian; Cui, Daxiang; He, Jinghua

    2016-03-01

    Carbohydrate antigen 72-4 (CA72-4) is an important biomarker associated closely with diagnosis and prognosis of early gastric cancer. How to realize quick, sensitive, specific, and quantitative detection of CA72-4 in clinical specimens has become a great requirement. Herein, we reported a CdSe/ZnS quantum dot-labeled lateral flow test strip combined with a charge-coupled device (CCD)-based reader was developed for rapid, sensitive, and quantitative detection of CA72-4. Two mouse monoclonal antibodies (mAbs) against CA72-4 were employed. One of them was coated as a test line, while another mAb was labeled with quantum dots and coated onto conjugate pad. The goat anti-mouse IgG was immobilized as a control line. After sample was added, a sandwich structure was formed with CA72-4 and these two mAbs. The fluorescent signal from quantum dots (QD)-labeled mAb in sandwich structure was related to the amount of detected CA72-4. A CCD-based reader was used to realize quantitative detection of CA72-4. Results showed that developed QD-labeled lateral flow strips to detect CA72-4 biomarker with the sensitivity of 2 IU/mL and 10 min detection time. One hundred sera samples from clinical patients with gastric cancer and healthy people were used to confirm specificity of this strip method; results showed that established strip method own 100 % reproducibility and 100 % specificity compared with Roche electrochemiluminescence assay results. In conclusion, CdSe/ZnS quantum dot-labeled lateral flow strips for detection of CA72-4 could realize rapid, sensitive, and specific detection of clinical samples and could own great potential in clinical translation in near future.

  4. Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits

    PubMed Central

    Cocas, Laura A.; Fernandez, Gloria; Barch, Mariya; Doll, Jason; Zamora Diaz, Ivan

    2016-01-01

    The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing

  5. Transforming for Inclusive Practice: Professional Development to Support the Inclusion of Students Labelled as Emotionally Disturbed

    ERIC Educational Resources Information Center

    Naraian, Srikala; Ferguson, Dianne L.; Thomas, Natalie

    2012-01-01

    Few models of professional development (PD) are designed to bring about the fundamental shifts in thinking about student behaviour that can support the inclusion of students labelled as having emotional/behavioural disabilities within general education classrooms. In this paper, we seek to accomplish two goals: (1) we briefly delineate the…

  6. Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination

    PubMed Central

    Liu, Yang; Liu, Gang

    2018-01-01

    Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 106 pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results. PMID:29677143

  7. Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination.

    PubMed

    Wang, Hui; Liu, Yang; Liu, Gang

    2018-04-20

    Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 10⁶ pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results.

  8. Toddler drinks, formulas, and milks: Labeling practices and policy implications.

    PubMed

    Pomeranz, Jennifer L; Romo Palafox, Maria J; Harris, Jennifer L

    2018-04-01

    Toddler drinks are a growing category of drinks marketed for young children 9-36 months old. Medical experts do not recommend them, and public health experts raise concerns about misleading labeling practices. In the U.S., the toddler drink category includes two types of products: transition formulas, marketed for infants and toddlers 9-24 months; and toddler milks, for children 12-36 months old. The objective of this study was to evaluate toddler drink labeling practices in light of U.S. food labeling policy and international labeling recommendations. In January 2017, we conducted legal research on U.S. food label laws and regulations; collected and evaluated toddler drink packages, including nutrition labels and claims; and compared toddler drink labels with the same brand's infant formula labels. We found that the U.S. has a regulatory structure for food labels and distinct policies for infant formula, but no laws specific to toddler drinks. Toddler drink labels utilized various terms and images to identify products and intended users; made multiple health and nutrition claims; and some stated there was scientific or expert support for the product. Compared to the same manufacturer's infant formula labels, most toddler drink labels utilized similar colors, branding, logos, and graphics. Toddler drink labels may confuse consumers about their nutrition and health benefits and the appropriateness of these products for young children. To support healthy toddler diets and well-informed decision-making by caregivers, the FDA can provide guidance or propose regulations clarifying permissible toddler drink labels and manufacturers should end inappropriate labeling practices. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Assay for vitamin B12 absorption and method of making labeled vitamin B12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Peter J; Dueker, Stephen; Miller, Joshua

    2012-06-19

    The invention provides methods for labeling vitamin B12 with .sup.14C, .sup.13C, tritium, and deuterium. When radioisotopes are used, the invention provides for methods of labeling B12 with high specific activity. The invention also provides labeled vitamin B12 compositions made in accordance with the invention.

  10. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  11. Women's Relationship to Feminism: Effects of Generation and Feminist Self-Labeling

    ERIC Educational Resources Information Center

    Duncan, Lauren E.

    2010-01-01

    The relative importance to feminism of generation and feminist self-labeling was explored in a sample of 667 women riding buses to a 1992 March on Washington for Reproductive Rights. Specifically, generational (Generation X vs. Baby Boomers) and feminist self-labeling (strong feminists vs. weak feminists vs. nonfeminists) similarities and…

  12. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-12-24

    "Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. Development of swine-specific DNA markers for biosensor-based halal authentication.

    PubMed

    Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B

    2012-06-29

    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.

  14. [13C]-Specific labeling of 8-2' linked (-)-cis-blechnic, (-)-trans-blechnic and (-)-brainic acids in the fern Blechnum spicant

    NASA Technical Reports Server (NTRS)

    Davin, Laurence B.; Wang, Chang-Zeng; Helms, Gregory L.; Lewis, Norman G.

    2003-01-01

    In vivo administration experiments using stable (13C) and radio (14C) labeled precursors established that the optically active 8-2' linked lignans, (-)-cis-blechnic, (-)-trans-blechnic and (-)-trans-brainic acids, were directly derived from L-phenylalanine, cinnamate, and p-coumarate but not either from tyrosine or acetate. The radiochemical time course data suggest that the initial coupling product is (-)-cis-blechnic acid, which is then apparently converted into both (-)-trans-blechnic and (-)-trans-brainic acids in vivo. These findings provide additional evidence for vascular plant proteins engendering distinct but specific phenolic radical-radical coupling modes, i.e., for full control over phenylpropanoid coupling in vivo, whether stereoselective or regiospecific.

  15. Label reading, numeracy and Food&Nutrition involvement.

    PubMed

    Mulders, Maria Dgh; Corneille, O; Klein, O

    2018-06-07

    The purpose of this study was to investigate objective performance on a nutrition label comprehension task, and the influence of numeracy and food-related involvement on this performance level. A pilot study (n = 45) was run to prepare the scales in French. For the main study (n = 101), participants provided demographic information and answered the nutrition label survey, the short numeracy scale and two different food-related involvement scales (i.e. the food involvement scale and the nutrition involvement scale). Both studies were conducted online, and consent was obtained from all participants. Participants answered correctly only two-thirds of the nutrition label task items. Numeracy and food involvement scores were positively correlated with performance on this task. Finally, food involvement interacted with numeracy. Specifically, people scoring low in numeracy performed generally more poorly on the task, but if they had high food involvement scores, their performance increased. This suggests that high food-related motivation may compensate for poor numeracy skills when dealing with nutrition labels. Copyright © 2018. Published by Elsevier Ltd.

  16. Hematopoietic stem cell-specific GFP-expressing transgenic mice generated by genetic excision of a pan-hematopoietic reporter gene.

    PubMed

    Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla

    2016-08-01

    Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  17. Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes.

    PubMed

    Marras, Salvatore A E

    2008-03-01

    The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.

  18. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  19. Attitudes and experiences of community pharmacists towards paediatric off-label prescribing: a prospective survey

    PubMed Central

    Stewart, Derek; Rouf, Abdul; Snaith, Ailsa; Elliott, Kathleen; Helms, Peter J; McLay, James S

    2007-01-01

    What is already known about this subject There are increasing concerns about the safety and efficacy of paediatric off-label medicines. In the UK, each year 26% of children receive an off-label prescription from their general practitioner. The community pharmacist is the final and key professional in the chain, with the responsibility to ensure that medicines are both prescribed and dispensed appropriately. What this study adds The majority of community pharmacists are aware of off-label prescribing, but through work experience rather than undergraduate or postgraduate training or professional development. Community pharmacists, like UK general practitioners, underestimate the levels of paediatric off-label prescribing, and appear unclear as to the most common reasons for a prescription being off label. Most community pharmacists stated that they should inform the prescriber that a medicine was off label; however, when given specific practical examples, less than half would actually appear to do so. The majority of community pharmacists have been asked by the public to sell over-the-counter medicines for paediatric off-label use. Aim To identify community pharmacist experiences of, and attitudes towards paediatric off-label prescribing. Methods A prospective questionnaire-based study, with a 21-item questionnaire issued to 1500 randomly selected community pharmacies throughout the UK during 2005 on three separate occasions. Results Four hundred and eighty-two (32.1%) completed questionnaires were returned. Over 70% of respondents were familiar with the concept of off-label prescribing, primarily through dispensing experience rather than education, although only 40% were aware of having dispensed a paediatric off-label prescription within the previous month. The reasons given for a prescription being off label were younger age than recommended (84.6%, 297/351), primarily for antihistamines, analgesics and β2-agonists, and higher (73.9%, 229/310) or lower than (41

  20. A pretargeted nanoparticle system for tumor cell labeling

    PubMed Central

    Gunn, Jonathan; Park, Steven I.; Veiseh, Omid; Press, Oliver W.; Zhang, Miqin

    2011-01-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope. PMID:21107453

  1. A pretargeted nanoparticle system for tumor cell labeling.

    PubMed

    Gunn, Jonathan; Park, Steven I; Veiseh, Omid; Press, Oliver W; Zhang, Miqin

    2011-03-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope.

  2. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recognition and readability. Trim size dimensions for all labels shall be as follows: width must be between 51.... Specific sizes and faces to be used are indicated on the prototype labels. No hyphenation should be used in...

  3. 21 CFR 101.43 - Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... guidelines for the voluntary nutrition labeling of raw fruit, vegetables, and fish. 101.43 Section 101.43... FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.43 Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling of raw fruit...

  4. 21 CFR 101.43 - Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... guidelines for the voluntary nutrition labeling of raw fruit, vegetables, and fish. 101.43 Section 101.43... FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.43 Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling of raw fruit...

  5. 21 CFR 101.43 - Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... guidelines for the voluntary nutrition labeling of raw fruit, vegetables, and fish. 101.43 Section 101.43... FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.43 Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling of raw fruit...

  6. 21 CFR 101.43 - Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... guidelines for the voluntary nutrition labeling of raw fruit, vegetables, and fish. 101.43 Section 101.43... FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.43 Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling of raw fruit...

  7. 21 CFR 101.43 - Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... guidelines for the voluntary nutrition labeling of raw fruit, vegetables, and fish. 101.43 Section 101.43... FOR HUMAN CONSUMPTION FOOD LABELING Specific Nutrition Labeling Requirements and Guidelines § 101.43 Substantial compliance of food retailers with the guidelines for the voluntary nutrition labeling of raw fruit...

  8. Do nutrition labels influence healthier food choices? Analysis of label viewing behaviour and subsequent food purchases in a labelling intervention trial.

    PubMed

    Ni Mhurchu, Cliona; Eyles, Helen; Jiang, Yannan; Blakely, Tony

    2018-02-01

    There are few objective data on how nutrition labels are used in real-world shopping situations, or how they affect dietary choices and patterns. The Starlight study was a four-week randomised, controlled trial of the effects of three different types of nutrition labels on consumer food purchases: Traffic Light Labels, Health Star Rating labels, or Nutrition Information Panels (control). Smartphone technology allowed participants to scan barcodes of packaged foods and receive randomly allocated labels on their phone screen, and to record their food purchases. The study app therefore provided objectively recorded data on label viewing behaviour and food purchases over a four-week period. A post-hoc analysis of trial data was undertaken to assess frequency of label use, label use by food group, and association between label use and the healthiness of packaged food products purchased. Over the four-week intervention, study participants (n = 1255) viewed nutrition labels for and/or purchased 66,915 barcoded packaged products. Labels were viewed for 23% of all purchased products, with decreasing frequency over time. Shoppers were most likely to view labels for convenience foods, cereals, snack foods, bread and bakery products, and oils. They were least likely to view labels for sugar and honey products, eggs, fish, fruit and vegetables, and meat. Products for which participants viewed the label and subsequently purchased the product during the same shopping episode were significantly healthier than products where labels were viewed but the product was not subsequently purchased: mean difference in nutrient profile score -0.90 (95% CI -1.54 to -0.26). In a secondary analysis of a nutrition labelling intervention trial, there was a significant association between label use and the healthiness of products purchased. Nutrition label use may therefore lead to healthier food purchases. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Derivativation of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadzinski, B.; Shanahan, M.; Ruoho, A.

    1987-05-01

    An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed withmore » L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.« less

  10. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes

    PubMed Central

    2015-01-01

    Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β+ decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of 18F into molecules of interest. The significant increase in 18F radiotracers for PET imaging accentuates the need for simple and efficient 18F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for 18F labeling of small molecules and biomolecules. PMID:25473848

  11. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Koshonna; Thurn, Ted; Xin, Lun

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  12. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE PAGES

    Brown, Koshonna; Thurn, Ted; Xin, Lun; ...

    2017-07-19

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  13. An Interactive User Interface for Drug Labeling to Improve Readability and Decision-Making.

    PubMed

    Abedtash, Hamed; Duke, Jon D

    FDA-approved prescribing information (also known as product labeling or labels) contain critical safety information for health care professionals. Drug labels have often been criticized, however, for being overly complex, difficult to read, and rife with overwarning, leading to high cognitive load. In this project, we aimed to improve the usability of drug labels by increasing the 'signal-to-noise ratio' and providing meaningful information to care providers based on patient-specific comorbidities and concomitant medications. In the current paper, we describe the design process and resulting web application, known as myDrugLabel. Using the Structured Product Label documents as a base, we describe the process of label personalization, readability improvements, and integration of diverse evidence sources, including the medical literature from PubMed, pharmacovigilance reports from FDA adverse event reporting system (FAERS), and social media signals directly into the label.

  14. Preparation and preclinical evaluation of a 68Ga-labelled c(RGDfK) conjugate comprising the bifunctional chelator NODIA-Me.

    PubMed

    Läppchen, Tilman; Holland, Jason P; Kiefer, Yvonne; Bartholomä, Mark D

    2018-01-01

    We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three, five-membered azaheterocyclic arms for the development of 68 Ga- and 64 Cu-based radiopharmaceuticals. Here, a 68 Ga-labelled conjugate comprising the bifunctional chelator NODIA-Me in combination with the α v ß 3 -targeting peptide c(RGDfK) has been synthesized and characterized. The primary aim was to evaluate further the potential of our NODIA-Me chelating system for the development of 68 Ga-labelled radiotracers. The BFC NODIA-Me was conjugated to c(RGDfK) by standard peptide chemistry to obtain the final bioconjugate NODIA-Me-c(RGDfK) 3 in 72% yield. Labelling with [ 68 Ga]GaCl 3 was accomplished in a fully automated, cGMP compliant process to give [ 68 Ga]3 in high radiochemical yield (98%) and moderate specific activity (~ 8 MBq nmol- 1 ). Incorporation of the Ga-NODIA-Me chelate to c(RGDfK) 2 had only minimal influence on the affinity to integrin α v ß 3 (IC 50 values [ nat Ga]3 = 205.1 ± 1.4 nM, c(RGDfK) 2 = 159.5 ± 1.3 nM) as determined in competitive cell binding experiments in U-87 MG cell line. In small-animal PET imaging and ex vivo biodistribution studies, the radiotracer [ 68 Ga]3 showed low uptake in non-target organs and specific tumor uptake in U-87 MG tumors. The results suggest that the bifunctional chelator NODIA-Me is an interesting alternative to existing ligands for the development of 68 Ga-labelled radiopharmaceuticals.

  15. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    PubMed

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  17. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorur, A.; Leung, C. M.; Jorgens, D.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches,more » but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell

  19. Selective Chemical Labeling of Proteins with Small Fluorescent Molecules Based on Metal-Chelation Methodology

    PubMed Central

    Soh, Nobuaki

    2008-01-01

    Site-specific chemical labeling utilizing small fluorescent molecules is a powerful and attractive technique for in vivo and in vitro analysis of cellular proteins, which can circumvent some problems in genetic encoding labeling by large fluorescent proteins. In particular, affinity labeling based on metal-chelation, advantageous due to the high selectivity/simplicity and the small tag-size, is promising, as well as enzymatic covalent labeling, thereby a variety of novel methods have been studied in recent years. This review describes the advances in chemical labeling of proteins, especially highlighting the metal-chelation methodology. PMID:27879749

  20. Engineered biomarkers for leprosy diagnosis using labeled and label-free analysis.

    PubMed

    de Santana, Juliana F; da Silva, Mariângela R B; Picheth, Guilherme F; Yamanaka, Isabel B; Fogaça, Rafaela L; Thomaz-Soccol, Vanete; Machado-de-Avila, Ricardo A; Chávez-Olórtegui, Carlos; Sierakowski, Maria Rita; de Freitas, Rilton Alves; Alvarenga, Larissa M; de Moura, Juliana

    2018-09-01

    The biotechnological evolution towards the development of antigens to detect leprosy has been progressing. However, the identification of leprosy in paucibacillary patients, based solely on the antigen-antibody interaction still remains a challenge. The complexity of clinical manifestations requires innovative approaches to improve the sensitivity of assays to detect leprosy before the onset of symptoms, thus avoiding disabilities and contributing, indirectly, to reduce transmission. In this study, the strategies employed for early leprosy diagnosis were: i. using a phage-displayed mimotope (APDDPAWQNIFNLRR) which mimics an immunodominant sequence (PPNDPAWQRNDPILQ) of an antigen of Mycobacterium leprae known as Ag85B; ii. engineering the mimotope by adding a C-terminal flexible spacer (SGSG-C); iii. conjugating the mimotope to a carrier protein to provide better exposure to antibodies; iv. amplifying the signal using biotin-streptavidin detection system in an ELISA; and v. coating the optimized mimotope on a quartz crystal microbalance (QCM) sensor for label-free biosensing. The ELISA sensitivity increased up to 91.7% irrespective of the immunological profile of the 132 patients assayed. By using comparative modeling, the M. tuberculosis Ag85B was employed as a template to ascertain which features make the mimotope a good antigen in terms of its specificity. For the first time, a sensitive QCM-based immunosensor to detect anti M. leprae antibodies in human serum was used. M. leprae antibodies could also be detected in the sera of paucibacillary patients; thus, the use of a mimotope-derived synthetic peptide as bait for antibodies in a novel analytical label-free immunoassay for leprosy diagnosis exhibits great potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Holographic Labeling And Reading Machine For Authentication And Security Appications

    DOEpatents

    Weber, David C.; Trolinger, James D.

    1999-07-06

    A holographic security label and automated reading machine for marking and subsequently authenticating any object such as an identification badge, a pass, a ticket, a manufactured part, or a package is described. The security label is extremely difficult to copy or even to read by unauthorized persons. The system comprises a holographic security label that has been created with a coded reference wave, whose specification can be kept secret. The label contains information that can be extracted only with the coded reference wave, which is derived from a holographic key, which restricts access of the information to only the possessor of the key. A reading machine accesses the information contained in the label and compares it with data stored in the machine through the application of a joint transform correlator, which is also equipped with a reference hologram that adds additional security to the procedure.

  2. Autoradiographic labeling of the cholinergic habenulo-interpeduncular projection.

    PubMed

    Villani, L; Contestabile, A; Fonnum, F

    1983-12-11

    The transmitter-specific autoradiographic method has been used to retrogradely trace the habenulo-interpeduncular cholinergic projection. [3H]Choline injection in the interpeduncular nucleus resulted in remarkable labeling of the fasciculus retroflexus and in very strong accumulation of silver grains in the medial habenula. Brainstem nuclei sending non-cholinergic projections to the interpeduncular nucleus were not labeled. The present findings strongly support the notion of a cholinergic medial habenula-interpeduncular nucleus projection in agreement with recent immunohistochemical evidence, but in contrast to previous immunocytochemical and pharmacohistochemical results.

  3. Standard terminology and labeling of ocular tissue for transplantation.

    PubMed

    Armitage, W John; Ashford, Paul; Crow, Barbara; Dahl, Patricia; DeMatteo, Jennifer; Distler, Pat; Gopinathan, Usha; Madden, Peter W; Mannis, Mark J; Moffatt, S Louise; Ponzin, Diego; Tan, Donald

    2013-06-01

    To develop an internationally agreed terminology for describing ocular tissue grafts to improve the accuracy and reliability of information transfer, to enhance tissue traceability, and to facilitate the gathering of comparative global activity data, including denominator data for use in biovigilance analyses. ICCBBA, the international standards organization for terminology, coding, and labeling of blood, cells, and tissues, approached the major Eye Bank Associations to form an expert advisory group. The group met by regular conference calls to develop a standard terminology, which was released for public consultation and amended accordingly. The terminology uses broad definitions (Classes) with modifying characteristics (Attributes) to define each ocular tissue product. The terminology may be used within the ISBT 128 system to label tissue products with standardized bar codes enabling the electronic capture of critical data in the collection, processing, and distribution of tissues. Guidance on coding and labeling has also been developed. The development of a standard terminology for ocular tissue marks an important step for improving traceability and reducing the risk of mistakes due to transcription errors. ISBT 128 computer codes have been assigned and may now be used to label ocular tissues. Eye banks are encouraged to adopt this standard terminology and move toward full implementation of ISBT 128 nomenclature, coding, and labeling.

  4. Development of simulation computer complex specification

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Training Simulation Computer Complex Study was one of three studies contracted in support of preparations for procurement of a shuttle mission simulator for shuttle crew training. The subject study was concerned with definition of the software loads to be imposed on the computer complex to be associated with the shuttle mission simulator and the development of procurement specifications based on the resulting computer requirements. These procurement specifications cover the computer hardware and system software as well as the data conversion equipment required to interface the computer to the simulator hardware. The development of the necessary hardware and software specifications required the execution of a number of related tasks which included, (1) simulation software sizing, (2) computer requirements definition, (3) data conversion equipment requirements definition, (4) system software requirements definition, (5) a simulation management plan, (6) a background survey, and (7) preparation of the specifications.

  5. Development of a PET Prostate-Specific Membrane Antigen Imaging Agent: Preclinical Translation for Future Clinical Application

    DTIC Science & Technology

    2016-10-01

    small-molecule peptidomimetic imaging agents labeled with positron emitting fluorine- 18 . These data will enable the filing of an exploratory IND...outcome. 15. SUBJECT TERMS Prostate Cancer, Prostate Specific Membrane Antigen (PSMA), Fluorine- 18 , Molecular Imaging, Radiotracer, Automated...Synthesis, Phosphoramidate, Inhibitor, Peptide Mimic, Peptidomimetic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a

  6. Mediational pathways of the impact of cigarette warning labels on quit attempts

    PubMed Central

    Yong, Hua-Hie; Borland, Ron; Thrasher, James F.; Thompson, Mary E.; Nagelhout, Gera E.; Fong, Geoffrey T.; Hammond, David; Cummings, K. Michael

    2015-01-01

    Objectives To test and develop, using structural equation modelling, a robust model of the mediational pathways through which health warning labels exert their influence on smokers’ subsequent quitting behaviour. Methods Data come from the International Tobacco Control Four-Country Survey, a longitudinal cohort study conducted in Australia, Canada, the UK, and the US. Waves 5–6 data (n=4988) were used to calibrate the hypothesized model of warning label impact on subsequent quit attempts via a set of policy-specific and general psychosocial mediators. The finalised model was validated using Waves 6–7 data (n=5065). Results As hypothesized, warning label salience was positively associated with thoughts about risks of smoking stimulated by the warnings (β=.58, p<.001), which in turn were positively related to increased worry about negative outcomes of smoking (β=.52, p<.001); increased worry in turn predicted stronger intention to quit (β=.39, p<.001) which was a strong predictor of subsequent quit attempts (β=.39, p<.001). This calibrated model was successfully replicated using Waves 6–7 data. Conclusions Health warning labels seem to influence future quitting attempts primarily through their ability to stimulate thoughts about the risks of smoking, which in turn help to raise smoking-related health concerns, which lead to stronger intentions to quit, a known key predictor of future quit attempts for smokers. By making warning labels more salient and engaging, they should have a greater chance to change behaviour. PMID:24977309

  7. Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI

    PubMed Central

    Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid

    2015-01-01

    Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892

  8. Development and Implementation of Minimum Hiring Specifications

    ERIC Educational Resources Information Center

    Herbstritt, Michael R.

    1978-01-01

    Specifications were developed to avoid possible discrimination and confusion in the hiring practices at a large southeastern university. They were developed through job analysis and a systematic file search designed to find the education and prior related work experience possessed by each incumbent. The specifications were validated as…

  9. Practical cell labeling with magnetite cationic liposomes for cell manipulation.

    PubMed

    Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki

    2010-07-01

    Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.

  10. Partial purification of the mu opioid receptor irreversibly labeled with (/sup 3/H)b-funaltrexamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu-Chen, L.Y.; Phillips, C.A.; Tam, S.W.

    1986-03-01

    The mu opioid receptor in bovine striatal membranes was specifically and irreversibly labeled by incubation with 5 nM (/sup 3/H)..beta..-funaltrexamine (approx.-FNA) at 37/sup 0/C for 90 min in the presence of 100 mM NaCl. The specific and irreversible binding of (/sup 3/H)..beta..-FNA as defined by that blocked by 1 /sup +/M naloxone was about 60% of total irreversible binding. The specific irreversible binding was saturable, stereospecific, time-, temperature, and tissue-dependent. Mu opioid ligands were much more potent than delta or kappa ligands in inhibiting the specific irreversible labeling. SDS polyacrylamide gel electrophoresis of solubilized membranes in the presence of 2-mercaptoethanolmore » yielded a major radiolabeled broad band of MW 68-97K daltons, characteristic of a glycoprotein band. This band was not observed in membranes labeled in the presence of excess unlabeled naloxone. The glycoprotein nature of the (/sup 3/H)..beta..-FNA-labeled opioid receptor was confirmed by its binding to a wheat germ agglutinin-Sepharose column and its elution with N-acetylglucosamine.« less

  11. An Interactive User Interface for Drug Labeling to Improve Readability and Decision-Making

    PubMed Central

    Abedtash, Hamed; Duke, Jon D.

    2015-01-01

    FDA-approved prescribing information (also known as product labeling or labels) contain critical safety information for health care professionals. Drug labels have often been criticized, however, for being overly complex, difficult to read, and rife with overwarning, leading to high cognitive load. In this project, we aimed to improve the usability of drug labels by increasing the ‘signal-to-noise ratio’ and providing meaningful information to care providers based on patient-specific comorbidities and concomitant medications. In the current paper, we describe the design process and resulting web application, known as myDrugLabel. Using the Structured Product Label documents as a base, we describe the process of label personalization, readability improvements, and integration of diverse evidence sources, including the medical literature from PubMed, pharmacovigilance reports from FDA adverse event reporting system (FAERS), and social media signals directly into the label. PMID:26958158

  12. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance.

    PubMed

    2006-10-11

    This guidance describes how the FDA evaluates patient-reported outcome (PRO) instruments used as effectiveness endpoints in clinical trials. It also describes our current thinking on how sponsors can develop and use study results measured by PRO instruments to support claims in approved product labeling (see appendix point 1). It does not address the use of PRO instruments for purposes beyond evaluation of claims made about a drug or medical product in its labeling. By explicitly addressing the review issues identified in this guidance, sponsors can increase the efficiency of their endpoint discussions with the FDA during the product development process, streamline the FDA's review of PRO endpoint adequacy, and provide optimal information about the patient's perspective of treatment benefit at the time of product approval. A PRO is a measurement of any aspect of a patient's health status that comes directly from the patient (i.e., without the interpretation of the patient's responses by a physician or anyone else). In clinical trials, a PRO instrument can be used to measure the impact of an intervention on one or more aspects of patients' health status, hereafter referred to as PRO concepts, ranging from the purely symptomatic (response of a headache) to more complex concepts (e.g., ability to carry out activities of daily living), to extremely complex concepts such as quality of life, which is widely understood to be a multidomain concept with physical, psychological, and social components. Data generated by a PRO instrument can provide evidence of a treatment benefit from the patient perspective. For this data to be meaningful, however, there should be evidence that the PRO instrument effectively measures the particular concept that is studied. Generally, findings measured by PRO instruments may be used to support claims in approved product labeling if the claims are derived from adequate and well-controlled investigations that use PRO instruments that reliably

  13. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance

    PubMed Central

    2006-01-01

    This guidance describes how the FDA evaluates patient-reported outcome (PRO) instruments used as effectiveness endpoints in clinical trials. It also describes our current thinking on how sponsors can develop and use study results measured by PRO instruments to support claims in approved product labeling (see appendix point 1). It does not address the use of PRO instruments for purposes beyond evaluation of claims made about a drug or medical product in its labeling. By explicitly addressing the review issues identified in this guidance, sponsors can increase the efficiency of their endpoint discussions with the FDA during the product development process, streamline the FDA's review of PRO endpoint adequacy, and provide optimal information about the patient's perspective of treatment benefit at the time of product approval. A PRO is a measurement of any aspect of a patient's health status that comes directly from the patient (i.e., without the interpretation of the patient's responses by a physician or anyone else). In clinical trials, a PRO instrument can be used to measure the impact of an intervention on one or more aspects of patients' health status, hereafter referred to as PRO concepts, ranging from the purely symptomatic (response of a headache) to more complex concepts (e.g., ability to carry out activities of daily living), to extremely complex concepts such as quality of life, which is widely understood to be a multidomain concept with physical, psychological, and social components. Data generated by a PRO instrument can provide evidence of a treatment benefit from the patient perspective. For this data to be meaningful, however, there should be evidence that the PRO instrument effectively measures the particular concept that is studied. Generally, findings measured by PRO instruments may be used to support claims in approved product labeling if the claims are derived from adequate and well-controlled investigations that use PRO instruments that reliably

  14. Effect of Dye and Conjugation Chemistry on the Biodistribution Profile of Near-Infrared-Labeled Nanobodies as Tracers for Image-Guided Surgery.

    PubMed

    Debie, Pieterjan; Van Quathem, Jannah; Hansen, Inge; Bala, Gezim; Massa, Sam; Devoogdt, Nick; Xavier, Catarina; Hernot, Sophie

    2017-04-03

    Advances in optical imaging technologies have stimulated the development of near-infrared (NIR) fluorescently labeled targeted probes for use in image-guided surgery. As nanobodies have already proven to be excellent candidates for molecular imaging, we aimed in this project to design NIR-conjugated nanobodies targeting the tumor biomarker HER2 for future applications in this field and to evaluate the effect of dye and dye conjugation chemistry on their pharmacokinetics during development. IRDye800CW or IRdye680RD were conjugated either randomly (via lysines) or site-specifically (via C-terminal cysteine) to the anti-HER2 nanobody 2Rs15d. After verification of purity and functionality, the biodistribution and tumor targeting of the NIR-nanobodies were assessed in HER2-positive and -negative xenografted mice. Site-specifically IRDye800CW- and IRdye680RD-labeled 2Rs15d as well as randomly labeled 2Rs15d-IRDye680RD showed rapid tumor accumulation and low nonspecific uptake, resulting in high tumor-to-muscle ratios at early time points (respectively 6.6 ± 1.0, 3.4 ± 1.6, and 3.5 ± 0.9 for HER2-postive tumors at 3 h p.i., while <1.0 for HER2-negative tumors at 3 h p.i., p < 0.05). Contrarily, using the randomly labeled 2Rs15d-IRDye800CW, HER2-positive and -negative tumors could only be distinguished after 24 h due to high nonspecific signals. Moreover, both randomly labeled 2Rs15d nanobodies were not only cleared via the kidneys but also partially via the hepatobiliary route. In conclusion, near-infrared fluorescent labeling of nanobodies allows rapid, specific, and high contrast in vivo tumor imaging. Nevertheless, the fluorescent dye as well as the chosen conjugation strategy can affect the nanobodies' properties and consequently have a major impact on their pharmacokinetics.

  15. The development of sex role stereotypes in the third year: relationships to gender labeling, gender identity, sex-typed toy preference, and family characteristics.

    PubMed

    Weinraub, M; Clemens, L P; Sockloff, A; Ethridge, T; Gracely, E; Myers, B

    1984-08-01

    The onset and development of preschoolers' awareness of sex role stereotypes, gender labeling, gender identity, and sex-typed toy preference were explored in 26-, 31-, and 36-month-old children. Gender labeling, gender identity, sex-typed toy preferences, and awareness of adult sex role differences were observed in significantly more 26-month-old children than would have been expected by chance. Verbal gender labeling was observed in a majority of 26-month-olds, while verbal and nonverbal gender identity were observed in a majority of 31-month-olds. Nonverbal gender labeling and awareness of adult sex role differences were observed in a majority of children by 36 months. No evidence of awareness of sex differences in children's toys was found in the majority of children at any age. Awareness of sex role differences in children's toys was not related to awareness of adult sex role differences. Brighter children were more aware of adult sex role differences. Sex-typed toy preference was not related to awareness of sex role differences but was related to gender identity. Predictors of sex role development included the mothers' employment, and the father's personality traits, attitudes toward women, and sex-typed activities in the home. Implications for theories of early sex role development are discussed.

  16. Incorporation of {sup 13}C-labeled intermediates into developing lignin revealed by analytical pyrolysis and CuO oxidation in combination with IRM-GC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eglinton, T.I.; Goni, M.A.; Boon, J.J.

    1995-12-31

    Tissue samples from Ginkgo shoots (Ginkgo biloba L.) and Rice grass (Oryzasitiva sp.) incubated in the presence of {sup 13}C-labeled substrates such as coniferin (postulated to be biosynthetic intermediates in lignin biosynthesis) were studied using thermal and chemical dissociation methods in combination with molecular-level isotopic measurements. The aim of the study was (1) to investigate dissociation mechanisms, and (2) to examine and quantify the proportions of labeled material incorporated within each sample. Isotopic analysis of specific dissociation products revealed the presence of the label in its original positions, and only within lignin-derived (phenolic) products. Moreover, the distribution and isotopic compositionmore » of the dissociation products strongly suggest an origin from newly-formed lignin. These results clearly indicate that there is no {open_quotes}scrambling{close_quotes} of carbon atoms as a result of the dissociation process, thereby lending support to this analytical approach. In addition, the data provide confidence in the selective labeling approach for elucidation of the structure and biosynthesis of lignin.« less

  17. A Freeze Substitution Fixation-Based Gold Enlarging Technique for EM Studies of Endocytosed Nanogold-Labeled Molecules

    PubMed Central

    He, Wanzhong; Kivork, Christine; Machinani, Suman; Morphew, Mary K.; Gail, Anna M.; Tesar, Devin B.; Tiangco, Noreen E.; McIntosh, J. Richard; Bjorkman, Pamela J.

    2007-01-01

    We have developed methods to locate individual ligands that can be used for electron microscopy studies of dynamic events during endocytosis and subsequent intracellular trafficking. The methods are based on enlargement of 1.4 nm Nanogold attached to an endocytosed ligand. Nanogold, a small label that does not induce misdirection of ligand-receptor complexes, is ideal for labeling ligands endocytosed by live cells, but is too small to be routinely located in cells by electron microscopy. Traditional pre-embedding enhancement protocols to enlarge Nanogold are not compatible with high pressure freezing/freeze substitution fixation (HPF/FSF), the most accurate method to preserve ultrastructure and dynamic events during trafficking. We have developed an improved enhancement procedure for chemically-fixed samples that reduced autonucleation, and a new pre-embedding gold-enlarging technique for HPF/FSF samples that preserved contrast and ultrastructure and can be used for high-resolution tomography. We evaluated our methods using labeled Fc as a ligand for the neonatal Fc receptor. Attachment of Nanogold to Fc did not interfere with receptor binding or uptake, and gold-labeled Fc could be specifically enlarged to allow identification in 2D projections and in tomograms. These methods should be broadly applicable to many endocytosis and transcytosis studies. PMID:17723309

  18. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Shan; Jahn, Izabella Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2018-05-01

    To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future.

  19. Label-free high-throughput imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  20. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    PubMed

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.