Antibody biosensors for spoilage yeast detection based on impedance spectroscopy.
Tubía, I; Paredes, J; Pérez-Lorenzo, E; Arana, S
2018-04-15
Brettanomyces is a yeast species responsible for wine and cider spoilage, producing volatile phenols that result in off-odors and loss of fruity sensorial qualities. Current commercial detection methods for these spoilage species are liable to frequent false positives, long culture times and fungal contamination. In this work, an interdigitated (IDE) biosensor was created to detect Brettanomyces using immunological reactions and impedance spectroscopy analysis. To promote efficient antibody immobilization on the electrodes' surface and to decrease non-specific adsorption, a Self-Assembled Monolayer (SAM) was developed. An impedance spectroscopy analysis, over four yeast strains, confirmed our device's increased efficacy. Compared to label-free sensors, antibody biosensors showed a higher relative impedance. The results also suggested that these biosensors could be a promising method to monitor some spoilage yeasts, offering an efficient alternative to the laborious and expensive traditional methods. Copyright © 2017 Elsevier B.V. All rights reserved.
A symmetric metamaterial element-based RF biosensor for rapid and label-free detection
NASA Astrophysics Data System (ADS)
Lee, Hee-Jo; Lee, Jung-Hyun; Jung, Hyo-Il
2011-10-01
A symmetric metamaterial element-based RF biosensing scheme is experimentally demonstrated by detecting biomolecular binding between a prostate-specific antigen (PSA) and its antibody. The metamaterial element in a high-impedance microstrip line shows an intrinsic S21 resonance having a Q-factor of 55. The frequency shift with PSA concentration, i.e., 100 ng/ml, 10 ng/ml, and 1 ng/ml, is observed and the changes are Δf ≈ 20 MHz, 10 MHz, and 5 MHz, respectively. The proposed biosensor offers advantages of label-free detection, a simple and direct scheme, and cost-efficient fabrication.
Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok
2014-08-15
The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
Progress of new label-free techniques for biosensors: a review.
Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong
2016-01-01
The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.
Deng, Jiajia; Toh, Chee-Seng
2013-06-17
A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.
Chen, Lifen; Chen, Zhong-Ning
2015-01-01
A multifunctional label-free biosensor for the detection of Hg(2+), adenosine triphosphate and thrombin has been developed based on the changing of the electrochemical impedance spectroscopy (EIS) from the modified electrodes when nucleic acid subunits interacting with different targets. The modified electrode consists of three interaction sections, including DNA with T-T mismatch recognizing Hg(2+) to form T-Hg(2+)-T complex, split DNA chip against ATP, and DNA domin against thrombin to form G-quadruplex. Upon DNA interaction with thrombin or ATP, an increased charge transfer resistance (Rct) had been detected. However, a decreased Rct against Hg(2+) was obtained. The Rct difference (ΔRct) has relationship with the concentration of the different targets, Hg(2+), ATP and thrombin can be selectively detected with the detection limit of 0.03, 0.25, and 0.20 nmol L(-1), respectively. To separately detect the three analytes existing in the same sample, ATP aptamer, G-rich DNA strands and EDTA were applied to mask ATP, Hg(2+) or thrombin separately. Copyright © 2014 Elsevier B.V. All rights reserved.
Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors
Pihíková, Dominika; Kasák, Peter
2016-01-01
Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer. PMID:27275016
Arya, Sunil K; Chornokur, Ganna; Venugopal, Manju; Bhansali, Shekhar
2010-06-15
Gold microelectrode arrays functionalized with dithiobis(succinimidyl propionate) self-assembled monolayer (SAM) have been used to fabricate an ultrasensitive, disposable, electrochemical cortisol immunosensor. Cortisol specific monoclonal antibody (C-Mab) was covalently immobilized on the surface of gold microelectrode array and the sensors were exposed to solutions with different cortisol concentration. After C-Mab binding, unreacted active groups of DTSP were blocked using ethanol amine (EA) and label-free electrochemical impedance (EIS) technique was used to determine cortisol concentration. EIS results confirmed that EA/C-Mab/DTSP/Au based biosensor can accurately detect cortisol in the range of 1pM-100nM. The biosensor was successfully used for the measurement of cortisol in interstitial fluid in vitro. This research establishes the feasibility of using impedance based biosensor architecture for disposable, wearable cortisol detector. Copyright 2010 Elsevier B.V. All rights reserved.
Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen
2013-01-01
A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis. PMID:23881126
Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen
2013-07-04
A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 10(4) to 4 × 10(6) CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 10(4) and 4 × 10(5) CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.
NASA Astrophysics Data System (ADS)
Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua
2016-02-01
One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 - 2.0 × 108 cells mL-1), a low limit of detection (79 cells mL-1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.
Wang, Kun; He, Meng-Qi; Zhai, Fu-Heng; He, Rong-Huan; Yu, Yong-Liang
2017-05-01
Simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. A sandwich electrochemical biosensor was developed based on polyadenine (polydA)-aptamer modified gold electrode (GE) and polydA-aptamer functionalized gold nanoparticles/graphene oxide (AuNPs/GO) hybrid for the label-free and selective detection of breast cancer cells (MCF-7) via a differential pulse voltammetry (DPV) technique. Due to the intrinsic affinity between multiple consecutive adenines of polydA sequences and gold, polydA modified aptamer instead of thiol terminated aptamer was immobilized on the surface of GE and AuNPs/GO. The label-free MCF-7 cells could be recognized by polydA-aptamer and self-assembled onto the surface of GE. The polydA-aptamer functionalized AuNPs/GO hybrid could further bind to MCF-7 cells to form a sandwich sensing system. Characterization of the surface modified GE was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using Fe(CN) 6 3-/4- as a redox probe. Under the optimized experimental conditions, a detection limit of 8 cellsmL -1 (3σ/slope) was obtained for MCF-7 cells by the present electrochemical biosensor, along with a linear range of 10-10 5 cellsmL -1 . By virtue of excellent sensitivity, specificity and repeatability, the present electrochemical biosensor provides a potential application in point-of-care cancer diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel image processing method study for a label-free optical biosensor
NASA Astrophysics Data System (ADS)
Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying
2015-10-01
Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.
A Label-Free, Redox Biosensor for Detection of Disease Biomarkers
NASA Astrophysics Data System (ADS)
Archibald, Michelle M.; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.
2014-03-01
Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We have developed a novel 3-dimensional ``nanocavity'' array for the detection of human cancer biomarkers in serum and other fluids. This all-electronic diagnostic sensor is based on a nanoscale coaxial array architecture that we have modified to enable molecular-level detection and identification. Each individual sensor in the array is a vertically-oriented coaxial capacitor, whose dielectric impedance is measurably changed when target molecules enter the coax annulus. We are designing a nanocoaxial biosensor based on electronic response to antibody recognition of a specific disease biomarker (e . g . CA-125 for early-stage ovarian cancer) on biofunctionalized metal surfaces within the nanocoax structure, thereby providing an all-electronic, ambient temperature, rapid-response, label-free redox biosensor. Our results demonstrate the feasibility of using this nanocoaxial array as an ultrasensitive device to detect a wide range of target proteins, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).
Bhavsar, Kinjal; Fairchild, Aaron; Alonas, Eric; Bishop, Daniel K; La Belle, Jeffrey T; Sweeney, James; Alford, T L; Joshi, Lokesh
2009-10-15
A biosensor for the serum cytokine, Interleukin-12 (IL-12), based upon a label-free electrochemical impedance spectroscopy (EIS) monitoring approach is described. Overexpression of IL-12 has been correlated to the diagnosis of Multiple Sclerosis (MS). An immunosensor has been fabricated by electroplating gold onto a disposable printed circuit board (PCB) electrode and immobilizing anti-IL-12 monoclonal antibodies (MAb) onto the surface of the electrode. This approach yields a robust sensor that facilitates reproducible mass fabrication and easy alteration of the electrode shape. Results indicate that this novel PCB sensor can detect IL-12 at physiological levels, <100 fM with f-values of 0.05 (typically <0.0001) in a label-free and rapid manner. A linear (with respect to log concentration) detectable range was achieved. Detection in a complex biological solution is also explored; however, significant loss of dynamic range is noted in the 100% complex solution. The cost effective approach described here can be used potentially for diagnosis of diseases (like MS) with known biomarkers in body fluids and for monitoring physiological levels of biomolecules with healthcare, food, and environmental relevance.
The characterisation and design improvement of a paper-based E.coli impedimetric sensor
NASA Astrophysics Data System (ADS)
Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.
2016-02-01
This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.
Saleem, Waqas; Salinas, Carlos; Watkins, Brian; Garvey, Gavin; Sharma, Anjal C; Ghosh, Ritwik
2016-12-15
An antibody, specific to fibrinogen, has been covalently attached to graphene and deposited onto screen printed electrodes using a chitosan hydrogel binder to prepare an inexpensive electrochemical fibrinogen biosensor. Fourier Transform Infrared (FT-IR) spectroscopy has been utilized to confirm the presence of the antibody on the graphene scaffold. Electrochemical Impedance Spectroscopy (EIS) has been utilized to demonstrate that the biosensor responds in a selective manner to fibrinogen in aqueous media even in the presence of plasminogen, a potentially interfering molecule in the coagulopathy cascade. Furthermore, the biosensor was shown to reliably sense fibrinogen in the presence of high background serum albumin levels. Finally, we demonstrated detection of clinically relevant fibrinogen concentrations (938-44,542μg/dL) from human serum and human whole blood samples using this biosensor. This biosensor can potentially be used in a point-of-care device to detect the onset of coagulopathy and monitor response following therapeutic intervention in trauma patients. Thus this biosensor may improve the clinical management of patients with trauma-induced coagulopathy. Copyright © 2016 Elsevier B.V. All rights reserved.
Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.
Ortiz-Aguayo, Dionisia; Del Valle, Manel
2018-01-26
This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.
Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy
2018-01-01
This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis. PMID:29373502
Jiang, Donglei; Ji, Jian; An, Lu; Sun, Xiulan; Zhang, Yinzhi; Zhang, Genyi; Tang, Lili
2013-12-15
A novel cell-based electrochemical biosensor was developed to quantify major shrimp allergen Pen a 1 (tropomyosin) and to assess its immunoglobulin E (IgE)-mediated hypersensitivity. Rat basophilic leukemia (RBL-2H3) mast cells, encapsulated in type I collagen, were immobilized on a self-assembled l-cysteine/gold nanoparticle (AuNPsCys)-modified gold electrode to monitor IgE-mediated mast cell sensitization and activation. The exposure of dinitrophenol-bovine serum albumin (DNP-BSA), as a model antigen that stimulates mast cells, induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner which efficiently measured degranulation of anti-DNP IgE-stimulated mast cells. Then this mast cell-based biosensor was applied into quantification for the shrimp allergen with anti-shrimp tropomyosin IgE-sensitization. The electrochemical impedance spectroscopy (EIS) results showed that the impedance value (Ret) increased with the concentration of purified shrimp allergen Pen a 1 (tropomyosin) in range of 0.5-0.25 μg mL(-1) with the detection limit as 0.15 μg mL(-1), and the electrochemical result was confirmed by β-hexosaminidase assay and scanning electron microscopic morphological (SEM) analysis. Thus, a simple, label-free, and sensitive method for the determination of shrimp allergens was proposed and demonstrated here, implying a highly versatile biosensor for food allergen detection and prediction. Copyright © 2013 Elsevier B.V. All rights reserved.
Label-free electrical detection using carbon nanotube-based biosensors.
Maehashi, Kenzo; Matsumoto, Kazuhiko
2009-01-01
Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.
Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.
Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang
2012-10-29
Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.
Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung
2010-01-15
In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.
Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo
2015-01-15
Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL(-1) and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose.
Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo
2015-01-01
Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958
Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S; Davis, Ronald W
2013-11-22
Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow 'real-time' detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.
NASA Astrophysics Data System (ADS)
Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S.; Davis, Ronald W.
2013-11-01
Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.
Martin, Julio
2010-09-01
Some drug targets are not amenable to screening because of the lack of a practical or validated biological assay. Likewise, some screening assays may not be predictive of compound activity in a more disease-relevant scenario, or assay development may demand excessive allocation of resources (i.e., time, money or personnel) with limited knowledge of the actual tractability of the target. Label-free methodologies, implemented in microtiter plate format, may help address these issues and complement, simplify, or facilitate assays. Label-free biosensors, based on grating resonance or electrical impedance, are versatile platforms for detecting phenotypic changes in both engineered and native cells. Their non-invasive nature allows for the kinetic monitoring of multiple real-time cellular responses to external stimuli, as well as for the use of successive pharmacological challenges. The temporal signature recorded for a particular stimulus is characteristic of the cell type and the signaling pathway activated upon binding of a ligand to its receptor. Cellular label-free technology is an important technical advance in the study of functional pharmacological selectivity. Described in this overview are some of the hurdles encountered in modern drug discovery and the ways in which label-free technologies can be used to overcome these obstacles.
NASA Astrophysics Data System (ADS)
Chirvi, Sajal
Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.
On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors.
Lavín, Álvaro; Vicente, Jesús de; Holgado, Miguel; Laguna, María F; Casquel, Rafael; Santamaría, Beatriz; Maigler, María Victoria; Hernández, Ana L; Ramírez, Yolanda
2018-06-26
A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.
Study and development of label-free optical biosensors for biomedical applications
NASA Astrophysics Data System (ADS)
Choi, Charles J.
For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of intravenous drugs and metabolites.
Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J.
2017-01-01
A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out. PMID:27277703
Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.
Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian
2017-06-15
A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.
Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong
2017-09-15
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.
Label-free nano-biosensing on the road to tuberculosis detection.
Golichenari, Behrouz; Velonia, Kelly; Nosrati, Rahim; Nezami, Alireza; Farokhi-Fard, Aref; Abnous, Khalil; Behravan, Javad; Tsatsakis, Aristidis M
2018-08-15
Tuberculosis, an ailment caused by the bacterium Mycobacterium tuberculosis (Mtb) complex, is one of the catastrophic transmittable diseases that affect human. Reports published by WHO indicate that in 2017 about 6.3 million people progressed to TB and 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. Common diagnostics like the traditional PPD test and antibody-assisted assays suffer the lack of sensitivity, long processing time and cumbersome post-test proceedings. These shortcomings restrict their use and encourage innovations in TB diagnostics. In recent years, the biosensor concept opened up new horizons in sensitive and fast detection of the disease, reducing the interval time between sampling and diagnostic result. Among new diagnostics, label-free nano-biosensors are highly promising for sensitive and accessible detection of tuberculosis. Various specific label-free nano-biosensors have been recently reported detecting the whole cell of M. tuberculosis, mycobacterial proteins and IFN-γ as crucial markers in early diagnosis of TB. This article provides a focused overview on nanomaterial-based label-free biosensors for tuberculosis detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Yijun; Wang, Cheng; Zhu, Yibo; Zhou, Xiaohong; Xiang, Yu; He, Miao; Zeng, Siyu
2017-03-15
This work presents a fully integrated graphene field-effect transistor (GFET) biosensor for the label-free detection of lead ions (Pb 2+ ) in aqueous-media, which first implements the G-quadruplex structure-switching biosensing principle in graphene nanoelectronics. We experimentally illustrate the biomolecular interplay that G-rich DNA single-strands with one-end confined on graphene surface can specifically interact with Pb 2+ ions and switch into G-quadruplex structures. Since the structure-switching of electrically charged DNA strands can disrupt the charge distribution in the vicinity of graphene surface, the carrier equilibrium in graphene sheet might be altered, and manifested by the conductivity variation of GFET. The experimental data and theoretical analysis show that our devices are capable of the label-free and specific quantification of Pb 2+ with a detection limit down to 163.7ng/L. These results first verify the signaling principle competency of G-quadruplex structure-switching in graphene electronic biosensors. Combining with the advantages of the compact device structure and convenient electrical signal, a label-free GFET biosensor for Pb 2+ monitoring is enabled with promising application potential. Copyright © 2016 Elsevier B.V. All rights reserved.
Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor
NASA Astrophysics Data System (ADS)
Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng
2016-06-01
Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.
Moradi, M; Sattarahmady, N; Rahi, A; Hatam, G R; Sorkhabadi, S M Rezayat; Heli, H
2016-12-01
Detection of leishmaniasis is important in clinical diagnoses. In the present study, identification of Leishmania parasites was performed by a label-free, PCR-free and signal-on ultrasensitive electrochemical DNA biosensor. Gold nanoleaves were firstly electrodeposited by an electrodeposition method using spermidine as a shape directing agent. The biosensor was fabricated by immobilization of a Leishmania major specific DNA probe onto gold nanoleaves, and methylene blue was employed as a marker. Hybridization of the complementary single stranded DNA sequence with the biosensor under the selected conditions was then investigated. The biosensor could detect a synthetic DNA target in a range of 1.0×10 -10 to 1.0×10 -19 molL -1 with a limit of detection of 1.8×10 -20 molL -1 , and genomic DNA in a range of 0.5-20ngμL -1 with a limit of detection of 0.07ngμL -1 . The biosensor could distinguish Leishmania major from a non-complementary-sequence oligonucleotide and the tropica species with a high selectivity. The biosensor was applicable to detect Leishmania major in patient samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Donmez, Soner; Arslan, Fatma; Arslan, Halit
2016-05-01
In this paper, we demonstrate a simple, sensitive, inexpensive, disposable and label-free electrochemical nucleic acid biosensor for the detection of the hepatitis C virus genotype 1a (HCV1a). The nucleic acid biosensor was designed with the amino-linked inosine-substituted 20-mer probes, which were immobilized onto a disposable pencil graphite electrode (PGE) by covalent linking. The proposed nucleic acid biosensor was linear in the range of 0.05 and 0.75 μM, exhibiting a limit of detection of 54.9 nM. The single-stranded synthetic PCR product analogs of HCV1a were also detected with satisfactory results under optimal conditions, showing the potential application of this biosensor.
Film bulk acoustic resonators (FBARs) as biosensors: A review.
Zhang, Yi; Luo, Jikui; Flewitt, Andrew J; Cai, Zhiqiang; Zhao, Xiubo
2018-09-30
Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Emerging applications of label-free optical biosensors
NASA Astrophysics Data System (ADS)
Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco
2017-01-01
Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.
Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds.
Urmann, Katharina; Walter, Johanna-Gabriela; Scheper, Thomas; Segal, Ester
2015-02-03
A proof-of-concept for a label-free and reagentless optical biosensing platform based on nanostructured porous silicon (PSi) and aptamers is presented in this work. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensor design. Here we describe the fabrication and characterization of aptamer-conjugated PSi biosensors, where a previously characterized his-tag binding aptamer (6H7) is used as model system. Exposure of the aptamer-functionalized PSi to the target proteins as well as to complex fluids (i.e., bacteria lysates containing target proteins) results in robust and well-defined changes in the PSi optical interference spectrum, ascribed to specific aptamer-protein binding events occurring within the nanoscale pores, monitored in real time. The biosensors show exceptional stability and can be easily regenerated by a short rinsing step for multiple biosensing analyses. This proof-of-concept study demonstrates the possibility of designing highly stable and specific label-free optical PSi biosensors, employing aptamers as capture probes, holding immense potential for application in detection of a broad range of targets, in a simple yet reliable manner.
Martins, Gabriela V; Marques, Ana C; Fortunato, Elvira; Sales, M Goreti F
2016-12-15
An innovative biosensor assembly relying on a simple and straightforward in-situ construction is presented to monitor urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) down to the pmol/L level. The sensing film of the biosensor consisted of a molecularly imprinted polymer (MIP) layer for 8-OHdG assembled on a gold electrode through electropolymerization of monomer combined with the template. The analytical features of the resulting biosensor were assessed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Some experimental parameters such as the initial concentration of the monomer and the ratio template-monomer were investigated and optimized in order to finely tune the performance of the MIP-based sensor. Under optimal conditions, the developed biosensor was able to rebind 8-OHdG with a linear response against EIS from 0.1 to 100pg/ml 3.5-3500 pM. The interference of coexisting species was tested, also with calibrations on urine samples, and good selectivity towards 8-OHdG was obtained. RAMAN spectroscopy, FTIR and SEM evaluations of the prepared films confirmed the formation of a polyphenol thin-film on the electrode surface. The presence and distribution of the imprinted cavities on the MIP layer was confirmed by confocal microscopy imaging of the film, after a post-treatment with Fluorescein Isothiocyanate (FITC) labeled 8-OHdG antibody. Overall, this label-free biosensor for urinary 8-OHdG detection constitutes a promising low-cost alternative to the conventional immunoassay approaches, due to its simplicity, stability, high sensitivity and selectivity for biological sample assays, opening new doors for other applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Zhong Feng; Chen, Dong Mei; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing
2015-10-15
Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Advantages and application of label-free detection assays in drug screening.
Cunningham, Brian T; Laing, Lance G
2008-08-01
Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.
Sun, Alexander; Venkatesh, A G; Hall, Drew A
2016-10-01
This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients ( ∼ 200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.
Functionalized nanopipettes: toward label-free, single cell biosensors.
Actis, Paolo; Mak, Andy C; Pourmand, Nader
2010-08-01
Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.
Functionalized nanopipettes: toward label-free, single cell biosensors
Actis, Paolo; Mak, Andy C.
2010-01-01
Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113
Passivated aluminum nanohole arrays for label-free biosensing applications.
Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo
2014-01-22
We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.
Wang, Lijiang; Liu, Qingjun; Hu, Zhaoying; Zhang, Yuanfan; Wu, Chunsheng; Yang, Mo; Wang, Ping
2009-05-15
A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.
On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors.
Arshavsky-Graham, Sofia; Massad-Ivanir, Naama; Paratore, Federico; Scheper, Thomas; Bercovici, Moran; Segal, Ester
2017-12-22
Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.
Optical biosensors: where next and how soon?
Cooper, Matthew A
2006-12-01
From a direct comparison of the technical benefits of labelled reporter assays with the benefits of label-free assays, label-free appears to have significant advantages. Faster assay development times; accurate, high information content data; and less interference from labels. However, optical label-free platforms have not yet made a major impact in the drug discovery technology markets; are often viewed as having poor throughput, limited application; and are difficult to learn and use effectively.
Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity
Qin, Kun; Hu, Shuren; Retterer, Scott T.; ...
2016-02-05
Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.
Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing
Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto
2015-01-01
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252
Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing.
Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto
2015-07-22
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.
NASA Astrophysics Data System (ADS)
Wang, Fang-Yu; Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Yang, Jyh-Yuan; Chang, Chia-Ching
2013-03-01
Enterovirus 71 (EV71), which is the most fulminant and invasive species of enterovirus, can cause children neurologic complications and death within 2-3 days after fever and rash developed. Besides, EV71 has high sequence similarity with Coxsackie A 16 (CA16) that makes differential diagnosis difficult in clinic and laboratory. Since conventional viral diagnostic method cannot diagnose EV71 quickly and EV71 can transmit at low viral titer, the patients might delay in treatment. A quick, high sensitive, and high specific test for EV71 detection is pivotal. Electrochemical impedance spectroscopy (EIS) has been applied for detecting bio-molecules as biosensors recently. In this study, we try to build a detection platform for EV71 detection by nanogold modified EIS probe. The result shows that our probe can detect 3.6 VP1/50 μl (one EV71 particle has 60 VP1) in 3 minutes. The test can also distinguish EV71 from CA16 and lysozyme. Diagnosis of enterovirus 71 by electrochemical impedance spectroscopy has the potential to apply in clinic.
Bertok, Tomas; Sediva, Alena; Katrlik, Jaroslav; Gemeiner, Pavol; Mikula, Milan; Nosko, Martin; Tkac, Jan
2016-01-01
We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinylalcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade-1 and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade-1 with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade-1. These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids. PMID:23601864
The whispering gallery mode biosensor: label-free detection from virus to single protein
NASA Astrophysics Data System (ADS)
Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.
2014-08-01
The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.
Highly stable porous silicon-carbon composites as label-free optical biosensors.
Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang
2012-12-21
A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.
Design of surface modifications for nanoscale sensor applications.
Reimhult, Erik; Höök, Fredrik
2015-01-14
Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.
Design of Surface Modifications for Nanoscale Sensor Applications
Reimhult, Erik; Höök, Fredrik
2015-01-01
Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599
Development of biosensors based on the one-dimensional semiconductor nanomaterials.
Yan, Shancheng; Shi, Yi; Xiao, Zhongdang; Zhou, Minmin; Yan, Wenfu; Shen, Haoliang; Hu, Dong
2012-09-01
Biosensors are becoming increasingly important due to their applications in biological and chemical analyses, food safety industry, biomedical diagnostics, clinical detection, and environmental monitoring. Recent years, nanostructured semiconductor materials have been used to fabricate biosensors owing to their biocompatibility, low toxicity, high electron mobility, and easy fabrication. In the present study, we focus on recent various biosensors based on the one-dimensional semiconductor nanomaterials such as electrochemical biosensor, field-effect transistors biosensor, and label-free optical biosensor. In particular, the development of the electrochemical biosensor is discussed detailedly.
Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms
Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A.
2016-01-01
Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions. PMID:27089377
Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A
2016-04-14
Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.
Label-free silicon photonic biosensor system with integrated detector array.
Yan, Rongjin; Mestas, Santano P; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S; Lear, Kevin L
2009-08-07
An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide's upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip.
Label-free silicon photonic biosensor system with integrated detector array
Yan, Rongjin; Mestas, Santano P.; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S.
2010-01-01
An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide’s upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip. PMID:19606292
Label-free optical biosensing with slot-waveguides.
Barrios, Carlos A; Bañuls, María José; González-Pedro, Victoria; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Maquieira, A; Sohlström, H; Holgado, M; Casquel, R
2008-04-01
We demonstrate label-free molecule detection by using an integrated biosensor based on a Si(3)N(4)/SiO(2) slot-waveguide microring resonator. Bovine serum albumin (BSA) and anti-BSA molecular binding events on the sensor surface are monitored through the measurement of resonant wavelength shifts with varying biomolecule concentrations. The biosensor exhibited sensitivities of 1.8 and 3.2 nm/(ng/mm(2)) for the detection of anti-BSA and BSA, respectively. The estimated detection limits are 28 and 16 pg/mm(2) for anti-BSA and BSA, respectively, limited by wavelength resolution.
Molazemhosseini, Alireza; Magagnin, Luca; Vena, Pasquale; Liu, Chung-Chiun
2016-07-01
A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5-20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R² = 0.999) in the range of 0.1-0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated.
Molazemhosseini, Alireza; Magagnin, Luca; Vena, Pasquale; Liu, Chung-Chiun
2016-01-01
A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5–20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R2 = 0.999) in the range of 0.1–0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated. PMID:27376299
Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers
NASA Astrophysics Data System (ADS)
Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il
2013-07-01
In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.
Nanophotonic label-free biosensors for environmental monitoring.
Chocarro-Ruiz, Blanca; Fernández-Gavela, Adrián; Herranz, Sonia; Lechuga, Laura M
2017-06-01
The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Türker Şener, Leyla; Albeni̇z, Gürcan; Di̇nç, Bi̇rcan; Albeni̇z, Işil
2017-01-01
The recently developed iCELLigence™ real-time cell analyzer (RTCA) can be used for the label-free real-time monitoring of cancer cell proliferation, viability, invasion and cytotoxicity. The RTCA system uses 16-well microtiter plates with a gold microelectrode biosensor array that measures impedance when cells adhere to the microelectrodes causing an alternating current. By measuring the electric field generated in this process, the RTCA system can be used for the analysis of cell proliferation, viability, morphology and migration. The present review aimed to summarize the working method of the RTCA system, in addition to discussing the research performed using the system for various applications, including cancer drug discovery via measuring cytotoxicity. PMID:28962095
Cunci, Lisandro; Vargas, Marina Martinez; Cunci, Roman; Gomez-Moreno, Ramon; Perez, Ivan; Baerga-Ortiz, Abel; Gonzalez, Carlos I; Cabrera, Carlos R
2014-10-15
The enzyme telomerase is present in about 85% of human cancers which makes it not only a good target for cancer treatment but also an excellent marker for cancer detection. Using a single stranded DNA probe specific for telomerase binding and reverse transcription tethered to an interdigital gold electrode array surface, the chromosome protection provided by the telomerase was replicated and followed by Electrochemical Impedance Spectroscopy as an unlabeled biosensor. Using this system designed in-house, easy and affordable, impedance measurements were taken while incubating at 37 °C and promoting the probe elongation. This resulted in up to 14-fold increase in the charge transfer resistance when testing a telomerase-positive nuclear extract from Jurkat cells compared to the heat-inactivated telomerase-negative nuclear extract. The electron transfer process at the Au electrodes was studied before the elongation, at different times after the elongation, and after desorption of non-specific binding.
Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells
Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin
2014-01-01
Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394
NASA Astrophysics Data System (ADS)
Malmir, Narges; Fasihi, Kiazand
2017-11-01
In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.
Magneto-impedance based detection of magnetically labeled cancer cells and bio-proteins
NASA Astrophysics Data System (ADS)
Devkota, J.; Howell, M.; Mohapatra, S.; Nhung, T. H.; Mukherjee, P.; Srikanth, H.; Phan, M. H.
2015-03-01
A magnetic biosensor with enhanced sensitivity and immobilized magnetic markers is essential for a reliable analysis of the presence of a biological entity in a fluid. Based on conventional approaches, however, it is quite challenging to create such a sensor. We report on a novel magnetic biosensor using the magneto-impedance (MI) effect of a Co-based amorphous ribbon with a microhole-patterned surface that fulfils these requirements. The sensor probe was fabricated by patterning four microholes, each of diameter 2 μm and depth 2 μm, on the ribbon surface using FIB lithography. The magnetically labeled Luis Lung Carcinoma (LLC) cancer cells and Bovine serum albumin (BSA) proteins were drop-casted on the ribbon surface, and MI was measured over 0.1 - 10 MHz frequency range. As the analytes were trapped into the microholes, their physical motion was minimized and interaction among the magnetic fields was strengthened, thus yielding a more reliable and sensitive detection of the biological entities. The presence of magnetically labeled LLC cells (8.25x105 cells/ml, 10 μl) and BSA proteins (2x1011 particles/ml, 10 μl) were found to result in a ~ 2% change in MI with respect to the reference signal.
Label-free biosensing of Salmonella enterica serovars at single-cell level
USDA-ARS?s Scientific Manuscript database
Nanotechnology has greatly facilitated the development of label-free biosensors. The atomic force microscopy (AFM) has been used to study the molecular mechanism of the reactions for protein and aptamers. The surface plasmon resonance (SPR) have been used in fast detection of various pathogenic bact...
Nanoporous impedemetric biosensor for detection of trace atrazine from water samples.
Pichetsurnthorn, Pie; Vattipalli, Krishna; Prasad, Shalini
2012-02-15
Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases. Copyright © 2011 Elsevier B.V. All rights reserved.
Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos
2017-03-01
We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.
Label-free and non-contact optical biosensing of glucose with quantum dots.
Khan, Saara A; Smith, Gennifer T; Seo, Felix; Ellerbee, Audrey K
2015-02-15
We present a label-free, optical sensor for biomedical applications based on changes in the visible photoluminescence (PL) of quantum dots in a thin polymer film. Using glucose as the target molecule, the screening of UV excitation due to pre-absorption by the product of an enzymatic assay leads to quenching of the PL of quantum dots (QDs) in a non-contact scheme. The irradiance changes in QD PL indicate quantitatively the level of glucose present. The non-contact nature of the assay prevents surface degradation of the QDs, which yields an efficient, waste-free, cost-effective, portable, and sustainable biosensor with attractive market features. The limit of detection of the demonstrated biosensor is ~3.5 µm, which is competitive with existing contact-based bioassays. In addition, the biosensor operates over the entire clinically relevant range of glucose concentrations of biological fluids including urine and whole blood. The comparable results achieved across a range of cost-affordable detectors, including a spectrophotometer, portable spectrometer, and iPhone camera, suggest that label-free and visible quantification of glucose with QD films can be applied to low-cost, point-of-care biomedical sensing as well as scientific applications in the laboratory for characterizing glucose or other analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Interdigitated electrodes as impedance and capacitance biosensors: A review
NASA Astrophysics Data System (ADS)
Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.
2017-09-01
Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.
Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki
2016-06-01
The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M
2017-01-01
A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rauf, Sana; Zhang, Ling; Ali, Asghar; Liu, Yang; Li, Jinghong
2017-02-24
Detection of very low amounts of illicit drugs such as cocaine in clinical fluids like serum continues to be important for many areas in the fight against drug trafficking. Herein, we constructed a label-free nanopore biosensor for rapid and highly sensitive detection of cocaine in human serum and saliva samples based on target-induced strand release strategy. In this bioassay, an aptamer for cocaine was prehybridized with a short complementary DNA. Owing to cocaine specific binding with aptamer, the short DNA strand was displaced from aptamer and translocation of this output DNA through α-hemolysin nanopore generated distinct spike-like current blockages. When plotted in double-logarithmic scale, a linear relationship between target cocaine concentration and output DNA event frequency was obtained in a wide concentration range from 50 nM to 100 μM of cocaine, with the limit of detection down to 50 nM. In addition, this aptamer-based sensor method was successfully applied for cocaine detection in complex biological fluids like human saliva and serum samples with great selectivity. Simple preparation, low cost, rapid, label-free, and real sample detection are the motivating factors for practical application of the proposed biosensor.
Electrochemical lectin based biosensors as a label-free tool in glycomics
Bertók, Tomáš; Katrlík, Jaroslav; Gemeiner, Peter; Tkac, Jan
2016-01-01
Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb “identity cards”. In fact, glycans can form more “words” or “codes” (i.e., unique sequences) from the same number of “letters” (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or - even more challenging - to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the “glycocode”. Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics. This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells. PMID:27239071
Mujahid, Adnan; Mustafa, Ghulam; Dickert, Franz L
2018-06-01
Modern diagnostic tools and immunoassay protocols urges direct analyte recognition based on its intrinsic behavior without using any labeling indicator. This not only improves the detection reliability, but also reduces sample preparation time and complexity involved during labeling step. Label-free biosensor devices are capable of monitoring analyte physiochemical properties such as binding sensitivity and selectivity, affinity constants and other dynamics of molecular recognition. The interface of a typical biosensor could range from natural antibodies to synthetic receptors for example molecular imprinted polymers (MIPs). The foremost advantages of using MIPs are their high binding selectivity comparable to natural antibodies, straightforward synthesis in short time, high thermal/chemical stability and compatibility with different transducers. Quartz crystal microbalance (QCM) resonators are leading acoustic devices that are extensively used for mass-sensitive measurements. Highlight features of QCM devices include low cost fabrication, room temperature operation, and most importantly ability to monitor extremely low mass shifts, thus potentially a universal transducer. The combination of MIPs with quartz QCM has turned out as a prominent sensing system for label-free recognition of diverse bioanalytes. In this article, we shall encompass the potential applications of MIP-QCM sensors exclusively label-free recognition of bacteria and virus species as representative micro and nanosized bioanalytes.
Polymer dual ring resonators for label-free optical biosensing using microfluidics.
Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M
2013-04-18
We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.
Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser
NASA Astrophysics Data System (ADS)
Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.
2008-06-01
A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.
Nanophotonics for Lab-on-Chip Applications
NASA Astrophysics Data System (ADS)
Seitz, Peter
Optical methods are the preferred measurement techniques for biosensors and lab-on-chip applications. Their key properties are sensitivity, selectivity and robustness. To simplify the systems and their operation, it is desirable to employ label-free optical methods, requiring the functionalization of interfaces. Evanescent electromagnetic waves are probing the optical proper ties near the interfaces, a few 100 nm deep into the sample fluid. The sensitivity of these measurements can be improved with optical micro-resonators, in particular whispering gallery mode devices. Q factors as high as 2x108 have been achieved in practice. The resulting narrow-linewidth resonances and an unexpected thermo-optic effect make it possible to detect single biomolecules using a label-free biosensor principle. Future generations of biosensors and labs-on-chip for point-of-care and high-troughput screening applications will require large numbers of parallel measurement channels, necessitating optical micro-resonators in array format produced very cost-effectively.
Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-02-28
Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.
Shariati, Mohsen
2018-05-15
In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10µM. The detection limit of the DNA biosensor was about 1fM. The time of the hybridization process for defined single strand was 90min. The switching ratio of the biosensor between "on" and "off" state was ~ 1.1 × 10 5 . For sensing the specificity of the biosensor, non-complementary, mismatch and complementary DNA oligonucleotide sequences were clearly discriminated. The HBV biosensor confirmed the highly satisfied specificity for differentiating complementary sequences from non-complementary and the mismatch oligonucleotides. The response time of the DNA sensor was 37s with a high reproducibility. The stability and repeatability of the DNA biosensor showed that the peak current of the biosensor retained 98% and 96% of its initial response for measurements after three and five weeks, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Advances and challenges in biosensor-based diagnosis of infectious diseases
Sin, Mandy LY; Mach, Kathleen E; Wong, Pak Kin; Liao, Joseph C
2014-01-01
Rapid diagnosis of infectious diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost. Broadly classified as either label-free or labeled, modern biosensors exploit micro- and nanofabrication technologies and diverse sensing strategies including optical, electrical and mechanical transducers. Despite clinical need, translation of biosensors from research laboratories to clinical applications has remained limited to a few notable examples, such as the glucose sensor. Challenges to be overcome include sample preparation, matrix effects and system integration. We review the advances of biosensors for infectious disease diagnostics and discuss the critical challenges that need to be overcome in order to implement integrated diagnostic biosensors in real world settings. PMID:24524681
Etayash, Hashem; Jiang, Keren; Thundat, Thomas; Kaur, Kamaljit
2014-02-04
Real-time, label-free detection of Gram-positive bacteria with high selectivity and sensitivity is demonstrated using an interdigitated impedimetric array functionalized with naturally produced antimicrobial peptide from class IIa bacteriocins. The antimicrobial peptide, leucocin A, was chemically synthesized and covalently immobilized on interdigitated gold microelectrodes via the interaction between the C-terminal carboxylic acid of the peptide and free amines of a preattached thiolated linker. Exposing the peptide sensor to various concentrations of Gram-positive bacteria generated reproducible impedance spectra that detected peptide-bacteria interactions at a concentration of 1 cell/μL. The peptide sensor also selectively detected Listeria monocytogenes from other Gram-positive strains at a concentration of 10(3) cfu mL(-1). The study highlights that short peptide ligands from bacteriocin class offer high selectivity in bacterial detection and can be used in developing a robust, portable biosensor device to efficiently detect pathogenic Gram-positive bacteria in food samples.
NASA Astrophysics Data System (ADS)
Shariati, Mohsen
2017-05-01
The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was `label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO3 nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics.
High-throughput label-free microcontact printing graphene-based biosensor for valley fever.
Tsai, Shih-Ming; Goshia, Tyler; Chen, Yen-Chang; Kagiri, Agnes; Sibal, Angelo; Chiu, Meng-Hsuen; Gadre, Anand; Tung, Vincent; Chin, Wei-Chun
2018-06-18
The highly prevalent and virulent disease in the Western Hemisphere Coccidioidomycosis, also known as Valley Fever, can cause serious illness such as severe pneumonia with respiratory failure. It can also take on a disseminated form where the infection spreads throughout the body. Thus, a serious impetus exists to develop effective detection of the disease that can also operate in a rapid and high-throughput fashion. Here, we report the assembly of a highly sensitive biosensor using reduced graphene oxide (rGO) with Coccidioides(cocci) antibodies as the target analytes. The facile design made possible by the scalable microcontact printing (μCP) surface patterning technique which enables rapid, ultrasensitive detection. It provides a wide linear range and sub picomolar (2.5 pg/ml) detection, while also delivering high selectivity and reproducibility. This work demonstrates an important advancement in the development of a sensitive label-free rGO biosensor for Coccidioidomycosis detection. This result also provides the potential application of direct pathogen diagnosis for the future biosensor development. Copyright © 2018 Elsevier B.V. All rights reserved.
Plasmonic biosensor for label-free G-quadruplexes detection
NASA Astrophysics Data System (ADS)
Qiu, Suyan; Zhao, Fusheng; Santos, Greggy M.; Shih, Wei-Chuan
2016-03-01
G-quadruplex, readily formed by the G-rich sequence, potentially distributes in over 40 % of all human genes, such as the telomeric DNA with the G-rich sequence found at the end of the chromosome. The G-quadruplex structure is supposed to possess a diverse set of critical functions in the mammalian genome for transcriptional regulation, DNA replication and genome stability. However, most of the currently available methods for G-quadruplex identification are restricted to fluorescence techniques susceptible to poor sensitivity. It is essential to propose methods with higher sensitivity to specifically recognize the G-quadruplexes. In this study, we demonstrate a label-free plasmonic biosensor for G-quadruplex detection by relying on the advantages of nanoporous gold (NPG) disks that provide high-density plasmonic hot spots, suitable for molecular recognition capability without the requirement for labeling processes.
Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Chen; Xie, Xia; Liu, Yuanyuan; Wang, Jiajia; Tang, Jing; Zhang, Yi; Deng, Yaocheng
2016-01-01
A novel label-free impedimetric sensing system based on DNAzyme and ordered mesoporous carbon-gold nanoparticle (OMC-GNPs) for the determination of Pb(2+) concentration was developed in the present study. Firstly, gold nanoparticles deposited on the modified electrode surface were employed as a platform for the immobilization of thiolated probe DNA, and then hybridized with DNAzyme catalytic beacons. Subsequently, in the presence of Pb(2+), the DNAzyme could be activated to cleave the substrate strand into two DNA fragments, which causes differences in the electrical properties of the film. Randles equivalent circuit was employed to evaluate the electrochemical impedance spectroscopy (EIS) result. The charge transfer resistance (R(CT)) value for the [Fe(CN)6](3-/4-) redox indicator was remarkably decline after hybridization with Pb(2+). The difference in RCT values before and after hybridization with Pb(2+) showed a linear relation with the concentration of the Pb(2+) in a range of 5×10(-10)-5×10(-5) M, with a detection limit of 2×10(-10) M (S/N=3). Furthermore, with the application of Pb(2+) dependent 8-17DNAzyme, the proposed sensing system exhibited high selectivity without using any labeled probes. This biosensor demonstrated a promising potential for Pb(2+) detection in real sample. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Zhen; Zhu, Wenping; Zhang, Jinwen; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin
2013-07-07
A label-free fluorescent DNA biosensor has been presented based on isothermal circular strand-displacement polymerization reaction (ICSDPR) combined with graphene oxide (GO) binding. The proposed method is simple and cost-effective with a low detection limit of 4 pM, which compares favorably with other GO-based homogenous DNA detection methods.
Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro
2016-10-01
In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan
2018-08-01
A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Last Advances in Silicon-Based Optical Biosensors.
Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M
2016-02-24
We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.
Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang
2016-05-03
Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.
A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.
Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza
2016-08-15
In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences. Copyright © 2016 Elsevier B.V. All rights reserved.
Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up.
Soler, Maria; Estevez, M-Carmen; Moreno, Maria de Lourdes; Cebolla, Angel; Lechuga, Laura M
2016-05-15
Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajesh, Sharma, Vikash; Puri, Nitin K.; Singh, Rajiv K.; Biradar, Ashok M.; Mulchanadani, Ashok
2013-11-01
We report a specific and ultrasensitive, label-free chemiresistive biosensor based on mercaptopropionic acid capped gold nanoparticles (GNP) functionalized single walled carbon nanotube (SWNT) hybrid for the detection of cardiac specific biomarker troponin-I (cTnI). GNPs were attached to SWNTs through a molecular linker 1-pyrenemethylamine. The highly specific cTnI antibody was covalently immobilized on GNPs through capping agent using carbodiimide coupling reaction. The cTnI interaction to its corresponding antibody was studied with respect to changes in conductance in SWNTs channel, and a detailed field-effect transistor characteristic was delineated. The device exhibited a linear response to cTnI from 0.01 to 10 ng ml-1.
Kerr-Phillips, Thomas E; Aydemir, Nihan; Chan, Eddie Wai Chi; Barker, David; Malmström, Jenny; Plesse, Cedric; Travas-Sejdic, Jadranka
2018-02-15
A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10 -18 mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xiang; Fang, Chen; Yan, Jilin; Li, Huiling; Tu, Yifeng
2018-05-23
The C-peptide is a co-product of pancreatic β-cells during insulin secretion; its content in body fluid is closely related to diabetes. This paper reports an immune-sensing strategy for a simple and effective assay of C-peptide based on label-free electrochemiluminescent (ECL) signaling, with high sensitivity and specificity. The basal electrode was constructed of an indium tin oxide (ITO) glass as a conductive substrate, which was decorated by Au nanoparticles (AuNPs) with hydrolysed (3-aminopropyl)trimethoxysilane as the linker. The characteristics of the fabricated electrode were investigated by electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. After immobilizing the C-peptide antibody, which takes great advantage of AuNPs' binding capacity, this immunosensor can quantify C-peptide using luminol as the ECL probe. By measuring ECL inhibition, calibration can be established to report the C-peptide concentration between 0.05 ng mL -1 and 100 ng mL -1 with a detection limit of 0.0142 ng mL -1 . As a proof of concept, the proposed strategy is a promising and versatile platform for the clinical diagnosis, classification, and research of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.
Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.
Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong
2013-01-01
The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.
Last Advances in Silicon-Based Optical Biosensors
Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.
2016-01-01
We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105
Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te
2018-01-15
The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.
Prediction of the limit of detection of an optical resonant reflection biosensor.
Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong
2007-07-09
A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.
Surface stress-based biosensors.
Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang
2014-01-15
Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.
Granqvist, Niko; Hanning, Anders; Eng, Lars; Tuppurainen, Jussi; Viitala, Tapani
2013-01-01
Surface plasmon resonance (SPR) is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations. PMID:24217357
Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae
2013-11-13
A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong
2017-02-01
Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.
NASA Astrophysics Data System (ADS)
Verma, Madhulika; Sharma, Dheeraj; Pandey, Sunil; Nigam, Kaushal; Kondekar, P. N.
2017-01-01
In this work, we perform a comparative analysis between single and dual metal dielectrically modulated tunnel field-effect transistors (DMTFETs) for the application of label free biosensor. For this purpose, two different gate material with work-function as ϕM 1 and ϕM 2 are used in short-gate DMTFET, where ϕM 1 represents the work-function of gate M1 near to the drain end, while ϕM 2 denotes the work-function of gate M2 near to the source end. A nanogap cavity in the gate dielectric is formed by removing the selected portion of gate oxide for sensing the biomolecules. To investigate the sensitivity of these biosensors, dielectric constant and charge density within the cavity region are considered as governing parameters. The work-function of gate M2 is optimized and considered less than M1 to achieve abruptness at the source/channel junction, which results in better tunneling and improved ON-state current. The ATLAS device simulations show that dual metal SG-DMTFETs attains higher ON-state current and drain current sensitivity as compared to its counterpart device. Finally, a dual metal short-gate (DSG) biosensor is compared with the single metal short-gate (SG), single metal full-gate (FG), and dual metal full-gate (DFG) biosensors to analyse structurally enhanced conjugation effect on gate-channel coupling.
Electrochemical enzymatic biosensors using carbon nanofiber nanoelectrode arrays
NASA Astrophysics Data System (ADS)
Li, Jun; Li, Yi-fen; Swisher, Luxi Z.; Syed, Lateef U.; Prior, Allan M.; Nguyen, Thu A.; Hua, Duy H.
2012-10-01
The reduction of electrode size down to nanometers could dramatically enhance detection sensitivity and temporal resolution. Nanoelectrode arrays (NEAs) are of particular interest for ultrasensitive biosensors. Here we report the study of two types of biosensors for measuring enzyme activities using NEAs fabricated with vertically aligned carbon nanofibers (VACNFs). VACNFs of ~100 nm in average diameter and 3-5 μm in length were grown on conductive substrates as uniform vertical arrays which were then encapsulated in SiO2 matrix leaving only the tips exposed. We demonstrate that such VACNF NEAs can be used in profiling enzyme activities through monitoring the change in electrochemical signals induced by enzymatic reactions to the peptides attached to the VACNF tip. The cleavage of the tetrapeptide with a ferrocene tag by a cancerrelated protease (legumain) was monitored with AC voltammetry. Real-time electrochemical impedance spectroscopy (REIS) was used for fast label-free detection of two reversible processes, i.e. phosphorylation by c-Src tyrosine kinase and dephosphorylation by protein tyrosine phosphatase 1B (PTP1B). The REIS data of phosphorylation were slow and unreliable, but those of dephosphorylation showed large and fast exponential decay due to much higher activity of phosphatase PTP1B. The kinetic data were analyzed with a heterogeneous Michaelis-Menten model to derive the "specificity constant" kcat/Km, which is 8.2x103 M-1s-1 for legumain and (2.1 ± 0.1) x 107 M-1s-1 for phosphatase (PTP1B), well consistent with literature. It is promising to develop VACNF NEA based electrochemical enzymatic biosensors as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring.
Performance limitations of label-free sensors in molecular diagnosis using complex samples
NASA Astrophysics Data System (ADS)
Varma, Manoj
2016-03-01
Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.
Integrated optical biosensor for rapid detection of bacteria
NASA Astrophysics Data System (ADS)
Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András
2016-02-01
In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.
Integrated optical biosensor for rapid detection of bacteria
NASA Astrophysics Data System (ADS)
Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András
2015-12-01
In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.
Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators
NASA Astrophysics Data System (ADS)
Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet
2015-08-01
Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.
Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.
Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas
2017-09-10
Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Yanyan; Zhao, Manru; Wang, Haiyan
2017-11-01
We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.
A silicon-based peptide biosensor for label-free detection of cancer cells
NASA Astrophysics Data System (ADS)
Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa
2015-05-01
Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.
Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules
NASA Astrophysics Data System (ADS)
Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook
2014-12-01
We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.
Label-free biodetection using a smartphone.
Gallegos, Dustin; Long, Kenneth D; Yu, Hojeong; Clark, Peter P; Lin, Yixiao; George, Sherine; Nath, Pabitra; Cunningham, Brian T
2013-06-07
Utilizing its integrated camera as a spectrometer, we demonstrate the use of a smartphone as the detection instrument for a label-free photonic crystal biosensor. A custom-designed cradle holds the smartphone in fixed alignment with optical components, allowing for accurate and repeatable measurements of shifts in the resonant wavelength of the sensor. Externally provided broadband light incident upon an entrance pinhole is subsequently collimated and linearly polarized before passing through the biosensor, which resonantly reflects only a narrow band of wavelengths. A diffraction grating spreads the remaining wavelengths over the camera's pixels to display a high resolution transmission spectrum. The photonic crystal biosensor is fabricated on a plastic substrate and attached to a standard glass microscope slide that can easily be removed and replaced within the optical path. A custom software app was developed to convert the camera images into the photonic crystal transmission spectrum in the visible wavelength range, including curve-fitting analysis that computes the photonic crystal resonant wavelength with 0.009 nm accuracy. We demonstrate the functionality of the system through detection of an immobilized protein monolayer, and selective detection of concentration-dependent antibody binding to a functionalized photonic crystal. We envision the capability for an inexpensive, handheld biosensor instrument with web connectivity to enable point-of-care sensing in environments that have not been practical previously.
Ng, Siu Pang; Qiu, Guangyu; Ding, Ning; Lu, Xiaoqing; Wu, Chi-Man Lawrence
2017-03-15
3-nitro-l-tyrosine (3-NT) is believed to be a biomarker of neurodegenerative diseases and metal doped graphene possess exceptionally high binding energy of 3-NT with metal-nitro chemisorption. Here we report a novel label-free detection scheme of 3-NT via nickel-doped graphene (NDG) as the functionalized receptor on our phase detecting localized surface plasmon resonance (LSPR) biosensor. When compared with reported 3-NT immunoassay with enzyme-linked immunosorbent assay (ELISA), our NDG-LSPR platform offers two advantages i.e. 1) label-free and 2) capture of 3-NT by direct chemisorption. Our limit of detection for 3-NT in PBS was found to be 0.13pg/ml and the linear dynamic range of response was from 0.5pg/ml to 1ng/ml, i.e. four orders of magnitude. The specificity of our NDG receptor to 3-NT was also verified with l-tyrosine of equivalent concentrations in PBS and diluted human serum, for which the NDG receptor shows negligible responses. In addition, the adsorption of 3-NT and l-tyrosine to the NDG receptor were also investigated by atomic force microscopy and further verified by surface enhanced Raman spectroscopy. Therefore, our NDG-LSPR biosensor competes favorably against ELISA and we believe it should be an attractive and economical solution to early diagnostic of 3-NT related disorders for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay
2017-03-01
Nanostructured nickel oxide (NiO) thin film has been explored as a matrix to develop a reagentless biosensor for free and total cholesterol as well as low density lipoprotein (LDL) detection. The redox property of the matrix has been exploited to enhance the electron transfer between the enzyme and the electrode as well as to eliminate the toxic mediator in solution. X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy were carried out to characterize the NiO thin film. Biosensing response studies were accomplished using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The developed biosensors exhibited a high sensitivity of 27 and 63 μA/mM/cm 2 over a linear range of 0.12-10.23 and 1-12 mM, respectively, for free and total cholesterol. Reagentless estimation of LDL was also achieved over the wide range 0.018-0.5 μM with a sensitivity of 0.12 mA/μM/cm 2 . The results are extremely promising for the realization of an integrated biosensor for complete detection of cholesterol in the serum samples. Graphical Abstract Reagentless sensing mechanism of (a) free cholesterol and (b) total cholesterol using nanostructured NiO matrix.
Farkas, Eniko; Szekacs, Andras; Kovacs, Boglarka; Olah, Marianna; Horvath, Robert; Szekacs, Inna
2018-06-05
Rapid and inexpensive biosensor technologies allowing real-time analysis of biomolecular and cellular events have become the basis of next-generation cell-based screening techniques. Our work opens up novel opportunities in the application of the high-throughput label-free Epic BenchTop optical biosensor in cell toxicity studies. The Epic technology records integrated cellular responses about changes in cell morphology and dynamic mass redistribution of cellular contents at the 100-150 nm layer above the sensor surface. The aim of the present study was to apply this novel technology to identify the effect of the herbicide Roundup Classic, its co-formulant polyethoxylated tallow amine (POEA), and its active ingredient glyphosate, on MC3T3-E1 cells adhered on the biosensor surface. The half maximal inhibitory concentrations of Roundup Classic, POEA and glyphosate upon 1 h of exposure were found to be 0.024%, 0.021% and 0.163% in serum-containing medium and 0.028%, 0.019% and 0.538% in serum-free conditions, respectively (at concentrations equivalent to the diluted Roundup solution). These results showed a good correlation with parallel end-point assays, demonstrating the outstanding utility of the Epic technique in cytotoxicity screening, allowing not only high-throughput, real-time detection, but also reduced assay run time and cytotoxicity assessment at end-points far before cell death would occur. Copyright © 2018 Elsevier B.V. All rights reserved.
A low-cost photonic biosensor built on a polymer platform
NASA Astrophysics Data System (ADS)
Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan
2011-12-01
Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.
Multicolor fluorescent biosensor for multiplexed detection of DNA.
Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong
2014-05-20
Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.
Corrigan, Damion K; Vezza, Vincent; Schulze, Holger; Bachmann, Till T; Mount, Andrew R; Walton, Anthony J; Terry, Jonathan G
2018-06-09
For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.
Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.
Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun
2015-06-15
A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Reitinger, Stephan; Wissenwasser, Jürgen; Kapferer, Werner; Heer, Rudolf; Lepperdinger, Günter
2012-04-15
Biosensor systems which enable impedance measurements on adherent cell layers under label-free conditions are considered powerful tools for monitoring specific biological characteristics. A radio frequency identification-based sensor platform was adopted to characterize cultivation and differentiation of human bone marrow-derived multipotent stem cells (bmMSC) over periods of up to several days and weeks. Electric cell-substrate impedance sensing was achieved through fabrication of sensitive elements onto glass substrates which comprised two comb-shaped interdigitated gold electrodes covering an area of 1.8 mm×2 mm. The sensing systems were placed into the wells of a 6-well tissue culture plate, stacked onto a reader unit and could thus be handled and operated under sterile conditions. Continuous measurements were carried out with a sinusoidal voltage of 35 mV at a frequency of 10 kHz. After seeding of human bmMSC, this sensor was able to trace significant impedance changes contingent upon cell spreading and adhesion. The re-usable system was further proven suitable for live examination of cell-substrate attachment or continuous cell monitoring up to several weeks. Induction of either osteogenic or adipogenic differentiation could be validated in bmMSC cultures within a few days, in contrast to state-of-the-art protocols, which require several weeks of cultivation time. In the context of medical cell production in a GMP-compliant process, the here presented interdigitated electric microsensor technology allows the documentation of MSC quality in a fast, efficient and reliable fashion. Copyright © 2012 Elsevier B.V. All rights reserved.
Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.
Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini
2016-07-18
Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.
Chen, Qi; Lin, Jianhan; Gan, Chengqi; Wang, Yuhe; Wang, Dan; Xiong, Yonghua; Lai, Weihua; Li, Yuntao; Wang, Maohua
2015-12-15
In this study, we described a novel impedance biosensor combining immunomagnetic separation with urease catalysis for sensitive detection of foodborne bacteria using Listeria monocytogenes as model and an immobilization-free microelectrode as detector. The monoclonal antibodies (MAbs) were immobilized on the surface of the magnetic nanoparticles (MNPs) with the diameter of 180 nm by biotin-streptavidin system for specifically and efficiently separating Listeria cells from sample background. The polyclonal antibodies (PAbs) and the urease were modified onto the surface of the gold nanoparticles (AuNPs) with the diameter of 20 nm and the modified AuNPs were used to react with Listera to form the MNP-MAb-Listeria-PAb-AuNP-urease sandwich complexes. The urease in the complexes could catalyze the hydrolysis of the urea into ammonium carbonate and this led to an increase in the ionic strength of the media, which could be detected by the microelectrode. The magnetic separation efficiencies for L. monocytogenes at the concentrations ranging from 3.0×10(1) to 3.0×10(4) CFU/mL were over 95% for the pure cultures and over 85% for the spiked lettuce samples. The lower detection limit of this biosensor for L. monocytogenes was found to be 300 CFU/mL in both the pure cultures and the spiked lettuce samples. The microelectrode was demonstrated to be reusable for over 50 times with thorough cleaning by deionized water. This biosensor showed its potential to provide a simple, low-cost and sensitive method for rapid screening of foodborne pathogens and could be extended for detection of other biological or chemical targets. Copyright © 2015 Elsevier B.V. All rights reserved.
Simulation of Biomolecular Nanomechanical Systems
2006-10-01
optimization of doping concentration and minimizing the interface traps. Surface Immobilization of Receptors For biomolecular binding experiments...Biosensors,” Langmuir, Vol. 21, pp. 1956-1961 (2005). 13. M. Yue, Multiplexed Label-Free Bioassays Using Nanomechanics and Nanofluidics , PhD Thesis
Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele
2017-02-10
Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.
NASA Astrophysics Data System (ADS)
Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele
2017-02-01
Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.
NASA Astrophysics Data System (ADS)
Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi
2018-01-01
We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.
Impedance-based cellular assay technologies: recent advances, future promise.
McGuinness, Ryan
2007-10-01
Cell-based assays are continuing to grow in importance in the drug discovery workflow. Their early introduction holds the promise of limiting attrition in the later, more costly phases of the process. This article reviews recent advances in the development of impedance technologies for label-free cell-based assays. These systems are capable of monitoring endogenous receptor activation, and thus generate more physiologically relevant measures of pharmacological endpoints. Primary cells can be investigated as well, thus producing disease relevant information. Label-free assays significantly decrease assay development efforts and avoid many complications inherent in recombinant readout systems. Impedance-based systems have great potential to advance the utility of cell-based assays as they are applied to drug discovery and pharmacology.
Label-free in vitro prostate cancer cell detection via photonic-crystal biosensor
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Ding, XiaoFei; Sagredo, Ismael; Bustamante, Gilbert; Sun, Lu-Zhe; Ye, Jing Yong
2018-02-01
Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free imaging system, which allows for the detection of individual prostate cancer cells utilizing cellular RI as the only contrast parameter. Noncancerous prostate (BPH-1) cells and prostate cancer (PC-3) cells were mixed at varied ratios and measured concurrently. Additionally, we isolated and induced PC-3 cells to undergo epithelial-mesenchymal transition (EMT) by exposing these cells to soluble factors such as TGF-β1. The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced PC-3 cells as well as BPH-1 cells. EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. Our study shows promising clinical potential in utilizing the PC-TIR biosensor imaging system to not only detect prostate cancer cells, but also evaluate prostate cancer progression.
NASA Astrophysics Data System (ADS)
Tsai, Meng-Yen; Creedon, Niamh; Brightbill, Eleanor; Pavlidis, Spyridon; Brown, Billyde; Gray, Darren W.; Shields, Niall; Sayers, Ríona; Mooney, Mark H.; O'Riordan, Alan; Vogel, Eric M.
2017-08-01
A fully integrated system that combines extended gate field-effect transistor (EGFET)-based potentiometric biosensors and electrochemical impedance spectroscopy (EIS)-based biosensors has been demonstrated. This integrated configuration enables the sequential measurement of the same immunological binding event on the same sensing surface and consequently sheds light on the fundamental origins of sensing signals produced by FET and EIS biosensors, as well as the correlation between the two. Detection of both the bovine serum albumin (BSA)/anti-BSA model system in buffer solution and bovine parainfluenza antibodies in complex blood plasma samples was demonstrated using the integrated biosensors. Comparison of the EGFET and EIS sensor responses reveals similar dynamic ranges, while equivalent circuit modeling of the EIS response shows that the commonly reported total impedance change (ΔZtotal) is dominated by the change in charge transfer resistance (Rct) rather than surface capacitance (Csurface). Using electrochemical kinetics and the Butler-Volmer equation, we unveil that the surface potential and charge transfer resistance, measured by potentiometric and impedance biosensors, respectively, are, in fact, intrinsically linked. This observation suggests that there is no significant gain in using the FET/EIS integrated system and leads to the demonstration that low-cost EGFET biosensors are sufficient as a detection tool to resolve the charge information of biomolecules for practical sensing applications.
NASA Astrophysics Data System (ADS)
Ghosh Dastider, Shibajyoti; Barizuddin, Syed; Dweik, Majed; Almasri, Mahmoud F.
2012-05-01
An impedance biosensor was designed, fabricated and tested for detection of viable Escherichia coli O157:H7 in food samples. This device consists of interdigitated microelectrode array (IDEA) fabricated using thin layer of sputtered gold, embedded under a polydimethylsiloxane (PDMS) microchannel. The array of electrodes is designed to detect viable EColi in different food products. The active surface area of the detection array was modified using goat anti-E.coli polyclonal IgG antibody. Contaminated food samples were tested by infusing the supernatant containing bacteria over the IDEA's, through the microchannel. Antibody-antigen binding on the electrodes results in impedance change. Four serial concentrations of E.coli contaminated food samples (3x102 CFUmL-1 to 3x105 CFUmL-1) were tested. The biosensor successfully detected the E.coli samples, with the lower detection limit being 3x103 CFUmL-1 (up to 3cells/μl). Comparing the test results with an IDEA impedance biosensor without microchannel (published elsewhere) indicates that this biosensor have two order of magnitude times higher sensitivity. The proposed biosensor provides qualitative and quantitative detection, and potentially could be used for detection of other type of bacteria by immobilizing the specific type of antibody.
Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei
2016-12-15
An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong
2018-05-30
In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.
Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung
2014-01-01
Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests. PMID:24608003
Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion.
Li, Xiaokang; Soler, Maria; Szydzik, Crispin; Khoshmanesh, Khashayar; Schmidt, Julien; Coukos, George; Mitchell, Arnan; Altug, Hatice
2018-06-01
Single-cell analysis of cytokine secretion is essential to understand the heterogeneity of cellular functionalities and develop novel therapies for multiple diseases. Unraveling the dynamic secretion process at single-cell resolution reveals the real-time functional status of individual cells. Fluorescent and colorimetric-based methodologies require tedious molecular labeling that brings inevitable interferences with cell integrity and compromises the temporal resolution. An innovative label-free optofluidic nanoplasmonic biosensor is introduced for single-cell analysis in real time. The nanobiosensor incorporates a novel design of a multifunctional microfluidic system with small volume microchamber and regulation channels for reliable monitoring of cytokine secretion from individual cells for hours. Different interleukin-2 secretion profiles are detected and distinguished from single lymphoma cells. The sensor configuration combined with optical spectroscopic imaging further allows us to determine the spatial single-cell secretion fingerprints in real time. This new biosensor system is anticipated to be a powerful tool to characterize single-cell signaling for basic and clinical research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Xueming; Song, Siyu; Shuai, Qi; Pei, Yihan; Aastrup, Teodor; Pei, Yuxin; Pei, Zhichao
2015-01-01
A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery. PMID:26369583
Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib
2017-03-15
A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Label-Free Detection of Cardiac Troponin-I Using Carbon Nanofiber Based Nanoelectrode Arrays
NASA Technical Reports Server (NTRS)
Periyakaruppan, Adaikkappan; Koehne, Jessica Erin; Gandhiraman, Ram P.; Meyyappan, M.
2013-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. A carbon nanofiber (CNF) multiplexed array has been fabricated with 9 sensing pads, each containing 40,000 carbon nanofibers as nanoelectrodes. Here, we report the use of vertically aligned CNF nanoelectrodes for the detection of cardiac Troponin-I for the early diagnosis of myocardial infarction. Antibody, antitroponin, probe immobilization and subsequent binding to human cardiac troponin-I were characterized using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Each step of the modification process resulted in changes in electrical capacitance or resistance to charge transfer due to the changes at the electrode surface upon antibody immobilization and binding to the specific antigen. This sensor demonstrates high sensitivity, down to 0.2 ng/mL, and good selectivity making this platform a good candidate for early stage diagnosis of myocardial infarction.
NASA Astrophysics Data System (ADS)
Timalsina, Yukta P.
In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device exhibits a greater magnitude of change relative to the RANS device below 10 kHz, which has equivalent property of the ITO controls. This dissertation demonstrates the potential for VANS as a novel nanomaterial platform for the development of highly sensitive, selective, low cost, and label free biosensors.
Biosensors in the small scale: methods and technology trends.
Senveli, Sukru U; Tigli, Onur
2013-03-01
This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.
Park, Younggeun; Ryu, Byunghoon; Oh, Bo-Ram; Song, Yujing; Liang, Xiaogan; Kurabayashi, Katsuo
2017-06-27
Monitoring of the time-varying immune status of a diseased host often requires rapid and sensitive detection of cytokines. Metallic nanoparticle-based localized surface plasmon resonance (LSPR) biosensors hold promise to meet this clinical need by permitting label-free detection of target biomolecules. These biosensors, however, continue to suffer from relatively low sensitivity as compared to conventional immunoassay methods that involve labeling processes. Their response speeds also need to be further improved to enable rapid cytokine quantification for critical care in a timely manner. In this paper, we report an immunobiosensing device integrating a biotunable nanoplasmonic optical filter and a highly sensitive few-layer molybdenum disulfide (MoS 2 ) photoconductive component, which can serve as a generic device platform to meet the need of rapid cytokine detection with high sensitivity. The nanoplasmonic filter consists of anticytokine antibody-conjugated gold nanoparticles on a SiO 2 thin layer that is placed 170 μm above a few-layer MoS 2 photoconductive flake device. The principle of the biosensor operation is based on tuning the delivery of incident light to the few-layer MoS 2 photoconductive flake thorough the nanoplasmonic filter by means of biomolecular surface binding-induced LSPR shifts. The tuning is dependent on cytokine concentration on the nanoplasmonic filter and optoelectronically detected by the few-layer MoS 2 device. Using the developed optoelectronic biosensor, we have demonstrated label-free detection of IL-1β, a pro-inflammatory cytokine, with a detection limit as low as 250 fg/mL (14 fM), a large dynamic range of 10 6 , and a short assay time of 10 min. The presented biosensing approach could be further developed and generalized for point-of-care diagnosis, wearable bio/chemical sensing, and environmental monitoring.
Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors
Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini
2016-01-01
Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863
High-contrast grating resonators for label-free detection of disease biomarkers
Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie
2016-01-01
A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI. PMID:27265624
High-contrast grating resonators for label-free detection of disease biomarkers
NASA Astrophysics Data System (ADS)
Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie
2016-06-01
A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI.
Huang, Long-Sun; Pheanpanitporn, Yotsapoom; Yen, Yi-Kuang; Chang, Kai-Fung; Lin, Lung-Yi; Lai, Dar-Ming
2014-09-15
Phenytoin, one of the most widely used antiepileptic drugs, suppresses the abnormal brain activity often seen in seizures. In this study, we report the electrical detection of phenytoin as an antiepileptic medication with a narrow therapeutic dosage range to which therapeutic drug monitoring (TDM) is applied. The measurement technique used an electrical detection of a piezoresistive microcantilever biosensor. This label-free, electrically measured microcantilever can be miniaturized in order to be portable for point-of-care, personal diagnosis or for personalized therapeutic drug monitoring. The miniaturized piezoresistive microcantilever was fabricated by micro-electro-mechanical system processes, and was integrated into a microfluidic channel with a system for label-free detection. The microcantilever biosensor was approved for the detection of phenytoin in solutions of deionized water and 100% fetal bovine serum. A linear profile in a drug-concentration range of 10-80 μg/mL was detected, with the signal resolution being about 0.005 Ω. The concentration sensitivity was 2.94×10(-6) (μg/mL)(-1). The binding affinity (KD) was calculated to be 58 μg/mL. The results of the present piezoresistive microcantilever biosensors showed a solid correlation of phenytoin drug detection with that in the clinically used fluorescence polarization immunoassay (FPIA). Copyright © 2014 Elsevier B.V. All rights reserved.
Label-free detection of salmonella typhimurium with ssDNA aptamers
USDA-ARS?s Scientific Manuscript database
Foodborne pathogen Salmonella enterica is one of the major causes of gastrointestinal infections in human and animals. Conventional detection methods are time consuming and not effective enough under emergency circumstances to control outbreaks immediately. Therefore, biosensors that can detect Salm...
Origin of noise in liquid-gated Si nanowire troponin biosensors.
Kutovyi, Y; Zadorozhnyi, I; Hlukhova, H; Handziuk, V; Petrychuk, M; Ivanchuk, Andriy; Vitusevich, S
2018-04-27
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Origin of noise in liquid-gated Si nanowire troponin biosensors
NASA Astrophysics Data System (ADS)
Kutovyi, Y.; Zadorozhnyi, I.; Hlukhova, H.; Handziuk, V.; Petrychuk, M.; Ivanchuk, Andriy; Vitusevich, S.
2018-04-01
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens
NASA Astrophysics Data System (ADS)
Kim, G.; Om, A. S.; Mun, J. H.
2007-03-01
Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency was used for the detection experiments. The biosensor was able to detect 106 CFU/mL in phosphate buffered saline (PBS) with a detection time of 3 minutes. Additional use of nanoparticles significantly enhanced the detection performance. By using the nanoparticles the biosensor could detect 104 CFU/mL of Salmonella enteritidis in PBS and 105 CFU/mL of cells in milk.
1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect
NASA Astrophysics Data System (ADS)
Teotia, Pradeep Kumar; Kaler, R. S.
2018-01-01
Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.
Pan, Yuxiang; Wan, Zijian; Zhong, Longjie; Li, Xueqin; Wu, Qi; Wang, Jun; Wang, Ping
2017-06-01
Okadaic acid (OA) is a marine toxin ingested by shellfish. In this work, a simple, sensitive and label-free gap-based electrical competitive bioassay has been developed for this biotoxin detection. The gap-electrical biosensor is constructed by modifying interdigitated microelectrodes with gold nanoparticles (AuNPs) and using the self-catalytic growth of AuNPs as conductive bridges. In this development, the AuNPs growth is realized in the solution of glucose and chloroauric acid, with glucose oxidation used as the catalysis for growth of the AuNPs. The catalytic reaction product H 2 O 2 in turn reduces chloroauric acid to make the AuNPs grow. The conductance signal amplification is directly determined by the growth efficiency of AuNPs and closely related to the catalytic activity of AuNPs upon their interaction with OA molecule and OA aptamer. In the absence of OA molecule, the OA aptamer can absorb onto the surfaces of AuNPs due to electrostatic interaction, and the catalytically active sites of AuNPs are fully blocked. Thus the AuNPs growth would not happen. In contrast, the presence of OA molecule can hinder the interaction of OA aptamer and AuNPs. Then the AuNPs sites are exposed and the catalytic growth induces the conductance signal change. The results demonstrated that developed biosensor was able to specifically respond to OA ranging from 5 ppb to 80 ppb, providing limit of detection of 1 ppb. The strategy is confirmed to be effective for OA detection, which indicates the label-free OA biosensor has great potential to offer promising alternatives to the traditional analytical and immunological methods for OA detection.
Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert
2014-02-07
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Bagheryan, Zahra; Raoof, Jahan-Bakhsh; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio
2016-06-15
Fast and accurate detection of microorganisms is of key importance in clinical analysis and in food and water quality monitoring. Salmonella typhimurium is responsible for about a third of all cases of foodborne diseases and consequently, its fast detection is of great importance for ensuring the safety of foodstuffs. We report the development of a label-free impedimetric aptamer-based biosensor for S. typhimurium detection. The aptamer biosensor was fabricated by grafting a diazonium-supporting layer onto screen-printed carbon electrodes (SPEs), via electrochemical or chemical approaches, followed by chemical immobilisation of aminated-aptamer. FTIR-ATR, contact angle and electrochemical measurements were used to monitor the fabrication process. Results showed that electrochemical immobilisation of the diazonium-grafting layer allowed the formation of a denser aptamer layer, which resulted in higher sensitivity. The developed aptamer-biosensor responded linearly, on a logarithm scale, over the concentration range 1 × 10(1) to 1 × 10(8)CFU mL(-1), with a limit of quantification (LOQ) of 1 × 10(1) CFU mL(-1) and a limit of detection (LOD) of 6 CFU mL(-1). Selectivity studies showed that the aptamer biosensor could discriminate S. typhimurium from 6 other model bacteria strains. Finally, recovery studies demonstrated its suitability for the detection of S. typhimurium in spiked (1 × 10(2), 1 × 10(4) and 1 × 10(6) CFU mL(-1)) apple juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Biosensors based on cantilevers.
Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M
2009-01-01
Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.
Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors
NASA Astrophysics Data System (ADS)
Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian
2006-01-01
We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor
Song, Jian; Dailey, Jennifer; Li, Hui; Jang, Hyun-June; Zhang, Pengfei; Wang, Jeff Tza-Huei; Everett, Allen D; Katz, Howard E
2017-05-25
A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (V g ). The sensitivity increased after we decreased V g from -5 V to -2 V, because the lower V g is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.
Silicon photonic resonator for label-free bio-sensing application
NASA Astrophysics Data System (ADS)
Udomsom, Suruk; Mankong, Ukrit; Theera-Umpon, Nipon; Ittipratheep, Nattapol; Umezawa, Toshimasa; Matsumoto, Atsushi; Yamamoto, Naokatsu
2018-03-01
In medical diagnostics there is an increasing demand for biosensors that can specifically detect biological analytes in a fluid. Especially label-free sensing, consistings of a transducer with biorecognition molecules immobilized on its surface without relying on fluorescent dye. In this paper we study the design and fabrication of a silicon nanowire photonic ring resonator and its feasibility as a biosensor. We have simulated and fabricated racetrack ring resonators which have a few tenths of micrometer gap, up to 0.5 μm between the input / output waveguides and the resonators. It is found that the devices can be designed with large Q factors. Sensitivity to biomaterial detection has been simulated for antibody (goat anti-mouse IgG) - antigen (mouse IgG) using 3-dimensional Finite Difference Time Domain technique. The simulated results show that the ring resonator has a response 15 nm resonance shift per refractive index unit. Antibody coating method is also discussed in this paper which can be applied to other antibody-antigen types.
NASA Astrophysics Data System (ADS)
Kumari, Sudha; Moirangthem, Rakesh S.
2018-02-01
This work illustrates a label-free sensing of biomolecules using a simple capillary sensor. Here, capillary biosensor was prepared by decorating inner walls of a glass capillary with gold nanoparticles that was employed to investigate the biomolecular interactions. As a demonstration, rabbit immunoglobulin G (IgG) and anti-rabbit IgG (anti-IgG) proteins were chosen as a model system to monitor the receptor-analyte interactions. A surface binding sensitivity of 409 pg mm-2 was able to achieve towards the detection of 10 nM concentration of anti-rabbit IgG. The presented plasmonic sensor provides multiple advantages over conventional LSPR sensor by lifting requirement of the flow cell, prolonged sample preparation, complicated measurement setup etc that may enable its usage in rapid diagnostic testing. We believed that our proposed plasmonic capillary sensor could represent a potential candidate for developing cost-effective, label-free and high sensitivity sensing device for detection of biological molecules at low concentration.
NASA Astrophysics Data System (ADS)
Lin, Pei; Liu, Xi; Yan, Xiaoqin; Kang, Zhuo; Lei, Yang; Zhao, Yanguang
2012-08-01
Qualitative and quantitative detection of biological and chemical species is crucial in many areas, ranging from clinical diagnosis to homeland security. Due to the advantages of ultrahigh sensitivity, label-free, fast readout and easy fabrication over the traditional detection systems, semiconductor nanowire based electronic devices have emerged as a potential platform. In this paper, we fabricated a single ZnO nanowire-based bioFET sensor for the detection of low and high concentration uric acid solution at the same time. The addition of uric acid with the concentrations from 1 pM to 0.5 mM resulted in the electrical conductance changes of up to 227 nS, and the response time turns out to be in the order of millisecond. The ZnO NW biosensor could easily detect as low as 1 pM of the uric acid with 14.7 nS of conductance increase, which implied that the sensitivity of the biosensor can be below the 1pM concentration.
Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor
NASA Astrophysics Data System (ADS)
Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.
2015-09-01
In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.
Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kausaite, A.; van Dijk, M.; Castrop, J.
2007-01-01
Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without labeling. The system can therefore be used to determine both affinity and rate constants for interactions between various types of molecules. Here, we describe the application of a surface plasmon resonance biosensor for label-free investigation of the interaction between an immobilized antigen bovine serum albumin (BSA) and antibodymore » rabbit anti-cow albumin IgG1 (anti-BSA). The formation of a self-assembled monolayer (SAM) over a gold surface is introduced into this laboratory training protocol as an effective immobilization method, which is very promising in biosensing systems based on detection of affinity interactions. In the next step, covalent attachment via artificially formed amide bonds is applied for the immobilization of proteins on the formed SAM surface. These experiments provide suitable experience for postgraduate students to help them understand immobilization of biologically active materials via SAMs, fundamentals of surface plasmon resonance biosensor applications, and determination of non-covalent biomolecular interactions. The experiment is designed for master and/or Ph.D. students. In some particular cases, this protocol might be adoptable for bachelor students that already have completed an extended biochemistry program that included a background in immunology.« less
Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.
Soler, Maria; Mesa-Antunez, Pablo; Estevez, M-Carmen; Ruiz-Sanchez, Antonio Jesus; Otte, Marinus A; Sepulveda, Borja; Collado, Daniel; Mayorga, Cristobalina; Torres, Maria Jose; Perez-Inestrosa, Ezequiel; Lechuga, Laura M
2015-04-15
A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Yang; Liu, Gang
2018-01-01
Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 106 pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results. PMID:29677143
Wang, Hui; Liu, Yang; Liu, Gang
2018-04-20
Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 10⁶ pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results.
Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan
2016-10-01
Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were <5 % at 100 HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.
Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum.
Gutiérrez-Sanz, Óscar; Andoy, Nesha M; Filipiak, Marcin S; Haustein, Natalie; Tarasov, Alexey
2017-09-22
Transistor-based biosensors fulfill many requirements posed upon transducers for future point-of-care diagnostic devices such as scalable fabrication and label-free and real-time quantification of chemical and biological species with high sensitivity. However, the short Debye screening length in physiological samples (<1 nm) has been a major drawback so far, preventing direct measurements in serum. In this work, we demonstrate how tailoring the sensing surface with short specific biological receptors and a polymer polyethylene glycol (PEG) can strongly enhance the sensor response. In addition, the sensor performance can be dramatically improved if the measurements are performed at elevated temperatures (37 °C instead of 21 °C). With this novel approach, highly sensitive and selective detection of a representative immunosensing parameter-human thyroid-stimulating hormone-is shown over a wide measuring range with subpicomolar detection limits in whole serum. To the best of our knowledge, this is the first demonstration of direct immunodetection in whole serum using transistor-based biosensors, without the need for sample pretreatment, labeling, or washing steps. The presented sensor is low-cost, can be easily integrated into portable diagnostics devices, and offers a competitive performance compared to state-of-the-art central laboratory analyzers.
Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W
2004-01-15
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.
Escorihuela, Jorge; Bañuls, María José; García Castelló, Javier; Toccafondo, Veronica; García-Rupérez, Jaime; Puchades, Rosa; Maquieira, Ángel
2012-12-01
Methodology for the functionalization of silicon-based materials employed for the development of photonic label-free nanobiosensors is reported. The studied functionalization based on organosilane chemistry allowed the direct attachment of biomolecules in a single step, maintaining their bioavailability. Using this immobilization approach in probe microarrays, successful specific detection of bacterial DNA is achieved, reaching hybridization sensitivities of 10 pM. The utility of the immobilization approach for the functionalization of label-free nanobiosensors based on photonic crystals and ring resonators was demonstrated using bovine serum albumin (BSA)/anti-BSA as a model system.
Modified rare earth semiconductor oxide as a new nucleotide probe.
Shrestha, S; Mills, C E; Lewington, J; Tsang, S C
2006-12-28
Recent rapid developments in biological analysis, medical diagnosis, pharmaceutical industry, and environmental control fuel the urgent need for recognition of particular DNA sequences from samples. Currently, DNA detection techniques use radiochemical, enzymatic, fluorescent, or electrochemiluminescent methods; however, these techniques require costly labeled DNA and highly skilled and cumbersome procedure, which prohibit any in-situ monitoring. Here, we report that hybridization of surface-immobilized single-stranded oligonucleotide on praseodymium oxide (evaluated as a biosensor surface for the first time) with complimentary strands in solution provokes a significant shift of electrical impedance curve. This shift is attributed to a change in electrical characteristics through modification of surface charge of the underlying modified praseodymium oxide upon hybridization with the complementary oligonucelotide strand. On the other hand, using a noncomplementary single strand in solution does not create an equivalent change in the impedance value. This result clearly suggests that a new and simple electrochemical technique based on the change in electrical properties of the modified praseodymium oxide semiconductor surface upon recognition and transduction of a biological event without using labeled species is revealed.
Malekzad, Hedieh; Zangabad, Parham Sahandi; Mohammadi, Hadi; Sadroddini, Mohsen; Jafari, Zahra; Mahlooji, Niloofar; Abbaspour, Somaye; Gholami, Somaye; Ghanbarpoor, Mana; Pashazadeh, Rahim; Beyzavi, Ali; Karimi, Mahdi; Hamblin, Michael R
2018-03-01
Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.
Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'.
Rich, Rebecca L; Myszka, David G
2010-01-01
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind. (c) 2009 John Wiley & Sons, Ltd.
Matta, Leann Lerie; Karuppuswami, Saranraj; Chahal, Premjeet; Alocilja, Evangelyn C
2018-07-15
Rapid detection techniques of pathogenic bacteria in the liquid food supply chain are of significant research interest due to their pivotal role in preventing foodborne outbreaks, and in maintaining high standards of public health and safety. Milk and dairy products are of particular interest due to their widespread consumption across the globe. In this paper, a biosensor for detecting pathogenic bacteria in milk using dextrin-capped gold nanoparticles (d-AuNP) as labels decoded at microwave frequencies is presented. The SPEL (sensing pathogens electrically in liquids) biosensor consists of a 3D printed vial and uses an RF reader and an RFID (radio-frequency identification) compatible Split Ring Resonator (SRR) based tag. The SPEL biosensor is capable of detecting bacteria at 5 log CFU/mL within 75 min, with the possibility of testing multiple concurrent samples. Detection is based on impedance loading of SRR by d-AuNP bound to pathogenic bacteria. Spectrophotometry, along with carbohydrate-functionalized magnetic nanoparticle (MNP) cell capture, is used to verify the sensitivity of the SPEL biosensor with respect to d-AuNP presence. The proof-of-concept device, along with challenges and opportunities for commercialization, are also outlined. Copyright © 2018. Published by Elsevier B.V.
Label-free surface plasmon sensing towards cancer diagnostics
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Goutham
The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.
Aydın, Elif Burcu; Sezgintürk, Mustafa Kemal
2018-08-01
In this study, we fabricated a sensitive and label-free impedimetric immunosensor based on 6-phosphonohexanoic acid (PHA) modified ITO electrode for detection of interleukin-8 (IL-8) in human serum and saliva. PHA was first employed to cancer biomarker sensing platform. Anti-IL-8 antibody was used as a biorecognition element and the detection principle of this immunosensor was based on monitoring specific interaction between anti-IL-8 antibody and IL-8 antigen. The morphological characterization of each electrode modification step was analyzed by scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) while electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. Moreover, the antibody immobilization on the electrode surface was proved Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy. This proposed impedimetric immunosensor exhibited good performances with a wide linear in the range from 0.02 pg/mL to 3 pg/mL as well as a relative low detection limit of 6 fg/mL. The impedimetric immunosensor had a good specificity, stability and reproducibility. This study proved that PHA was a suitable interface material to fabricate an electrochemical biosensor. Copyright © 2018 Elsevier Inc. All rights reserved.
Label-Free Detection of Soybean Rust Spores using Photonic Crystal Biosensors
USDA-ARS?s Scientific Manuscript database
Soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most devastating foliar diseases affecting soybeans grown worldwide. The disease was reported for the first time in the United States in 2004. Early spore detection, prior to the appearance of visible symptoms, is critical to ef...
Portable guided-mode resonance biosensor platform for point-of-care testing
NASA Astrophysics Data System (ADS)
Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol
2012-10-01
It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.
Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams
2012-03-21
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.
Wang, Shuo; Poon, Gregory M K; Wilson, W David
2015-01-01
Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with low sample requirements and without the need for external probes. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is provided with results evaluated by both kinetic and steady-state SPR methods.
Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum
2017-05-15
E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
2018-01-01
All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity. PMID:29768011
Gao, Zhaoli; Xia, Han; Zauberman, Jonathan; Tomaiuolo, Maurizio; Ping, Jinglei; Zhang, Qicheng; Ducos, Pedro; Ye, Huacheng; Wang, Sheng; Yang, Xinping; Lubna, Fahmida; Luo, Zhengtang; Ren, Li; Johnson, Alan T Charlie
2018-06-13
All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.
Meng Zhang; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T
2014-01-01
High throughput screening of protein-small molecule binding interactions using label-free optical biosensors is challenging, as the detected signals are often similar in magnitude to experimental noise. Here, we describe a novel self-referencing external cavity laser (ECL) biosensor approach that achieves high resolution and high sensitivity, while eliminating thermal noise with sub-picometer wavelength accuracy. Using the self-referencing ECL biosensor, we demonstrate detection of binding between small molecules and a variety of immobilized protein targets with binding affinities or inhibition constants in the sub-nanomolar to low micromolar range. The demonstrated ability to perform detection in the presence of several interfering compounds opens the potential for increasing the throughput of the approach. As an example application, we performed a "needle-in-the-haystack" screen for inhibitors against carbonic anhydrase isozyme II (CA II), in which known inhibitors are clearly differentiated from inactive molecules within a compound library.
Fast and accurate detection of cancer cell using a versatile three-channel plasmonic sensor
NASA Astrophysics Data System (ADS)
Hoseinian, M.; Ahmadi, A. R.; Bolorizadeh, M. A.
2016-09-01
Surface Plasmon Resonance (SPR) optical fiber sensors can be used as cost-effective small sized biosensors that are relatively simple to operate. Additionally, these instruments are label-free, hence rendering them highly sensitive to biological measurements. In this study, a three-channel microstructure optical fiber plasmonic-based portable biosensor is designed and analyzed using Finite Element Method. The proposed system is capable of determining changes in sample's refractive index with precision of order one thousandth. The biosensor measures three absorption resonance wavelengths of the analytes simultaneously. This property is one of the main advantages of the proposed biosensor since it reduces the error in the measured wavelength and enhances the accuracy of the results up to 10-5 m/RIU by reducing noise. In this paper, Jurkat cell, an indicator cell for leukemia cancer, is considered as the analyte; and its absorption resonance wavelengths as well as sensitivity in each channel are determined.
A review on ZnO-based electrical biosensors for cardiac biomarker detection
Shanmugam, Nandhinee R; Muthukumar, Sriram; Prasad, Shalini
2017-01-01
Over the past few decades zinc oxide (ZnO)-based thin films and nanostructures have shown unprecedented performance in a wide range of applications. In particular, owing to high isoelectric point, biocompatibility and other multifunctional characteristics, ZnO has extensively been studied as a transduction material for biosensor development. The fascinating properties of ZnO help retain biological activity of the immobilized biomolecule and help in achieving enhanced sensing performance. As a consequence of recent advancements in this multidisciplinary field, diagnostic biosensors are expanding beyond traditional clinical labs to point-of-care and home settings. Label-free electrical detection of biomarkers has been demonstrated using ZnO-sensing platforms. In this review we highlight the characteristics of ZnO that enable realization of its use in development of point-of-care biosensors toward disease diagnosis, in particular cardiovascular diseases. PMID:29134112
Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.
Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris
2016-07-15
A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.
Nano-biosensor for highly sensitive detection of HER2 positive breast cancer.
Salahandish, Razieh; Ghaffarinejad, Ali; Naghib, Seyed Morteza; Majidzadeh-A, Keivan; Zargartalebi, Hossein; Sanati-Nezhad, Amir
2018-05-25
Nanocomposite materials have provided a wide range of conductivity, sensitivity, selectivity and linear response for electrochemical biosensors. However, the detection of rare cells at single cell level requires a new class of nanocomposite-coated electrodes with exceptional sensitivity and specificity. We recently developed a construct of gold nanoparticle-grafted functionalized graphene and nanostructured polyaniline (PANI) for high-performance biosensing within a very wide linear response and selective performance. Further, replacing the expensive gold nanoparticles with low-cost silver nanoparticles as well as optimizing the nanocomposite synthesis and functionalization protocols on the electrode surface in this work enabled us to develop ultrasensitive nanocomposites for label-free detection of breast cancer cells. The sensor presented a fast response time of 30 min within a dynamic range of 10 - 5 × 10 6 cells mL -1 and with a detection limit of 2 cells mL -1 for the detection of SK-BR3 breast cancer cell. The nano-biosensor, for the first time, demonstrated a high efficiency of > 90% for the label-free detection of cancer cells in whole blood sample without any need for sample preparation and cell staining. The results demonstrated that the optimized nanocomposite developed in this work is a promising nanomaterial for electrochemical biosensing and with the potential applications in electro-catalysis and super-capacitances. Copyright © 2018 Elsevier B.V. All rights reserved.
New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria
Wang, Yixian; Ye, Zunzhong; Ying, Yibin
2012-01-01
The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018
NASA Astrophysics Data System (ADS)
Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos
2016-03-01
Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.
Bruck, R; Melnik, E; Muellner, P; Hainberger, R; Lämmerhofer, M
2011-05-15
We report the development of a Mach-Zehnder interferometer biosensor based on a high index contrast polymer material system and the demonstration of label-free online measurement of biotin-streptavidin binding on the sensor surface. The surface of the polyimide waveguide core layer was functionalized with 3-mercaptopropyl trimethoxy silane and malemide tagged biotin. Several concentrations of Chromeon 642-streptavidin dissolved in phosphate buffered saline solution were rinsed over the functionalized sensor surface by means of a fluidic system and the biotin-streptavidin binding process was observed in the output signal of the interferometer at a wavelength of 1310 nm. Despite the large wavelength and the comparatively low surface sensitivity of the sensor system due to the low index contrast in polymer material systems compared to inorganic material systems, we were able to resolve streptavidin concentrations of down to 0.1 μg/ml. The polymer-based optical sensor design is fully compatible with cost-efficient mass production technologies such as injection molding and spin coating, which makes it an attractive alternative to inorganic optical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.
Ewald, Melanie; Fechner, Peter; Gauglitz, Günter
2015-05-01
For the first time, a multi-analyte biosensor platform has been developed using the label-free 1-lambda-reflectometry technique. This platform is the first, which does not use imaging techniques, but is able to perform multi-analyte measurements. It is designed to be portable and cost-effective and therefore allows for point-of-need testing or on-site field-testing with possible applications in diagnostics. This work highlights the application possibilities of this platform in the field of animal testing, but is also relevant and transferable to human diagnostics. The performance of the platform has been evaluated using relevant reference systems like biomarker (C-reactive protein) and serology (anti-Salmonella antibodies) as well as a panel of real samples (animal sera). The comparison of the working range and limit of detection shows no loss of performance transferring the separate assays to the multi-analyte setup. Moreover, the new multi-analyte platform allows for discrimination between sera of animals infected with different Salmonella subtypes.
Abdul Halim, Nur Hamidah; Lee, Yook Heng; Marugan, Radha Swathe Priya Malon; Hashim, Uda
2017-01-01
An impedimetric-based biosensor constructed using gold nanoparticles (AuNP) entrapped within titanium dioxide (TiO2) particles for hydrogen peroxide (H2O2) detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS) at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb), which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD) of 1 × 10−5 M without a redox mediator. PMID:28927005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Kun; Hu, Shuren; Retterer, Scott T.
Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.
A novel label-free cell-based assay technology using biolayer interferometry.
Verzijl, D; Riedl, T; Parren, P W H I; Gerritsen, A F
2017-01-15
Biolayer interferometry (BLI) is a well-established optical label-free technique to study biomolecular interactions. Here we describe for the first time a cell-based BLI (cBLI) application that allows label-free real-time monitoring of signal transduction in living cells. Human A431 epidermoid carcinoma cells were captured onto collagen-coated biosensors and serum-starved, followed by exposure to agonistic compounds targeting various receptors, while recording the cBLI signal. Stimulation of the epidermal growth factor receptor (EGFR) with EGF, the β 2 -adrenoceptor with dopamine, or the hepatocyte growth factor receptor (HGFR/c-MET) with an agonistic antibody resulted in distinct cBLI signal patterns. We show that the mechanism underlying the observed changes in cBLI signal is mediated by rearrangement of the actin cytoskeleton, a process referred to as dynamic mass redistribution (DMR). A panel of ligand-binding blocking and non-blocking anti-EGFR antibodies was used to demonstrate that this novel BLI application can be efficiently used as a label-free cellular assay for compound screening and characterization. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
López-Muñoz, Gerardo A; Estevez, M-Carmen; Peláez-Gutierrez, E Cristina; Homs-Corbera, Antoni; García-Hernandez, M Carmen; Imbaud, J Ignacio; Lechuga, Laura M
2017-10-15
Nanostructure-based plasmonic biosensors have quickly positioned themselves as interesting candidates for the design of portable optical biosensor platforms considering the potential benefits they can offer in integration, miniaturization, multiplexing, and real-time label-free detection. We have developed a simple integrated nanoplasmonic sensor taking advantage of the periodic nanostructured array of commercial Blu-ray discs. Sensors with two gold film thicknesses (50 and 100nm) were fabricated and optically characterized by varying the oblique-angle of the incident light in optical reflectance measurements. Contrary to the use normal light incidence previously reported with other optical discs, we observed an enhancement in sensitivity and a narrowing of the resonant linewidths as the light incidence angle was increased, which could be related to the generation of Fano resonant modes. The new sensors achieve a figure of merit (FOM) up to 35 RIU -1 and a competitive bulk limit of detection (LOD) of 6.3×10 -6 RIU. These values significantly improve previously reported results obtained with normal light incidence reflectance measurements using similar structures. The sensor has been combined with versatile, simple, ease to-fabricate microfluidics. The integrated chip is only 1cm 2 (including a PDMS flow cell with a 50µm height microfluidic channel fabricated with double-sided adhesive tape) and all the optical components are mounted on a 10cm×10cm portable prototype, illustrating its facile miniaturization, integration and potential portability. Finally, to assess the label-free biosensing capability of the new sensor, we have evaluated the presence of specific antibodies against the GTF2b protein, a tumor-associate antigen (TAA) related to colorectal cancer. We have achieved a LOD in the pM order and have assessed the feasibility of directly measuring biological samples such as human serum. Copyright © 2017 Elsevier B.V. All rights reserved.
Label-free, real-time interaction and adsorption analysis 1: surface plasmon resonance.
Fee, Conan J
2013-01-01
A key requirement for the development of proteins for use in nanotechnology is an understanding of how individual proteins bind to other molecules as they assemble into larger structures. The introduction of labels to enable the detection of biomolecules brings the inherent risk that the labels themselves will influence the nature of biomolecular interactions. Thus, there is a need for label-free interaction and adsorption analysis. In this and the following chapter, two biosensor techniques are reviewed: surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM). Both allow real-time analysis of biomolecular interactions and both are label-free. The first of these, SPR, is an optical technique that is highly sensitive to the changes in refractive index that occur with protein (or other molecule) accumulation near an illuminated gold surface. Unlike QCM ( Chapter 18 ) SPR is not affected by the water that may be associated with the adsorbed layer nor by conformational changes in the adsorbed species. SPR thus provides unique information about the interaction of a protein with its binding partners.
Chen, Zhiqiang; Liu, Ying; Xin, Chen; Zhao, Jikuan; Liu, Shufeng
2018-08-15
Herein, an autocatalytic strand displacement amplification (ASDA) strategy was proposed for the first time, which was further ingeniously coupled with hybridization chain reaction (HCR) event for the isothermal, label-free and multiple amplification toward nucleic acid detection. During the ASDA module, the target recognition opens the immobilized hairpin probe (IP) and initiates the annealing of the auxiliary DNA strand (AS) with the opened IP for the successive polymerization and nicking reaction in the presence of DNA polymerase and nicking endonuclease. This induces the target recycling and generation of a large amount of intermediate DNA sequences, which can be used as target analogy to execute the autocatalytic strand displacement amplification. Simultaneously, the introduced AS strand can propagate the HCR between two hairpins (H1 and H2) to form a linear DNA concatamer with cytosine (C)-rich loop region, which can facilitate the in-situ synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplification toward target responses. With current cascade ASDA and HCR strategy, the detection of target DNA could be achieved with a low detection limit of about 0.16 fM and a good selectivity. The developed biosensor also exhibits the distinct advantages of flexibility and simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.
Label-free SnO2 nanowire FET biosensor for protein detection
NASA Astrophysics Data System (ADS)
Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit
2017-06-01
Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.
Real-time label-free biosensing with integrated planar waveguide ring resonators
NASA Astrophysics Data System (ADS)
Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel
2010-05-01
We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.
Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock
2014-08-01
Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajwa, Bartek; Dundar, M. Murat; Akova, Ferit; Patsekin, Valery; Bae, Euiwon; Tang, Yanjie; Dietz, J. Eric; Hirleman, E. Daniel; Robinson, J. Paul; Bhunia, Arun K.
2011-06-01
The majority of tools for pathogen sensing and recognition are based on physiological or genetic properties of microorganisms. However, there is enormous interest in devising label-free and reagentless biosensors that would operate utilizing the biophysical signatures of samples without the need for labeling and reporting biochemistry. Optical biosensors are closest to realizing this goal and vibrational spectroscopies are examples of well-established optical label-free biosensing techniques. A recently introduced forward-scatter phenotyping (FSP) also belongs to the broad class of optical sensors. However, in contrast to spectroscopies, the remarkable specificity of FSP derives from the morphological information that bacterial material encodes on a coherent optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given a constant environment, are unique to each bacterial species and/or serovar. Both FSP technology and spectroscopies rely on statistical machine learning to perform recognition and classification. However, the commonly used methods utilize either simplistic unsupervised learning or traditional supervised techniques that assume completeness of training libraries. This restrictive assumption is known to be false for real-life conditions, resulting in unsatisfactory levels of accuracy, and consequently limited overall performance for biodetection and classification tasks. The presented work demonstrates preliminary studies on the use of FSP system to classify selected serotypes of non-O157 Shiga toxin-producing E. coli in a nonexhaustive framework, that is, without full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to learning with a nonexhaustive training dataset to allow for the automated and distributed detection of unknown bacterial classes.
NASA Astrophysics Data System (ADS)
Sidhu, R.; Rong, Y.; Vanegas, D. C.; Claussen, J.; McLamore, E. S.; Gomes, C.
2016-05-01
Listeria monocytogenes is one of the most common causes of food illness deaths worldwide, with multiple outbreaks in the United States alone. Current methods to detect foodborne pathogens are laborious and can take several hours to days to produce results. Thus, faster techniques are needed to detect bacteria within the same reliability level as traditional techniques. This study reports on a rapid, accurate, and sensitive aptamer biosensor device for Listeria spp. detection based on platinum interdigitated array microelectrodes (Pt-IDEs). Pt-IDEs with different geometric electrode gaps were fabricated by lithographic techniques and characterized by cyclic voltammetric (CV), electrochemical impedance spectroscopy (EIS), and potential amperometry (DCPA) measurements of reversible redox species. Based on these results, 50 μm Pt-IDE was chosen to further functionalize with a Listeria monocytogenes DNA aptamer selective to the cell surface protein internalin A, via metal-thiol self-assembly at the 5' end of the 47-mer's. EIS analysis was used to detect Listeria spp. without the need for label amplification and pre-concentration steps. The optimized aptamer concentration of 800 nM was selected to capture the bacteria through internalin A binding and the aptamer hairpin structure near the 3' end. The aptasensor was capable of detecting a wide range of bacteria concentration from 10 to 106 CFU/mL at lower detection limit of 5.39 +/- 0.21 CFU/mL with sensitivity of 268.1 +/- 25.40 (Ohms/log [CFU/mL]) in 17 min. The aptamer based biosensor offers a portable, rapid and sensitive alternative for food safety applications with one of the lowest detection limits reported to date.
Microfluidic and Label-Free Multi-Immunosensors Based on Carbon Nanotube Microelectrodes
NASA Astrophysics Data System (ADS)
Tsujita, Yuichi; Maehashi, Kenzo; Matsumoto, Kazuhiko; Chikae, Miyuki; Takamura, Yuzuru; Tamiya, Eiichi
2009-06-01
We fabricated microfluidic and label-free multi-immunosensors by the integration of carbon nanotube (CNT)-arrayed electrodes and microchannels with pneumatic micropumps made of poly(dimethylsiloxane). In the microfluidic systems, four kinds of sample solutions were transported from each liquid inlet to microchannels using six pneumatic micropumps. As a result, two kinds of antibodies were immobilized onto different CNT electrodes using the microfluidic systems. Next, two kinds of cancer markers, prostate specific antigen and human chorionic gonadotropin in phosphate buffer solution, were simultaneously detected by differential pulse voltammetry. Therefore, microfludic multi-immunosensors based on CNT electrodes and pneumatic micropumps are useful for the development of multiplex hand-held biosensors.
Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures.
De Luca, Anna Chiara; Reader-Harris, Peter; Mazilu, Michael; Mariggiò, Stefania; Corda, Daniela; Di Falco, Andrea
2014-03-25
Direct and quantitative detection of unlabeled glycerophosphoinositol (GroPIns), an abundant cytosolic phosphoinositide derivative, would allow rapid evaluation of several malignant cell transformations. Here we report label-free analysis of GroPIns via surface-enhanced Raman spectroscopy (SERS) with a sensitivity of 200 nM, well below its apparent concentration in cells. Crucially, our SERS substrates, based on lithographically defined gold nanofeatures, can be used to predict accurately the GroPIns concentration even in multicomponent mixtures, avoiding the preliminary separation of individual compounds. Our results represent a critical step toward the creation of SERS-based biosensor for rapid, label-free, and reproducible detection of specific molecules, overcoming limits of current experimental methods.
Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene
Fu, Dongliang; Li, Lain-Jong
2010-01-01
The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed. PMID:22110861
Biosensors for hepatitis B virus detection.
Yao, Chun-Yan; Fu, Wei-Ling
2014-09-21
A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.
Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal
2015-01-01
This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.
A Sensitive DNA Capacitive Biosensor Using Interdigitated Electrodes
Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J.; Dandy, David S.; Chen, Tom
2017-01-01
This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5 aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1 μL−1 to 105 μL−1 target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers. PMID:27619528
Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2013-01-01
Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532
Wan, Yi; Lin, Zhifeng; Zhang, Dun; Wang, Yi; Hou, Baorong
2011-01-15
A facile, sensitive and reliable impedimetric immunosensor doped with reduced graphene sheets (RGSs) and combined with a controllable electrodeposition technique was developed for the selective detection of marine pathogenic sulphate-reducing bacteria (SRB). The morphology of RGSs and the electrochemical properties of RGSs-doped chitosan (CS) nanocomposite film were investigated by atomic force microscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry (CV). Electrochemical impedance spectroscopy and CV were used to verify the stepwise assembly of the sensor system. Faradic impedance spectroscopy for charge transfer for the redox probe Fe(CN)(6)(3-/4-) was done to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (R(ct)) increased with increasing SRB concentration. A linear relationship between R(ct) and SRB concentration was obtained in the SRB concentration range of 1.8×10(1) to 1.8×10(7) cfu/ml. The impedimetric biosensor gave a distinct response to SRB, but had no obvious response to Vibrio angillarum. It showed a high selectivity for the detection of the pathogen. Based on a combination of the biocompatibility of CS and good electrical conductivity of RGSs, a nanocomposite film with novel architecture was used to immobilize biological and chemical targets and to develop a new type of biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne
2013-10-01
Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. Electronic supplementary information (ESI) available: Four-probe method for determining the conductivity of the hybrid crystal (Fig. S1); stability comparisons of the hybrid films (Fig. S2); FESEM images of the hybrid microarray (Fig. S3); electrochemical characterizations of the hybrid films (Fig. S4); DFT simulations (Fig. S5); cross-sectional FESEM image of the hybrid microarray (Fig. S6); regeneration and stability tests of the DNA biosensor (Fig. S7). See DOI: 10.1039/c3nr03097k
A dual marker label free electrochemical assay for Flavivirus dengue diagnosis.
Santos, Adriano; Bueno, Paulo R; Davis, Jason J
2018-02-15
Dengue is a RNA viral illness of the genus Flavivirus which can cause, depending on the pervasiveness of the infection, hemorrhagic dengue fever or dengue shock syndrome. Herein we present an electrochemical label free approach enabling the rapid sensitive quantification of NS1 and IgG (supporting an ability to distinguish primary and secondary infections). Using a bifunctional SAM containing PEG moieties and a tethered redox thiol, both markers are detectable across clinically relevant levels by label free impedance derived redox capacitance. A subsequent frequency specific immittance function approach enables assaying (within seconds) with no impairment of analytical quality (linearity, sensitivity and variance). Copyright © 2017 Elsevier B.V. All rights reserved.
Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review
Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian
2008-01-01
Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731
Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R
2015-02-23
The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interpretation of interference signals in label free integrated interferometric biosensors
NASA Astrophysics Data System (ADS)
Heikkinen, Hanna; Wang, Meng; Okkonen, Matti; Hast, Jukka; Myllylä, Risto
2006-02-01
In the future fast, simple and reliable biosensors will be needed to detect various analytes from different biosamples. This is due to fact that the needs of traditional health care are changing. In the future homecare of patients and peoples' responsibility for their own health will increase. Also, different wellness applications need new parameters to be analysed, reducing costs of traditional health care, which are increasing rapidly. One fascinating and promising sensor type for these applications is an integrated optical interferometric immunosensor, which is manufactured using organic materials. The use of organic materials opens up enormous possibilities to develop different biochemical functions. In label free biosensors the measurement is based on detecting changes in refractive index, which typically are in the range of 10 -6-10 -8 [1]. In this research, theoretically generated interferograms are used to compare various signal processing methods. The goal is to develop an efficient method to analyse the interferogram. Different time domain signal processing methods are studied to determine the measuring resolution and efficiency of these methods. A low cost CCD -element is used in detecting the interferogram dynamics. It was found that in most of the signal processing methods the measuring resolution was mainly limited by pixel size. With calculation of Pearson's correlation coefficient, subpixel resolution was achieved which means that nanometer range optical path differences can be measured. This results in the refractive index resolution of the order of 10 -7.
Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors.
Chiavaioli, Francesco; Zubiate, Pablo; Del Villar, Ignacio; Zamarreño, Carlos R; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Arregui, Francisco J; Matias, Ignacio R; Baldini, Francesco
2018-05-25
The advent of optical fiber-based biosensors combined with that of nanotechnologies has provided an opportunity for developing in situ, portable, lightweight, versatile, and high-performance optical sensing platforms. We report on the generation of lossy mode resonances by the deposition of nanometer-thick metal oxide films on optical fibers, which makes it possible to measure precisely and accurately the changes in optical properties of the fiber-surrounding medium with very high sensitivity compared to other technology platforms, such as long period gratings or surface plasmon resonances, the gold standard in label-free and real-time biomolecular interaction analysis. This property, combined with the application of specialty structures such as D-shaped fibers, permits enhancing the light-matter interaction. SEM and TEM imaging together with X-EDS tool have been utilized to characterize the two films used, i.e., indium tin oxide and tin dioxide. Moreover, the experimental transmission spectra obtained after the deposition of the nanocoatings have been numerically corroborated by means of wave propagation methods. With the use of a conventional wavelength interrogation system and ad hoc developed microfluidics, the shift of the lossy mode resonance can be reliably recorded in response to very low analyte concentrations. Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by 3 orders of magnitude when compared with other fiber-based configurations. The biosensor has been regenerated several times by injecting sodium dodecyl sulfate, which proves the capability of sensor to be reused.
Zibaii, Mohammad Ismail; Latifi, Hamid; Saeedian, Zahra; Chenari, Zinab
2014-06-05
Silver nanoparticles (SNPs) exhibit antibacterial properties via bacterial inactivation and growth inhibition but the mechanism is not yet completely understood. In this study a label free and rapid detection method for study of antimicrobial activity of the SNP against Escherichia coli (E. coli K-12) is investigated using a nonadiabtic tapered fiber optic (NATOF) biosensor. The results show that SNPs interact with bacteria either by anchoring to or penetrating into the bacterial cell layer. These mechanism changes the refractive index (RI) of the tapered region, which in turn lead to the changes in the optical characteristics of the tapered fiber and output signals. With similar conditions for bacteria, the inhibition rate of the E. coli growth was measured by colony counting method as an experimental control and the results were compared with those obtained from the fiber sensor measurements. For SNP concentrations ranging from 0 to 50 μg ml(-1) the inhibition rates of the E. coli growth were measured to be from 1.27 h(-1) to -0.69 h(-1) and from -3.00×10(-3) h(-1) to -1.98×10(-2) h(-1) for colony counting and optical fiber biosensor, respectively. The results demonstrate the potential of the proposed NATOF biosensor as a label free and rapid sensing platform for understanding the mechanism of antibacterial effects of SNPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Orgovan, Norbert; Ungai-Salánki, Rita; Lukácsi, Szilvia; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Szabó, Bálint; Horvath, Robert
2016-09-01
Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ in their main functions. These specific functions are, to a considerable degree, determined by the differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles typically reached their maximum at ∼60 min after cell seeding, which was followed by a monotonic signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response, cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result, the molecular layers were characterized by further exploiting the potentials of the biosensor: by measuring the adsorption signal induced during the surface coating procedure, the authors could estimate the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn played a more decisive role in determining cell adherence. To support the cell adhesion data obtained with the biosensor, cell adherence on Fgn-coated surfaces 30-60 min after cell seeding was measured with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2) a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical biosensor is expected to open a window on the hidden background of the immune cell-extracellular matrix interactions.
Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip
NASA Astrophysics Data System (ADS)
Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk
2017-07-01
Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.
Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors
NASA Astrophysics Data System (ADS)
Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.
2016-03-01
Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.
Flexible Label-Free Quantitative Assay for Antibodies to Influenza Virus Hemagglutinins ▿
Carney, Paul J.; Lipatov, Aleksandr S.; Monto, Arnold S.; Donis, Ruben O.; Stevens, James
2010-01-01
During the initial pandemic influenza H1N1 virus outbreak, assays such as hemagglutination inhibition and microneutralization provided important information on the relative protection afforded by the population's cross-reactivity from prior infections and immunizations with seasonal vaccines. However, these assays continue to be limited in that they are difficult to automate for high throughput, such as in pandemic situations, as well as to standardize between labs. Thus, new technologies are being sought to improve standardization, reliability, and throughput by using chemically defined reagents rather than whole cells and virions. We now report the use of a cell-free and label-free flu antibody biosensor assay (f-AbBA) for influenza research and diagnostics that utilizes recombinant hemagglutinin (HA) in conjunction with label-free biolayer interferometry technology to measure biomolecular interactions between the HA and specific anti-HA antibodies or sialylated ligands. We evaluated f-AbBA to determine anti-HA antibody binding activity in serum or plasma to assess vaccine-induced humoral responses. This assay can reveal the impact of antigenic difference on antibody binding to HA and also measure binding to different subtypes of HA. We also show that the biosensor assay can measure the ability of HA to bind a model sialylated receptor-like ligand. f-AbBA could be used in global surveillance laboratories since preliminary tests on desiccated HA probes showed no loss of activity after >2 months in storage at room temperature, indicating that the same reagent lots could be used in different laboratories to minimize interlaboratory assay fluctuation. Future development of such reagents and similar technologies may offer a robust platform for future influenza surveillance activities. PMID:20660137
NASA Astrophysics Data System (ADS)
Yang, Gilmo; Kang, Sukwon; Lee, Kangjin; Kim, Giyoung; Son, Jaeryong; Mo, Changyeun
2010-04-01
The identification of pesticide and 6-benzylaminopurine (6-BAP) plant growth regulator was carried out using a label-free opto-fluidic ring resonator (OFRR) biosensor. The OFRR sensing platform is a recent advancement in opto-fluidic technology that integrates photonic sensing technology with microfluidics. It features quick detection time, small sample volume, accurate quantitative and kinetic results. The most predominant advantage of the OFRR integrated with microfluidics is that we can potentially realize the multi-channel and portable biosensor that detects numerous analytes simultaneously. Antisera for immunoassay were raised in rabbits against the 6-BAP-BSA conjugate. Using the immunization protocol and unknown cytokinin reacting with same antibody, comparable sensitivity and specificity were obtained. 6-BAP antibody was routinely used for cytokinin analysis. A sensitive and simple OFRR method with a good linear relationship was developed for the determination of 6-BAP. The detection limit was also examined. The biosensor demonstrated excellent reproducibility when periodically exposed to 6-BAP.
Exploring blocking assays using Octet, ProteOn, and Biacore biosensors.
Abdiche, Yasmina N; Malashock, Dan S; Pinkerton, Alanna; Pons, Jaume
2009-03-15
We demonstrate the use of label-free real-time optical biosensors in competitive binding assays by epitope binning a panel of antibodies. We describe three assay orientations that we term in tandem, premix, and classical sandwich blocking, and we perform each of them on three platforms: ForteBio's Octet QK, Bio-Rad's ProteOn XPR36, and GE Healthcare's Biacore 3000. By testing whether antibodies block one another's binding to their antigen in a pairwise fashion, we establish a blocking profile for each antibody relative to the others in the panel. The blocking information is then used to create "bins" of antibodies with similar epitopes. The advantages and disadvantages of each biosensor, factors to consider when deciding on the most appropriate blocking assay orientation for a particular interaction system, and tips for dealing with ambiguous data are discussed. The data from our different assay orientations and biosensors agree very well, establishing these machines as valuable tools for characterizing antibody epitopes and multiprotein complexes of biological significance.
Porous photonic crystal external cavity laser biosensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.
2016-08-15
We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions withmore » much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.« less
Fathi, Farzaneh; Rezabakhsh, Aysa; Rahbarghazi, Reza; Rashidi, Mohammad-Reza
2017-10-15
Surface plasmon resonance (SPR) biosensors are most commonly applied for real-time dynamic analysis and measurement of interactions in bio-molecular studies and cell-surface analysis without the need for labeling processes. Up to present, SPR application in stem cell biology and biomedical sciences was underused. Herein, a very simple and sensitive method was developed to evaluate human mesenchymal stem cells trans-differentiation to endothelial lineage of over a period of 14 days based on VE-cadherin biomarker. The SPR signals increased with the increase of the amount of VE-cadherin expression on the cell surface during cell differentiation process. The method was able to detect ≈27 cells permm 2 . No significant effect was observed on the cell viability during the cell attachment to the surface of immune-reactive biochips and during the SPR analysis. Using this highly sensitive SPR method, it was possible to sense the early stage of endothelial differentiation on day 3 in label-free form, whereas flow cytometry and fluorescent microscopy methods were found unable to detect the cell differentiation at the same time. Therefore, the proposed method can rapidly and accurately detect cell differentiation in live cells and label-free manner without any need of cell breakage and has great potential for both diagnostic and experimental approaches. Copyright © 2017. Published by Elsevier B.V.
Customization of Protein Single Nanowires for Optical Biosensing.
Sun, Yun-Lu; Sun, Si-Ming; Wang, Pan; Dong, Wen-Fei; Zhang, Lei; Xu, Bin-Bin; Chen, Qi-Dai; Tong, Li-Min; Sun, Hong-Bo
2015-06-24
An all-protein single-nanowire optical biosensor is constructed by a facile and general femtosecond laser direct writing approach with nanoscale structural customization. As-formed protein single nanowires show excellent optical properties (fine waveguiding performance and bio-applicable transmission windows), and are utilized as evanescent optical nanobiosensors for label-free biotin detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lei, Kin Fong; Yang, Shih-I; Tsai, Shiao-Wen; Hsu, Hsiao-Ting
2015-03-01
Efficient diagnosis is very important for the prevention and treatment of diseases. Rapid disease screening in ambulatory environment is one of the most pressing needs for disease control. Despite there are many methods to detect the results of immunoassays, quantitative measurement for rapid disease screening is still a great challenge for point-of-care applications. In this study, a fabrication method for depositing carbon nanotube bundles has been successfully developed for realization of functional paper-based microfluidic sensing device. Quantitative detection of label-free immunoassay, i.e., biotin-avidin binding interaction, was demonstrated by direct measurement of the current change of the biosensor after single application of the target analyte. Sensitivity of 0.33 μA/ng mL(-1) and minimal detectable analyte concentration of 25 ng/mL were achieved. The time necessary for the detection was 500 s which is a large reduction compared with the conventional immunoassay. Such paper-based biosensor has the benefits of portability, fast response, simple operation, and low cost and has the potential for the development of rapid disease screening devices. Copyright © 2014 Elsevier B.V. All rights reserved.
van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick
2014-08-27
In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.
Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection
NASA Astrophysics Data System (ADS)
Das, Avijit; Talukder, Muhammad Anisuzzaman
2018-02-01
In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.
Sun, Zhongyue; Liao, Tangbin; Zhang, Yulin; Shu, Jing; Zhang, Hong; Zhang, Guo-Jun
2016-12-15
A very simple sensing device based on biomimetic nanochannels has been developed for label-free, ultrasensitive and highly sequence-specific detection of DNA. Probe DNA was modified on the inner wall of the nanochannel surface by layer-by-layer (LBL) assembly. After probe DNA immobilization, DNA detection was realized by monitoring the rectified ion current when hybridization occurred. Due to three dimensional (3D) nanoscale environment of the nanochannel, this special geometry dramatically increased the surface area of the nanochannel for immobilization of probe molecules on the inner-surface and enlarged contact area between probes and target-molecules. Thus, the unique sensor reached a reliable detection limit of 10 fM for target DNA. In addition, this DNA sensor could discriminate complementary DNA (c-DNA) from non-complementary DNA (nc-DNA), two-base mismatched DNA (2bm-DNA) and one-base mismatched DNA (1bm-DNA) with high specificity. Moreover, the nanochannel-based biosensor was also able to detect target DNA even in an interfering environment and serum samples. This approach will provide a novel biosensing platform for detection and discrimination of disease-related molecular targets and unknown sequence DNA. Copyright © 2016 Elsevier B.V. All rights reserved.
Ahour, F; Ahsani, M K
2016-12-15
In this work, we tactfully constructed a novel label-free electrochemical aptasensor for rapid and facile detection of thrombin using graphene oxide (GO) and thrombin binding aptamer (TBA). The strategy relies on the preferential adsorption of single-stranded DNA (ssDNA) to GO over aptamer-target complexes. The TBA-thrombin complex formation was monitored by differential pulse voltammetry (DPV) using the guanine oxidation signal. In the absence of thrombin, the aptamers adsorbed onto the surface of GO leading to a strong background guanine oxidation signal. Conversely, in the presence of thrombin, the conformational transformation of TBA after incubating with the thrombin solution and formation of the aptamer-thrombin complexes which had weak binding ability to GO, leads to the desorption of TBA-thrombin complex from electrode surface and significant oxidation signal decrease. The selectivity of the biosensor was studied using other biological substances. The biosensor's signal was proportional to the thrombin concentration from 0.1 to 10nM with a detection limit of 0.07nM. Particularly, the proposed method could be widely applied to the aptamer-based determination of other target analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules
Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei
2011-01-01
This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair. PMID:22163821
Tapered optical fiber sensor for label-free detection of biomolecules.
Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei
2011-01-01
This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber's first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair.
Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.
Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M
2017-01-01
The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.
Thiha, Aung; Ibrahim, Fatimah; Muniandy, Shalini; Dinshaw, Ignatius Julian; Teh, Swe Jyan; Thong, Kwai Lin; Leo, Bey Fen; Madou, Marc
2018-06-01
Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL -1 . Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang
2016-10-01
Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.
Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.
Wildgen, Sarah M; Dunn, Robert C
2015-03-23
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.
Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying
2017-12-15
In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.
The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.
Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R
2016-05-01
The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Peng; Jia, Zhenhong; Lü, Guodong
2017-03-01
Hydatid, which is a parasitic disease, occurs today in many regions worldwide. Because it can present a serious threat to people’s health, finding a fast, convenient, and economical means of detection is important. This paper proposes a label- and spectrophotometer-free apparatus that uses optical biological detection based on porous silicon microcavities. In this approach, the refractive index change induced by the biological reactions of a sample in a porous silicon microcavity is detected by measuring the change in the incidence angle corresponding to the maximum transmitted intensity of a near-infrared probe laser. This paper reports that the proposed method can achieve the label-free detection of 43 kDa molecular weight hydatid disease antigens with high sensitivity.
Botulinum neurotoxin serotypes detected by electrochemical impedance spectroscopy.
Savage, Alison C; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher
2015-05-06
Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A-E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins.
Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy
Savage, Alison C.; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher
2015-01-01
Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A–E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins. PMID:25954998
Shervedani, Reza Karimi; Amini, Akbar
2012-04-01
Direct electrochemistry of a new laccase enzyme immobilized on gold and its application as a biosensor for dopamine (DA) are investigated by voltammetry and electrochemical impedance spectroscopy. The sensor demonstrated a redox adsorption behavior with E(0') = + 180 mV vs. Ag/AgCl for immobilized Agaricus bisporus laccase (LacAB) enzyme. The MPA platform was assembled on Au with and without utilization of ultrasounds. Excellent results were obtained by using the enzyme electrode fabricated based on MPA assembled with sonication. The LacAB immobilized in this condition showed a large electrocatalytic activity for oxidation of DA. Accordingly, a third-generation (mediator free) biosensor was constructed for DA. The DA concentration could be measured in the linear range of 0.5 to 13.0 and 47.0 to 430.0 μmol L(-1) with correlation coefficients of 0.999 and 0.989, respectively, and a detection limit of 29.0 nmol L(-1). The biosensor was successfully tested for determination of DA in human blood plasma and pharmaceutical samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Biosensors of bacterial cells.
Burlage, Robert S; Tillmann, Joshua
2017-07-01
Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.
New ways to develop biosensors towards addressing practical problems
NASA Astrophysics Data System (ADS)
Starodub, N. F.
2013-11-01
The main modern approaches which were realized at the development of new generation of biosensors intended for application in field of diagnostics, food quality control and environmental monitoring are presented. The main attention was paid to creation of the multi-parametrical and multi-functional enzymatic and immune biosensors which were realized for the complex diagnostics of diabetes, autoimmune state and for the control of process of sugar production. The label-free bioaffine devices based on the nano-porouse silicon (NPS) with the registration of specific formed signal by chemiluminescence (ChL) and photoresistivity and intended for the determination mycotoxins and diagnostics of retroviral bovine leukemia (RBL) are analyzed too. Improving of ion sensitive field effect transistors (ISFETs) through changing silicon nitride on the cerium oxide is discussed as perspective approach in case of micotoxins and Salmonella control. In the conclusion the possibility to replace biological sensitive elements by artificial ones is considered.
Advances in nanowire bioelectronics
NASA Astrophysics Data System (ADS)
Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.
2017-01-01
Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.
Abdiche, Yasmina Noubia; Miles, Adam; Eckman, Josh; Foletti, Davide; Van Blarcom, Thomas J.; Yeung, Yik Andy; Pons, Jaume; Rajpal, Arvind
2014-01-01
Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs). In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi) integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI) detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic mAbs, depending upon the sample availability, and the number and diversity of the interactions being studied. PMID:24651868
Label-free detection of biomolecules with Ta2O5-based field effect devices
NASA Astrophysics Data System (ADS)
Branquinho, Rita Maria Mourao Salazar
Field-effect-based devices (FEDs) are becoming a basic structural element in a new generation of micro biosensors. Their numerous advantages such as small size, labelfree response and versatility, together with the possibility of on-chip integration of biosensor arrays with a future prospect of low-cost mass production, make their development highly desirable. The present thesis focuses on the study and optimization of tantalum pentoxide (Ta2O5) deposited by rf magnetron sputtering at room temperature, and their application as sensitive layer in biosensors based on field effect devices (BioFEDs). As such, the influence of several deposition parameters and post-processing annealing temperature and surface plasma treatment on the film¡¦s properties was investigated. Electrolyte-insulator-semiconductor (EIS) field-effect-based sensors comprising the optimized Ta2O5 sensitive layer were applied to the development of BioFEDs. Enzyme functionalized sensors (EnFEDs) were produced for penicillin detection. These sensors were also applied to the label free detection of DNA and the monitoring of its amplification via polymerase chain reaction (PCR), real time PCR (RT-PCR) and loop mediated isothermal amplification (LAMP). Ion sensitive field effect transistors (ISFETs) based on semiconductor oxides comprising the optimized Ta2O5 sensitive layer were also fabricated. EIS sensors comprising Ta2O5 films produced with optimized conditions demonstrated near Nernstian pH sensitivity, 58+/-0.3 mV/pH. These sensors were successfully applied to the label-free detection of penicillin and DNA. Penicillinase functionalized sensors showed a 29+/-7 mV/mM sensitivity towards penicillin detection up to 4 mM penicillin concentration. DNA detection was achieved with 30 mV/mugM sensitivity and DNA amplification monitoring with these sensors showed comparable results to those obtained with standard fluorescence based methods. Semiconductor oxides-based ISFETs with Ta2O5 sensitive layer were also produced. Finally, the high quality and sensitivity demonstrated by Ta2O5 thin films produced at low temperature by rf magnetron sputtering allows for their application as sensitive layer in field effect sensors.
Photonic crystal-based optical biosensor: a brief investigation
NASA Astrophysics Data System (ADS)
Divya, J.; Selvendran, S.; Sivanantha Raja, A.
2018-06-01
In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.
Chhasatia, Rinku; Sweetman, Martin J; Harding, Frances J; Waibel, Michaela; Kay, Tom; Thomas, Helen; Loudovaris, Thomas; Voelcker, Nicolas H
2017-05-15
A label-free porous silicon (pSi) based, optical biosensor, using both an antibody and aptamer bioreceptor motif has been developed for the detection of insulin. Two parallel biosensors were designed and optimised independently, based on each bioreceptor. Both bioreceptors were covalently attached to a thermally hydrosilylated pSi surface though amide coupling, with unreacted surface area rendered stable and low fouling by incorporation of PEG moieties. The insulin detection ability of each biosensor was determined using interferometric reflectance spectroscopy, using a range of different media both with and without serum. Sensing performance was compared in terms of response value, response time and limit of detection (LOD) for each platform. In order to demonstrate the capability of the best performing biosensor to detect insulin from real samples, an in vitro investigation with the aptamer-modified surface was performed. This biosensor was exposed to buffer conditioned by glucose-stimulated human islets, with the result showing a positive response and a high degree of selectivity towards insulin capture. The obtained results correlated well with the ELISA used in the clinic for assaying glucose-stimulated insulin release from donor islets. We anticipate that this type of sensor can be applied as a rapid point-of-use biosensor to assess the quality of donor islets in terms of their insulin production efficiency, prior to transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.
Impedance-based cellular assays for regenerative medicine.
Gamal, W; Wu, H; Underwood, I; Jia, J; Smith, S; Bagnaninchi, P O
2018-07-05
Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).
Hu, Rong; Zhang, Xi; Xu, Qiang; Lu, Dan-Qing; Yang, Yun-Hui; Xu, Quan-Qing; Ruan, Qiong; Mo, Liu-Ting; Zhang, Xiao-Bing
2017-06-15
A universal aptameric system based on the taking advantage of double-stranded DNA/perylene diimide (dsDNA/PDI) as the signal probe was developed for multiplexed detection of small molecules. Aptamers are single-stranded DNA or RNA oligonucleotides which are selected in vitro by a process known as systematic evolution of ligands by exponential enrichment. In this work, we synthesized a new kind of PDI and reported this aggregated PDI could quench the double-stranded DNA (dsDNA)-labeled fluorophores with a high quenching efficiency. The quenching efficiencies on the fluorescence of FAM, TAMRA and Cy5 could reach to 98.3%±0.9%, 97.2%±0.6% and 98.1%±1.1%, respectively. This broad-spectrum quencher was then adopted to construct a multicolor biosensor via a label-free approach. A structure-switching-triggered enzymatic recycling amplification was employed for signal amplification. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity towards small analytes. For other targets, changing the corresponding aptamer can achieve the goal. The quencher did not interfere with the catalytic activity of nuclease. The biosensor could be manipulated with similar sensitivity no matter in pre-addition or post-addition manner. Moreover, simultaneous and multiplexed analysis of several small molecules in homogeneous solution was achieved, demonstrating its potential application in the rapid screening of multiple biotargets. Copyright © 2017 Elsevier B.V. All rights reserved.
Label-free impedimetric immunosensor for sensitive detection of ochratoxin A.
Radi, Abd-Elgawad; Muñoz-Berbel, Xavier; Lates, Vasilica; Marty, Jean-Louis
2009-03-15
A novel label-free electrochemical impedimetric immunosensor for sensitive detection of ochratoxin A (OTA) was reported. A two-step reaction protocol was elaborated to modify the gold electrode. The electrode was first derivatized by electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt (4-CPDS) in acidic aqueous solution yielded stable 4-carboxyphenyl (4-CP) monolayer. The ochratoxin A antibody was then immobilized making use of the carbodiimide chemistry. The steps of the immunosensor elaboration and the immunochemical reaction between ochratoxin A and the surface-bound antibody were interrogated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect ochratoxin A. The increase in electron-transfer resistance (DeltaR(et)) values was linearly proportional to the concentration of OTA in the range of 1-20ngmL(-1), with a detection limit of 0.5ngmL(-1).
Cell viability monitoring using Fano resonance in gold nanoslit array
NASA Astrophysics Data System (ADS)
Wu, Shu-Han; Hsieh, Shu-Yi; Lee, Kuang-Li; Weng, Ruei-Hung; Chiou, Arthur; Wei, Pei-Kuen
2013-09-01
Cell viability is a crucial issue in biological research. We present label-free monitoring of adhesion cells viability by gold nanoslits-based Fano resonance biosensors. Plastic multiple wells with gold nanoslits substrate were made using a thermal nanoimprint method. Adhesion cells in the wells were treated with doxorubicin for inducing cell death and compared with conventional colorimetric assay. The nanoslits method shows better respones of viability tests under low concentration and short interaction time due to its high surface sensitivies. The vinculin labelling indicates that the measured signals are in good agreement with the adhesion abilities of cells.
Silva, Jesús G; Cárdenas, Rey A; Quiróz, Alan R; Sánchez, Virginia; Lozano, Lucila M; Pérez, Nadia M; López, Jaime; Villanueva, Cleva; González, César A
2014-06-01
Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10-100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique.
NASA Astrophysics Data System (ADS)
Meyer, Martin H. F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Jürgen; Keusgen, Michael
2007-04-01
A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP ® polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4-10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.
Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng
2017-03-08
K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS 2- by H 2 O 2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface chemistry and morphology in single particle optical imaging
NASA Astrophysics Data System (ADS)
Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim
2017-05-01
Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.
A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.
Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V
2017-05-15
Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei
2013-03-15
Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
Hong, Lu; Zhou, Fu; Wang, Guangfeng; Zhang, Xiaojun
2016-12-15
A novel fluorescent label-free "turn-on" NAD(+) and adenosine triphosphate (ATP) biosensing strategy is proposed by fully exploiting ligation triggered Nanocluster Beacon (NCB). In the presence of the target, the split NCB was brought to intact, which brought the C-rich sequence and enhancer sequence in close proximity resulting in the lightening of dark DNA/AgNCs ("On" mode). Further application was presented for logic gate operation and aptasensor construction. The feasibility was investigated by Ultraviolet-visible spectroscopy (UV-vis), Fluorescence, lifetime and High Resolution Transmission Electron Microscopy (HRTEM) etc. The strategy displayed good performance in the detection of NAD(+) and ATP, with the detection limit of 0.002nM and 0.001mM, the linear range of 10-1000nM and 0.003-0.01mM, respectively. Due to the DNA/AgNCs as fluorescence reporter, the completely label-free fluorescent strategy boasts the features of simplicity and low cost, and showing little reliance on the sensing environment. Meanwhile, the regulation by overhang G-rich sequence not relying on Förster energy transfer quenching manifests the high signal-to-background ratios (S/B ratios). This method not only provided a simple, economical and reliable fluorescent NAD(+) assay but also explored a flexible G-rich sequence regulated NCB probe for the fluorescent biosensors. Furthermore, this sensing mode was expanded to the application of a logic gate design, which exhibited a high performance for not only versatile biosensors construction but also for molecular computing application. Copyright © 2016 Elsevier B.V. All rights reserved.
DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR
A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...
Gallium arsenide based surface plasmon resonance for glucose monitoring
NASA Astrophysics Data System (ADS)
Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta
2015-07-01
The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.
Oligopeptide-heavy metal interaction monitoring by hybrid gold nanoparticle based assay.
Politi, Jane; Spadavecchia, Jolanda; Iodice, Mario; de Stefano, Luca
2015-01-07
Phytochelatins are small peptides that can be found in several organisms, which use these oligopeptides to handle heavy metal elements. Here, we report a method for monitoring interactions between lead(ii) ions in aqueous solutions and phytochelatin 6 oligopeptide bioconjugated onto pegylated gold nanorods (PEG-AuNrs). This study is the first step towards a high sensitive label free optical biosensor to quantify heavy metal pollution in water.
Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M
2016-04-15
Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Du, Yi-Chen; Zhu, Li-Na; Kong, De-Ming
2016-12-15
To promote application of strand-displacement amplification (SDA) techniques in biosensing, a label-free, real-time monitoring strategy for isothermal nucleic acid amplification reactions was designed. G-quadruplex structures were introduced into SDA products using specific recognition of G-quadruplexes by the fluorogenic dye thioflavin T. Performance was good for real-time monitoring of traditional SDA by a linear-amplification mechanism and for exponential cross-triggered SDA amplification. The strategy worked on a commercial real-time PCR instrument, making it suitable for biosensing platforms. As examples, two highly sensitive and specific biosensors were designed for analysis of the activity of uracil-DNA glycosylase (UDG) and the restriction endonuclease EcoRI. Detection limits were 6×10(-5)U/mL for UDG and 0.016U/mL for EcoRI. Detection of corresponding targets in complex matrices such as cell lysates or human serum was also demonstrated. Compared to traditional end-point detection methods, real-time SDA-based approaches have the advantages of simple, fast operation; high sensitivity; low risk of carryover contamination; and very high throughput. The introduction of real-time monitoring strategies may promote application of SDA reactions in biosensor design. Copyright © 2016 Elsevier B.V. All rights reserved.
Xiong, Erhu; Yan, Xiaoxia; Zhang, Xiaohua; Liu, Yunqing; Zhou, Jiawan; Chen, Jinhua
2017-01-15
In this work, a simple, signal-on and label-free electrochemical biosensor for ultrasensitive DNA detection is reported on the basis of an autocatalytic and exonuclease III (Exo III)-assisted cascade signal amplification strategy. In the presence of target DNA (T-DNA), the hybridization between the 3'-protruding DNA fragment of hairpin DNA probe (HP1) and T-DNA triggered the Exo III cleavage process, accompanied by the releasing of T-DNA and autonomous generation of new DNA fragment which was used for the successive hybridization with the another hairpin DNA (HP2) on the electrode. After the Exo III cleavage process, numerous quadruplex-forming oligomers which caged in HP2 were liberated on the electrode surface and folded into G-quadruplex-hemin complexes with the help of K + and hemin to give a remarkable electrochemical response. As a result, a low detection limit of 4.83fM with an excellent selectivity toward T-DNA was achieved. The developed electrochemical biosensor should be further extended for the detection of a wide spectrum of analytes and has great potential for the development of ultrasensitive biosensing platform for early diagnosis in gene-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B
2016-10-01
This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets
Wildgen, Sarah M.; Dunn, Robert C.
2015-01-01
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835
Dong, Jing; Zhao, Han; Xu, Minrong; Ma, Qiang; Ai, Shiyun
2013-12-01
A sensitive and stable label-free electrochemical impedance immunosensor for the detection of Salmonella typhimurium was developed by immobilising anti-Salmonella antibodies onto the gold nanoparticles and poly(amidoamine)-multiwalled carbon nanotubes-chitosan nanocomposite film modified glassy carbon electrode (AuNPs/PAMAM-MWCNT-Chi/GCE). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to verify the stepwise assembly of the immunosensor. Co-addition of MWCNT, PAMAM and AuNPs greatly enhanced the sensitivity of the immunosensor. The immobilisation of antibodies and the binding of Salmonella cells to the modified electrode increased the electron-transfer resistance (Ret), which was directly measured with EIS using [Fe(CN)6](3-/4-) as a redox probe. A linear relationship of Ret and Salmonella concentration was obtained in the Salmonella concentration range of 1.0×10(3) to 1.0×10(7) CFU mL(-1) with a detection limit of 5.0×10(2) CFU mL(-1). Additionally, the proposed method was successfully applied to determine S. typhimurium content in milk samples with satisfactory results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nikzad, Nasrin; Karami, Zahra
2018-04-14
Changes in choline levels can be associated with diseases such as Alzheimer, Parkinson, Huntington, fatty liver, interstitial lung abnormalities, autism and so on. Therefore, quantitative determination of choline is important in the biological and clinical analysis. So far, several methods have been investigated for measuring choline in the body fluids, each of which has disadvantages such as the need for specialist ability, complexity, and high cost. For this purpose, a facile and sensitive colorimetric biosensor based on DNAzyme-choline oxidase coupling used for the determination of choline. In this method, the first, choline oxidase produces H 2 O 2 and betaine in the presence of choline and oxygen, then, the DNAzyme converts colorless ABTS into green ABTS + radicals. Compared to the previous methods, the linear range and the limit of detection of this talented biosensor were 0.1-25 μM and 22 nM. Choline measurement using this biosensor has shown satisfactory selectivity and repeatability. Its recovery was 96.9-103.7%, which shows the reliability of biosensor assay in biological samples. Simplicity, low cost, naked eye, high sensitivity, and precision are the benefits of this biosensor. Taken to gather, the proposed system can be considered as a great biosensor for measuring choline levels especially in point of care diagnostic. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan
2009-06-30
Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.
NASA Astrophysics Data System (ADS)
Ray, Aniruddha; Ho, Ha; Daloglu, Mustafa; Torres, Avee; McLeod, Euan; Ozcan, Aydogan
2017-03-01
Herpes is one of the most widespread sexually transmitted viral diseases. Timely detection of Herpes Simplex Virus (HSV) can help prevent the rampant spreading of the virus. Current detection techniques such as viral culture, immuno-assays or Polymerase-Chain-Reaction, are time extensive and require expert handling. Here we present a field-portable, easy-to-use, and cost-effective biosensor for the detection of HSV based on holographic imaging. The virus is first captured from a target solution onto specifically developed substrates, prepared by coating glass coverslips with HSV-specific antibodies, and imaged using a lensfree holographic microscope. Several light-emitting-diodes (LEDs), coupled to multi-mode optical-fibers, are used to illuminate the sample containing the viruses. A micro-controller is used to activate the LEDs one at a time and in-line holograms are recorded using a CMOS imager placed immediately above the substrate. These sub-pixel shifted holograms are used to generate a super-resolved hologram, which is reconstructed to obtain the phase and amplitude images of the viruses. The signal of the viruses is enhanced using self-assembled PEG-based nanolenses, formed around the viral particles. Based on the phase information of the reconstructed images we can estimate the size of the viral particles, with an accuracy of +/- 11 nm, as well as quantify the viral load. The limit-of-detection of this system is estimated to be <500 viral copies per 100 μL sample volume that is imaged over 30 mm^2 field-of-view. This holographic microscopy based biosensor is label-free, cost-effective and field-portable, providing results in 2 hours, including sample preparation and imaging time.
Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang
2016-08-17
In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M
2016-11-15
Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang
2018-09-26
Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.
Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M
2017-08-08
A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.
Sheikhzadeh, E; Chamsaz, M; Turner, A P F; Jager, E W H; Beni, V
2016-06-15
The Gram-negative bacterium, Salmonella Typhimurium (S. Typhimurium) is a food borne pathogen responsible for numerous hospitalisations and deaths all over the world. Conventional detection methods for pathogens are time consuming and labour-intensive. Hence, there is considerable interest in faster and simpler detection methods. Polypyrrole-based polymers, due to their intrinsic chemical and electrical properties, have been demonstrated to be valuable candidates for the fabrication of chemo/biosensors and functional surfaces. Similarly aptamers have been shown to be good alternatives to antibodies in the development of affinity biosensors. In this study, we report on the combination of poly [pyrrole-co-3-carboxyl-pyrrole] copolymer and aptamer for the development of a label-less electrochemical biosensor suitable for the detection of S. Typhimurium. Impedimetric measurements were facilitated by the effect of the aptamer/target interaction on the intrinsic conjugation of the poly [pyrrole-co-3-carboxyl-pyrrole] copolymer and subsequently on its electrical properties. The aptasensor detected S. Typhimurium in the concentration range 10(2)-10(8) CFU mL(-1) with high selectivity over other model pathogens and with a limit of quantification (LOQ) of 100 CFU mL(-1) and a limit of detection (LOD) of 3 CFU mL(-1). The suitability of the aptasensor for real sample detection was demonstrated via recovery studies performed in spiked apple juice samples. We envisage this to be a viable approach for the inexpensive and rapid detection of pathogens in food, and possibly in other environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Wei, Yubo; Zeng, Qiang; Hu, Qiong; Wang, Min; Tao, Jia; Wang, Lishi
2018-01-15
Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN) 6 ] 3-/4- . The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL -1 to 10μmolL -1 with a detection limit of 0.012 μmolL -1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications. Copyright © 2017. Published by Elsevier B.V.
Rodrigo, Daniel; Tittl, Andreas; Ait-Bouziad, Nadine; John-Herpin, Aurelian; Limaj, Odeta; Kelly, Christopher; Yoo, Daehan; Wittenberg, Nathan J; Oh, Sang-Hyun; Lashuel, Hilal A; Altug, Hatice
2018-06-04
A multitude of biological processes are enabled by complex interactions between lipid membranes and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent biomolecular species and track their individual time evolution without invasive labels. Here, we present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in heterogeneous biological samples with high sensitivity. Our technology leverages a multi-resonant metasurface to simultaneously enhance the different vibrational fingerprints of multiple biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and methylene bands, our sensor resolves the interactions of lipid membranes with different polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications.
Vilian, A. T. Ezhil; Veeramani, Vediyappan; Chen, Shen-Ming; Madhu, Rajesh; Kwak, Cheol Hwan; Huh, Yun Suk; Han, Young-Kyu
2015-01-01
A novel composite film was designed for use as a highly selective mediator-free amperometric biosensor, and a method was created for accomplishing direct electrochemistry of myoglobin on a multi-walled carbon nanotube and tyramine-modified composite decorated with Au nanoparticles on a glassy carbon electrode. The ultraviolet-visible and electrochemical impedance spectroscopy results showed that myoglobin retained its native conformation in the interaction with Au-PTy-f-MWCNT. The surface coverage of Mb-heme-Fe(II)/(III) immobilized on Au-PTy-f-MWCNT and the heterogeneous electron-transfer rate constant were 2.12 × 10−9 mol cm−2 and 4.86 s−1, respectively, indicating a higher loading capacity of the nanocomposite for direct electron transfer of Mb onto the electrode surface. The proposed Mb/Au-PTy-f-MWCNT biofilm exhibited excellent electrocatalytic behavior toward the reduction of H2O2 and the oxidation of nitrite with linear ranges of 2 to 5000 μM and 1 to 8000 μM and lower detection limits of 0.01 μM and 0.002 μM, respectively. An apparent Michaelis-Menten constant of 0.12 mM indicated that the Mb immobilized on the Au-PTy-f-MWCNT film retained its native activity. This biosensor can be successfully applied to detect H2O2 and nitrite in disinfectant cream, eye drops, pickle juice, and milk samples. PMID:26672985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, A. Diyana; Ruslinda, A. Rahim, E-mail: ruslinda@unimap.edu.my; Fatin, M. F.
2016-07-06
The fabrication and characterization on reduced graphene oxide field effect transistor (RGO-FET) were demonstrated using a spray deposition method for biological sensing device purpose. A spray method is a fast, low-cost and simple technique to deposit graphene and the most promising technology due to ideal coating on variety of substrates and high production speed. The fabrication method was demonstrated for developing a label free aptamer reduced graphene oxide field effect transistor biosensor. Reduced graphene oxide (RGO) was obtained by heating on hot plate fixed at various temperatures of 100, 200 and 300°C, respectively. The surface morphology of RGO were examinedmore » via atomic force microscopy to observed the temperature effect of produced RGO. The electrical measurement verify the performance of electrical conducting RGO-FET at temperature 300°C is better as compared to other temperature due to the removal of oxygen groups in GO. Thus, reduced graphene oxide was a promising material for biosensor application.« less
Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen
2018-06-27
Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.
Soler, Maria; Estevez, M-Carmen; Alvarez, Mar; Otte, Marinus A; Sepulveda, Borja; Lechuga, Laura M
2014-01-29
Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.
Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann
2017-01-26
A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.
Zheng, Jiao; Li, Ningxing; Li, Chunrong; Wang, Xinxin; Liu, Yucheng; Mao, Guobin; Ji, Xinghu; He, Zhike
2018-06-01
Synthetic enzyme-free DNA nanomachine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA nanomachine biosensor for biomolecule (such as nucleic acid, thrombin and adenosine) detection is developed by target-assisted enzyme-free hairpin DNA cascade amplifier. The whole DNA nanomachine system is constructed on gold nanoparticle which decorated with hundreds of locked hairpin substrate strands serving as DNA tracks, and the DNA nanomachine could be activated by target molecule toehold-mediated exchange on gold nanoparticle surface, resulted in the fluorescence recovery of fluorophore. The process is repeated so that each copy of the target can open multiplex fluorophore-labeled hairpin substrate strands, resulted in amplification of the fluorescence signal. Compared with the conventional biosensors of catalytic hairpin assembly (CHA) without substrate in solution, the DNA nanomachine could generate 2-3 orders of magnitude higher fluorescence signal. Furthermore, the DNA nanomachine could be used for nucleic acid, thrombin and adenosine highly sensitive specific detection based on isothermal, and homogeneous hairpin DNA cascade signal amplification in both buffer and a complicated biomatrix, and this kind of DNA nanomachine could be efficiently applied in the field of biomedical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Riyaz Ahmad Mohamed; Villariza Espulgar, Wilfred; Aoki, Wataru; Jiang, Shu; Saito, Masato; Ueda, Mitsuyoshi; Tamiya, Eiichi
2018-03-01
Nanoplasmonic biosensors show high potentials as label-free devices for continuous monitoring in biomolecular analyses. However, most current sensors comprise multiple-dedicated layers with complicated fabrication procedures, which increases production time and manufacturing costs. In this work, we report the synergistic integration of cell-trapping microwell structures with plasmonic sensing nanopillar structures in a single-layered substrate by one-step thermal nanoimprinting. Here, microwell arrays are used for isolating cells, wherein gold-capped nanostructures sense changes in local refractive index via localized surface plasmon resonance (LSPR). Hence, proteins secreted from trapped cells can be label-freely detected as peak shifts in absorbance spectra. The fabricated device showed a detection limit of 10 ng/µL anti-IgA. In Pichia pastoris cells trial analysis, a red shift of 6.9 nm was observed over 12 h, which is likely due to the protein secretion from the cells. This approach provides an inexpensive, rapid, and reproducible alternative for mass production of biosensors for continuous biomolecular analyses.
An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors.
Lee, Wang Sik; Kang, Taejoon; Kim, Shin-Hyun; Jeong, Jinyoung
2018-01-20
Three-dimensional SiO₂-based inverse opal (SiO₂-IO) nanostructures were prepared for use as biosensors. SiO₂-IO was fabricated by vertical deposition and calcination processes. Antibodies were immobilized on the surface of SiO₂-IO using 3-aminopropyl trimethoxysilane (APTMS), a succinimidyl-[(N-maleimidopropionamido)-tetraethyleneglycol] ester (NHS-PEG₄-maleimide) cross-linker, and protein G. The highly accessible surface and porous structure of SiO₂-IO were beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply monitoring the change in the reflectance spectrum without labeling. SiO₂-IO showed high sensitivity in the range of 10³-10⁵ plaque forming unit (PFU) and high specificity to the influenza A (H1N1) virus. Due to its structural and optical properties, SiO₂-IO is a promising material for the detection of the influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing strategies can be employed through the surface functionalization of three-dimensional nanostructures.
Subramanian, Sowmya; Aschenbach, Konrad H; Evangelista, Jennifer P; Najjar, Mohamed Badaoui; Song, Wenxia; Gomez, Romel D
2012-02-15
An electronic platform to detect very small amounts of genomic DNA from bacteria without the need for PCR amplification and molecular labeling is described. The system uses carbon nanotube field-effect transistor (FET) arrays whose electrical properties are affected by minute electrical charges localized on their active regions. Two pathogenic strains of E. coli are used to evaluate the detection properties of the transistor arrays. Described herein are the results for detection of synthetic oligomers, unpurified and highly purified genomic DNA at various concentrations and their comparison against non-specific binding. In particular, the capture of genomic DNA of E. coli O157:H7 by a specific oligonucleotide probe coated onto the transistor array results in a significant shift in the threshold (gate-source) voltage (V(th)). By contrast the signal under the same procedure using a different strain, E. coli O45 that is non-complementary to the probe remained nearly constant. This work highlights the detection sensitivity and efficacy of this biosensor without stringent requirement for DNA sample preparation. Copyright © 2011 Elsevier B.V. All rights reserved.
Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.
de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan
2014-01-01
G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.
Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes
de Hoog, Hans-Peter M.; Lin JieRong, Esther M.; Banerjee, Sourabh; Décaillot, Fabien M.; Nallani, Madhavan
2014-01-01
G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4. PMID:25329156
NASA Astrophysics Data System (ADS)
Filion-Côté, Sandrine; Roche, Philip J. R.; Foudeh, Amir M.; Tabrizian, Maryam; Kirk, Andrew G.
2014-09-01
Surface plasmon resonance (SPR) sensing is one of the most widely used methods to implement biosensing due to its sensitivity and capacity for label-free detection. Whilst most commercial SPR sensors operate in the angular regime, it has recently been shown that an increase in sensitivity and a greater robustness against noise can be achieved by measuring the reflectivity when varying both the angle and wavelength simultaneously, in a so-called spectro-angular SPR biosensor. A single value decomposition method is used to project the two-dimensional spectro-angular reflection signal onto a basis set and allow the image obtained from an unknown refractive index sample to be compared very accurately with a pre-calculated reference set. Herein we demonstrate that a previously reported system operated in the near infra-red has a lower detection limit when operating in the visible spectrum due to the improved spatial resolution and numerical precision of the image sensor. The SPR biosensor presented here has an experimental detection limit of 9.8 × 10-7 refractive index unit. To validate the system as a biosensor, we also performed the detection of synthetic RNA from pathogenic Legionella pneumophila with the developed biosensing platform.
NASA Astrophysics Data System (ADS)
Firdous, S.; Anwar, S.; Rafya, R.
2018-06-01
Surface plasmon resonance (SPR) has become an important optical biosensing technology due to its real-time, label-free, and noninvasive nature. These techniques allow for rapid and ultra-sensitive detection of biological analytes, with applications in medical diagnostics, environmental monitoring, and agriculture. SPR is widely used in the detection of biomolecular interactions, and improvements are required for both sensitivity and in vivo uses for practical applications. In this study, we developed an SPR biosensor to provide a highly sensitive and specific approach to early-stage detection of viral and malignant diseases, such as cancer tumors, for which biomarker detection is very important. A cancer cell line (HeLa cells) with biomarker Rodamine 6G was experimentally analyzed in vitro with our constructed SPR biosensor. It was observed that the biosensor can offer a potentially powerful solution for tumor screening with dominant angular shift. The angular shift for both regents is dominant with a time curve at a wavelength of 632.8 nm of a He–Ne laser. We have successfully captured and detected a biomarker in vitro for cancer diagnostics using the developed instrument.
Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C
2008-09-30
A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.
NASA Astrophysics Data System (ADS)
Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.
2016-12-01
We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.
A paper-based nanomodified electrochemical biosensor for ethanol detection in beers.
Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana
2017-04-01
Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 % vol ), with a sensitivity of 9.13 μA/mM cm 2 (1574 μA/% vol cm 2 ) and a detection limit equal to 0.52 mM (0.003% vol ). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Wall, Mark J.
2016-01-01
Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. PMID:27927788
Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E
2017-03-01
Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. Copyright © 2017 the American Physiological Society.
Zhu, Longjiao; Shao, Xiangli; Luo, Yunbo; Huang, Kunlung; Xu, Wentao
2017-05-19
A two-way colorimetric biosensor based on unmodified gold nanoparticles (GNPs) and a switchable double-stranded DNA (dsDNA) concatemer have been demonstrated. Two hairpin probes (H1 and H2) were first designed that provided the fuels to assemble the dsDNA concatemers via hybridization chain reaction (HCR). A functional hairpin (FH) was rationally designed to recognize the target sequences. All the hairpins contained a single-stranded DNA (ssDNA) loop and sticky end to prevent GNPs from salt-induced aggregation. In the presence of target sequence, the capture probe blocked in the FH recognizes the target to form a duplex DNA, which causes the release of the initiator probe by FH conformational change. This process then starts the alternate-opening of H1 and H2 through HCR, and dsDNA concatemers grow from the target sequence. As a result, unmodified GNPs undergo salt-induced aggregation because the formed dsDNA concatemers are stiffer and provide less stabilization. A light purple-to-blue color variation was observed in the bulk solution, termed the light-off sensing way. Furthermore, H1 ingeniously inserted an aptamer sequence to generate dsDNA concatemers with multiple small molecule binding sites. In the presence of small molecule targets, concatemers can be disassembled into mixtures with ssDNA sticky ends. A blue-to-purple reverse color variation was observed due to the regeneration of the ssDNA, termed the light-on way. The two-way biosensor can detect both nucleic acids and small molecule targets with one sensing device. This switchable sensing element is label-free, enzyme-free, and sophisticated-instrumentation-free. The detection limits of both targets were below nanomolar.
Kinase detection with gallium nitride based high electron mobility transistors
Makowski, Matthew S.; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena
2013-01-01
A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing. PMID:23918992
Ahour, F; Shamsi, A
2017-09-01
Based on the strong interaction between single-stranded DNA (ss-DNA) and graphene material, we have constructed a novel label-free electrochemical biosensor for rapid and facile detection of short sequences ss-DNA molecules related to hepatitis C virus 1a using graphene oxide modified pencil graphite electrode. The sensing mechanism is based on the superior adsorption of single-stranded DNA to GO over double stranded DNA (ds-DNA). The intrinsic guanine oxidation signal measured by differential pulse voltammetry (DPV) has been used for duplex DNA formation detection. The probe ss-DNA adsorbs onto the surface of GO via the π- π* stacking interactions leading to a strong background guanine oxidation signal. In the presence of complementary target, formation of helix which has weak binding ability to GO induced ds-DNA to release from the electrode surface and significant variation in differential pulse voltammetric response of guanine bases. The results indicated that the oxidation peak current was proportional to the concentration of complementary strand in the range of 0.1 nM-0.5 μM with a detection limit of 4.3 × 10 -11 M. The simple fabricated electrochemical biosensor has high sensitivity, good selectivity, and could be applied as a new platform for a range of target molecules in future. Copyright © 2017 Elsevier Inc. All rights reserved.
Lu, Yan; Li, Xiang; Wang, Gongke; Tang, Wen
2013-01-15
The detection of Pb(2+) with DNA-based biosensor is usually susceptible to severe interference from Hg(2+) because of the T-Hg(2+)-T interaction between Hg(2+) and T residues. In this study, we developed a rapid, sensitive, selective and label-free sensor for the detection of Pb(2+) in the presence of Hg(2+) based on the Pb(2+)-induced G-quadruplex formation with cationic water-soluble conjugated polymer (PMNT) as a "polymeric stain" to transduce optical signal. We selected a specific sequence oligonucleotide, TBAA (5'-GGAAGGTGTGGAAGG-3'), which can form a G-quadruplex structure upon the addition of Pb(2+). This strategy provided a promising alternative to Pb(2+) determination in the presence of Hg(2+) instead of the universal masking agents of Hg(2+) (such as CN(-), SCN(-)). Based on this observation, a simple "mix-and-detect" optical sensor for the detection of Pb(2+) was proposed due to the distinguishable optical properties of PMNT-ssDNA and PMNT-(G-quadruplex) complexes. By this method, we could identify micromolar Pb(2+) concentrations within 5min even with the naked eye. Furthermore, the detection limit was improved to the nanomolar range by the fluorometric method. We also successfully utilized this biosensor for the determination of Pb(2+) in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren
2018-05-01
In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.
A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents.
Mechaly, Adva; Cohen, Hila; Cohen, Ofer; Mazor, Ohad
2016-08-01
Biolayer interferometry (BLI) is an optical technique that uses fiber-optic biosensors for label-free real-time monitoring of protein-protein interactions. In this study, we coupled the advantages of the Octet Red BLI system (automation, fluidics-free, and on-line monitoring) with a signal enhancement step and developed a rapid and sensitive immunological-based method for detection of biowarfare agents. As a proof of concept, we chose to demonstrate the efficacy of this novel assay for the detection of agents representing two classes of biothreats, proteinaceous toxins, and bacterial pathogens: ricin, a lethal plant toxin, and the gram-negative bacterium Francisella tularensis, the causative agent of tularemia. The assay setup consisted of biotinylated antibodies immobilized to the biosensor coupled with alkaline phosphatase-labeled antibodies as the detection moiety to create nonsoluble substrate crystals that precipitate on the sensor surface, thereby inducing a significant wavelength interference. It was found that this BLI-based assay enables sensitive detection of these pathogens (detection limits of 10 pg/ml and 1 × 10(4) pfu/ml ricin and F. tularensis, respectively) within a very short time frame (17 min). Owing to its simplicity, this assay can be easily adapted to detect other analytes in general, and biowarfare agents in particular, in a rapid and sensitive manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren
2018-05-16
In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.
Song, Hui-Peng; Wang, Hong; Zhao, Xiaoai; He, Ling; Zhong, Huailing; Wu, Si-Qi; Li, Ping; Yang, Hua
2017-07-05
Natural products are becoming increasingly popular in multiple fields involving medicines, foods and beverages. However, due to the frequent occurrence of poisoning incidents, their toxicity and safety have caused a serious concern. Here we report a method of biosensor-based two-phase pharmacological profiling (BTPP) for discovery, monitor and control of receptor-targeted natural products. BTPP uses a resonant waveguide grating biosensor for label-free and non-invasive detection of intracellular dynamic mass redistribution (DMR), a phenomenon caused by protein relocalization after receptors receiving stimulation from toxicants. The method can not only facilitate the identification of hazardous materials but also quantify their bioactivity by EC 50 . As a proof of concept, the method was successfully applied to recognize Daturae Flos (DF), an herb that can antagonize muscarinic acetylcholine M 2 receptor and further cause poisoning, from other easily confused species. BTPP combined with high performance liquid chromatography revealed that scopolamine and hyoscyamine in DF were the key marker compounds. Moreover, the method accurately picked out 2 M 2 receptor antagonists from 25 natural compounds, displaying its potential in high-throughput screening. This study provides a systematic illustration about the establishment, applicability and advantages of BTPP, which contributes to the safety assessment of natural products in related fields. Copyright © 2017 Elsevier B.V. All rights reserved.
Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.
Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin
2013-01-02
In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.
Label-Free QCM Immunosensor for the Detection of Ochratoxin A
Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma
2018-01-01
Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2–200 ng/mL detection range which can be used for on-site detection of feedstuffs. PMID:29641432
Label-Free QCM Immunosensor for the Detection of Ochratoxin A.
Pirinçci, Şerife Şeyda; Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma
2018-04-11
Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2-200 ng/mL detection range which can be used for on-site detection of feedstuffs.
Hong, Chien-Chong; Lin, Chih-Chung; Hong, Chian-Lang; Lin, Zi-Xiang; Chung, Meng-Hua; Hsieh, Pei-Wen
2016-12-15
This paper proposes a novel handheld analyzer with disposable lab-on-a-chip technology for the electrical detection of the anesthetic propofol in human plasma samples for clinical diagnoses. The developed on-chip biosensors are based on the conduction of molecularly imprinted polymers (MIPs) that employ label-free electrical detection techniques. Propofol in total intravenous anesthesia is widely used with a target-controlled infusion system. At present, the methods employed for detecting blood propofol concentrations in hospitals comprise high-performance liquid chromatography and ion mobility spectrometry. These conventional instruments are bulky, expensive, and difficult to access. In this study, we developed a novel plastic microfluidic biochip with an on-chip anesthetic biosensor that was characterized for the rapid detection of propofol concentrations. The experimental results revealed that the response time of the developed propofol biosensors was 25s. The specific binding of an MIP to a nonimprinted polymer (NIP) reached up to 560%. Moreover, the detection limit of the biosensors was 0.1μg/mL, with a linear detection range of 0.1-30μg/mL. The proposed disposable microfluidic biochip with an on-chip anesthetic biosensor using MIPs exhibited excellent performance in the separation and sensing of propofol molecules in the human plasma samples. Compared with large-scale conventional instruments, the developed microfluidic biochips with on-chip MIP biosensors present the advantages of a compact size, high selectivity, low cost, rapid response, and single-step detection. Copyright © 2016 Elsevier B.V. All rights reserved.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors
Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan
2015-01-01
Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827
Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.
Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan
2016-04-01
Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis.
Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad
2016-01-15
In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.
A Label-Free, Quantitative Fecal Hemoglobin Detection Platform for Colorectal Cancer Screening
Soraya, Gita V.; Nguyen, Thanh C.; Abeyrathne, Chathurika D.; Huynh, Duc H.; Chan, Jianxiong; Nguyen, Phuong D.; Nasr, Babak; Chana, Gursharan; Kwan, Patrick; Skafidas, Efstratios
2017-01-01
The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal immunochemical-based biosensor platform that may be further developed into a point-of-care test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of 10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based quantitative FIT diagnostic systems. PMID:28475117
Du, Yan; Han, Xu; Wang, Chenxu; Li, Yunhui; Li, Bingling; Duan, Hongwei
2018-01-26
Recently, molecular keypad locks have received increasing attention. As a new subgroup of smart biosensors, they show great potential for protecting information as a molecular security data processor, rather than merely molecular recognition and quantitation. Herein, label-free electrochemically transduced Ag + and cysteine (Cys) sensors were developed. A molecular keypad lock model with reset function was successfully realized based on the balanced interaction of metal ion with its nucleic acid and chemical ligands. The correct input of "1-2-3" (i.e., "Ag + -Cys-cDNA") is the only password of such molecular keypad lock. Moreover, the resetting process of either correct or wrong input order could be easily made by Cys, buffer, and DI water treatment. Therefore, our system provides an even smarter system of molecular keypad lock, which could inhibit illegal access of unauthorized users, holding great promise in information protection at the molecular level.
Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo
2011-03-15
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.
Avci, Oguzhan; Lortlar Ünlü, Nese; Yalçın Özkumur, Ayça; Ünlü, M. Selim
2015-01-01
Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses. PMID:26205273
Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T.
2011-01-01
By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer. PMID:22109210
Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T
2011-11-07
By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.
Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan
2015-11-24
Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.
Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications
Nguyen, Hoang Hiep; Park, Jeho; Kang, Sebyung; Kim, Moonil
2015-01-01
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review. PMID:25951336
NASA Astrophysics Data System (ADS)
Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul
2015-05-01
Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.
Wang, Huan; Wang, Xiaomei; Wang, Jue; Fu, Weiling; Yao, Chunyan
2016-01-01
The detection of tumor markers is very important in early cancer diagnosis; however, tumor markers are usually present at very low concentrations, especially in the early stages of tumor development. Surface plasmon resonance (SPR) is widely used to detect biomolecular interactions; it has inherent advantages of being high-throughput, real-time, and label-free technique. However, its sensitivity needs essential improvement for practical applications. In this study, we developed a signal amplification strategy using antibody-quantum dot (QD) conjugates for the sensitive and quantitative detection of α-fetoprotein (AFP), carcinoembryonic antigen (CEA) and cytokeratin fragment 21-1 (CYFRA 21-1) in clinical samples. The use of a dual signal amplification strategy using AuNP-antibody and antibody-QD conjugates increased the signal amplification by 50-folds. The constructed SPR biosensor showed a detection limit as low as 0.1 ng/mL for AFP, CEA, and CYFRA 21-1. Moreover, the results obtained using this SPR biosensor were consistent with those obtained using the electrochemiluminescence method. Thus, the constructed SPR biosensor provides a highly sensitive and specific approach for the detection of tumor markers. This SPR biosensor can be expected to be readily applied for the detection of other tumor markers and can offer a potentially powerful solution for tumor screening. PMID:27615417
Positional dependence of particles in microfludic impedance cytometry.
Spencer, Daniel; Morgan, Hywel
2011-04-07
Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.
Biosensors for DNA sequence detection
NASA Technical Reports Server (NTRS)
Vercoutere, Wenonah; Akeson, Mark
2002-01-01
DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.
Intravital microscopy of biosensor activities and intrinsic metabolic states
Winfree, Seth; Hato, Takashi; Day, Richard N.
2018-01-01
Intravital microscopy (IVM) is an imaging tool that is capable of detecting subcellular signaling or metabolic events as they occur in tissues in the living animal. Imaging in highly scattering biological tissues, however, is challenging because of the attenuation of signal in images acquired at increasing depths. Depth-dependent signal attenuation is the major impediment to IVM, limiting the depth from which significant data can be obtained. Therefore, making quantitative measurements by IVM requires methods that use internal calibration, or alternatively, a completely different way of evaluating the signals. Here, we describe how ratiometric imaging of genetically encoded biosensor probes can be used to make quantitative measurements of changes in the activity of cell signaling pathways. Then, we describe how fluorescence lifetime imaging can be used for label-free measurements of the metabolic states of cells within the living animal. PMID:28434902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Nidhi; Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025; Niazi, Asad
2014-10-13
We report the fabrication of a single-walled carbon nanotube (SWNT) based ultrasensitive label-free chemiresistive biosensor for the detection of human cardiac biomarker, myoglobin (Ag-cMb). Poly(pyrrole-co-pyrrolepropylic acid) with pendant carboxyl groups was electrochemically deposited on electrophoretically aligned SWNT channel, as a conducting linker, for biomolecular immobilization of highly specific cardiac myoglobin antibody. The device was characterized by scanning electron microscopy, source-drain current-voltage (I-V), and charge-transfer characteristic studies. The device exhibited a linear response with a change in conductance in SWNT channel towards the target, Ag-cMb, over the concentration range of 1.0 to 1000 ng ml{sup −1} with a sensitivity of ∼118% per decademore » with high specificity.« less
NASA Astrophysics Data System (ADS)
Ovadia, Marc; Zavitz, Daniel H.
2004-06-01
Impedance spectroscopy was used to solve the Pt electrode interface with metabolically active perfused living heart. Three impedance spectra were observed: the Warburg impedance ( ZW∞), a single high angle constant-phase-element, and a thin-film impedance ( ZD). When characterized again after cyclic change of ionic strength (and hence conductivity κ) each interface had one of only two spectra, with exclusion of ZW∞. The in vivo interfacial impedance spectrum is thus neither single-valued nor stable in time. Because metal|living tissue interfaces are obligatory circuit elements in biosensors and electrodes in heart and brain, the multiple-valued and thin-film character of its impedance are significant.
Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom
2015-02-15
We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.
Soler, Maria; Estevez, M.-Carmen; Alvarez, Mar; Otte, Marinus A.; Sepulveda, Borja; Lechuga, Laura M.
2014-01-01
Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis. PMID:24481229
MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie
2015-01-01
In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638
Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong
2018-02-15
Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Zonghua; Xia, Jianfei; Song, Daimin; Zhang, Feifei; Yang, Min; Gui, Rijun; Xia, Lin; Bi, Sai; Xia, Yanzhi
2016-03-15
A versatile label-free quadruple signal amplification biosensing platform for p53 gene (target DNA) detection was proposed. The chitosan-graphene (CS-GR) modified electrode with excellent electron transfer ability could provide a large specific surface for high levels of AuNPs-DNA attachment. The large amount of AuNPs could immobilize more capture probes and enhance the electrochemical signal with the excellent electrocatalytic activity. Furthermore, with the assist of N.BstNB I (the nicking endonuclease), target DNA could be reused and more G-quadruplex-hemin DNAzyme could be formed, allowing significant signal amplification in the presence of H2O2. Such strategy can enhance the oxidation-reduction reaction of adsorbed methylene blue (MB) and efficiently improve the sensitivity of the proposed biosensor. The morphologies of materials and the stepwise biosensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Differential pulse voltammetry (DPV) signals of MB provided quantitative measures of the concentrations of target DNA, with a linear calibration range of 1.0 × 10(-15)-1.0 × 10(-9)M and a detection limit of 3.0 × 10(-16)M. Moreover, the resulting biosensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy was promising for broad potential application in clinic assay. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lacy, Fred
In Part I of this dissertation, a whole cell biosensor which can detect the activation state of eosinophils (one of several types of white blood cells) will be developed and tested. This biosensor, which consists of a small gold electrode (50 μm x 50 μm) and a large gold electrode (1.5 cm x 0.5 cm) on a glass substrate, has been fabricated by photolithographic techniques. The eosinophils are known to exhibit different physical properties when they change from the activated state to the non-activated state. Based on some of these property changes, there should be a corresponding change in the measured electrical impedance. In this research, this biosensor will measure the electrical impedance of the eosinophils. This will show that the biosensor can detect the different states of the eosinophils (through the electrical impedance technique). And from these measurements, the different parameters associated with the electrical impedance can be determined. In Part II of this dissertation, a theoretical calculation will be performed in which bulk and surface magnetic polaritons in magnetic materials will be found. A polariton is the coupling of electromagnetic radiation and the elementary excitation of the given material (in our case, a magnetic material). The structure that we will be considering is a periodic semi-infinite material consisting of alternating antiferromagnetic and nonmagnetic layers. An antiferromagnetic material is a material in which individual atoms exhibit magnetic moments, but the overall magnetization of the material is zero because the moments of every other atom are antiparallel. We will use a method known as the transfer matrix technique to find an expression for the dispersion relation of the bulk and surface waves in these materials. Then we will create plots of omega(k) as we vary the geometric configurations of the layers which make-up the magnetic multilayer. We also will calculate the effect of an external magnetic field on these magnetic structures.
Recent development of nano-materials used in DNA biosensors.
Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin
2009-01-01
As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.
Recent Development of Nano-Materials Used in DNA Biosensors
Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin
2009-01-01
As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713
Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.
Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco
2015-12-15
An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.
Novel nanoplasmonic biosensor integrated in a microfluidic channel
NASA Astrophysics Data System (ADS)
Solis-Tinoco, V.; Sepulveda, B.; Lechuga, L. M.
2015-06-01
An important motivation of the actual biosensor research is to develop a multiplexed sensing platform of high sensitivity fabricated with large-scale and low-cost technologies for applications such as diagnosis and monitoring of diseases, drug discovery and environmental control. Biosensors based on localized plasmon resonance (LSPR) have demonstrated to be a novel and effective platform for quantitative detection of biological and chemical analytes. Here, we describe a novel label-free nanobiosensor consisting of an array of closely spaced, vertical, elastomeric nanopillars capped with plasmonic gold nanodisks in a SU-8 channel. The principle is based on the refractive index sensing using the LSPR of gold nanodisks. The fabrication of the nanobiosensor is based on replica molding technique and gold nanodisks are incorporated on the polymer structures by e-beam evaporation. In this work, we provide the strategies for controlling the silicon nanostructure replication using thermal polymers and photopolymers with different Young's modulus, in order to minimize the common distortions in the process and to obtain a reliable replica of the Si master. The master mold of the biosensor consists of a hexagonal array of silicon nanopillars, whose diameter is ~200 nm, and whose height can range from 250 nm to 1.300 μm, separated 400 nm from the center to center, integrated in a SU-8 microfluidic channel.
Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu
2016-01-01
An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160
Single-cell level methods for studying the effect of antibiotics on bacteria during infection.
Kogermann, Karin; Putrinš, Marta; Tenson, Tanel
2016-12-01
Considerable evidence about phenotypic heterogeneity among bacteria during infection has accumulated during recent years. This heterogeneity has to be considered if the mechanisms of infection and antibiotic action are to be understood, so we need to implement existing and find novel methods to monitor the effects of antibiotics on bacteria at the single-cell level. This review provides an overview of methods by which this aim can be achieved. Fluorescence label-based methods and Raman scattering as a label-free approach are discussed in particular detail. Other label-free methods that can provide single-cell level information, such as impedance spectroscopy and surface plasmon resonance, are briefly summarized. The advantages and disadvantages of these different methods are discussed in light of a challenging in vivo environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Recombinant antibodies and their use in biosensors.
Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray
2012-04-01
Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.
Wang, Cheng Yan; Tan, Xing Rong; Chen, Shi Hong; Hu, Fang Xin; Zhong, Hua An; Zhang, Yu
2012-02-01
One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs-MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs-MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM-12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM⁻¹), rapid response time (within 6 s). The apparent Michaelis-Menten constant (K(app)(m)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.
Diffractometric Detection of Proteins using Microbead-based Rolling Circle Amplification
Lee, Joonhyung; Icoz, Kutay; Roberts, Ana; Ellington, Andrew D.; Savran, Cagri A.
2010-01-01
We present a robust, sensitive, fluorescent or radio label-free self-assembled optical diffraction biosensor that utilizes rolling circle amplification (RCA) and magnetic microbeads as a signal enhancement method. An aptamer-based sandwich assay was performed on microcontact-printed streptavidin arranged in 15-μm-wide alternating lines, and could specifically capture and detect platelet-derived growth factor B-chain (PDGF-BB). An aptamer served as a template for the ligation of a padlock probe and the circularized probe could in turn be used as a template for RCA. The concatameric RCA product hybridized to biotinylated oligonuclotides which then captured streptavidin-labeled magnetic beads. In consequence, the signal from the captured PDGF-BB was amplified via the concatameric RCA product, and the diffraction gratings on the printed areas produced varying intensities of diffraction modes. The detected diffraction intensity and the density of the microbeads on the surface varied as a function of PDGF-BB concentration. Our results demonstrate a robust biosensing platform that is easy to construct and use, and devoid of fluorescence microscopy. The self-assembled bead patterns allow both a visual analysis of the molecular binding events under an ordinary bright-field microscope and serve as a diffraction grating biosensor. PMID:19947589
An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors
Lee, Wang Sik; Kim, Shin-Hyun
2018-01-01
Three-dimensional SiO2-based inverse opal (SiO2-IO) nanostructures were prepared for use as biosensors. SiO2-IO was fabricated by vertical deposition and calcination processes. Antibodies were immobilized on the surface of SiO2-IO using 3-aminopropyl trimethoxysilane (APTMS), a succinimidyl-[(N-maleimidopropionamido)-tetraethyleneglycol] ester (NHS-PEG4-maleimide) cross-linker, and protein G. The highly accessible surface and porous structure of SiO2-IO were beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply monitoring the change in the reflectance spectrum without labeling. SiO2-IO showed high sensitivity in the range of 103–105 plaque forming unit (PFU) and high specificity to the influenza A (H1N1) virus. Due to its structural and optical properties, SiO2-IO is a promising material for the detection of the influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing strategies can be employed through the surface functionalization of three-dimensional nanostructures. PMID:29361683
Waveguide-excited fluorescence microarray
NASA Astrophysics Data System (ADS)
Sagarzazu, Gabriel; Bedu, Mélanie; Martinelli, Lucio; Ha, Khoi-Nguyen; Pelletier, Nicolas; Safarov, Viatcheslav I.; Weisbuch, Claude; Gacoin, Thierry; Benisty, Henri
2008-04-01
Signal-to-noise ratio is a crucial issue in microarray fluorescence read-out. Several strategies are proposed for its improvement. First, light collection in conventional microarrays scanners is quite limited. It was recently shown that almost full collection can be achieved in an integrated lens-free biosensor, with labelled species hybridizing practically on the surface of a sensitive silicon detector [L. Martinelli et al. Appl. Phys. Lett. 91, 083901 (2007)]. However, even with such an improvement, the ultimate goal of real-time measurements during hybridization is challenging: the detector is dazzled by the large fluorescence of labelled species in the solution. In the present paper we show that this unwanted signal can effectively be reduced if the excitation light is confined in a waveguide. Moreover, the concentration of excitation light in a waveguide results in a huge signal gain. In our experiment we realized a structure consisting of a high index sol-gel waveguide deposited on a low-index substrate. The fluorescent molecules deposited on the surface of the waveguide were excited by the evanescent part of a wave travelling in the guide. The comparison with free-space excitation schemes confirms a huge gain (by several orders of magnitude) in favour of waveguide-based excitation. An optical guide deposited onto an integrated biosensor thus combines both advantages of ideal light collection and enhanced surface localized excitation without compromising the imaging properties. Modelling predicts a negligible penalty from spatial cross-talk in practical applications. We believe that such a system would bring microarrays to hitherto unattained sensitivities.
Fayazfar, H; Afshar, A; Dolati, M; Dolati, A
2014-07-11
For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.
La Belle, Jeffrey T; Fairchild, Aaron; Demirok, Ugur K; Verma, Aman
2013-05-15
There is a critical need for more accurate, highly sensitive and specific assay for disease diagnosis and management. A novel, multiplexed, single sensor using rapid and label free electrochemical impedance spectroscopy tuning method has been developed. The key challenges while monitoring multiple targets is frequency overlap. Here we describe the methods to circumvent the overlap, tune by use of nanoparticle (NP) and discuss the various fabrication and characterization methods to develop this technique. First sensors were fabricated using printed circuit board (PCB) technology and nickel and gold layers were electrodeposited onto the PCB sensors. An off-chip conjugation of gold NP's to molecular recognition elements (with verification technique) is described as well. A standard covalent immobilization of the molecular recognition elements is also discussed with quality control techniques. Finally use and verification of sensitivity and specificity is also presented. By use of gold NP's of various sizes, we have demonstrated the possibility and shown little loss of sensitivity and specificity in the molecular recognition of inflammatory markers as "model" targets for our tuning system. By selection of other sized NP's or NP's of various materials, the tuning effect can be further exploited. The novel platform technology developed could be utilized in critical care, clinical management and at home health and disease management. Copyright © 2013 Elsevier Inc. All rights reserved.
QCM-nanomagnetic beads biosensor for lead ion detection.
Zhang, Qingli; Cui, Haixia; Xiong, Xingliang; Chen, Jun; Wang, Ying; Shen, Jia; Luo, Yiting; Chen, Longcong
2018-01-15
As lead poses a serious threat to humans even in small amounts, all kinds of lead detection sensors with high sensitivity and selectivity are being constantly improved and put forward. In this report, a novel, simple and label-free quartz crystal microbalance (QCM) biosensor is proposed for detecting lead ions (Pb 2+ ). The biosensor takes full advantage of the high specificity of GR-5 DNAzyme to Pb 2+ and the high sensitivity of QCM. In particular, nanomagnetic beads (NMBs) are used as a novel and effective mean of signal amplification in the biosensor because of their mass and their ability to enhance the inductive effect, which are very beneficial for both higher sensitivity and a lower detection limit. In practice, GR-5 DNAzyme, innovatively combined with NMBs, was modified on the gold electrode of the QCM through gold-sulfur self-assembly. When the electrode was exposed to Pb 2+ solution, DNAzyme was severed into two parts at the RNA site (rA), along with the release of NMBs, which caused a great increase in frequency shift of the QCM electrode. Finally, a perfect linear correlation between the logarithm of Pb 2+ concentration and the change in frequency was obtained from 1 pM to 50 nM, with a detection limit as low as 0.3 pM. Moreover, the biosensor shows both an average recovery of 97 ± 6% in a drinking water sample and an excellent specificity for Pb 2+ compared with other metal ions.
González-Guerrero, Ana Belén; Alvarez, Mar; García Castaño, Andrés; Domínguez, Carlos; Lechuga, Laura M
2013-03-01
Reliable immobilization of bioreceptors over any sensor surface is the most crucial step for achieving high performance, selective and sensitive biosensor devices able to analyze human samples without the need of previous processing. With this aim, we have implemented an optimized scheme to covalently biofunctionalize the sensor area of a novel nanophotonic interferometric biosensor. The proposed method is based on the ex-situ silanization of the silicon nitride transducer surface by the use of a carboxyl water soluble silane, the carboxyethylsilanetriol sodium salt (CTES). The use of an organosilane stable in water entails advantages in comparison with usual trialkoxysilanes such as avoiding the generation of organic waste and leading to the assembly of compact monolayers due to the high dielectric constant of water. Additionally, cross-linking is prevented when the conditions (e.g. immersion time, concentration of silane) are optimized. This covalent strategy is followed by the bioreceptor linkage on the sensor area surface using two different approaches: an in-flow patterning and a microcontact printing using a biodeposition system. The performance of the different bioreceptor layers assembled is compared by the real-time and label-free immunosensing of the proteins BSA/mAb BSA, employed as a model molecular pair. Although the results demonstrated that both strategies provide the biosensor with a stable biological interface, the performance of the bioreceptor layer assembled by microcontact printing slightly improves the biosensing capabilities of the photonic biosensor. Copyright © 2012 Elsevier Inc. All rights reserved.
Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity
NASA Astrophysics Data System (ADS)
Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan
2018-04-01
In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
Chen, He-Guei; Chiang, Hui-Hua Kenny; Lee, Oscar Kuang-Sheng
2013-01-01
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications. PMID:23734254
The electrophotonic silicon biosensor
NASA Astrophysics Data System (ADS)
Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.
2016-09-01
The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.
Biopharmaceutical production: Applications of surface plasmon resonance biosensors.
Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R
2010-01-15
Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.
Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor.
Chen, Xuejuan; Pan, Yangang; Liu, Huiqing; Bai, Xiaojing; Wang, Nan; Zhang, Bailin
2016-05-15
Liver cancer is one of the most common and highly malignant cancers in the world. There are no effective therapeutic options if an early liver cancer diagnosis is not achieved. In this work, detection of HepG2 cells by label-free microcantilever array aptasensor was developed. The sensing microcantilevers were functionalized by HepG2 cells-specific aptamers. Meanwhile, to eliminate the interferences induced by the environment, the reference microcantilevers were modified with 6-mercapto-1-hexanol self-assembled monolayers. The aptasensor exhibits high specificity over not only human liver normal cells, but also other cancer cells of breast, bladder, and cervix tumors. The linear relation ranges from 1×10(3) to 1×10(5)cells/mL, with a detection limit of 300 cells/mL (S/N=3). Our work provides a simple method for detection of liver cancer cells with advantages in terms of simplicity and stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Feng, Lingyan; Wu, Li; Xing, Feifei; Hu, Lianzhe; Ren, Jinsong; Qu, Xiaogang
2017-12-15
Electrochemiluminescence (ECL) of metal nanoclusters and their application have been widely reported due to the good biocompatibility, fascinating electrocatalytic activity and so on. Using DNA as synthesis template opens new opportunities to modulate the physical properties of AgNCs. Triplex DNA has been reported for the site-specific, homogeneous and highly stable silver nanoclusters (AgNCs) fabrication from our recent research. Here we further explore their extraordinary ECL properties and applications in biosensor utilization. By reasonable design of DNA sequence, AgNCs were obtained in the predefined position of CG.C + sites of triplex DNA, and the ECL emission at a low potential was observed with this novel DNA template. Finally, a simple and label-free method was developed for biothiols detection based on the enhanced catalytic reaction and a robust interaction between the triplex-AgNCs and cysteine, by influencing the microenvironment provided by DNA template. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform
De Palo, Maripina; Ciminelli, Caterina
2017-01-01
In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication. PMID:28783075
NASA Astrophysics Data System (ADS)
Liang, Lingyan; Zhang, Shengnan; Wu, Weihua; Zhu, Liqiang; Xiao, Hui; Liu, Yanghui; Zhang, Hongliang; Javaid, Kashif; Cao, Hongtao
2016-10-01
An immunosensor is proposed based on the indium-gallium-zinc-oxide (IGZO) electric-double-layer thin-film transistor (EDL TFT) with a separating extended gate. The IGZO EDL TFT has a field-effect mobility of 24.5 cm2 V-1 s-1 and an operation voltage less than 1.5 V. The sensors exhibit the linear current response to label-free target immune molecule in the concentrations ranging from 1.6 to 368 × 10-15 g/ml with a detection limit of 1.6 × 10-15 g/ml (0.01 fM) under an ultralow operation voltage of 0.5 V. The IGZO TFT component demonstrates a consecutive assay stability and recyclability due to the unique structure with the separating extended gate. With the excellent electrical properties and the potential for plug-in-card-type multifunctional sensing, extended-gate-type IGZO EDL TFTs can be promising candidates for the development of a label-free biosensor for public health applications.
A label-free optical biosensor for serotyping "unknown" influenza viruses
NASA Astrophysics Data System (ADS)
Zhang, Hanyuan; Henry Dunand, Carole; Wilson, Patrick; Miller, Benjamin L.
2016-05-01
The ability to accurately classify influenza viruses is critical to understanding patterns of infection, vaccine efficacy, and to the process of developing new vaccines. Unfortunately, this task is hampered both by the virus' ability to undergo antigenic drift and shift (rendering it a "previously unknown" strain), and by technological limitations. In an effort to overcome these challenges, we have developed a label-free human monoclonal antibody array for flu serology, using a pattern recognition approach to assign virus serotype. The array is built on the Arrayed Imaging Reflectometry (AIR) platform. AIR relies on the creation of a near-perfect antireflective condition on the surface of a silicon chip. When this antireflective condition is perturbed because of binding to an antibody spot (or other immobilized probe molecule), binding may be sensitively and quantitatively detected as an increase in reflected light. We describe fabrication and characterization of the array, and preliminary testing with isolated influenza hemagglutinin. We anticipate that this approach may be extended to other viruses by expansion of the array.
Soler, Maria; Estevez, M-Carmen; Villar-Vazquez, Roi; Casal, J Ignacio; Lechuga, Laura M
2016-08-03
Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of less invasive and more specific screening and diagnosis methods which would facilitate its prompt identification. Blood circulating autoantibodies which are immediately produced by the immune system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in blood serum or plasma using a recently developed nanoplasmonic biosensor. Our nanoplasmonic device offers sensitive and real-time quantification of autoantibodies with excellent selectivity and reproducibility, achieving limits of detection around 1 nM (150-160 ng mL(-1)). A preliminary evaluation of clinical samples of colorectal cancer patients has shown good correlation with ELISA. These results demonstrate the reliability of the nanobiosensor strategy and pave the way towards the achievement of a sensitive diagnostic tool for early detection of colorectal cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Sensitive and label-free detection of miRNA-145 by triplex formation.
Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon
2016-01-01
The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.
Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai
2014-01-01
In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility.
Detection of copper ions in drinking water using the competitive adsorption of proteins.
Wang, Ran; Wang, Wei; Ren, Hao; Chae, Junseok
2014-07-15
Heavy metal ions, i.e., Cu(2+), are harmful to the environment and our health. In order to detect them, and circumvent or alleviate the weaknesses of existing detecting technologies, we contrive a unique Surface Plasmon Resonance (SPR) biosensor combined with competitive adsorption of proteins, termed the Vroman effect. This approach adopts native proteins (albumin) as bio-receptors that interact with Cu(2+) to be denatured. Denaturation disrupts the conformation of albumin so that it weakens its affinity to adsorb on the sensing surface. Through the competitive adsorption between the denatured albumins and the native ones, the displacement occurs adjacent to the sensing surface, and this process is real-time monitored by SPR, a surface-sensitive label-free biosensor. The affinities of native albumin is significantly higher than that of denatured albumin, demonstrated by measured KD of native and denatured albumin to gold surafce, 5.8±0.2×10(-5) M and 5.4±0.1×10(-4) M, respectively. Using our biosensor, Cu(2+) with concentration down to 0.1mg/L is detected in PBS, tap water, deionized water, and bottled water. The SPR biosensor is characterized for 5 different heavy metal ions, Cu(2+), Fe(3+), Mn(2+), Pb(2+), and Hg(2+), most common heavy metal ions found in tap water. At the maximum contaminant level (MCL) suggested by the United States Environmental Protection Agency (EPA), the SPR biosensor produces 13.5±0.4, 1.5±0.4, 0, 0, and 0 mDeg, respectively, suggesting the biosensor may be used to detect Cu(2+) in tap water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Zhang, Yu Shrike; Bustamante, Gilbert; Li, Le; Lauderdale, Matthew; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong
2018-02-01
Efficient methods for the accurate analysis of drug toxicities are in urgent demand as failures of newly discovered drug candidates due to toxic side effects have resulted in about 30% of clinical attrition. The high failure rate is partly due to current inadequate models to study drug side effects, i.e., common animal models may fail due to its misrepresentation of human physiology. Therefore, much effort has been allocated in the development of organ-on-a-chip models which offer a variety of human organ models mimicking a multitude of human physiological conditions. However, it is extremely challenging to analyze the transient and long-term response of the organ models to drug treatments during drug toxicity tests, as the proteins secreted from the organ-on-a-chip model are minute due to its volumetric size, and current methods for detecting said biomolecules are not suitable for real-time monitoring. As protein biomolecules are being continuously secreted from the human organ model, fluorescence techniques are practically impossible to achieve real-time fluorescence labeling in the dynamically changing environment, thus making a label-free approach highly desirable for the organ-on-achip applications. In this paper, we report the use of a photonic-crystal biosensor integrated with a microfluidic system for sensitive label-free bioassays of secreted protein biomolecules from a heart-on-the-chip model created with cardiomyocytes derived from human induced pluripotent stem cells.
Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun
2017-02-15
The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2017-05-10
A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices.
Soler, Maria; Belushkin, Alexander; Cavallini, Andrea; Kebbi-Beghdadi, Carole; Greub, Gilbert; Altug, Hatice
2017-08-15
Development of rapid and multiplexed diagnostic tools is a top priority to address the current epidemic problem of sexually transmitted diseases. Here we introduce a novel nanoplasmonic biosensor for simultaneous detection of the two most common bacterial infections: Chlamydia trachomatis and Neisseria gonorrhoeae. Our plasmonic microarray is composed of gold nanohole sensor arrays that exhibit the extraordinary optical transmission (EOT), providing highly sensitive analysis in a label-free configuration. The integration in a microfluidic system and the precise immobilization of specific antibodies on the individual sensor arrays allow for selective detection and quantification of the bacteria in real-time. We achieved outstanding sensitivities for direct immunoassay of urine samples, with a limit of detection of 300 colony forming units (CFU)/mL for C. trachomatis and 1500CFU/mL for N. gonorrhoeae. The multiplexing capability of our biosensor was demonstrated by analyzing different urine samples spiked with either C. trachomatis or N. gonorrhoeae, and also containing both bacteria. We could successfully detect, identify and quantify the levels of the two bacteria in a one-step assay, without the need for DNA extraction or amplification techniques. This work opens up new possibilities for the implementation of point-of-care biosensors that enable fast, simple and efficient diagnosis of sexually transmitted infections. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Optical micro-bubble resonators as promising biosensors
NASA Astrophysics Data System (ADS)
Giannetti, A.; Barucci, A.; Berneschi, S.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Tombelli, S.; Trono, C.; Righini, G. C.; Baldini, F.
2015-05-01
Recently, optical micro-bubble resonators (OMBRs) have gained an increasing interest in many fields of photonics thanks to their particular properties. These hollow microstructures can be suitable for the realization of label - free optical biosensors by combining the whispering gallery mode (WGM) resonator properties with the intrinsic capability of integrated microfluidics. In fact, the WGMs are morphology-dependent modes: any change on the OMBR inner surface (due to chemical and/or biochemical binding) causes a shift of the resonance position and reduces the Q factor value of the cavity. By measuring this shift, it is possible to obtain information on the concentration of the analyte to be detected. A crucial step for the development of an OMBR-based biosensor is constituted by the functionalization of its inner surface. In this work we report on the development of a physical and chemical process able to guarantee a good homogeneity of the deposed bio-layer and, contemporary, to preserve a high quality factor Q of the cavity. The OMBR capability of working as bioassay was proved by different optical techniques, such as the real time measurement of the resonance broadening after each functionalization step and fluorescence microscopy.
Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection
NASA Astrophysics Data System (ADS)
Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won
2010-10-01
The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.
Microwave Sensors for Breast Cancer Detection
2018-01-01
Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript. PMID:29473867
Microwave Sensors for Breast Cancer Detection.
Wang, Lulu
2018-02-23
Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.
Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.
Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe
2014-01-15
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity. © 2013 Published by Elsevier B.V.
Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru
2017-01-01
A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873
Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru
2017-07-15
A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.
Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes
Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.
2010-01-01
Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391
Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.
Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S
2010-03-01
Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.
Resonant nanopillars as label-free optical biosensors
NASA Astrophysics Data System (ADS)
López-Hernandez, Ana; Casquel, Rafael; Holgado, Miguel; Cornago, Iñaki; Fernández, Fátima; Ciaurriz, Paula; Sanza, Francisco J.; Santamaría, Beatriz; Maigler, Maria V.; Laguna, María. Fe
2018-02-01
In recent works it has been demonstrated the suitability of using resonant nanopillars (R-NPs) as biochemical. In this work it has been shown the capability of the R-NPs to behave as label-free multiplexed biological sensors. Each R-NP is formed by silicon oxide (SiO2) and silicon nitride (Si3N4) Bragg reflectors and a central cavity of SiO2, and they are grouped into eight arrays called BICELLs, which are distributed on a single chip of quartz substrate for multiplexing measurements. For the biological sensing assessment it was developed an immunoassay on the eight single BICELLs. The biofunctionalization process was performed by a silanization protocol based on 3-aminopropyltrymethoxysilane (APTMS) and glutaradheyde (GA) as a linker between APTMS and the IgG which acted as biorreceptor for the anti-IgG recognition. In this work, there were compared two forms of immobilization: on one hand by incubating the R-NPs under static drop of 50 μg/mL and on the second hand by introducing the sensing chip in a flow cell with a continuous flow of the same concentration of IgG. The eight arrays of R-NPs or BICELLs were independently optically interrogated by a bundle of fiber connected to a spectrometer. The multiplexing analysis showed reproducibility among the BICELLs, suggesting the potentially of using R-NPs for multiplexed biosensors. Performance in the immobilization process apparently does not have a signification effect. However the election of one method or another should be a commitment between time and resources.
Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar
2010-06-15
In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.
Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj
2015-08-15
Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Yongxin; Afrasiabi, Rouzbeh; Fathi, Farkhondeh; Wang, Nan; Xiang, Cuili; Love, Ryan; She, Zhe; Kraatz, Heinz-Bernhard
2014-08-15
Escherichia coli O157:H7 can cause life-threatening gastrointestinal diseases and has been a severe public health problem worldwide in recent years. A novel biosensor for the detection of E. coli O157:H7 is described here using a film composed of ferrocene-peptide conjugates, in which the antimicrobial peptide magainin I has been incorporated as the biorecognition element. Electrochemical impedance spectroscopy was employed to investigate the surface characteristics of the newly developed biosensor and to monitor the interactions between the peptide film and the pathogenic bacteria. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to confirm the immobilization of ferrocene-conjugate onto the gold surface. Non-pathogenic E. coli K12, Staphylococcus epidermidis and Bacillus subtilis were used in this study to evaluate the selectivity of the proposed biosensor. The results have shown the order of the preferential selectivity of the method is E. coli O157:H7>non-pathogenic E. coli>gram positive species. The detection of E. coli O157:H7 with a sensitivity of 10(3)cfu/mL is enabled by the biosensor. The experimental conditions have been optimized and the plot of changes of charge transfer resistance (ΔRCT) and the logarithm of the cell concentration of E. coli O157:H7 shows a linear correlation in the range of 10(3)-10(7)cfu/mL with a correlation coefficient of 0.983. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang
2017-06-01
The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
A label-free impedimetric DNA sensing chip integrated with AC electroosmotic stirring.
Wu, Ching-Chou; Yang, Dong-Jie
2013-05-15
AC electroosmosis (ACEO) flow and label-free electrochemical impedance spectroscopy are employed to increase the hybridization rate and specifically detect target DNA (tDNA) concentrations. A low-ionic-strength solution, 6.1μS/cm 1mM Tris (pH 9.3), was used to produce ACEO and proved the feasibility of hybridization. Adequate voltage parameters for the simultaneous ACEO driving and DNA hybridization in the 1mM Tris solution were 1.5 Vpp and 200Hz. Moreover, an electrode set with a 1:4 ring width-to-disk diameter ratio exhibited a larger ACEO velocity above the disk electrode surface to improve collecting efficiency. The ACEO-integrated DNA sensing chips could reach 90% saturation hybridization within 117s. The linear range and detection limit of the sensors was 10aM-10pM and 10aM, respectively. The label-free impedimetric DNA sensing chips with integrated ACEO stirring can perform rapid hybridization and highly-sensitive detections to specifically measure tDNA concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.
GMR microfluidic biosensor for low concentration detection of Nanomag-D beads
NASA Astrophysics Data System (ADS)
Devkota, J.; Kokkinis, G.; Jamalieh, M.; Phan, M. H.; Srikanth, H.; Cardoso, S.; Cardoso, F. A.; Giouroudi, I.
2015-06-01
This paper presents a novel microfluidic biosensor for in-vitro detection of biomolecules labeled by magnetic biomarkers (Nanomag-D beads) suspended in a static fluid in combination with giant magnetoresistance (GMR) sensors. While previous studies were focused mainly on exploring the MR change for biosensing of bacteria labeled with magnetic microparticles, we show that our biosensor can be used for the detection of much smaller pathogens in the range of a few hundred nanometers e.g., viruses labeled with Nanomag-D beads (MNPs). For the measurements we also used a novel method for signal acquisition and demodulation. Expensive function generators, data acquisition devices and lock-in amplifiers are substituted by a generic PC sound card and an algorithm combining the Fast Fourier Transform (FFT) of the signal with a peak detection routine. This way, costs are drastically reduced, portability is enabled, detection hands-on time is reduced, and sample throughput can be increased using automation and efficient data evaluation with the appropriate software.
A novel nano-photonics biosensor concept for rapid molecular diagnostics
NASA Astrophysics Data System (ADS)
Klunder, Dion J. W.; van Herpen, Maarten M. J. W.; Kolesnychenko, Aleksey; Hornix, Eefje; Kahya, Nicoletta; de Boer, Ruth; Stapert, Henk
2008-04-01
We present a novel nano-photonics biosensor concept that offers an ultra-high surface specificity and excellent suppression of background signals due to the sample fluid on top of the biosensor. In our contribution, we will briefly discuss the operation principle and fabrication of the biosensor, followed by a more detailed discussion on the experimentally determined performance parameters. Recent results on detection of fluorescently labeled molecules in a highly fluorescent background will be shown, and we will give an outlook on real-time detection of bio-molecules such as proteins and nucleic acids.
Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.
Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong
2017-12-15
We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling
2014-03-15
MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.
Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro
Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping
2012-01-01
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708
Song, Xuedong; Swanson, Basil I.
2001-10-02
An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.
NASA Astrophysics Data System (ADS)
Huang, He; Liu, Minghuan; Wang, Xiangsheng; Zhang, Wenjie; Yang, Da-Peng; Cui, Lianhua; Wang, Xiansong
2016-11-01
It is highly desirable to develop a rapid and simple method to detect pathogens. Combining nanomaterials with electrochemical techniques is an efficient way for pathogen detection. Herein, a novel 3D Ag nanoflower was prepared via a biomineralization method by using bovine serum albumin (BSA) as a template. It was adopted as a sensing interface to construct an electrochemical bacteria immunosensor for the rapid detection of foodborne pathogens Escherichia coli ( E. coli) O157:H7. Bacterial antibody was immobilized onto the surface of Ag nanoflowers through covalent conjugation. Electrochemical impedance spectroscopy (EIS) was used to detect and validate the resistance changes, where [Fe(CN)6]3-/4- acted as the redox probe. A linear relation between R et and E. coli concentration was obtained in the E. coli concentration range of 3.0 × 102-3.0 × 108 cfu mL-1. The as-prepared biosensor gave rise to an obvious response to E. coli but had no distinct response to Cronobacter sakazakii, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus albus, Lactobacillus easei, and Shigella flexneri, revealing a high selectivity for the detection of the pathogens down to 100 cfu mL-1 in a short time. We believe that this BSA-conjugated 3D Ag nanoflowers could be used as a powerful interface material with good conductivity and biocompatibility for improving pathogen detection and treatment in the field of medicine, environment, and food safety.
Shi, Xiao-Mei; Fan, Gao-Chao; Tang, Xueying; Shen, Qingming; Zhu, Jun-Jie
2018-06-30
Sensitive and specific detection of DNA is of great significance for clinical diagnosis. In this paper, an effective cascade signal amplification strategy was introduced into photoelectrochemical (PEC) biosensor for ultrasensitive detection of human T-cell lymphotropic virus type I (HTLV-I) DNA. This proposed signal amplification strategy integrates λ-exonuclease (λ-Exo) aided target recycling with hybridization chain reaction (HCR) and enzyme catalysis. In the presence of target DNA (tDNA) of HTLV-I, the designed hairpin DNA (h 1 DNA) hybridized with tDNA, subsequently recognized and cleaved by λ-Exo to set free tDNA. With the λ-Exo aided tDNA recycling, an increasing number of DNA fragments (output DNA, oDNA) were released from the digestion of h 1 DNA. Then, triggered by the hybridization of oDNA with capture DNA (cDNA), numerous biotin-labeled hairpin DNAs (h 2 DNA and h 3 DNA) could be loaded onto the photoelectrode via the HCR. Finally, avidin-labeled alkaline phosphatase (avidin-ALP) could be introduced onto the electrode by specific interaction between biotin and avidin. The ALP could catalyze dephosphorylation of phospho-L-ascorbic acid trisodium salt (AAP) to generate an efficient electron donor of ascorbic acid (AA), and thereby greatly increasing the photocurrent signal. By utilizing the proposed cascade signal amplification strategy, the fabricated PEC biosensor exhibited an ultrasensitive and specific detection of HTLV-I DNA down to 11.3 aM, and it also offered an effective strategy to detect other DNAs at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui
2015-02-15
A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2. Copyright © 2014 Elsevier B.V. All rights reserved.
Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors
NASA Astrophysics Data System (ADS)
Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru
2017-11-01
Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.
Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.
Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini
2015-09-30
An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.
Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics
NASA Astrophysics Data System (ADS)
Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini
2015-09-01
An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.
A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium
Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin
2017-01-01
Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit) (50 μL)−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD) of 102 CFU (50 μL)−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium achieved an LOD that is comparable with commercial electrochemical impedance instruments. The developed impedance immunosensor has advantages in portability, low cost, rapid detection and label-free features showing a great potential for in-field detection of foodborne pathogens. PMID:28846643
A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.
Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin
2017-08-28
Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved an LOD that is comparable with commercial electrochemical impedance instruments. The developed impedance immunosensor has advantages in portability, low cost, rapid detection and label-free features showing a great potential for in-field detection of foodborne pathogens.
NASA Astrophysics Data System (ADS)
Mirzaei, Sahar; Green, Nicolas G.; Rotaru, Mihai; Pu, Suan Hui
2017-02-01
In genetic diagnostics, laboratory-based equipment generally uses analytical techniques requiring complicated and expensive fluorescent labelling of target DNA molecules. Intense research effort into, and commercial development of, Point-of-Care diagnostics and Personalized Healthcare are driving the development of simple, fast and cost-effective detection methods. One potential label-free DNA detection method uses Terahertz (THz) spectroscopy of the natural responses of DNA in metamaterial structures, which are engineered to have properties that are impossible to obtain in natural materials. This paper presents a study of the development of metamaterials based on asymmetric X-shaped resonator inclusions as a functional sensor for DNA. Gold X-shaped resonator structures with dimensions of 90/85 μm were demonstrated to produce trapped mode resonant frequency in the correct range for DNA detection. Realistic substrate materials in the form of 375 μm thick quartz were investigated, demonstrating that the non-transparent nature of the material resulted in the production of standing waves, affecting the system response, as well as requiring a reduction in scale of the resonator of 85%. As a result, the effect of introducing etched windows in the substrate material were investigated, demonstrating that increased window size significantly reduces the effect of the substrate on the system response. The device design showed a good selectivity when RNA samples were introduced to the model, demonstrating the potential for this design of device in the development of sensors capable of performing cheap and simple genetic analysis of DNA, giving label-free detection at high sensitivity.
Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface
NASA Astrophysics Data System (ADS)
Ge, Chun; Lu, Meng; Zhang, Wei; Cunningham, Brian T.
2010-04-01
A dielectric nanorod structure is used to enhance the label-free detection sensitivity of a vertically-emitting distributed feedback laser biosensor (DFBLB). The device is comprised of a replica molded plastic grating that is subsequently coated with a dye-doped polymer layer and a TiO2 nanorod layer produced by the glancing angle deposition technique. The DFBLB emission wavelength is modulated by the adsorption of biomolecules, whose greater dielectric permittivity with respect to the surrounding liquid media will increase the laser wavelength in proportion to the density of surface-adsorbed biomaterial. The nanorod layer provides greater surface area than a solid dielectric thin film, resulting in the ability to incorporate a greater number of molecules. The detection of a monolayer of protein polymer poly (Lys, Phe) is used to demonstrate that a 90 nm TiO2 nanorod structure improves the detection sensitivity by a factor of 6.6 compared to an identical sensor with a nonporous TiO2 surface.
Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability
NASA Astrophysics Data System (ADS)
Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong
2017-06-01
Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.
Extreme sensitivity biosensing platform based on hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe
2016-06-01
Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.
Liquid crystal based biosensors for bile acid detection
NASA Astrophysics Data System (ADS)
He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson
2013-03-01
The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.
Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics
Gao, Anran; Lu, Na; Wang, Yuelin; Li, Tie
2016-01-01
For point-of-care (POC) applications, robust, ultrasensitive, small, rapid, low-power, and low-cost sensors are highly desirable. Here, we present a novel biosensor based on a complementary metal oxide semiconductor (CMOS)-compatible silicon nanowire tunneling field-effect transistor (SiNW-TFET). They were fabricated “top-down” with a low-cost anisotropic self-stop etching technique. Notably, the SiNW-TFET device provided strong anti-interference capacity by applying the inherent ambipolarity via both pH and CYFRA21-1 sensing. This offered a more robust and portable general protocol. The specific label-free detection of CYFRA21-1 down to 0.5 fgml−1 or ~12.5 aM was achieved using a highly responsive SiNW-TFET device with a minimum sub-threshold slope (SS) of 37 mVdec−1. Furthermore, real-time measurements highlighted the ability to use clinically relevant samples such as serum. The developed high performance diagnostic system is expected to provide a generic platform for numerous POC applications. PMID:26932158
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2017-01-01
A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices. PMID:28489033
A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates
Chan, Leo L.; Lidstone, Erich A.; Finch, Kristin E.; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.
2010-01-01
Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening. PMID:20930952
Liu, Lanhua; Zhou, Xiaohong; Lu, Yun; Shan, Didi; Xu, Bi; He, Miao; Shi, Hanchang; Qian, Yi
2017-11-15
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E 2 ) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E 2 free to bind to fluorophore-labeled anti-E 2 monoclonal antibody. Unbound anti-E 2 antibody then binds to the immobilized E 2 -protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E 2 -protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.
Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin
2014-01-15
We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Liju; Li, Yanbin; Erf, Gisela F
2004-02-15
A label-free electrochemical impedance immunosensor for rapid detection of Escherichia coli O157:H7 was developed by immobilizing anti-E. coli antibodies onto an indium-tin oxide interdigitated array (IDA) microelectrode. Based on the general electronic equivalent model of an electrochemical cell and the behavior of the IDA microelectrode, an equivalent circuit, consisting of an ohmic resistor of the electrolyte between two electrodes and a double layer capacitor, an electron-transfer resistor, and a Warburg impedance around each electrode, was introduced for interpretation of the impedance components of the IDA microelectrode system. The results showed that the immobilization of antibodies and the binding of E. coli cells to the IDA microelectrode surface increased the electron-transfer resistance, which was directly measured with electrochemical impedance spectroscopy in the presence of [Fe(CN)(6)](3-/4-) as a redox probe. The electron-transfer resistance was correlated with the concentration of E. coli cells in a range from 4.36 x 10(5) to 4.36 x 10(8) cfu/mL with the detection limit of 10(6) cfu/mL.
Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen
2015-12-01
The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.
Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.
Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel
2017-04-17
Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.
Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike
2017-08-15
The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Haslam, Carrie; Damiati, Samar; Whitley, Toby; Ifeachor, Emmanuel
2018-01-01
We report on the development of label-free chemical vapour deposition (CVD) graphene field effect transistor (GFET) immunosensors for the sensitive detection of Human Chorionic Gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFET sensors were fabricated on Si/SiO2 substrate using photolithography with evaporated chromium and sputtered gold contacts. GFET channels were functionalised with a linker molecule to an immobile anti-hCG antibody on the surface of graphene. The binding reaction of the antibody with varying concentration levels of hCG antigen demonstrated the limit of detection of the GFET sensors to be below 1 pg/mL using four-probe electrical measurements. We also show that annealing can significantly improve the carrier transport properties of GFETs and shift the Dirac point (Fermi level) with reduced p-doping in back-gated measurements. The developed GFET biosensors are generic and could find applications in a broad range of medical diagnostics in addition to cancer, such as neurodegenerative (Alzheimer’s and Parkinson’s) and cardiovascular disorders. PMID:29316718
Fabrication of SrTiO3 Layer on Pt Electrode for Label-Free Capacitive Biosensors
Carapella, Giovanni; Pilloton, Roberto; Di Matteo, Marisa
2018-01-01
Due to their interesting ferroelectric, conductive and dielectric properties, in recent years, perovskite-structured materials have begun to attract increasing interest in the biosensing field. In this study, a strontium titanate perovskite layer (SrTiO3) has been synthesized on a platinum electrode and exploited for the development of an impedimetric label-free immunosensor for Escherichia coli O157:H7 detection. The electrochemical characterization of the perovskite-modified electrode during the construction of the immunosensor, as well as after the interaction with different E. coli O157:H7 concentrations, showed a reproducible decrease of the total capacitance of the system that was used for the analytical characterization of the immunosensor. Under optimized conditions, the capacitive immunosensor showed a linear relationship from to 1 to 7 log cfu/mL with a low detection limit of 1 log cfu/mL. Moreover, the atomic force microscopy (AFM) technique underlined the increase in roughness of the SrTiO3-modified electrode surface after antibody immobilization, as well as the effective presence of cells with the typical size of E. coli. PMID:29547521
Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong
2017-08-09
Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.
Agrawal, Anant; Majdi, Joseph; Clouse, Kathleen A; Stantchev, Tzanko
2018-05-23
Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.
Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus.
Reich, Peggy; Stoltenburg, Regina; Strehlitz, Beate; Frense, Dieter; Beckmann, Dieter
2017-11-21
In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus . The used aptamer targets protein A, a surface bound virulence factor of S. aureus . The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 10 13 aptamer molecules per cm². As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus , the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL -1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis . This work highlights the immense potential of impedimetric aptasensors for future biosensing applications.
Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus
Strehlitz, Beate; Beckmann, Dieter
2017-01-01
In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus. The used aptamer targets protein A, a surface bound virulence factor of S. aureus. The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 1013 aptamer molecules per cm2. As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus, the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL−1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis. This work highlights the immense potential of impedimetric aptasensors for future biosensing applications. PMID:29160851
Pan, Hong-zhi; Yu, Hong- Wei; Wang, Na; Zhang, Ze; Wan, Guang-Cai; Liu, Hao; Guan, Xue; Chang, Dong
2015-01-01
To develop a new electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase, a highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-nano). The Au-nano/GCE was characterized by scanning electromicroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The hybridization detection was measured by differential pulse voltammetry using methylene blue as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-11) to 1 × 10(-8) M, with an LOD of 1 × 10(-12) M. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The Au-nano/GCE showed significant improvement in electrochemical characteristics, and this biosensor was successfully applied for determination of K. pneumoniae.
Innovations in biomedical nanoengineering: nanowell array biosensor.
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-01-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Innovations in biomedical nanoengineering: nanowell array biosensor
NASA Astrophysics Data System (ADS)
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-04-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2018-01-01
We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.
Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.
Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester
2015-07-07
A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.
Shashaani, Hani; Faramarzpour, Mahsa; Hassanpour, Morteza; Namdar, Nasser; Alikhani, Alireza; Abdolahad, Mohammad
2016-11-15
Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of an optical biosensor for the detection of antibiotics in the environment
NASA Astrophysics Data System (ADS)
Weber, Patricia; Vogler, Julian; Gauglitz, Günter
2017-05-01
Pharmacologically active substances like antibiotics, hormones, x-ray contrast media, antirheumatic drugs or beta blockers are increasingly accumulating in the environment. These pharmacologically active substances can be found in surface waters as well as in food products. In the case of surface waters, the contamination with pharmacologically active substances is primary caused by incorrect disposal of drugs and by human and animal feaces. This is due to the fact that, drugs are only removed incompletely during the wastewater treatment. Furthermore, food of animal origin like milk, cheese, eggs or meat are potentially frequently concerned. The use of animal drugs in animal husbandry and food industry is permitted legal and a standard practice. However, it is possible that after drug application to animals drug residues or decomposition products remain in the animal carcasses. In this work we will present the first steps of the development of an optical biosensor sensitive for the antibiotic penicillin G. This biosensor is principle of the label-free and time resolved method Reflectometric Interference Spectroscopy (RIfS). The method uses interference of white light at thin layers to observe molecular interactions. The required surface modifications for the sensor were developed and optimized. Moreover, common commercial antibodies were chosen and concentration dependent measurements in buffer were performed.
Waiyapoka, Thanyaporn; Deachamag, Panchalika; Chotigeat, Wilaiwan; Bunsanong, Nittaya; Kanatharana, Proespichaya; Thavarungkul, Panote; Loyprasert-Thananimit, Suchera
2015-10-01
White spot syndrome virus (WSSV) is a major pathogen affecting the shrimp industry worldwide. In a preliminary study, WSSV binding protein (WBP) was specifically bound to the VP26 protein of WSSV. Therefore, we have developed the label-free affinity immunosensor using the WBP together with anti-GST-VP26 for quantitative detection of WSSV in shrimp pond water. When the biological molecules were immobilized on a gold electrode to form a self-assembled monolayer, it was then used to detect WSSV using a flow injection system with optimized conditions. Binding between the different copies of WSSV and the immobilized biological molecules was detected by an impedance change (ΔZ″) in real time. The sensitivity of the developed immunosensor was in the linear range of 1.6 × 10(1)-1.6 × 10(6) copies/μl. The system was highly sensitive for the analysis of WSSV as shown by the lack of impedance change when using yellow head virus (YHV). The developed immunosensor could be reused up to 37 times (relative standard deviation (RSD), 3.24 %) with a good reproducibility of residual activity (80-110 %). The immunosensor was simple to operate, reliable, reproducible, and could be applied for the detection and quantification of WSSV in water during shrimp cultivation.
Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays
NASA Astrophysics Data System (ADS)
Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.
2015-09-01
Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.
Chou, Howard A; Zavitz, Daniel H; Ovadia, Marc
2003-01-01
To study in vivo modification of the SAM equivalent circuit when a highly ordered SAM is used as a bioelectrode, dodecanethiolate SAM-Au intramuscular electrodes were studied in living rat heart in a challenging in situ perfused rat model by impedance spectroscopy, cyclic voltammetry, and neutron activation analysis (NAA). The SAM layer experienced disintegration in vivo biological system, as NAA detected the presence of Au atoms that had leached into the surrounding living tissue. Therefore, the underlying Au surface became exposed during biological implant. Study by impedance spectroscopy, however, revealed perfect capacitive behavior for the SAM, similar to in vitro behavior. Electrodes showed a pure capacitive Nyquist plot with 86.1-89.4 degrees near-vertical line segments as the equivalent circuit locus, as for a parallel plate capacitor. Impedance magnitude varied linearly with 1/omega excluding diffusionally limited ionic charge transport. There was no diffusional conductive element Z(W infinity ) or spatially confined Warburg impedance Z(D). The effect of in vivo exposure of a highly ordered SAM is a 'sealing over' effect of new defects by the binding of proteinaceous or lipid species in the biological milieu, a fact of significance for SAM electrodes used either as pacemaker electrodes or as a platform for in vivo biosensors.
Zhou, Ya; Xiao, Jingfan; Ma, Xin; Wang, Qiyao; Zhang, Yuanxing
2018-06-01
In purpose of valid Streptococcus iniae detection, we established a colorimetric biosensor using gold nanoparticles (AuNPs) labeled with dual functional probes and along with loop-mediated isothermal amplification (LAMP) assay (LAMP-AuNPs). Based on the characteristics of self-aggregation and bio-conjugation with ligands, AuNPs were chosen for observable color change in tandem with LAMP amplification method to reach high sensitivity and easy operation. Meanwhile, the improvement of dual probes that could fully utilize the LAMP product gave the biosensor a stable result exhibition. LAMP-AuNPs targeting gene ftsB, one of the ATP transporter-related genes, turned out favorable specificity in cross reaction among other fish pathogens. The detect limit of 10 2 CFU revealed a better sensitivity compared with polymerase chain reaction (PCR) method and AuNPs lateral flow test strip (LFTS). It was also proved to be effective by zebrafish infection model trials with less than 2-h time consumption and nearly no devices which make it a convenient biosensor for point-to-care S. iniae detection.
McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.
2014-01-01
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220
NASA Astrophysics Data System (ADS)
Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team
2014-03-01
A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.
Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng
2016-10-04
Herein, a novel universal and label-free homogeneous electrochemical platform is demonstrated, on which a complete set of DNA-based two-input Boolean logic gates (OR, NAND, AND, NOR, INHIBIT, IMPLICATION, XOR, and XNOR) is constructed by simply and rationally deploying the designed DNA polymerization/nicking machines without complicated sequence modulation. Single-stranded DNA is employed as the proof-of-concept target/input to initiate or prevent the DNA polymerization/nicking cyclic reactions on these DNA machines to synthesize numerous intact G-quadruplex sequences or binary G-quadruplex subunits as the output. The generated output strands then self-assemble into G-quadruplexes that render remarkable decrease to the diffusion current response of methylene blue and, thus, provide the amplified homogeneous electrochemical readout signal not only for the logic gate operations but also for the ultrasensitive detection of the target/input. This system represents the first example of homogeneous electrochemical logic operation. Importantly, the proposed homogeneous electrochemical logic gates possess the input/output homogeneity and share a constant output threshold value. Moreover, the modular design of DNA polymerization/nicking machines enables the adaptation of these homogeneous electrochemical logic gates to various input and output sequences. The results of this study demonstrate the versatility and universality of the label-free homogeneous electrochemical platform in the design of biomolecular logic gates and provide a potential platform for the further development of large-scale DNA-based biocomputing circuits and advanced biosensors for multiple molecular targets.
NASA Astrophysics Data System (ADS)
Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong
2014-12-01
The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development. Electronic supplementary information (ESI) available: Preparation of the chemically modified multi-walled carbon nanotubes (CNTs), characterization of the CNTs and modified CNTs, preparation of the circular probe, gel electrophoresis of the RCA products, and DNA probes as noted in the text. See DOI: 10.1039/c4nr05243a
A dielectrophoresis-impedance method for protein detection and analysis
NASA Astrophysics Data System (ADS)
Mohamad, Ahmad Sabry; Hamzah, Roszymah; Hoettges, Kai F.; Hughes, Michael Pycraft
2017-01-01
Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.
NASA Astrophysics Data System (ADS)
Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma
2014-08-01
In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.
NASA Astrophysics Data System (ADS)
Devkota, J.; Wingo, J.; Mai, T. T. T.; Nguyen, X. P.; Huong, N. T.; Mukherjee, P.; Srikanth, H.; Phan, M. H.
2014-05-01
We report on a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with a nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to superparamagnetic (Fe3O4) nanoparticles. Fe3O4 nanoparticles (mean size, ˜10 nm) were first coated with Alginate, and Curcumin was then tagged to the nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the Fe3O4 nanoparticles to which Curcumin was tagged. A high capacity of the MX-based biosensor in quantitative analysis of Curcumin-loaded Fe3O4 nanoparticles was achieved in the range of 0-50 ng/ml, beyond which the detection sensitivity of the sensor remained unchanged. The detection sensitivity of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems.
Excitation of Cy5 in self-assembled lipid bilayers using optical microresonators
NASA Astrophysics Data System (ADS)
Freeman, Lindsay M.; Li, Su; Dayani, Yasaman; Choi, Hong-Seok; Malmstadt, Noah; Armani, Andrea M.
2011-04-01
Due to their sensitivity and temporal response, optical microresonators are used extensively in the biosensor arena, particularly in the development of label-free diagnostics and measurement of protein kinetics. In the present letter, we investigate using microcavities to probe molecules within biomimetic membranes. Specifically, a method for self-assembling lipid bilayers on spherical microresonators is developed and the bilayer-nature is verified. Subsequently, the microcavity is used to excite a Cy5-conjugated lipid located within the bilayer while the optical performance of the microcavity is characterized. The emission wavelength of the dye and the optical behavior of the microcavity agree with theoretical predictions.
An underlap field-effect transistor for electrical detection of influenza
NASA Astrophysics Data System (ADS)
Lee, Kwang-Won; Choi, Sung-Jin; Ahn, Jae-Hyuk; Moon, Dong-Il; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu
2010-01-01
An underlap channel-embedded field-effect transistor (FET) is proposed for label-free biomolecule detection. Specifically, silica binding protein fused with avian influenza (AI) surface antigen and avian influenza antibody (anti-AI) were designed as a receptor molecule and a target material, respectively. The drain current was significantly decreased after the binding of negatively charged anti-AI on the underlap channel. A set of control experiments supports that only the biomolecules on the underlap channel effectively modulate the drain current. With the merits of a simple fabrication process, complementary metal-oxide-semiconductor compatibility, and enhanced sensitivity, the underlap FET could be a promising candidate for a chip-based biosensor.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, T.
1998-09-29
The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, Tuan
1998-01-01
The subject invention disclosed herein is a new gene probe biosensor and methods thereof based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, T.
1998-02-24
The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.
Surface enhanced Raman gene probe and methods thereof
Vo-Dinh, T.
1998-07-21
The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.
Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru
2015-02-01
A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days. Copyright © 2014 Elsevier B.V. All rights reserved.
Batra, Bhawna; Lata, Suman; Pundir, C S
2013-11-01
A method is described for construction of an improved amperometric acrylamide biosensor based on covalent immobilization of hemoglobin (Hb) onto nanocomposite of carboxylated multi-walled carbon nanotubes (cMWCNT) and iron oxide nanoparticles (Fe3O4NPs) electrodeposited onto Au electrode through chitosan (CHIT) film. The Hb/cMWCNT-Fe3O4NP/CHIT/Au electrode was characterized by scanning electron microscopy, Fourier transform infra-red spectroscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry at different stages of its construction. The biosensor was based on interaction between acrylamide and Hb, which led to decrease in the electroactivity of Hb, i.e., current generated during its reversible conversion [Fe(II)/Fe(III)]. The biosensor showed optimum response within 8 s at pH 5.0 and 30 °C. The linear working range for acrylamide was 3-90 nM, with a detection limit of 0.02 nM and sensitivity of 36.9 μA/nM/cm(2). The biosensor was evaluated and employed for determination of acrylamide in potato crisps.
Supramolecular Control in Nanostructured Film Architectures for Detecting Breast Cancer.
Soares, Juliana Coatrini; Shimizu, Flavio Makoto; Soares, Andrey Coatrini; Caseli, Luciano; Ferreira, Jacqueline; Oliveira, Osvaldo N
2015-06-10
The need for early detection of various diseases, including breast cancer, has motivated research into nanomaterials that can be assembled in organized films which serve as biosensors. Owing to the variety of possible materials and film architectures, procedures are required to design optimized biosensors. In this study, we combine surface-specific methods to monitor the assembly of antibodies on nanostructured films with two distinct architectures. In the first, a layer of the antibody type mouse anti-HER2 (clone tab250) was immobilized on a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid modified with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC). In the second approach, a SAM of cysteamine was coated with a biotin/spreptavidin bilayer on which a layer of biotinylated antibody type MSx2HUp185/her biotin was adsorbed. The rougher, less passivating coating with cysteamine determined from cyclic voltammetry and scanning electron microscopy led to biosensors that are more sensitive to detect the breast cancer ERBB2 (HER2) biomarker in impedance spectroscopy measurements. This higher distinguishing ability of the cysteamine-containing film architecture was proven with information visualization methods to treat the impedance data. Polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) confirmed that biosensing resulted from the antibody-ERBB2 antigen affinity.
Guo, Bin; Wen, Bo; Cheng, Wei; Zhou, Xiaoyan; Duan, Xiaolei; Zhao, Min; Xia, Qianfeng; Ding, Shijia
2018-07-30
In this research, an enzyme-free and label-free surface plasmon resonance (SPR) biosensing strategy has been developed for ultrasensitive detection of fusion gene based on the heterogeneous target-triggered DNA self-assembly aptamer-based hydrogel with streptavidin (SA) encapsulation. In the presence of target, the capture probes (Cp) immobilized on the chip surface can capture the PML/RARα, forming a Cp-PML/RARα duplex. After that, the aptamer-based network hydrogel nanostructure is formed on the gold surface via target-triggered self-assembly of X shaped polymers. Subsequently, the SA can be encapsulated into hydrogel by the specific binding of SA aptamer, forming the complex with super molecular weight. Thus, the developed strategy achieves dramatic enhancement of the SPR signal. Using PML/RARα "S" subtype as model analyte, the developed biosensing method can detect target down to 45.22 fM with a wide linear range from 100 fM to 10 nM. Moreover, the high efficiency biosensing method shows excellent practical ability to identify the clinical PCR products of PML/RARα. Thus, this proposed strategy presents a powerful platform for ultrasensitive detection of fusion gene and early diagnosis and monitoring of disease. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong
2016-03-01
Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.
Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects
NASA Astrophysics Data System (ADS)
Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.
2018-02-01
We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.
NASA Astrophysics Data System (ADS)
Choi, Charles J.; Chan, Leo L.; Pineda, Maria F.; Cunningham, Brian T.
2007-09-01
Assays used in pharmaceutical research require a system that can not only detect biochemical interactions with high sensitivity, but that can also perform many measurements in parallel while consuming low volumes of reagents. While nearly all label-free biosensor transducers to date have been interfaced with a flow channel, the liquid handling system is typically aligned and bonded to the transducer for supplying analytes to only a few sensors in parallel. In this presentation, we describe a fabrication approach for photonic crystal biosensors that utilizes nanoreplica molding to produce a network of sensors that are automatically self-aligned with a microfluidic network in a single process step. The sensor/fluid network is inexpensively produced on large surface areas upon flexible plastic substrates, allowing the device to be incorporated into standard format 96-well microplates. A simple flow scheme using hydrostatic pressure applied through a single control point enables immobilization of capture ligands upon a large number of sensors with 220 nL of reagent, and subsequent exposure of the sensors to test samples. A high resolution imaging detection instrument is capable of monitoring the binding within parallel channels at rates compatible with determining kinetic binding constants between the immobilized ligands and the analytes. The first implementation of this system is capable of monitoring the kinetic interactions of 11 flow channels at once, and a total of 88 channels within an integrated biosensor microplate in rapid succession. The system was initially tested to characterize the interaction between sets of proteins with known binding behavior.
NASA Astrophysics Data System (ADS)
Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya
2016-05-01
An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.
Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.
2016-01-01
Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, D.; RoyChaudhuri, C., E-mail: chirosreepram@yahoo.com; Pal, D.
2015-07-28
Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct in vitro environment for better understanding of in vivo behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion,more » we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation (h) in the initial stage is more than the rate of increase in cell-cell junction resistance (R{sub b}) corresponding to the initial adhesion phase of cells. It is observed that R{sub b} and h are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions.« less
U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection
NASA Astrophysics Data System (ADS)
Gowri, A.; Sai, V. V. R.
2017-05-01
This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.
Development of an electrochemical biosensor for vitamin B12 using D-phenylalanine nanotubes
NASA Astrophysics Data System (ADS)
Moazeni, Maryam; Karimzadeh, Fathallah; Kermanpur, Ahmad; Allafchian, Alireza
2018-01-01
In the past decades, biosensors are one of the most interesting topics among researchers and scientist. The biosensors are used in several applications such as determining food quality, control and diagnose clinical problems and metabolic control. Therefore, many efforts have been carried out to design and develop a new generation of these systems. On the other hand nanotechnology by improving the performance of sensors has created an excellent outlook. Using nanomaterials such as nanoparticles, nanotubes, nanowires, and nanorods in diagnostic tools has been significantly increased accuracy, sensitivity and improved detection limits in sensors. In this study, the one-dimensional morphology of the D-phenylalanine was assembled on the surface of the gold electrode. In the next step electrochemical performance of the modified electrode was investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pals Voltammograms (DPV). Finally, by measuring the different concentrations of vitamin B12, the detection limit of the biosensor was obtained 1.6 µM.
NASA Astrophysics Data System (ADS)
Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.
2008-03-01
Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.
Zhou, Juan; Li, Huan; Yang, Huasong; Cheng, Hui; Lai, Guosong
2017-01-01
Ferrocene-grafted dendrimer was covalently linked to the surface of a carbon nanotubes (CNTs)-chitosan (CS) nanocomposite modified electrode for immobilizing high-content glucose oxidase (GOx), which resulted in the successful development a novel reagentless glucose biosensor. Electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry were used to characterize the preparation process and the enzymatically catalytic response of this biosensor. Due to the excellent electron transfer acceleration of the CNTs and the high-content loading of the GOx biomolecule and ferrocene mediator on the electrode matrix, this biosensor showed excellent analytical performance such as fast response time less than 10 s, wide linear range from 0.02 to 2.91 mM and low detection limit down to 7.5 μM as well as satisfactory stability and reproducibility toward the amperometric glucose determination. In addition, satisfactory result was obtained when it was used for the glucose measurements in human blood samples. Thus this biosensor provides great potentials for practical applications.
Barsan, Madalina M; David, Melinda; Florescu, Monica; Ţugulea, Laura; Brett, Christopher M A
2014-10-01
The layer-by-layer (LbL) technique has been used for the construction of a new enzyme biosensor. Multilayer films containing glucose oxidase, GOx, and nitrogen-doped graphene (NG) dispersed in the biocompatible positively-charged polymer chitosan (chit(+)(NG+GOx)), together with the negatively charged polymer poly(styrene sulfonate), PSS(-), were assembled by alternately immersing a gold electrode substrate in chit(+)(NG+GOx) and PSS(-) solutions. Gravimetric monitoring during LbL assembly by an electrochemical quartz microbalance enabled investigation of the adsorption mechanism and deposited mass for each monolayer. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the LbL modified electrodes, in order to establish the contribution of each monolayer to the overall electrochemical properties of the biosensor. The importance of NG in the biosensor architecture was evaluated by undertaking a comparative study without NG in the chit layer. The GOx biosensor's analytical properties were evaluated by fixed potential chronoamperometry and compared with similar reported biosensors. The biosensor operates at a low potential of -0.2V vs., Ag/AgCl, exhibiting a high sensitivity of 10.5 μA cm(-2) mM(-1), and a detection limit of 64 μM. This study shows a simple approach in developing new biosensor architectures, combining the advantages of nitrogen-doped graphene with the LbL technique for enzyme immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Deng; Chen, Songyue; Qin, Lifeng; Li, Rong; Wang, Ping; Li, Yanbin
2005-01-01
Immunobiosensors were developed for detection of Escherichia coli O157:H7 based on the surface immobilization of monoclone antibodies onto indium tin oxide (ITO) electrodes. The immobilization of antibodies onto ITO chips was carried out by silanization. The effects of epoxysilane monolayer, the antibody layer on the electrochemical properties of the electrode, and the combined target bacteria were analyzed through cyclic voltammetry and electrochemical impedance spectroscopy. By using Randles model as the equivalent circuit, the concentration of the target bacteria can be quantitatively analyzed in terms of the change of electron transfer resistance. The biosensor could detect the target bacteria with a detection limit of 4×103CFU/mL. A linear response was found between 4×103- 4×106CFU/mL. This biosensor was characterized with high sensitivity, excellent selectivity, short detection time and easy operation It has a promising application in clinical laboratory diagnoses, environmental detection and food safety.
Batra, Bhawna; Pundir, C S
2013-09-15
A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.
Pathogen identification using peptide nanotube biosensors and impedance AFM
NASA Astrophysics Data System (ADS)
Maccuspie, Robert I.
Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.
Zang, Yang; Lei, Jianping; Hao, Qing; Ju, Huangxian
2016-03-15
This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin-DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron-hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José
2015-07-01
Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.
Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José
2015-01-01
Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346
Byeon, Ji-Yeon; Limpoco, F. T.; Bailey, Ryan C.
2010-01-01
Aniline-catalyzed hydrazone ligation between surface immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH dependent non-covalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent. PMID:20809595
Hui, Ni; Sun, Xiaotian; Song, Zhiling; Niu, Shuyan; Luo, Xiliang
2016-12-15
An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.
Electronic Biosensing with Functionalized rGO FETs
Reiner-Rozman, Ciril; Kotlowski, Caroline; Knoll, Wolfgang
2016-01-01
In the following we give a short summary of examples for biosensor concepts in areas in which reduced graphene oxide-based electronic devices can be developed into new classes of biosensors, which are highly sensitive, label-free, disposable and cheap, with electronic signals that are easy to analyze and interpret, suitable for multiplexed operation and for remote control, compatible with NFC technology, etc., and in many cases a clear and promising alternative to optical sensors. The presented areas concern sensing challenges in medical diagnostics with an example for detecting general antibody-antigen interactions, for the monitoring of toxins and pathogens in food and feed stuff, exemplified by the detection of aflatoxins, and the area of smell sensors, which are certainly the most exciting development as there are very few existing examples in which the typically small and hydrophobic odorant molecules can be detected by other means. The example given here concerns the recording of a honey flavor (and a cancer marker for neuroblastoma), homovanillic acid, by the odorant binding protein OBP 14 from the honey bee, immobilized on the reduced graphene oxide gate of an FET sensor. PMID:27110828
Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks
Ghali, Hala; Chibli, Hicham; Nadeau, Jay L.; Bianucci, Pablo; Peter, Yves-Alain
2016-01-01
Whispering Gallery Mode (WGM) microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q) factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme. PMID:27153099
Chen, Ying-Jen; Schoeler, Ulrike; Huang, Chung-Hsuan Benjamin; Vollmer, Frank
2018-05-01
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering-gallery mode biosensors, with precise microfluidics control to achieve label-free and real-time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic Biosensing with Functionalized rGO FETs.
Reiner-Rozman, Ciril; Kotlowski, Caroline; Knoll, Wolfgang
2016-04-22
In the following we give a short summary of examples for biosensor concepts in areas in which reduced graphene oxide-based electronic devices can be developed into new classes of biosensors, which are highly sensitive, label-free, disposable and cheap, with electronic signals that are easy to analyze and interpret, suitable for multiplexed operation and for remote control, compatible with NFC technology, etc., and in many cases a clear and promising alternative to optical sensors. The presented areas concern sensing challenges in medical diagnostics with an example for detecting general antibody-antigen interactions, for the monitoring of toxins and pathogens in food and feed stuff, exemplified by the detection of aflatoxins, and the area of smell sensors, which are certainly the most exciting development as there are very few existing examples in which the typically small and hydrophobic odorant molecules can be detected by other means. The example given here concerns the recording of a honey flavor (and a cancer marker for neuroblastoma), homovanillic acid, by the odorant binding protein OBP 14 from the honey bee, immobilized on the reduced graphene oxide gate of an FET sensor.
Stolwijk, Judith A.; Matrougui, Khalid; Renken, Christian W.; Trebak, Mohamed
2014-01-01
The past 20 years have seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists, pharmacological and toxicological compounds. Most studies on barrier function use G protein coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance based techniques such as Electric Cell-Substrate Impedance Sensing (ECIS) reside in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine and Sphingosine-1-Phosphate. PMID:25537398
Stolwijk, Judith A; Matrougui, Khalid; Renken, Christian W; Trebak, Mohamed
2015-10-01
The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.
Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent
2016-04-01
A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.
Label-Free Biosensor Imaging on Photonic Crystal Surfaces.
Zhuo, Yue; Cunningham, Brian T
2015-08-28
We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.
Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sonntag, Frank; Centola, Fabio; Occhicone, Agostino; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco
2017-08-17
We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.
Label-Free Biosensor Imaging on Photonic Crystal Surfaces
Zhuo, Yue; Cunningham, Brian T.
2015-01-01
We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity. PMID:26343684
Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan
2016-12-15
Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. Copyright © 2016 Elsevier B.V. All rights reserved.
Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V; Mulchandani, Ashok
2010-12-15
In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure-based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. Copyright © 2010 Elsevier B.V. All rights reserved.
Novel label-free biosensing technology for monitoring of aqueous solutions (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kehl, Florian; Bielecki, Robert; Follonier, Stephane; Dorokhin, Denis
2016-03-01
Waste water, drinking water and other industrial water sources are more and more/increasingly polluted with a large variety of contaminants, such as pesticides or residuals of pharmaceuticals. These compounds can impact human and animal organisms and lead to serious health issues. Today, in order to analyze the presence and quantity of the abovementioned micropollutants, samples are typically sent to specialized centralized laboratories and their processing may take up to several days. In order to meet the demand for continuous and consistent monitoring of aqueous solutions we propose a novel label-free technology system comprising proprietary chip and reader device designs. The core of the system is constituted by a planar-grated-waveguide (PGW) chip. Label-free biosensors, based on PGWs are sensitive to effective refractive index changes caused by the adsorption of biomolecules (micropollutants) onto the sensor surface or due to refractive index changes of the bulk solution. The presented reader device operates with a novel readout concept based on a scanning MEMS mirror for the angular interrogation of input grating couplers at a high repetition rate. The reader has fully integrated optics, electronics and fluidics and at the same time consumes limited energy (portable, field use ready). In the recent experiments, the effectiveness of the technology has been demonstrated with various liquids and bioassays showing (i) an excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of ▵neff < 2 x 10-7, and (ii) the capability to perform affinity measurements for large (<150 kDa) and small (<250 Da) molecules.
An ingestible bacterial-electronic system to monitor gastrointestinal health.
Mimee, Mark; Nadeau, Phillip; Hayward, Alison; Carim, Sean; Flanagan, Sarah; Jerger, Logan; Collins, Joy; McDonnell, Shane; Swartwout, Richard; Citorik, Robert J; Bulović, Vladimir; Langer, Robert; Traverso, Giovanni; Chandrakasan, Anantha P; Lu, Timothy K
2018-05-25
Biomolecular monitoring in the gastrointestinal tract could offer rapid, precise disease detection and management but is impeded by access to the remote and complex environment. Here, we present an ingestible micro-bio-electronic device (IMBED) for in situ biomolecular detection based on environmentally resilient biosensor bacteria and miniaturized luminescence readout electronics that wirelessly communicate with an external device. As a proof of concept, we engineer heme-sensitive probiotic biosensors and demonstrate accurate diagnosis of gastrointestinal bleeding in swine. Additionally, we integrate alternative biosensors to demonstrate modularity and extensibility of the detection platform. IMBEDs enable new opportunities for gastrointestinal biomarker discovery and could transform the management and diagnosis of gastrointestinal disease. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Jian, Aoqun; Zou, Lu; Tang, Haiquan; Duan, Qianqian; Ji, Jianlong; Zhang, Qianwu; Zhang, Xuming; Sang, Shengbo
2017-06-01
The issue of thermal effects is inevitable for the ultrahigh refractive index (RI) measurement. A biosensor with parallel-coupled dual-microring resonator configuration is proposed to achieve high resolution and free thermal effects measurement. Based on the coupled-resonator-induced transparency effect, the design and principle of the biosensor are introduced in detail, and the performance of the sensor is deduced by simulations. Compared to the biosensor based on a single-ring configuration, the designed biosensor has a 10-fold increased Q value according to the simulation results, thus the sensor is expected to achieve a particularly high resolution. In addition, the output signal of the mathematical model of the proposed sensor can eliminate the thermal influence by adopting an algorithm. This work is expected to have great application potentials in the areas of high-resolution RI measurement, such as biomedical discoveries, virus screening, and drinking water safety.
Electrochemical aptasensor for detecting tetracycline in milk
NASA Astrophysics Data System (ADS)
Hanh Le, Thi; Phuc Pham, Van; Huyen La, Thi; Binh Phan, Thi; Huan Le, Quang
2016-03-01
A rapid, simple and sensitive biosensor system for tetracycline detection is very important in food safety. In this paper we developed a label-free aptasensor for electrochemical detection of tetracycline. According to the electrochemical impendence spectroscopy (EIS) analysis, there was a linear relationship between the concentration of tetracycline and the electron transfer resistance from 10 to 3000 ng ml-1 of the tetracycline concentration. The detection limit was 10 ng ml-1 in 15 min detection duration. The prepared aptasensor showed a good reproducibility with an acceptable stability in tetracycline detection. The recoveries of tetracycline in spiked milk samples were in the range of 88.1%-94.2%. The aptasensor has sensitivity 98% and specificity of 100%.
Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy
2006-08-01
Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.
De Stefano, Luca; Oliviero, Giorgia; Amato, Jussara; Borbone, Nicola; Piccialli, Gennaro; Mayol, Luciano; Rendina, Ivo; Terracciano, Monica; Rea, Ilaria
2013-01-01
Direct solid phase synthesis of peptides and oligonucleotides (ONs) requires high chemical stability of the support material. In this work, we have investigated the passivation ability of porous oxidized silicon multilayered structures by two aminosilane compounds, 3-aminopropyltriethoxysilane and 3-aminopropyldimethylethoxysilane (APDMES), for optical label-free ON biosensor fabrication. We have also studied by spectroscopic reflectometry the hybridization between a 13 bases ON, directly grown on the aminosilane modified porous oxidized silicon by in situ synthesis, and its complementary sequence. Even if the results show that both devices are stable to the chemicals (carbonate/methanol) used, the porous silica structure passivated by APDMES reveals higher functionalization degree due to less steric hindrance of pores. PMID:23536541
Mechanical and Electronic Approaches to Improve the Sensitivity of Microcantilever Sensors
Mutyala, Madhu Santosh Ku; Bandhanadham, Deepika; Pan, Liu; Pendyala, Vijaya Rohini; Ji, Hai-Feng
2010-01-01
Advances in the field of Micro Electro Mechanical Systems (MEMS) and their uses now offer unique opportunities in the design of ultrasensitive analytical tools. The analytical community continues to search for cost-effective, reliable, and even portable analytical techniques that can give reliable and fast response results for a variety of chemicals and biomolecules. Microcantilevers (MCLs) have emerged as a unique platform for label-free biosensor or bioassay. Several electronic designs, including piezoresistive, piezoelectric, and capacitive approaches, have been applied to measure the bending or frequency change of the MCLs upon exposure to chemicals. This review summarizes mechanical, fabrication, and electronics approaches to increase the sensitivity of microcantilever (MCL) sensors. PMID:20975987
A Label-Free Detection of Biomolecules Using Micromechanical Biosensors
NASA Astrophysics Data System (ADS)
Meisam, Omidi; A. Malakoutian, M.; Mohammadmehdi, Choolaei; Oroojalian, F.; Haghiralsadat, F.; Yazdian, F.
2013-06-01
A Microcantilevers resonator is used to detect a protein biomarker called prostate specific antigen (PSA), which is associated with prostate cancer. Different concentrations of PSA in a buffer solution are detected as a function of deflection of the beams. For this purpose, we use a surface micromachined, antibody-coated polycrystalline silicon micromechanical cantilever beam. Cantilevers have mass sensitivities of the order of 10-17 g/Hz, which result from their small mass. This matter allows them to detect an immobilized antibody monolayer corresponding to a mass of about 70 fg. With these devices, concentrations as low as 150 fg/mL, or 4.5 fM, could be detected from the realistic samples.
UltraSensitive Mycotoxin Detection by STING Sensors
Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader
2010-01-01
Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soranzo, Thomas; Martin, Donald K.; Lenormand, Jean -Luc
Here, the structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i) high protein concentration in the membrane, (ii) control of the protein’s isotopic constitution, and (iii) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for bothmore » direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.« less
Soranzo, Thomas; Martin, Donald K.; Lenormand, Jean -Luc; ...
2017-06-13
Here, the structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i) high protein concentration in the membrane, (ii) control of the protein’s isotopic constitution, and (iii) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for bothmore » direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.« less