Sample records for label-free protein detection

  1. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    PubMed Central

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-01-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394

  2. Label-free SnO2 nanowire FET biosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  3. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  4. Label-free electrical detection using carbon nanotube-based biosensors.

    PubMed

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2009-01-01

    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  5. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  6. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  7. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  8. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.

    PubMed

    Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas

    2017-09-10

    Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Label-free nano-biosensing on the road to tuberculosis detection.

    PubMed

    Golichenari, Behrouz; Velonia, Kelly; Nosrati, Rahim; Nezami, Alireza; Farokhi-Fard, Aref; Abnous, Khalil; Behravan, Javad; Tsatsakis, Aristidis M

    2018-08-15

    Tuberculosis, an ailment caused by the bacterium Mycobacterium tuberculosis (Mtb) complex, is one of the catastrophic transmittable diseases that affect human. Reports published by WHO indicate that in 2017 about 6.3 million people progressed to TB and 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. Common diagnostics like the traditional PPD test and antibody-assisted assays suffer the lack of sensitivity, long processing time and cumbersome post-test proceedings. These shortcomings restrict their use and encourage innovations in TB diagnostics. In recent years, the biosensor concept opened up new horizons in sensitive and fast detection of the disease, reducing the interval time between sampling and diagnostic result. Among new diagnostics, label-free nano-biosensors are highly promising for sensitive and accessible detection of tuberculosis. Various specific label-free nano-biosensors have been recently reported detecting the whole cell of M. tuberculosis, mycobacterial proteins and IFN-γ as crucial markers in early diagnosis of TB. This article provides a focused overview on nanomaterial-based label-free biosensors for tuberculosis detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Label-free optical detection of C-reactive protein by nanoimprint lithography-based 2D-photonic crystal film.

    PubMed

    Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki

    2016-06-01

    The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dynamic and label-free high-throughput detection of biomolecular interactions based on phase-shift interferometry

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Huang, Guoliang; Gan, Wupeng; Chen, Shengyi

    2009-08-01

    Biomolecular interactions can be detected by many established technologies such as fluorescence imaging, surface plasmon resonance (SPR)[1-4], interferometry and radioactive labeling of the analyte. In this study, we have designed and constructed a label-free, real-time sensing platform and its operating imaging instrument that detects interactions using optical phase differences from the accumulation of biological material on solid substrates. This system allows us to monitor biomolecular interactions in real time and quantify concentration changes during micro-mixing processes by measuring the changes of the optical path length (OPD). This simple interferometric technology monitors the optical phase difference resulting from accumulated biomolecular mass. A label-free protein chip that forms a 4×4 probe array was designed and fabricated using a commercial microarray robot spotter on solid substrates. Two positive control probe lines of BSA (Bovine Serum Albumin) and two experimental human IgG and goat IgG was used. The binding of multiple protein targets was performed and continuously detected by using this label-free and real-time sensing platform.

  12. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles.

    PubMed

    Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W

    2004-01-15

    A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.

  13. Label-Free QCM Immunosensor for the Detection of Ochratoxin A

    PubMed Central

    Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma

    2018-01-01

    Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2–200 ng/mL detection range which can be used for on-site detection of feedstuffs. PMID:29641432

  14. Label-Free QCM Immunosensor for the Detection of Ochratoxin A.

    PubMed

    Pirinçci, Şerife Şeyda; Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma

    2018-04-11

    Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2-200 ng/mL detection range which can be used for on-site detection of feedstuffs.

  15. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    NASA Astrophysics Data System (ADS)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  16. Label-free protein assay based on a nanomechanical cantilever array

    NASA Astrophysics Data System (ADS)

    Arntz, Y.; Seelig, J. D.; Lang, H. P.; Zhang, J.; Hunziker, P.; Ramseyer, J. P.; Meyer, E.; Hegner, M.; Gerber, Ch

    2003-01-01

    We demonstrate continuous label-free detection of two cardiac biomarker proteins (creatin kinase and myoglobin) using an array of microfabricated cantilevers functionalized with covalently anchored anti-creatin kinase and anti-myoglobin antibodies. This method allows biomarker proteins to be detected via measurement of surface stress generated by antigen-antibody molecular recognition. Reference cantilevers are used to eliminate thermal drifts, undesired chemical reactions and turbulences from injections of liquids by calculating differential deflection signals with respect to sensor cantilevers. The sensitivity achieved for myoglobin detection is below 20 µg ml-1. Both myoglobin and creatin kinase could be detected independently using cantilevers functionalized with the corresponding antibodies, in unspecific protein background. This approach permits the use of up to seven different antigen-antibody reactions simultaneously, including an additional thermomechanical and chemical in situ reference. Applications lie in the field of early and rapid diagnosis of acute myocardial infarction.

  17. Label-free detection of protein biomolecules secreted from a heart-on-a-chip model for drug cardiotoxicity evaluation

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Zhang, Yu Shrike; Bustamante, Gilbert; Li, Le; Lauderdale, Matthew; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2018-02-01

    Efficient methods for the accurate analysis of drug toxicities are in urgent demand as failures of newly discovered drug candidates due to toxic side effects have resulted in about 30% of clinical attrition. The high failure rate is partly due to current inadequate models to study drug side effects, i.e., common animal models may fail due to its misrepresentation of human physiology. Therefore, much effort has been allocated in the development of organ-on-a-chip models which offer a variety of human organ models mimicking a multitude of human physiological conditions. However, it is extremely challenging to analyze the transient and long-term response of the organ models to drug treatments during drug toxicity tests, as the proteins secreted from the organ-on-a-chip model are minute due to its volumetric size, and current methods for detecting said biomolecules are not suitable for real-time monitoring. As protein biomolecules are being continuously secreted from the human organ model, fluorescence techniques are practically impossible to achieve real-time fluorescence labeling in the dynamically changing environment, thus making a label-free approach highly desirable for the organ-on-achip applications. In this paper, we report the use of a photonic-crystal biosensor integrated with a microfluidic system for sensitive label-free bioassays of secreted protein biomolecules from a heart-on-the-chip model created with cardiomyocytes derived from human induced pluripotent stem cells.

  18. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data.

    PubMed

    Lavallée-Adam, Mathieu; Rauniyar, Navin; McClatchy, Daniel B; Yates, John R

    2014-12-05

    The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enriched with abundant proteins with reproducible quantification measurements across a set of replicates. To this end, we developed PSEA-Quant, a protein set enrichment analysis algorithm for label-free and label-based protein quantification data sets. It offers an alternative approach to classic GO analyses, models protein annotation biases, and allows the analysis of samples originating from a single condition, unlike analogous approaches such as GSEA and PSEA. We demonstrate that PSEA-Quant produces results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics quantification data sets by providing meaningful biological insights.

  19. PSEA-Quant: A Protein Set Enrichment Analysis on Label-Free and Label-Based Protein Quantification Data

    PubMed Central

    2015-01-01

    The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enriched with abundant proteins with reproducible quantification measurements across a set of replicates. To this end, we developed PSEA-Quant, a protein set enrichment analysis algorithm for label-free and label-based protein quantification data sets. It offers an alternative approach to classic GO analyses, models protein annotation biases, and allows the analysis of samples originating from a single condition, unlike analogous approaches such as GSEA and PSEA. We demonstrate that PSEA-Quant produces results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics quantification data sets by providing meaningful biological insights. PMID:25177766

  20. The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scaled field-effect transistor.

    PubMed

    Shalev, Gil; Rosenwaks, Yossi; Levy, Ilan

    2012-01-15

    We present experimental results in order to establish a correlation between pH sensitivity of immunologically modified nano-scaled field-effect transistor (NS-ImmunoFET) with their sensing capacity for label-free detection. The NS-ImmunoFETs are fabricated from silicon-on-insulator (SOI) wafers and are fully-depleted with thickness of ~20 nm. The data shows that higher sensitivity to pH entails enhanced sensitivity to analyte detection. This suggests that the mechanism of analyte detection as pure electrostatic perturbation induced by antibody-analyte interaction is over simplified. The fundamental assumption, in existing models for field-effect sensing mechanism assumes that the analyte molecules do not directly interact with the surface but rather stand 'deep' in the solution and away from the dielectric surface. Recent studies clearly provide contradicting evidence demonstrating that antibodies lie down flat on the surface. These observations led us to propose that the proteins that cover the gate area intimately interact with active sites on the surface thus forming a network of interacting sites. Since sensitivity to pH is directly correlated with the amount of amphoteric sites, we witness a direct correlation between sensitivity to pH and analyte detection. The highest and lowest threshold voltage shift for a label-free and specific detection of 6.5 nM IgG were 40 mV and 2.3 mV for NS-ImmunoFETs with pH sensitivity of 35 mV/decade and 15 mV/decade, respectively. Finally, physical modeling of the NS-ImmunoFET is presented and charge of a single IgG protein at pH 6 is calculated. The obtained value is consistent with charge of IgG protein cited in literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  2. Label-free detection of protein-ligand interactions by the quartz crystal microbalance.

    PubMed

    Janshoff, Andreas; Steinem, Claudia

    2005-01-01

    In recent years the quartz crystal microbalance (QCM) has been accepted as a powerful technique to monitor adsorption processes at interfaces in different chemical and biological research areas. In the last decade, the investigation of adsorption of biomolecules on functionalized surfaces turned out to be one of the paramount applications of the QCM comprising the interaction of nucleic acids, specific molecular recognition of protein-receptor couples, and antigen-antibody reactions realized in immunosensors. The advantage of the QCM technique is that it allows for a label free detection of molecules. This is a result of the fact that the frequency response of the quartz resonator is proportional to the increase in thickness of the adsorbed layer. However, in recent years it became more and more evident that quartz resonators used in fluids are more than mere mass or thickness sensors. The sensor response is also influenced by viscoelastic properties of the adhered biomaterial, surface charges of adsorbed molecules and surface roughness. These phenomena have been used to get new insights in the adhesion process of living cells and to understand their response to pharmacological substances by determining morphological changes of the cells. In this chapter we describe a protocol to explore the kinetics and thermodynamics of specific interactions of different proteins such as lectins and annexins with their ligands using receptor bearing solid supported lipid bilayers.

  3. Label-free functional nucleic acid sensors for detecting target agents

    DOEpatents

    Lu, Yi; Xiang, Yu

    2015-01-13

    A general methodology to design label-free fluorescent functional nucleic acid sensors using a vacant site approach and an abasic site approach is described. In one example, a method for designing label-free fluorescent functional nucleic acid sensors (e.g., those that include a DNAzyme, aptamer or aptazyme) that have a tunable dynamic range through the introduction of an abasic site (e.g., dSpacer) or a vacant site into the functional nucleic acids. Also provided is a general method for designing label-free fluorescent aptamer sensors based on the regulation of malachite green (MG) fluorescence. A general method for designing label-free fluorescent catalytic and molecular beacons (CAMBs) is also provided. The methods demonstrated here can be used to design many other label-free fluorescent sensors to detect a wide range of analytes. Sensors and methods of using the disclosed sensors are also provided.

  4. Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetrafluoroborate-supported microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Xu, Yuanhong; Li, Jing; Wang, Erkang

    2008-05-01

    Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00x10(-6), 2x10(-6), 7x10(-7), and 5x10(-7) mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips.

  5. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.

    PubMed

    Ortiz-Aguayo, Dionisia; Del Valle, Manel

    2018-01-26

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  6. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    PubMed Central

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis. PMID:29373502

  7. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    PubMed

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  9. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots.

    PubMed

    Xu, Xiahong; Liu, Xin; Nie, Zhou; Pan, Yuliang; Guo, Manli; Yao, Shouzhuo

    2011-01-01

    Herein, we present a novel label-free fluorescent assay for monitoring the activity and inhibition of protein kinases based on the aggregation behavior of unmodified CdTe quantum dots (QDs). In this assay, cationic substrate peptides induce the selective aggregation of unmodified QDs with anionic surface charge, whereas phosphorylated peptides do not. Phosphorylation by kinase alters the net charge of peptides and subsequently inhibits the aggregation of unmodified QDs, causing an enhanced fluorescence with a 45 nm blue-shift in emission and a yellow-to-green emission color change. Hence the fluorescence response allows this QD-based method to easily probe kinase activity by a spectrometer or even by the naked eye. The feasibility of the method has been demonstrated by sensitive measurement of the activity of cAMP-dependent protein kinase (PKA) with a low detection limit (0.47 mU μL(-1)). On the basis of the fluorescence response of QDs on the concentration of PKA inhibitor H-89, the IC(50) value, the half maximal inhibitory concentration, was estimated, which was in agreement with the literature value. Moreover, the system can be applicable to detect the Forskolin/3-isobutyl-1-methylxantine (IBMX)-stimulated activation of PKA in cell lysate. Unlike the existing QD-based enzyme activity assays in which the modification process of QDs is essential, this method relies on unmodified QDs without the requirement of peptide labeling and QDs' modification, presenting a promising candidate for cost-effective kinase activity and inhibitor screening assays.

  10. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Presley, Andrew D; Fuller, Kathryn M; Arriaga, Edgar A

    2003-08-05

    MitoTracker Green (MTG) is a mitochondrial-selective fluorescent label commonly used in confocal microscopy and flow cytometry. It is expected that this dye selectively accumulates in the mitochondrial matrix where it covalently binds to mitochondrial proteins by reacting with free thiol groups of cysteine residues. Here we demonstrate that MTG can be used as a protein labeling reagent that is compatible with a subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). Although the MTG-labeled proteins and MTG do not seem to electrophoretically separate, an enhancement in fluorescence intensity of the product indicates that only proteins with free thiol groups are capable of reacting with MTG. In addition we propose that MTG is a partially selective label towards some mitochondrial proteins. This selectivity stems from the high MTG concentration in the mitochondrial matrix that favors alkylation of the available thiol groups in this subcellular compartment. To that effect we treated mitochondria-enriched fractions that had been prepared by differential centrifugation of an NS-1 cell lysate. This fraction was solubilized with an SDS-containing buffer and analyzed by CE-LIF. The presence of a band with fluorescence stronger than MTG alone also indicated the presence of an MTG-protein product. Confirming that MTG is labeling mitochondrial proteins was done by treating the solubilized mitochondrial fraction with 5-furoylquinoline-3-carboxaldehyde (FQ), a fluorogenic reagent that reacts with primary amino groups, and analysis by CE-LIF using two separate detection channels: 520 nm for MTG-labeled species and 635 nm for FQ-labeled species. In addition, these results indicate that MTG labels only a subset of proteins in the mitochondria-enriched fraction.

  11. Label-Free Aptasensors for the Detection of Mycotoxins

    PubMed Central

    Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis

    2016-01-01

    Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins. PMID:27999353

  12. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.

    PubMed

    Nassar, Ala F; Williams, Brad J; Yaworksy, Dustin C; Patel, Vyomesh; Rusling, James F

    2016-03-01

    It has become quite clear that single cancer biomarkers cannot in general provide high sensitivity and specificity for reliable clinical cancer diagnostics. This paper explores the feasibility of rapid detection of multiple biomarker proteins in model oral cancer samples using label-free protein relative quantitation. MS-based label-free quantitative proteomics offer a rapid alternative that bypasses the need for stable isotope containing compounds to chemically bind and label proteins. Total protein content in oral cancer cell culture conditioned media was precipitated, subjected to proteolytic digestion, and then analyzed using a nano-UPLC (where UPLC is ultra-performance liquid chromatography) coupled to a hybrid Q-Tof ion-mobility mass spectrometry (MS). Rapid, simultaneous identification and quantification of multiple possible cancer biomarker proteins was achieved. In a comparative study between cancer and noncancer samples, approximately 952 proteins were identified using a high-throughput 1D ion mobility assisted data independent acquisition (IM-DIA) approach. As we previously demonstrated that interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A) were readily detected in oral cancer cell conditioned media(1), we targeted these biomarker proteins to validate our approach. Target biomarker protein IL-8 was found between 3.5 and 8.8 fmol, while VEGF-A was found at 1.45 fmol in the cancer cell media. Overall, our data suggest that the nano-UPLC-IM-DIA bioassay is a feasible approach to identify and quantify proteins in complex samples without the need for stable isotope labeling. These results have significant implications for rapid tumor diagnostics and prognostics by monitoring proteins such as IL-8 and VEGF-A implicated in cancer development and progression. The analysis in tissue or plasma is not possible at this time, but the subsequent work would be needed for validation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  14. Specific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry.

    PubMed

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A; Schroeder, Charles M

    2012-09-19

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays, and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry.

  15. A Label-Free, Redox Biosensor for Detection of Disease Biomarkers

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2014-03-01

    Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We have developed a novel 3-dimensional ``nanocavity'' array for the detection of human cancer biomarkers in serum and other fluids. This all-electronic diagnostic sensor is based on a nanoscale coaxial array architecture that we have modified to enable molecular-level detection and identification. Each individual sensor in the array is a vertically-oriented coaxial capacitor, whose dielectric impedance is measurably changed when target molecules enter the coax annulus. We are designing a nanocoaxial biosensor based on electronic response to antibody recognition of a specific disease biomarker (e . g . CA-125 for early-stage ovarian cancer) on biofunctionalized metal surfaces within the nanocoax structure, thereby providing an all-electronic, ambient temperature, rapid-response, label-free redox biosensor. Our results demonstrate the feasibility of using this nanocoaxial array as an ultrasensitive device to detect a wide range of target proteins, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  16. Label-Free Detection of Bacillus anthracis Spore Uptake in Macrophage Cells Using Analytical Optical Force Measurements.

    PubMed

    Hebert, Colin G; Hart, Sean; Leski, Tomasz A; Terray, Alex; Lu, Qin

    2017-10-03

    Understanding the interaction between macrophage cells and Bacillus anthracis spores is of significant importance with respect to both anthrax disease progression, spore detection for biodefense, as well as understanding cell clearance in general. While most detection systems rely on specific molecules, such as nucleic acids or proteins and fluorescent labels to identify the target(s) of interest, label-free methods probe changes in intrinsic properties, such as size, refractive index, and morphology, for correlation with a particular biological event. Optical chromatography is a label free technique that uses the balance between optical and fluidic drag forces within a microfluidic channel to determine the optical force on cells or particles. Here we show an increase in the optical force experienced by RAW264.7 macrophage cells upon the uptake of both microparticles and B. anthracis Sterne 34F2 spores. In the case of spores, the exposure was detected in as little as 1 h without the use of antibodies or fluorescent labels of any kind. An increase in the optical force was also seen in macrophage cells treated with cytochalasin D, both with and without a subsequent exposure to spores, indicating that a portion of the increase in the optical force arises independent of phagocytosis. These results demonstrate the capability of optical chromatography to detect subtle biological differences in a rapid and sensitive manner and suggest future potential in a range of applications, including the detection of biological threat agents for biodefense and pathogens for the prevention of sepsis and other diseases.

  17. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    PubMed

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Functionalized gold nanostars for label-free detection of PKA phosphorylation using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shuai; Kah, James C. Y.

    2017-04-01

    Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.

  19. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor.

    PubMed

    González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M

    2017-01-01

    A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors

    NASA Astrophysics Data System (ADS)

    Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian

    2006-01-01

    We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor

  1. Specifically and wash-free labeling of SNAP-tag fused proteins with a hybrid sensor to monitor local micro-viscosity.

    PubMed

    Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi

    2017-05-15

    Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products.

    PubMed

    Kurzchalia, T V; Wiedmann, M; Breter, H; Zimmermann, W; Bauschke, E; Rapoport, T A

    1988-03-15

    We have developed a new method for the rapid and sensitive detection of cell-free translation products. Biotinylated lysine is incorporated into newly synthesized proteins by means of lysyl-tRNA that is modified in the epsilon-position. After electrophoresis in a dodecyl sulfate gel and blotting onto nitrocellulose, the translation products can be identified by probing with streptavidin and biotinylated alkaline phosphatase, followed by incubation with a chromogenic enzyme substrate. The non-radioactive labelling by biotin approaches in its sensitivity that obtained by radioactive amino acids. The products are absolutely stable and can be rapidly identified. The new method has been tested with different mRNAs in the cell-free translation systems of wheat germ and reticulocytes. Neither the interaction of secretory proteins with the signal recognition particle nor the in vitro translocation across the endoplasmic reticulum membrane or core glycosylation of nascent polypeptides are prevented by the incorporation of biotinylated lysine residues. The results indicate that both the ribosome and the endoplasmic reticulum membrane permit the passage of polypeptides carrying bulky groups attached to the amino acids (by atomic models it was estimated that the size of the side chain of lysine changes from approximately equal to 0.8 nm to approximately equal to 2 nm after modification.

  3. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    PubMed Central

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  4. Label-Free Direct Electronic Detection of Biomolecules with Amorphous Silicon Nanostructures

    PubMed Central

    Lund, John; Mehta, Ranjana; Parviz, Babak A.

    2007-01-01

    We present the fabrication and characterization of a nano-scale sensor made of amorphous silicon for the label-free, electronic detection of three classes of biologically important molecules: ions, oligonucleotides, and proteins. The sensor structure has an active element which is a 50 nm wide amorphous silicon semicircle and has a total footprint of less than 4 μm2. We demonstrate the functionalization of the sensor with receptor molecules and the electronic detection of three targets: H+ ions, short single-stranded DNAs, and streptavidin. The sensor is able to reliably distinguish single base-pair mismatches in 12 base long strands of DNA and monitor the introduction and identification of straptavidin in real-time. The versatile sensor structure can be readily functionalized with a wide range of receptor molecules and is suitable for integration with high-speed electronic circuits as a post-process on an integrated circuit chip. PMID:17292148

  5. Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging*

    PubMed Central

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers. PMID:24217021

  6. Label-free quantitative protein profiling of vastus lateralis muscle during human aging.

    PubMed

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.

  7. A label-free approach to detect ligand binding to cell surface proteins in real time.

    PubMed

    Burtscher, Verena; Hotka, Matej; Li, Yang; Freissmuth, Michael; Sandtner, Walter

    2018-04-26

    Electrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a long-range conformational change. The Gouy-Chapman model predicts that adsorption of charged ligands to surface proteins must produce displacement currents and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance. © 2018, Burtscher et al.

  8. Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy.

    PubMed

    Derkus, Burak; Emregul, Emel; Yucesan, Canan; Cebesoy Emregul, Kaan

    2013-08-15

    A novel highly sensitive impedimetric Myelin Basic Protein (MBP) immunosensor for the determination of a Multiple Sclerosis (MS) autoantibody, Anti-Myelin Basic Protein (Anti-MBP) was developed by immobilization of MBP on Gelatin and Gelatin-Titanium Dioxide (TiO₂) modified platinium electrode. Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopic (EIS) methods were employed in determination of the electrode responses and applicability. Gelatin-MBP and gelatin-TiO₂-MBP electrodes were prepared by chemical immobilization of the substrates onto the platinium electrodes. The formal potentials of MBP confined on gelatin-MBP and gelatin-TiO₂-MBP surfaces are estimated to be 195 and 205 mV, respectively. Thus, a little more reversible electron transfer reaction occurs on the gelatin-TiO₂-MBP immunosensor surface. The peak separations of MBP (150 mV and 110 mV s(-1) at 100 mV s(-1)) and the asymmetric anodic and cathodic peak currents indicate that the electron transfer between Anti-MBP and gelatin-MBP/gelatin-TiO₂-MBP immunosensor is quasireversible. Control samples containing a nonspecific human immunoglobulin G (hIgG) antibody were also studied, and calibration curves were obtained by subtraction of the responses for specific and nonspecific antibody-based sensors. Gelatin-MBP and gelatin-TiO₂-MBP immunosensors have detection limit of 0.1528 ng ml(-1) and 0.1495 ng ml(-1) respectively. This immunosensor exhibits high sensitivity and low response times (58 s for gelatin-MBP and 46 s for gelatin-TiO₂-MBP immunosensor). The developed label-free impedimetric immunosensors also provide a simple and sensitive detection method for the specific determination of Anti-MBP in human cerebrospinal fluid (CSF) and serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Extended Solution Gate OFET-based Biosensor for Label-free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol-Containing Bioreceptor Layer.

    PubMed

    Song, Jian; Dailey, Jennifer; Li, Hui; Jang, Hyun-June; Zhang, Pengfei; Wang, Jeff Tza-Huei; Everett, Allen D; Katz, Howard E

    2017-05-25

    A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (V g ). The sensitivity increased after we decreased V g from -5 V to -2 V, because the lower V g is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.

  10. Label-free optical resonant sensors for biochemical applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola

    2013-03-01

    For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.

  11. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    PubMed Central

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  12. A label-free fluorescent biosensor for the detection of protein kinase activity based on gold nanoclusters/graphene oxide hybrid materials.

    PubMed

    Liu, Qing; Li, Ning; Wang, Mengke; Wang, Lei; Su, Xingguang

    2018-07-12

    Protein kinase (PKA) can regulate many cellular biological processes by phosphorylation substrate peptide or protein. A new fluorescent biosensing method for the detection of PKA activity was developed by using 11-mercaptoundecanoic acid-capped gold nanoclusters (MUA-Au NCs) and graphene oxide (GO) with low background noise. In this strategy, the special designed peptide could be anchored on the surface of MUA-Au NCs by the Au-S bond and also adsorbed on the surface of GO owing to the electrostatic interaction. As a result, the fluorescence of MUA-Au NCs was quenched leading to low background fluorescence due to the forster resonance energy transfer (FRET) between MUA-Au NCs and GO via peptide as a bridge. However, when the substrate peptide was phosphorylated by PKA, the FRET between GO and MUA-Au NCs was disrupted because of the weakened interaction between the phosphorylated peptide and the GO, resulting in recovery of the fluorescence intensity. The developed label-free fluorescence "turn-off-on" method can detect protein kinase activity in the range of 0.6-2.0 U mL -1 with a detection limit of 0.17 U mL -1 (3σ). The feasibility of this present method for kinase inhibitor screening was also studied by assessment of H-89 kinase inhibition with an IC 50 value of 0.049 μmol L -1 . Copyright © 2018. Published by Elsevier B.V.

  13. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating

    NASA Astrophysics Data System (ADS)

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-08-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications.

  14. An ultrasensitive label-free biosensor for assaying of sequence-specific DNA-binding protein based on amplifying fluorescent conjugated polymer.

    PubMed

    Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei

    2013-03-15

    Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Emerging applications of label-free optical biosensors

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco

    2017-01-01

    Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  16. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.

    PubMed

    Schäkermann, Sina; Prochnow, Pascal; Bandow, Julia E

    2017-01-01

    Current research is focusing on ribosome heterogeneity as a response to changing environmental conditions and stresses, such as antibiotic stress. Altered stoichiometry and composition of ribosomal proteins as well as association of additional protein factors are mechanisms for shaping the protein expression profile or hibernating ribosomes. Here, we present a method for the isolation of ribosomes to analyze antibiotic-induced changes in the composition of ribosomes in Bacillus subtilis or other bacteria. Ribosomes and associated proteins are isolated by ultracentrifugation and proteins are identified and quantified using label-free mass spectrometry.

  17. Epsilon-Q: An Automated Analyzer Interface for Mass Spectral Library Search and Label-Free Protein Quantification.

    PubMed

    Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Paik, Young-Ki

    2017-12-01

    Mass spectrometry (MS) is a widely used proteome analysis tool for biomedical science. In an MS-based bottom-up proteomic approach to protein identification, sequence database (DB) searching has been routinely used because of its simplicity and convenience. However, searching a sequence DB with multiple variable modification options can increase processing time, false-positive errors in large and complicated MS data sets. Spectral library searching is an alternative solution, avoiding the limitations of sequence DB searching and allowing the detection of more peptides with high sensitivity. Unfortunately, this technique has less proteome coverage, resulting in limitations in the detection of novel and whole peptide sequences in biological samples. To solve these problems, we previously developed the "Combo-Spec Search" method, which uses manually multiple references and simulated spectral library searching to analyze whole proteomes in a biological sample. In this study, we have developed a new analytical interface tool called "Epsilon-Q" to enhance the functions of both the Combo-Spec Search method and label-free protein quantification. Epsilon-Q performs automatically multiple spectral library searching, class-specific false-discovery rate control, and result integration. It has a user-friendly graphical interface and demonstrates good performance in identifying and quantifying proteins by supporting standard MS data formats and spectrum-to-spectrum matching powered by SpectraST. Furthermore, when the Epsilon-Q interface is combined with the Combo-Spec search method, called the Epsilon-Q system, it shows a synergistic function by outperforming other sequence DB search engines for identifying and quantifying low-abundance proteins in biological samples. The Epsilon-Q system can be a versatile tool for comparative proteome analysis based on multiple spectral libraries and label-free quantification.

  18. Plasmonic biosensor for label-free G-quadruplexes detection

    NASA Astrophysics Data System (ADS)

    Qiu, Suyan; Zhao, Fusheng; Santos, Greggy M.; Shih, Wei-Chuan

    2016-03-01

    G-quadruplex, readily formed by the G-rich sequence, potentially distributes in over 40 % of all human genes, such as the telomeric DNA with the G-rich sequence found at the end of the chromosome. The G-quadruplex structure is supposed to possess a diverse set of critical functions in the mammalian genome for transcriptional regulation, DNA replication and genome stability. However, most of the currently available methods for G-quadruplex identification are restricted to fluorescence techniques susceptible to poor sensitivity. It is essential to propose methods with higher sensitivity to specifically recognize the G-quadruplexes. In this study, we demonstrate a label-free plasmonic biosensor for G-quadruplex detection by relying on the advantages of nanoporous gold (NPG) disks that provide high-density plasmonic hot spots, suitable for molecular recognition capability without the requirement for labeling processes.

  19. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Shan; Jahn, Izabella Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2018-05-01

    To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future.

  20. Label-free, real-time interaction and adsorption analysis 1: surface plasmon resonance.

    PubMed

    Fee, Conan J

    2013-01-01

    A key requirement for the development of proteins for use in nanotechnology is an understanding of how individual proteins bind to other molecules as they assemble into larger structures. The introduction of labels to enable the detection of biomolecules brings the inherent risk that the labels themselves will influence the nature of biomolecular interactions. Thus, there is a need for label-free interaction and adsorption analysis. In this and the following chapter, two biosensor techniques are reviewed: surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM). Both allow real-time analysis of biomolecular interactions and both are label-free. The first of these, SPR, is an optical technique that is highly sensitive to the changes in refractive index that occur with protein (or other molecule) accumulation near an illuminated gold surface. Unlike QCM ( Chapter 18 ) SPR is not affected by the water that may be associated with the adsorbed layer nor by conformational changes in the adsorbed species. SPR thus provides unique information about the interaction of a protein with its binding partners.

  1. A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology.

    PubMed

    Tagliabue, Giovanni; Faoro, Valentina; Rizzo, Serena; Sblattero, Daniele; Saccani, Andrea; Riccio, Gabriele; Bellini, Tommaso; Salina, Matteo; Buscaglia, Marco; Marcello, Alessandro

    2017-10-28

    Flaviviruses are widespread and cause clinically relevant arboviral diseases that impact locally and as imported travel-related infections. Direct detection of viraemia is limited, being typically undetectable at onset of symptoms. Therefore, diagnosis is primarily based on serology, which is complicated by high cross-reactivity across different species. The overlapping geographical distribution of the vectors in areas with a weak healthcare system, the increase of international travel and the similarity of symptoms highlight the need for rapid and reliable multi-parametric diagnostic tests in point-of-care formats. To this end we developed a bi-parametric serological microarray using recombinant NS1 proteins from Tick-borne encephalitis virus and West Nile virus coupled to a low-cost, label-free detection device based on the Reflective Phantom Interface (RPI) principle. Specific sequential detection of antibodies in solution demonstrates the feasibility of the approach for the surveillance and diagnosis of Flaviviruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins.

    PubMed

    Gray, Christopher J; Sánchez-Ruíz, Antonio; Šardzíková, Ivana; Ahmed, Yassir A; Miller, Rebecca L; Reyes Martinez, Juana E; Pallister, Edward; Huang, Kun; Both, Peter; Hartmann, Mirja; Roberts, Hannah N; Šardzík, Robert; Mandal, Santanu; Turnbull, Jerry E; Eyers, Claire E; Flitsch, Sabine L

    2017-04-18

    The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.

  3. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  4. Progress of new label-free techniques for biosensors: a review.

    PubMed

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  5. Label-free and amplified quantitation of proteins in complex mixtures using diffractive optics technology.

    PubMed

    Cleverley, Steve; Chen, Irene; Houle, Jean-François

    2010-01-15

    Immunoaffinity approaches remain invaluable tools for characterization and quantitation of biopolymers. Their application in separation science is often limited due to the challenges of immunoassay development. Typical end-point immunoassays require time consuming and labor-intensive approaches for optimization. Real-time label-free analysis using diffractive optics technology (dot) helps guide a very effective iterative process for rapid immunoassay development. Both label-free and amplified approaches can be used throughout feasibility testing and ultimately in the final assay, providing a robust platform for biopolymer analysis over a very broad dynamic range. We demonstrate the use of dot in rapidly developing assays for quantitating (1) human IgG in complex media, (2) a fusion protein in production media and (3) protein A contamination in purified immunoglobulin preparations. 2009 Elsevier B.V. All rights reserved.

  6. Label-free biosensing of Salmonella enterica serovars at single-cell level

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology has greatly facilitated the development of label-free biosensors. The atomic force microscopy (AFM) has been used to study the molecular mechanism of the reactions for protein and aptamers. The surface plasmon resonance (SPR) have been used in fast detection of various pathogenic bact...

  7. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  8. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  9. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.

    PubMed

    Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Van Dorssaeler, Alain; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne

    2016-01-30

    Proteomic workflows based on nanoLC-MS/MS data-dependent-acquisition analysis have progressed tremendously in recent years. High-resolution and fast sequencing instruments have enabled the use of label-free quantitative methods, based either on spectral counting or on MS signal analysis, which appear as an attractive way to analyze differential protein expression in complex biological samples. However, the computational processing of the data for label-free quantification still remains a challenge. Here, we used a proteomic standard composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different concentrations into a background of yeast cell lysate to benchmark several label-free quantitative workflows, involving different software packages developed in recent years. This experimental design allowed to finely assess their performances in terms of sensitivity and false discovery rate, by measuring the number of true and false-positive (respectively UPS1 or yeast background proteins found as differential). The spiked standard dataset has been deposited to the ProteomeXchange repository with the identifier PXD001819 and can be used to benchmark other label-free workflows, adjust software parameter settings, improve algorithms for extraction of the quantitative metrics from raw MS data, or evaluate downstream statistical methods. Bioinformatic pipelines for label-free quantitative analysis must be objectively evaluated in their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. This can be done through the use of complex spiked samples, for which the "ground truth" of variant proteins is known, allowing a statistical evaluation of the performances of the data processing workflow. We provide here such a controlled standard dataset and used it to evaluate the performances of several label-free bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in

  10. Comparative study of label and label-free techniques using shotgun proteomics for relative protein quantification.

    PubMed

    Sjödin, Marcus O D; Wetterhall, Magnus; Kultima, Kim; Artemenko, Konstantin

    2013-06-01

    The analytical performance of three different strategies, iTRAQ (isobaric tag for relative and absolute quantification), dimethyl labeling (DML) and label free (LF) for relative protein quantification using shotgun proteomics have been evaluated. The methods have been explored using samples containing (i) Bovine proteins in known ratios and (ii) Bovine proteins in known ratios spiked into Escherichia coli. The latter case mimics the actual conditions in a typical biological sample with a few differentially expressed proteins and a bulk of proteins with unchanged ratios. Additionally, the evaluation was performed on both QStar and LTQ-FTICR mass spectrometers. LF LTQ-FTICR was found to have the highest proteome coverage while the highest accuracy based on the artificially regulated proteins was found for DML LTQ-FTICR (54%). A varying linearity (k: 0.55-1.16, r(2): 0.61-0.96) was shown for all methods within selected dynamic ranges. All methods were found to consistently underestimate Bovine protein ratios when matrix proteins were added. However, LF LTQ-FTICR was more tolerant toward a compression effect. A single peptide was demonstrated to be sufficient for a reliable quantification using iTRAQ. A ranking system utilizing several parameters important for quantitative proteomics demonstrated that the overall performance of the five different methods was; DML LTQ-FTICR>iTRAQ QStar>LF LTQ-FTICR>DML QStar>LF QStar. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Protein labeling with red squarylium dyes for analysis by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Yan, Weiying; Sloat, Amy L; Yagi, Shigeyuki; Nakazumi, Hiroyuki; Colyer, Christa L

    2006-04-01

    Two new red luminescent asymmetric squarylium dyes (designated "Red-1c and Red-3") have been shown to exhibit absorbance shifts to longer wavelengths upon the addition of protein, along with a concomitant increase in fluorescence emission. Specifically, the absorbance maxima for Red-1c and Red-3 dyes are 607 and 622 nm, respectively, in the absence of HSA, and 642 and 640 nm in the presence of HSA, making the excitation of their protein complexes feasible with inexpensive and robust diode lasers. Fluorescence emission maxima, in the presence of HSA, are 656 and 644 nm for Red-1c and Red-3, respectively. Because of the inherently low fluorescence of the dyes in their free state, Red-1c and Red-3 were used as on-column labels (that is, with the dye incorporated into the separation buffer), thus eliminating the need for sample derivatization prior to injection and separation. A comparison of precolumn and on-column labeling of proteins with these squarylium dyes revealed higher efficiencies and greater sensitivities for on-column labeling, which, when conducted with a basic, high-salt content buffer, permitted baseline resolution of a mixture of five model proteins. LOD for model proteins, such as transferrin, alpha-lactalbumin, BSA, and beta-lactoglobulin A and B, labeled with these dyes and analyzed by CE with LIF detection (CE-LIF) were found to be dependent upon dye concentration and solution pH, and are as low as 5 nM for BSA. Satisfactory linear relationships between peak height (or peak area) and protein concentration were obtained by CE-LIF for this on-column labeling method with Red-3 and Red-1c.

  12. On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors.

    PubMed

    Lavín, Álvaro; Vicente, Jesús de; Holgado, Miguel; Laguna, María F; Casquel, Rafael; Santamaría, Beatriz; Maigler, María Victoria; Hernández, Ana L; Ramírez, Yolanda

    2018-06-26

    A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.

  13. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes.

    PubMed

    Wang, Guanghui; Wu, Wells W; Zeng, Weihua; Chou, Chung-Lin; Shen, Rong-Fong

    2006-05-01

    A critical step in protein biomarker discovery is the ability to contrast proteomes, a process referred generally as quantitative proteomics. While stable-isotope labeling (e.g., ICAT, 18O- or 15N-labeling, or AQUA) remains the core technology used in mass spectrometry-based proteomic quantification, increasing efforts have been directed to the label-free approach that relies on direct comparison of peptide peak areas between LC-MS runs. This latter approach is attractive to investigators for its simplicity as well as cost effectiveness. In the present study, the reproducibility and linearity of using a label-free approach to highly complex proteomes were evaluated. Various amounts of proteins from different proteomes were subjected to repeated LC-MS analyses using an ion trap or Fourier transform mass spectrometer. Highly reproducible data were obtained between replicated runs, as evidenced by nearly ideal Pearson's correlation coefficients (for ion's peak areas or retention time) and average peak area ratios. In general, more than 50% and nearly 90% of the peptide ion ratios deviated less than 10% and 20%, respectively, from the average in duplicate runs. In addition, the multiplicity ratios of the amounts of proteins used correlated nicely with the observed averaged ratios of peak areas calculated from detected peptides. Furthermore, the removal of abundant proteins from the samples led to an improvement in reproducibility and linearity. A computer program has been written to automate the processing of data sets from experiments with groups of multiple samples for statistical analysis. Algorithms for outlier-resistant mean estimation and for adjusting statistical significance threshold in multiplicity of testing were incorporated to minimize the rate of false positives. The program was applied to quantify changes in proteomes of parental and p53-deficient HCT-116 human cells and found to yield reproducible results. Overall, this study demonstrates an alternative

  14. Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il

    2013-07-01

    In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.

  15. Cell-free identification of novel N-myristoylated proteins from complementary DNA resources using bioorthogonal myristic acid analogues.

    PubMed

    Takamitsu, Emi; Fukunaga, Kazuki; Iio, Yusuke; Moriya, Koko; Utsumi, Toshihiko

    2014-11-01

    To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element.

    PubMed

    Ertekin, Özlem; Öztürk, Selma; Öztürk, Zafer Ziya

    2016-08-11

    This study introduces the use of an IgA isotype aflatoxin (AF) specific monoclonal antibody for the development of a highly sensitive Quartz Crystal Microbalance (QCM) immunobiosensor for the detection of AF in inhibitory immunoassay format. The higher molecular weight of IgA antibodies proved an advantage over commonly used IgG antibodies in label free immunobiosensor measurements. IgA and IgG antibodies with similar affinity for AF were used in the comparative studies. Sensor surface was prepared by covalent immobilization of AFB1, using self assembled monolayer (SAM) formed on gold coated Quartz Crystal, with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) method using a diamine linker. Nonspecific binding to the surface was decreased by minimizing the duration of EDC/NHS activation. Sensor surface was chemically blocked after AF immobilization without any need for protein blocking. This protein free sensor chip endured harsh solutions with strong ionic detergent at high pH, which is required for the regeneration of the high affinity antibody-antigen interaction. According to the obtained results, the detection range with IgA antibodies was higher than IgG antibodies in QCM immunosensor developed for AFB1.

  17. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element

    PubMed Central

    Ertekin, Özlem; Öztürk, Selma; Öztürk, Zafer Ziya

    2016-01-01

    This study introduces the use of an IgA isotype aflatoxin (AF) specific monoclonal antibody for the development of a highly sensitive Quartz Crystal Microbalance (QCM) immunobiosensor for the detection of AF in inhibitory immunoassay format. The higher molecular weight of IgA antibodies proved an advantage over commonly used IgG antibodies in label free immunobiosensor measurements. IgA and IgG antibodies with similar affinity for AF were used in the comparative studies. Sensor surface was prepared by covalent immobilization of AFB1, using self assembled monolayer (SAM) formed on gold coated Quartz Crystal, with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) method using a diamine linker. Nonspecific binding to the surface was decreased by minimizing the duration of EDC/NHS activation. Sensor surface was chemically blocked after AF immobilization without any need for protein blocking. This protein free sensor chip endured harsh solutions with strong ionic detergent at high pH, which is required for the regeneration of the high affinity antibody-antigen interaction. According to the obtained results, the detection range with IgA antibodies was higher than IgG antibodies in QCM immunosensor developed for AFB1. PMID:27529243

  18. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  19. Less label, more free: approaches in label-free quantitative mass spectrometry.

    PubMed

    Neilson, Karlie A; Ali, Naveid A; Muralidharan, Sridevi; Mirzaei, Mehdi; Mariani, Michael; Assadourian, Gariné; Lee, Albert; van Sluyter, Steven C; Haynes, Paul A

    2011-02-01

    In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  1. Aptamer-based microspheres for highly sensitive protein detection using fluorescently-labeled DNA nanostructures.

    PubMed

    Han, Daehoon; Hong, Jinkee; Kim, Hyun Cheol; Sung, Jong Hwan; Lee, Jong Bum

    2013-11-01

    Many highly sensitive protein detection techniques have been developed and have played an important role in the analysis of proteins. Herein, we report a novel technique that can detect proteins sensitively and effectively using aptamer-based DNA nanostructures. Thrombin was used as a target protein and aptamer was used to capture fluorescent dye-labeled DNA nanobarcodes or thrombin on a microsphere. The captured DNA nanobarcodes were replaced by a thrombin and aptamer interaction. The detection ability of this approach was confirmed by flow cytometry with different concentrations of thrombin. Our detection method has great potential for rapid and simple protein detection with a variety of aptamers.

  2. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein.

    PubMed

    Kaushik, Ajeet; Yndart, Adriana; Kumar, Sanjeev; Jayant, Rahul Dev; Vashist, Arti; Brown, Ashley N; Li, Chen-Zhong; Nair, Madhavan

    2018-06-26

    This work, as a proof of principle, presents a sensitive and selective electrochemical immunosensor for Zika-virus (ZIKV)-protein detection using a functionalized interdigitated micro-electrode of gold (IDE-Au) array. A miniaturized IDE-Au immunosensing chip was prepared via immobilization of ZIKV specific envelop protein antibody (Zev-Abs) onto dithiobis(succinimidyl propionate) i.e., (DTSP) functionalized IDE-Au (electrode gap/width of 10 µm). Electrochemical impedance spectroscopy (EIS) was performed to measure the electrical response of developed sensing chip as a function of ZIKV-protein concentrations. The results of EIS studies confirmed that sensing chip detected ZIKV-protein selectively and exhibited a detection range from 10 pM to 1 nM and a detection limit of 10 pM along with a high sensitivity of 12 kΩM -1 . Such developed ZIKV immune-sensing chip can be integrated with a miniaturized potentiostat (MP)-interfaced with a smartphone for rapid ZIKV-infection detection required for early stage diagnostics at point-of-care application.

  3. Identification of dually acylated proteins from complementary DNA resources by cell-free and cellular metabolic labeling.

    PubMed

    Moriya, Koko; Kimoto, Mayumi; Matsuzaki, Kanako; Kiwado, Aya; Takamitsu, Emi; Utsumi, Toshihiko

    2016-10-15

    To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [(3)H]myristic acid or [(3)H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  5. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    USDA-ARS?s Scientific Manuscript database

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  6. Label-free imaging and spectroscopy for early detection of cervical cancer.

    PubMed

    Jing, Yueyue; Wang, Yulan; Wang, Xinyi; Song, Chuan; Ma, Jiong; Xie, Yonghui; Fei, Yiyan; Zhang, Qinghua; Mi, Lan

    2018-05-01

    The label-free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label-free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polymer microchip CE of proteins either off- or on-chip labeled with chameleon dye for simplified analysis.

    PubMed

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam T

    2009-12-01

    Microchip CE of proteins labeled either off- or on-chip with the "chameleon" CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant CTAB prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for BSA, corresponding to a approximately 7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 microg/mL concentration detection limit for BSA, corresponding to a approximately 700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices.

  8. Label-Free Bioanalyte Detection from Nanometer to Micrometer Dimensions-Molecular Imprinting and QCMs †.

    PubMed

    Mujahid, Adnan; Mustafa, Ghulam; Dickert, Franz L

    2018-06-01

    Modern diagnostic tools and immunoassay protocols urges direct analyte recognition based on its intrinsic behavior without using any labeling indicator. This not only improves the detection reliability, but also reduces sample preparation time and complexity involved during labeling step. Label-free biosensor devices are capable of monitoring analyte physiochemical properties such as binding sensitivity and selectivity, affinity constants and other dynamics of molecular recognition. The interface of a typical biosensor could range from natural antibodies to synthetic receptors for example molecular imprinted polymers (MIPs). The foremost advantages of using MIPs are their high binding selectivity comparable to natural antibodies, straightforward synthesis in short time, high thermal/chemical stability and compatibility with different transducers. Quartz crystal microbalance (QCM) resonators are leading acoustic devices that are extensively used for mass-sensitive measurements. Highlight features of QCM devices include low cost fabrication, room temperature operation, and most importantly ability to monitor extremely low mass shifts, thus potentially a universal transducer. The combination of MIPs with quartz QCM has turned out as a prominent sensing system for label-free recognition of diverse bioanalytes. In this article, we shall encompass the potential applications of MIP-QCM sensors exclusively label-free recognition of bacteria and virus species as representative micro and nanosized bioanalytes.

  9. Label-free determination of lipid composition and secondary protein structure of human salivary noncancerous and cancerous tissues by Raman microspectroscopy.

    PubMed

    Brozek-Pluska, Beata; Kopec, Monika; Niedzwiecka, Izabela; Morawiec-Sztandera, Alina

    2015-04-07

    The applications of optical spectroscopic methods in cancer detection open new possibilities in oncological diagnostics. Raman spectroscopy and Raman imaging represent noninvasive, label-free, and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman microspectroscopy has been employed to examine noncancerous and cancerous human salivary gland tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions typical for the vibrations of lipids and proteins. The detailed analysis of secondary structures of proteins contained in the cancerous and the noncancerous tissues is also presented.

  10. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    PubMed

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  11. A Comparative Analysis of Computational Approaches to Relative Protein Quantification Using Peptide Peak Intensities in Label-free LC-MS Proteomics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzke, Melissa M.; Brown, Joseph N.; Gritsenko, Marina A.

    2013-02-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred frommore » one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.« less

  12. Label-free optical detection of action potential in mammalian neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Bui, Loan; Kim, Young-Tae; Mohanty, Samarendra K.; Davé, Digant P.

    2017-02-01

    Electrophysiology techniques are the gold standard in neuroscience for studying functionality of a single neuron to a complex neuronal network. However, electrophysiology techniques are not flawless, they are invasive nature, procedures are cumbersome to implement with limited capability of being used as a high-throughput recording system. Also, long term studies of neuronal functionality with aid of electrophysiology is not feasible. Non-invasive stimulation and detection of neuronal electrical activity has been a long standing goal in neuroscience. Introduction of optogenetics has ushered in the era of non-invasive optical stimulation of neurons, which is revolutionizing neuroscience research. Optical detection of neuronal activity that is comparable to electro-physiology is still elusive. A number of optical techniques have been reported recording of neuronal electrical activity but none is capable of reliably measuring action potential spikes that is comparable to electro-physiology. Optical detection of action potential with voltage sensitive fluorescent reporters are potential alternatives to electrophysiology techniques. The heavily rely on secondary reporters, which are often toxic in nature with background fluorescence, with slow response and low SNR making them far from ideal. The detection of one shot (without averaging)-single action potential in a true label-free way has been elusive so far. In this report, we demonstrate the optical detection of single neuronal spike in a cultured mammalian neuronal network without using any exogenous labels. To the best of our knowledge, this is the first demonstration of label free optical detection of single action potentials in a mammalian neuronal network, which was achieved using a high-speed phase sensitive interferometer. We have carried out stimulation and inhibition of neuronal firing using Glutamate and Tetrodotoxin respectively to demonstrate the different outcome (stimulation and inhibition) revealed in

  13. Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates

    USDA-ARS?s Scientific Manuscript database

    A straightforward label-free method based on aptamer binding and surface enhanced Raman specstroscopy (SERS) has been developed for the detection of Salmonella Typhimurium, an important foodborne pathogen that causes gastroenteritis in both humans and animals. Surface of the SERS-active silver nanor...

  14. Polymer microchip capillary electrophoresis of proteins either off- or on-chip labeled with chameleon dye for simplified analysis

    PubMed Central

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam

    2009-01-01

    Microchip capillary electrophoresis of proteins labeled either off- or on-chip with the “chameleon” CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant cetyltrimethyl ammonium bromide prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for bovine serum albumin (BSA), corresponding to a ~7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 μg/mL concentration detection limit for BSA, corresponding to a ~700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices. PMID:19924700

  15. Engineered biomarkers for leprosy diagnosis using labeled and label-free analysis.

    PubMed

    de Santana, Juliana F; da Silva, Mariângela R B; Picheth, Guilherme F; Yamanaka, Isabel B; Fogaça, Rafaela L; Thomaz-Soccol, Vanete; Machado-de-Avila, Ricardo A; Chávez-Olórtegui, Carlos; Sierakowski, Maria Rita; de Freitas, Rilton Alves; Alvarenga, Larissa M; de Moura, Juliana

    2018-09-01

    The biotechnological evolution towards the development of antigens to detect leprosy has been progressing. However, the identification of leprosy in paucibacillary patients, based solely on the antigen-antibody interaction still remains a challenge. The complexity of clinical manifestations requires innovative approaches to improve the sensitivity of assays to detect leprosy before the onset of symptoms, thus avoiding disabilities and contributing, indirectly, to reduce transmission. In this study, the strategies employed for early leprosy diagnosis were: i. using a phage-displayed mimotope (APDDPAWQNIFNLRR) which mimics an immunodominant sequence (PPNDPAWQRNDPILQ) of an antigen of Mycobacterium leprae known as Ag85B; ii. engineering the mimotope by adding a C-terminal flexible spacer (SGSG-C); iii. conjugating the mimotope to a carrier protein to provide better exposure to antibodies; iv. amplifying the signal using biotin-streptavidin detection system in an ELISA; and v. coating the optimized mimotope on a quartz crystal microbalance (QCM) sensor for label-free biosensing. The ELISA sensitivity increased up to 91.7% irrespective of the immunological profile of the 132 patients assayed. By using comparative modeling, the M. tuberculosis Ag85B was employed as a template to ascertain which features make the mimotope a good antigen in terms of its specificity. For the first time, a sensitive QCM-based immunosensor to detect anti M. leprae antibodies in human serum was used. M. leprae antibodies could also be detected in the sera of paucibacillary patients; thus, the use of a mimotope-derived synthetic peptide as bait for antibodies in a novel analytical label-free immunoassay for leprosy diagnosis exhibits great potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Development of a label-free immunosensor system for detecting plasma cortisol levels in fish.

    PubMed

    Wu, Haiyun; Ohnuki, Hitoshi; Hibi, Kyoko; Ren, Huifeng; Endo, Hideaki

    2016-02-01

    Fishes display a wide variation in their physiological responses to stress, which is clearly evident in the plasma corticosteroid changes, chiefly cortisol levels in fish. In the present study, we describe a novel label-free immunosensor for detecting plasma cortisol levels. The method is based on immunologic reactions and amperometric measurement using cyclic voltammetry. For the immobilization of the antibody on the surface of sensing electrode, we used a self-assembled monolayer of thiol-containing compounds. Using this electrode, we detect the CV signal change caused by the generation of antigen-antibody complex. The immunosensor showed a response to cortisol levels, and the anodic peak value linearly decreased with a correlation coefficient of 0.990 in diluted plasma. The specificity of the label-free immunosensor system was investigated using other steroid hormones, such as 17α, 20β-dihydroxy-4-pregnen-3-one, progesterone, estriol, estradiol, and testosterone. The specific detection of cortisol was suggested by a minimal change from -0.32 to 0.51 μA in the anodic peak value of the other steroid hormones. The sensor system was used to determine the plasma cortisol levels in Nile tilapia (Oreochromis niloticus), and the results were compared with those of the same samples determined using the conventional method (ELISA). A good correlation was obtained between values determined using both methods (correlation coefficient 0.993). These findings suggest that the proposed label-free immunosensor could be useful for rapid and convenient analysis of cortisol levels in fish plasma samples.

  17. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi

  18. Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirofumi; Lei, Cheng; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    Acquired drug resistance is a fundamental predicament in cancer therapy. Early detection of drug-resistant cancer cells during or after treatment is expected to benefit patients from unnecessary drug administration and thus play a significant role in the development of a therapeutic strategy. However, the development of an effective method of detecting drug-resistant cancer cells is still in its infancy due to their complex mechanism in drug resistance. To address this problem, we propose and experimentally demonstrate label-free image-based drug resistance detection with optofluidic time-stretch microscopy using leukemia cells (K562 and K562/ADM). By adding adriamycin (ADM) to both K562 and K562/ADM (ADM-resistant K562 cells) cells, both types of cells express unique morphological changes, which are subsequently captured by an optofluidic time-stretch microscope. These unique morphological changes are extracted as image features and are subjected to supervised machine learning for cell classification. We hereby have successfully differentiated K562 and K562/ADM solely with label-free images, which suggests that our technique is capable of detecting drug-resistant cancer cells. Our optofluidic time-stretch microscope consists of a time-stretch microscope with a high spatial resolution of 780 nm at a 1D frame rate of 75 MHz and a microfluidic device that focuses and orders cells. We compare various machine learning algorithms as well as various concentrations of ADM for cell classification. Owing to its unprecedented versatility of using label-free image and its independency from specific molecules, our technique holds great promise for detecting drug resistance of cancer cells for which its underlying mechanism is still unknown or chemical probes are still unavailable.

  19. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene

    PubMed Central

    Fu, Dongliang; Li, Lain-Jong

    2010-01-01

    The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed. PMID:22110861

  1. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  2. Label-free detection of HIV-1 infected cells via integration of optical tweezers and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lugongolo, Masixole Yvonne; Ombinda-Lemboumba, Saturnin; Noto, Luyanda Lunga; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    The human immunodeficiency virus-1 (HIV-1) is currently detected using conventional qualitative and quantitative tests to determine the presence or absence of HIV in blood samples. However, the approach of these tests detects the presence of either viral antibodies or viral RNA that require labelling which may be costly, sophisticated and time consuming. A label-free approach of detecting the presence of HIV is therefore desirable. Of note optical tweezers can be coupled with other technologies including spectroscopy, which also investigates light-matter interactions. For example, coupling of optical tweezers with luminescence spectroscopy techniques has emerged as a powerful tool in biology for micro-manipulation, detection and analysis of individual cells. Integration of optical techniques has enabled studying biological particles in a label-free manner, whilst detecting functional groups and other essential molecules within mixed populations of cells. In the current study, an optical trapping system coupled to luminescence spectroscopy was utilised to detect the presence of HIV infection in TZM-bl cells in vitro. This was performed by infecting TZM-bl cells with the ZM53 HIV-1 pseudovirus, and incubating them for 48 hours prior analysis. The differences between infected and uninfected cells were thereafter displayed as shown by the spectrographs obtained. Combination of these two techniques has a potential in the field of infectious disease diagnostics.

  3. Label-Free Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection in Complex Biological Fluids.

    PubMed

    Rauf, Sana; Zhang, Ling; Ali, Asghar; Liu, Yang; Li, Jinghong

    2017-02-24

    Detection of very low amounts of illicit drugs such as cocaine in clinical fluids like serum continues to be important for many areas in the fight against drug trafficking. Herein, we constructed a label-free nanopore biosensor for rapid and highly sensitive detection of cocaine in human serum and saliva samples based on target-induced strand release strategy. In this bioassay, an aptamer for cocaine was prehybridized with a short complementary DNA. Owing to cocaine specific binding with aptamer, the short DNA strand was displaced from aptamer and translocation of this output DNA through α-hemolysin nanopore generated distinct spike-like current blockages. When plotted in double-logarithmic scale, a linear relationship between target cocaine concentration and output DNA event frequency was obtained in a wide concentration range from 50 nM to 100 μM of cocaine, with the limit of detection down to 50 nM. In addition, this aptamer-based sensor method was successfully applied for cocaine detection in complex biological fluids like human saliva and serum samples with great selectivity. Simple preparation, low cost, rapid, label-free, and real sample detection are the motivating factors for practical application of the proposed biosensor.

  4. Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition.

    PubMed

    Hermanussen, M; Gonder, U; Jakobs, C; Stegemann, D; Hoffmann, G

    2010-01-01

    Free amino acids affect food palatability. As information on amino acids in frequently purchased pre-packaged food is virtually absent, we analyzed free amino acid patterns of 17 frequently purchased ready-to-serve convenience food products, and compared them with the information obtained from the respective food labels. Quantitative amino acid analysis was performed using ion-exchange chromatography. gamma-Aminobutyric acid (GABA) concentrations were verified using a stable isotope dilution gas chromatography/mass spectrometry (GC-MS) method. The patterns of free amino acids were compared with information obtained from food labels. An obvious mismatch between free amino acid patterns and food label information was detected. Even on considering that tomatoes and cereal proteins are naturally rich in glutamate, the concentrations of free glutamate outranged the natural concentration of this amino acid in several products, and strongly suggested artificial enrichment. Free glutamate was found to be elevated even in dishes that explicitly state 'no glutamate added'. Arginine was markedly elevated in lentils. Free cysteine was generally low, possibly reflecting thermal destruction of this amino acid during food processing. The meat and brain-specific dipeptide carnosine (CARN) was present in most meat-containing products. Some products did not contain detectable amounts of CARN in spite of meat content being claimed on the food labels. We detected GABA at concentrations that contribute significantly to the taste sensation. This investigation highlights a marked mismatch between food label information and food composition.

  5. Label-free in vitro prostate cancer cell detection via photonic-crystal biosensor

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFei; Sagredo, Ismael; Bustamante, Gilbert; Sun, Lu-Zhe; Ye, Jing Yong

    2018-02-01

    Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free imaging system, which allows for the detection of individual prostate cancer cells utilizing cellular RI as the only contrast parameter. Noncancerous prostate (BPH-1) cells and prostate cancer (PC-3) cells were mixed at varied ratios and measured concurrently. Additionally, we isolated and induced PC-3 cells to undergo epithelial-mesenchymal transition (EMT) by exposing these cells to soluble factors such as TGF-β1. The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced PC-3 cells as well as BPH-1 cells. EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. Our study shows promising clinical potential in utilizing the PC-TIR biosensor imaging system to not only detect prostate cancer cells, but also evaluate prostate cancer progression.

  6. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar

    2010-06-15

    In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Label-free probing of genes by time-domain terahertz sensing.

    PubMed

    Haring Bolivar, P; Brucherseifer, M; Nagel, M; Kurz, H; Bosserhoff, A; Büttner, R

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a freespace analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  8. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    NASA Astrophysics Data System (ADS)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  9. Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*

    PubMed Central

    Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2011-01-01

    The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID

  10. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation.

    PubMed

    Azimzadeh, Omid; Scherthan, Harry; Yentrapalli, Ramesh; Barjaktarovic, Zarko; Ueffing, Marius; Conrad, Marcus; Neff, Frauke; Calzada-Wack, Julia; Aubele, Michaela; Buske, Christian; Atkinson, Michael J; Hauck, Stefanie M; Tapio, Soile

    2012-04-18

    Qualitative proteome profiling of formalin-fixed, paraffin-embedded (FFPE) tissue is advancing the field of clinical proteomics. However, quantitative proteome analysis of FFPE tissue is hampered by the lack of an efficient labelling method. The usage of conventional protein labelling on FFPE tissue has turned out to be inefficient. Classical labelling targets lysine residues that are blocked by the formalin treatment. The aim of this study was to establish a quantitative proteomics analysis of FFPE tissue by combining the label-free approach with optimised protein extraction and separation conditions. As a model system we used FFPE heart tissue of control and exposed C57BL/6 mice after total body irradiation using a gamma ray dose of 3 gray. We identified 32 deregulated proteins (p≤0.05) in irradiated hearts 24h after the exposure. The proteomics data were further evaluated and validated by bioinformatics and immunoblotting investigation. In good agreement with our previous results using fresh-frozen tissue, the analysis indicated radiation-induced alterations in three main biological pathways: respiratory chain, lipid metabolism and pyruvate metabolism. The label-free approach enables the quantitative measurement of radiation-induced alterations in FFPE tissue and facilitates retrospective biomarker identification using clinical archives. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A.

    PubMed

    Radi, Abd-Elgawad; Muñoz-Berbel, Xavier; Lates, Vasilica; Marty, Jean-Louis

    2009-03-15

    A novel label-free electrochemical impedimetric immunosensor for sensitive detection of ochratoxin A (OTA) was reported. A two-step reaction protocol was elaborated to modify the gold electrode. The electrode was first derivatized by electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt (4-CPDS) in acidic aqueous solution yielded stable 4-carboxyphenyl (4-CP) monolayer. The ochratoxin A antibody was then immobilized making use of the carbodiimide chemistry. The steps of the immunosensor elaboration and the immunochemical reaction between ochratoxin A and the surface-bound antibody were interrogated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect ochratoxin A. The increase in electron-transfer resistance (DeltaR(et)) values was linearly proportional to the concentration of OTA in the range of 1-20ngmL(-1), with a detection limit of 0.5ngmL(-1).

  12. High-contrast grating resonators for label-free detection of disease biomarkers

    PubMed Central

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-01-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI. PMID:27265624

  13. High-contrast grating resonators for label-free detection of disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-06-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI.

  14. Label-free virus detection using silicon photonic microring resonators

    PubMed Central

    McClellan, Melinda S.; Domier, Leslie L; Bailey, Ryan C.

    2013-01-01

    Viruses represent a continual threat to humans through a number of mechanisms, which include disease, bioterrorism, and destruction of both plant and animal food resources. Many contemporary techniques used for the detection of viruses and viral infections suffer from limitations such as the need for extensive sample preparation or the lengthy window between infection and measurable immune response, for serological methods. In order to develop a method that is fast, cost-effective, and features reduced sample preparation compared to many other virus detection methods, we report the application of silicon photonic microring resonators for the direct, label-free detection of intact viruses in both purified samples as well as in a complex, real-world analytical matrix. As a model system, we demonstrate the quantitative detection of Bean pod mottle virus, a pathogen of great agricultural importance, with a limit of detection of 10 ng/mL. By simply grinding a small amount of leaf sample in buffer with a mortar and pestle, infected leaves can be identified over a healthy control with a total analysis time of less than 45 min. Given the inherent scalability and multiplexing capability of the semiconductor-based technology, we feel that silicon photonic microring resonators are well-positioned as a promising analytical tool for a number of viral detection applications. PMID:22138465

  15. Label-free virus detection using silicon photonic microring resonators.

    PubMed

    McClellan, Melinda S; Domier, Leslie L; Bailey, Ryan C

    2012-01-15

    Viruses represent a continual threat to humans through a number of mechanisms, which include disease, bioterrorism, and destruction of both plant and animal food resources. Many contemporary techniques used for the detection of viruses and viral infections suffer from limitations such as the need for extensive sample preparation or the lengthy window between infection and measurable immune response, for serological methods. In order to develop a method that is fast, cost-effective, and features reduced sample preparation compared to many other virus detection methods, we report the application of silicon photonic microring resonators for the direct, label-free detection of intact viruses in both purified samples as well as in a complex, real-world analytical matrix. As a model system, we demonstrate the quantitative detection of Bean pod mottle virus, a pathogen of great agricultural importance, with a limit of detection of 10 ng/mL. By simply grinding a small amount of leaf sample in buffer with a mortar and pestle, infected leaves can be identified over a healthy control with a total analysis time of less than 45 min. Given the inherent scalability and multiplexing capability of the semiconductor-based technology, we feel that silicon photonic microring resonators are well-positioned as a promising analytical tool for a number of viral detection applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization.

    PubMed

    Nagel, Michael; Bolivar, Peter Haring; Brucherseifer, Martin; Kurz, Heinrich; Bosserhoff, Anja; Büttner, Reinhard

    2002-04-01

    A promising label-free approach for the analysis of genetic material by means of detecting the hybridization of polynucleotides with electromagnetic waves at terahertz (THz) frequencies is presented. Using an integrated waveguide approach, incorporating resonant THz structures as sample carriers and transducers for the analysis of the DNA molecules, we achieve a sensitivity down to femtomolar levels. The approach is demonstrated with time-domain ultrafast techniques based on femtosecond laser pulses for generating and electro-optically detecting broadband THz signals, although the principle can certainly be transferred to other THz technologies.

  17. Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds.

    PubMed

    Urmann, Katharina; Walter, Johanna-Gabriela; Scheper, Thomas; Segal, Ester

    2015-02-03

    A proof-of-concept for a label-free and reagentless optical biosensing platform based on nanostructured porous silicon (PSi) and aptamers is presented in this work. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensor design. Here we describe the fabrication and characterization of aptamer-conjugated PSi biosensors, where a previously characterized his-tag binding aptamer (6H7) is used as model system. Exposure of the aptamer-functionalized PSi to the target proteins as well as to complex fluids (i.e., bacteria lysates containing target proteins) results in robust and well-defined changes in the PSi optical interference spectrum, ascribed to specific aptamer-protein binding events occurring within the nanoscale pores, monitored in real time. The biosensors show exceptional stability and can be easily regenerated by a short rinsing step for multiple biosensing analyses. This proof-of-concept study demonstrates the possibility of designing highly stable and specific label-free optical PSi biosensors, employing aptamers as capture probes, holding immense potential for application in detection of a broad range of targets, in a simple yet reliable manner.

  18. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs

    NASA Astrophysics Data System (ADS)

    Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong

    2015-11-01

    The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.

  19. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila.

    PubMed

    Di, Guilan; Li, Hui; Zhang, Chao; Zhao, Yanjing; Zhou, Chuanjiang; Naeem, Sajid; Li, Li; Kong, Xianghui

    2017-07-01

    Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 10 8  CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dual-primer self-generation SERS signal amplification assay for PDGF-BB using label-free aptamer.

    PubMed

    Ye, SuJuan; Zhai, XiaoMo; Wu, YanYing; Kuang, ShaoPing

    2016-05-15

    Highly sensitive detection of proteins, especially those associated with cancers, is essential to biomedical research as well as clinical diagnosis. In this work, a simple and novel one-two-three signal amplification surface-enhanced Raman scattering (SERS) method for the detection of protein is fabricated by using label-free aptamer and dual-primer self-generation. Platelet-derived growth factor B-chain (PDGF-BB) is selected as the model protein. The one-two-three cascade DNA amplification means one target-aptamer binding event, two hairpin DNA switches and three DNA amplification reactions. This strategy possesses some remarkable features compared to conventional signal amplification methods: (i) A smart probe including a label-free aptamer is fabricated, for suitable hybridization without hindering the affinity of the aptamer toward its target. (ii) Using the unique structure switch of the aptamer and cooperator, a one-two-three working mode is developed to amplify the SERS signal. The amplification efficiency is enhanced. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish ultrasensitive detection of proteins. The detection limit of PDGF-BB via SERS detection is 0.42 pM, with the linear range from 1.0×10(-12)M to 10(-8)M. It is potentially universal because the aptamer can be easily designed for biomolecules whose aptamers undergo similar conformational changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-02

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.

  2. LABEL-FREE DETECTION OF Pb2+ USING SPECIFIC DNAZYME AND UNMODIFIED Au NANOPARTICLE PROBE

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; Zhao, Zike; Liu, Yaoqian; Lv, Lulu; Qi, Bing; Lin, Haixia; He, Lei; Sun, Shengli

    A simple and sensitive Pb2+ sensor is developed based on label-free 17E DNAzyme and unmodified Au nanoparticles. On this basis, Pb2+ concentration can be judged according to the color variation of Au nanoparticles. The detection limit is 100nM and linear range is 100nM-16μM. It can serve as a measurement tool for Pb2+ rapid detection, which provides reference for the development of sensors in environmental monitoring and food safety.

  3. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry.

    PubMed

    Csősz, É; Emri, G; Kalló, G; Tsaprailis, G; Tőzsér, J

    2015-10-01

    The healthy human skin with its effective antimicrobial defense system forms an efficient barrier against invading pathogens. There is evidence suggesting that the composition of this chemical barrier varies between diseases, making the easily collected sweat an ideal candidate for biomarker discoveries. Our aim was to provide information about the normal composition of the sweat, and to study the chemical barrier found at the surface of skin. Sweat samples from healthy individuals were collected during sauna bathing, and the global protein panel was analysed by label-free mass spectrometry. SRM-based targeted proteomic methods were designed and stable isotope labelled reference peptides were used for method validation. Ninety-five sweat proteins were identified, 20 of them were novel proteins. It was shown that dermcidin is the most abundant sweat protein, and along with apolipoprotein D, clusterin, prolactin-inducible protein and serum albumin, they make up 91% of secreted sweat proteins. The roles of these highly abundant proteins were reviewed; all of which have protective functions, highlighting the importance of sweat glands in composing the first line of innate immune defense system, and maintaining the epidermal barrier integrity. Our findings with regard to the proteins forming the chemical barrier of the skin as determined by label-free quantification and targeted proteomics methods are in accordance with previous studies, and can be further used as a starting point for non-invasive sweat biomarker research. © 2015 European Academy of Dermatology and Venereology.

  4. Label-free quantitative proteomic analysis of human plasma-derived microvesicles to find protein signatures of abdominal aortic aneurysms.

    PubMed

    Martinez-Pinna, Roxana; Gonzalez de Peredo, Anne; Monsarrat, Bernard; Burlet-Schiltz, Odile; Martin-Ventura, Jose Luis

    2014-08-01

    To find potential biomarkers of abdominal aortic aneurysms (AAA), we performed a differential proteomic study based on human plasma-derived microvesicles. Exosomes and microparticles isolated from plasma of AAA patients and control subjects (n = 10 each group) were analyzed by a label-free quantitative MS-based strategy. Homemade and publicly available software packages have been used for MS data analysis. The application of two kinds of bioinformatic tools allowed us to find differential protein profiles from AAA patients. Some of these proteins found by the two analysis methods belong to main pathological mechanisms of AAA such as oxidative stress, immune-inflammation, and thrombosis. Data analysis from label-free MS-based experiments requires the use of sophisticated bioinformatic approaches to perform quantitative studies from complex protein mixtures. The application of two of these bioinformatic tools provided us a preliminary list of differential proteins found in plasma-derived microvesicles not previously associated to AAA, which could help us to understand the pathological mechanisms related to this disease. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule.

    PubMed

    Feng, Chunjing; Zhu, Jing; Sun, Jiewei; Jiang, Wei; Wang, Lei

    2015-10-01

    Here, we developed an enzyme-free, label-free, and sensitive fluorescence cooperative amplification strategy based on a hairpin assembly circuit which coupled catalytic hairpin assembly (CHA) with hybridization chain reaction (HCR) for small molecule adenosine. A double-strand DNA probe with aptamer-catalysis strand (Apt-C) and inhibit strand (Inh) was designed for adenosine recognition and signal transduction which was named as Apt-C/Inh. Hairpins H1 and H2 were employed for constructing the CHA, and hairpins H3 and H4 for the HCR. Through the binding of adenosine and the Apt-C, the Inh was released from the Apt-C/Inh. Then the free Apt-C initiated the CHA through successively opening H1 and H2, generating H1/H2 complex and recyclable Apt-C. Next, the released Apt-C entered another CHA cycle, and the H1/H2 complex further initiated the HCR of H3 and H4 which induced the formation of the concatemers of H3/H4 complex. Such a process brought the two ends of hairpins H3 into close proximity, yielding numerous integrated G-quadruplexes which were initially sequestered in the stem and two terminals of H3. Finally, N-methyl mesoporphyrin IX (NMM) was added to generate an enhanced fluorescence signal. In the proposed strategy, driven only by the energy from hybridization, one target could trigger multiple HCR events via CHA-based target-cycle, leading to a remarkable enzyme-free amplification for adenosine. The detection limit could achieve as low as 9.7 × 10(-7) mol L(-1). Furthermore, G-quadruplexes were applied to construct label-free hairpin assembly circuit, which made it more simple and cost-effective. The satisfactory recoveries were obtained when detecting adenosine in spiked human serum and urine samples, demonstrating the feasibility of this detection strategy in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells.

    PubMed

    Hofemeier, Arne D; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F W; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-26

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO4(3-) symmetric stretch vibrations at 959 cm(-1) assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  7. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    NASA Astrophysics Data System (ADS)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  8. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    PubMed Central

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-01-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43− symmetric stretch vibrations at 959 cm−1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis. PMID:27225821

  9. Sensitive and simultaneous surface plasmon resonance detection of free and p53-bound MDM2 proteins from human sarcomas.

    PubMed

    Wu, Ling; Tang, Hailin; Hu, Shengqiang; Xia, Yonghong; Lu, Zhixuan; Fan, Yujuan; Wang, Zixiao; Yi, Xinyao; Zhou, Feimeng; Wang, Jianxiu

    2018-04-30

    Murine double minute 2 (MDM2) is an oncoprotein mediating the degradation of the tumor suppressor p53 protein. The physiological levels of MDM2 protein are closely related to malignant transformation and tumor growth. In this work, the simultaneous and label-free determination of free and p53-bound MDM2 proteins from sarcoma tissue extracts was conducted using a dual-channel surface plasmon resonance (SPR) instrument. Free MDM2 protein was measured in one fluidic channel covered with the consensus double-stranded (ds)-DNA/p53 conjugate, while MDM2 bound to p53 was captured by the consensus ds-DNA immobilized onto the other channel. To achieve higher sensitivity and to confirm specificity, an MDM2-specific monoclonal antibody (2A10) was used to recognize both the free and p53-bound MDM2 proteins. The resultant method afforded a detection limit of 0.55 pM of MDM2. The amenability of the method to the analysis of free and p53-bound MDM2 proteins was demonstrated for normal and sarcoma tissue extracts from three patients. Our data reveal that both free and total MDM2 (free and bound forms combined) proteins from sarcoma tissue extracts are of much higher concentrations than those from normal tissue extracts and the p53-bound MDM2 protein only constitutes a small fraction of the total MDM2 concentration. In comparison with enzyme-linked immunosorbent assay (ELISA), the proposed method possesses higher sensitivity, is more cost-effective, and is capable of determining free and p53-bound MDM2 proteins in clinical samples.

  10. Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.

    PubMed

    Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian

    2017-06-15

    A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Label-free proteome of water buffalo (Bubalus bubalis) seminal plasma.

    PubMed

    Brito, Mayara F; Auler, Patrícia A; Tavares, Guilherme C; Rezende, Cristiana P; Almeida, Gabriel M F; Pereira, Felipe L; Leal, Carlos A G; Moura, Arlindo de Alencar; Figueiredo, Henrique C P; Henry, Marc

    2018-06-11

    The study aimed to describe the Bubalus bubalis seminal plasma proteome using a label-free shotgun UDMS E approach. A total of 859 nonredundant proteins were identified across five biological replicates with stringent identification. Proteins specifically related to sperm maturation and protection, capacitation, fertilization and metabolic activity were detected in the buffalo seminal fluid. In conclusion, we provide a comprehensive proteomic profile of buffalo seminal plasma, which establishes a foundation for further studies designed to understand regulation of sperm function and discovery of novel biomarkers for fertility. MS data are available in the ProteomeXchange with identifier PXD003728. © 2018 Blackwell Verlag GmbH.

  12. A symmetric metamaterial element-based RF biosensor for rapid and label-free detection

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Lee, Jung-Hyun; Jung, Hyo-Il

    2011-10-01

    A symmetric metamaterial element-based RF biosensing scheme is experimentally demonstrated by detecting biomolecular binding between a prostate-specific antigen (PSA) and its antibody. The metamaterial element in a high-impedance microstrip line shows an intrinsic S21 resonance having a Q-factor of 55. The frequency shift with PSA concentration, i.e., 100 ng/ml, 10 ng/ml, and 1 ng/ml, is observed and the changes are Δf ≈ 20 MHz, 10 MHz, and 5 MHz, respectively. The proposed biosensor offers advantages of label-free detection, a simple and direct scheme, and cost-efficient fabrication.

  13. Label-Free Immuno-Sensors for the Fast Detection of Listeria in Food.

    PubMed

    Morlay, Alexandra; Roux, Agnès; Templier, Vincent; Piat, Félix; Roupioz, Yoann

    2017-01-01

    Foodborne diseases are a major concern for both food industry and health organizations due to the economic costs and potential threats for human lives. For these reasons, specific regulations impose the research of pathogenic bacteria in food products. Nevertheless, current methods, references and alternatives, take up to several days and require many handling steps. In order to improve pathogen detection in food, we developed an immune-sensor, based on Surface Plasmon Resonance imaging (SPRi) and bacterial growth which allows the detection of a very low number of Listeria monocytogenes in food sample in one day. Adequate sensitivity is achieved by the deposition of several antibodies in a micro-array format allowing real-time detection. This label-free method thus reduces handling and time to result compared with current methods.

  14. Label-free high-throughput imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  15. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

    NASA Astrophysics Data System (ADS)

    Sando, Shota; Zhang, Bo; Cui, Tianhong

    2017-12-01

    Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

  16. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    NASA Astrophysics Data System (ADS)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  17. H2O2-sensitive quantum dots for the label-free detection of glucose.

    PubMed

    Hu, Mei; Tian, Jing; Lu, Hao-Ting; Weng, Li-Xing; Wang, Lian-Hui

    2010-08-15

    A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H(2)O(2)). With d-glucose as a substrate, H(2)O(2) that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 microM to 1mM with the detection limit of 1.8 microM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Sensitive and label-free detection of miRNA-145 by triplex formation.

    PubMed

    Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon

    2016-01-01

    The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.

  19. High-throughput label-free detection of aggregate platelets with optofluidic time-stretch microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Ito, Takuro; Guo, Baoshan; Kobayashi, Hirofumi; Ozeki, Yasuyuki; Yatomi, Yutaka; Goda, Keisuke

    2017-02-01

    According to WHO, approximately 10 million new cases of thrombotic disorders are diagnosed worldwide every year. In the U.S. and Europe, their related diseases kill more people than those from AIDS, prostate cancer, breast cancer and motor vehicle accidents combined. Although thrombotic disorders, especially arterial ones, mainly result from enhanced platelet aggregability in the vascular system, visual detection of platelet aggregates in vivo is not employed in clinical settings. Here we present a high-throughput label-free platelet aggregate detection method, aiming at the diagnosis and monitoring of thrombotic disorders in clinical settings. With optofluidic time-stretch microscopy with a spatial resolution of 780 nm and an ultrahigh linear scanning rate of 75 MHz, it is capable of detecting aggregated platelets in lysed blood which flows through a hydrodynamic-focusing microfluidic device at a high throughput of 10,000 particles/s. With digital image processing and statistical analysis, we are able to distinguish them from single platelets and other blood cells via morphological features. The detection results are compared with results of fluorescence-based detection (which is slow and inaccurate, but established). Our results indicate that the method holds promise for real-time, low-cost, label-free, and minimally invasive detection of platelet aggregates, which is potentially applicable to detection of platelet aggregates in vivo and to the diagnosis and monitoring of thrombotic disorders in clinical settings. This technique, if introduced clinically, may provide important clinical information in addition to that obtained by conventional techniques for thrombotic disorder diagnosis, including ex vivo platelet aggregation tests.

  20. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  1. Detecting and identifying DNA via the THz backbone frequency using a metamaterial-based label-free biosensor

    NASA Astrophysics Data System (ADS)

    Mirzaei, Sahar; Green, Nicolas G.; Rotaru, Mihai; Pu, Suan Hui

    2017-02-01

    In genetic diagnostics, laboratory-based equipment generally uses analytical techniques requiring complicated and expensive fluorescent labelling of target DNA molecules. Intense research effort into, and commercial development of, Point-of-Care diagnostics and Personalized Healthcare are driving the development of simple, fast and cost-effective detection methods. One potential label-free DNA detection method uses Terahertz (THz) spectroscopy of the natural responses of DNA in metamaterial structures, which are engineered to have properties that are impossible to obtain in natural materials. This paper presents a study of the development of metamaterials based on asymmetric X-shaped resonator inclusions as a functional sensor for DNA. Gold X-shaped resonator structures with dimensions of 90/85 μm were demonstrated to produce trapped mode resonant frequency in the correct range for DNA detection. Realistic substrate materials in the form of 375 μm thick quartz were investigated, demonstrating that the non-transparent nature of the material resulted in the production of standing waves, affecting the system response, as well as requiring a reduction in scale of the resonator of 85%. As a result, the effect of introducing etched windows in the substrate material were investigated, demonstrating that increased window size significantly reduces the effect of the substrate on the system response. The device design showed a good selectivity when RNA samples were introduced to the model, demonstrating the potential for this design of device in the development of sensors capable of performing cheap and simple genetic analysis of DNA, giving label-free detection at high sensitivity.

  2. Electrochemical lectin based biosensors as a label-free tool in glycomics

    PubMed Central

    Bertók, Tomáš; Katrlík, Jaroslav; Gemeiner, Peter; Tkac, Jan

    2016-01-01

    Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb “identity cards”. In fact, glycans can form more “words” or “codes” (i.e., unique sequences) from the same number of “letters” (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or - even more challenging - to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the “glycocode”. Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics. This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells. PMID:27239071

  3. A label-free amplified fluorescence DNA detection based on isothermal circular strand-displacement polymerization reaction and graphene oxide.

    PubMed

    Li, Zhen; Zhu, Wenping; Zhang, Jinwen; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2013-07-07

    A label-free fluorescent DNA biosensor has been presented based on isothermal circular strand-displacement polymerization reaction (ICSDPR) combined with graphene oxide (GO) binding. The proposed method is simple and cost-effective with a low detection limit of 4 pM, which compares favorably with other GO-based homogenous DNA detection methods.

  4. A Method for Label-Free, Differential Top-Down Proteomics.

    PubMed

    Ntai, Ioanna; Toby, Timothy K; LeDuc, Richard D; Kelleher, Neil L

    2016-01-01

    Biomarker discovery in the translational research has heavily relied on labeled and label-free quantitative bottom-up proteomics. Here, we describe a new approach to biomarker studies that utilizes high-throughput top-down proteomics and is the first to offer whole protein characterization and relative quantitation within the same experiment. Using yeast as a model, we report procedures for a label-free approach to quantify the relative abundance of intact proteins ranging from 0 to 30 kDa in two different states. In this chapter, we describe the integrated methodology for the large-scale profiling and quantitation of the intact proteome by liquid chromatography-mass spectrometry (LC-MS) without the need for metabolic or chemical labeling. This recent advance for quantitative top-down proteomics is best implemented with a robust and highly controlled sample preparation workflow before data acquisition on a high-resolution mass spectrometer, and the application of a hierarchical linear statistical model to account for the multiple levels of variance contained in quantitative proteomic comparisons of samples for basic and clinical research.

  5. A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer.

    PubMed

    Liu, Feng; Ding, Ailing; Zheng, Jiushang; Chen, Jiucun; Wang, Bin

    2018-06-01

    A label-free sensing platform is developed based on switching the structure of aptamer for highly sensitive and selective fluorescence detection of ochratoxin A (OTA). OTA induces the structure of aptamer, transforms into G-quadruplex and produces strong fluorescence in the presence of zinc(II)-protoporphyrin IX probe due to the specific bind to G-quadruplex. The simple method exhibits high sensitivity towards OTA with a detection limit of 0.03 nM and excellent selectivity over other mycotoxins. In addition, the successful detection of OTA in real samples represents a promising application in food safety.

  6. Protein sorption on polymer surfaces measured by fluorescence labels.

    PubMed

    Brynda, E; Drobník, J; Vacík, J; Kálal, J

    1978-01-01

    Fluorescence labeling can be used in studying protein sorption on various surfaces with a sensitivity of about 10(-8) g/cm2, commensurate with radioactive labeling. Fluorescamine proved to be the most suitable compound for studying protein sorption on hydrophilic gels, because, unlike fluoresceine isothiocyanate and dansylchloride, free fluorochrome does not interfere with measurements. Sorption properties of labeled serum albumin were tested on poly(2-hydroxyethyl methacrylate), on the copolymer of 2-hydroxyethyl methacrylate with methyl methacrylate, and on polyethylene. Labeling does not cause aggregation of the protein, but, as expected, it shifts and somewhat broadens its electrophoretic band while at the same time slightly raising its affinity toward hydrophobic surfaces.

  7. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes

    NASA Astrophysics Data System (ADS)

    Qi, Yingying; Li, Li; Li, Baoxin

    2009-09-01

    A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV-vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10 -13 to 4.5 × 10 -6 mol/L. The detection limit (3 σ) of this method has decreased to pico-molar level.

  8. A Label-Free, Quantitative Fecal Hemoglobin Detection Platform for Colorectal Cancer Screening

    PubMed Central

    Soraya, Gita V.; Nguyen, Thanh C.; Abeyrathne, Chathurika D.; Huynh, Duc H.; Chan, Jianxiong; Nguyen, Phuong D.; Nasr, Babak; Chana, Gursharan; Kwan, Patrick; Skafidas, Efstratios

    2017-01-01

    The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal immunochemical-based biosensor platform that may be further developed into a point-of-care test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of 10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based quantitative FIT diagnostic systems. PMID:28475117

  9. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching.

    PubMed

    Li, Yijun; Wang, Cheng; Zhu, Yibo; Zhou, Xiaohong; Xiang, Yu; He, Miao; Zeng, Siyu

    2017-03-15

    This work presents a fully integrated graphene field-effect transistor (GFET) biosensor for the label-free detection of lead ions (Pb 2+ ) in aqueous-media, which first implements the G-quadruplex structure-switching biosensing principle in graphene nanoelectronics. We experimentally illustrate the biomolecular interplay that G-rich DNA single-strands with one-end confined on graphene surface can specifically interact with Pb 2+ ions and switch into G-quadruplex structures. Since the structure-switching of electrically charged DNA strands can disrupt the charge distribution in the vicinity of graphene surface, the carrier equilibrium in graphene sheet might be altered, and manifested by the conductivity variation of GFET. The experimental data and theoretical analysis show that our devices are capable of the label-free and specific quantification of Pb 2+ with a detection limit down to 163.7ng/L. These results first verify the signaling principle competency of G-quadruplex structure-switching in graphene electronic biosensors. Combining with the advantages of the compact device structure and convenient electrical signal, a label-free GFET biosensor for Pb 2+ monitoring is enabled with promising application potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitative label-free proteomic analysis of human urine to identify novel candidate protein biomarkers for schistosomiasis.

    PubMed

    Onile, Olugbenga Samson; Calder, Bridget; Soares, Nelson C; Anumudu, Chiaka I; Blackburn, Jonathan M

    2017-11-01

    Schistosomiasis is a chronic neglected tropical disease that is characterized by continued inflammatory challenges to the exposed population and it has been established as a possible risk factor in the aetiology of bladder cancer. Improved diagnosis of schistosomiasis and its associated pathology is possible through mass spectrometry to identify biomarkers among the infected population, which will influence early detection of the disease and its subtle morbidity. A high-throughput proteomic approach was used to analyse human urine samples for 49 volunteers from Eggua, a schistosomiasis endemic community in South-West, Nigeria. The individuals were previously screened for Schistosoma haematobium and structural bladder pathologies via microscopy and ultrasonography respectively. Samples were categorised into schistosomiasis, schistosomiasis with bladder pathology, bladder pathology, and a normal healthy control group. These samples were analysed to identify potential protein biomarkers. A total of 1306 proteins and 9701 unique peptides were observed in this study (FDR = 0.01). Fifty-four human proteins were found to be potential biomarkers for schistosomiasis and bladder pathologies due to schistosomiasis by label-free quantitative comparison between groups. Thirty-six (36) parasite-derived potential biomarkers were also identified, which include some existing putative schistosomiasis biomarkers that have been previously reported. Some of these proteins include Elongation factor 1 alpha, phosphopyruvate hydratase, histone H4 and heat shock proteins (HSP 60, HSP 70). These findings provide an in-depth analysis of potential schistosoma and human host protein biomarkers for diagnosis of chronic schistosomiasis caused by Schistosoma haematobium and its pathogenesis.

  11. In vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Wang, Cheng; Hu, Cheng; Wang, Xueding; Wei, Xunbin

    2014-02-01

    Melanoma, a malignant tumor of melanocytes, is the most serious type of skin cancer in the world. It accounts for about 80% of deaths of all skin cancer. For cancer detection, circulating tumor cells (CTCs) serve as a marker for metastasis development, cancer recurrence, and therapeutic efficacy. Melanoma tumor cells have high content of melanin, which has high light absorption and can serve as endogenous biomarker for CTC detection without labeling. Here, we have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of melanoma cancer by counting CTCs of melanoma tumor bearing mice in vivo. To test in vivo PAFC's capability of detecting melanoma cancer, we have constructed a melanoma tumor model by subcutaneous inoculation of highly metastatic murine melanoma cancer cells, B16F10. In order to effectively distinguish the targeting PA signals from background noise, we have used the algorithm of Wavelet denoising method to reduce the background noise. The in vivo flow cytometry (IVFC) has shown a great potential for detecting circulating tumor cells quantitatively in the blood stream. Compared with fluorescence-based in vivo flow cytometry (IVFC), PAFC technique can be used for in vivo, label-free, and noninvasive detection of circulating tumor cells (CTCs).

  12. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    PubMed

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Whole grain gluten-free egg-free high protein pasta

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative whole grain, high protein, gluten-free, egg-free past...

  14. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kausaite, A.; van Dijk, M.; Castrop, J.

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without labeling. The system can therefore be used to determine both affinity and rate constants for interactions between various types of molecules. Here, we describe the application of a surface plasmon resonance biosensor for label-free investigation of the interaction between an immobilized antigen bovine serum albumin (BSA) and antibodymore » rabbit anti-cow albumin IgG1 (anti-BSA). The formation of a self-assembled monolayer (SAM) over a gold surface is introduced into this laboratory training protocol as an effective immobilization method, which is very promising in biosensing systems based on detection of affinity interactions. In the next step, covalent attachment via artificially formed amide bonds is applied for the immobilization of proteins on the formed SAM surface. These experiments provide suitable experience for postgraduate students to help them understand immobilization of biologically active materials via SAMs, fundamentals of surface plasmon resonance biosensor applications, and determination of non-covalent biomolecular interactions. The experiment is designed for master and/or Ph.D. students. In some particular cases, this protocol might be adoptable for bachelor students that already have completed an extended biochemistry program that included a background in immunology.« less

  16. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor.

    PubMed

    Chen, Xuejuan; Pan, Yangang; Liu, Huiqing; Bai, Xiaojing; Wang, Nan; Zhang, Bailin

    2016-05-15

    Liver cancer is one of the most common and highly malignant cancers in the world. There are no effective therapeutic options if an early liver cancer diagnosis is not achieved. In this work, detection of HepG2 cells by label-free microcantilever array aptasensor was developed. The sensing microcantilevers were functionalized by HepG2 cells-specific aptamers. Meanwhile, to eliminate the interferences induced by the environment, the reference microcantilevers were modified with 6-mercapto-1-hexanol self-assembled monolayers. The aptasensor exhibits high specificity over not only human liver normal cells, but also other cancer cells of breast, bladder, and cervix tumors. The linear relation ranges from 1×10(3) to 1×10(5)cells/mL, with a detection limit of 300 cells/mL (S/N=3). Our work provides a simple method for detection of liver cancer cells with advantages in terms of simplicity and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Real-time label-free biosensing with integrated planar waveguide ring resonators

    NASA Astrophysics Data System (ADS)

    Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel

    2010-05-01

    We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.

  18. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    PubMed

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  19. Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

    PubMed Central

    Wildgen, Sarah M.; Dunn, Robert C.

    2015-01-01

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835

  20. Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.

    PubMed

    Wildgen, Sarah M; Dunn, Robert C

    2015-03-23

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.

  1. Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip.

    PubMed

    Feng, Xueling; Zhang, Gong; Chin, Lip Ket; Liu, Ai Qun; Liedberg, Bo

    2017-07-28

    A highly sensitive approach for rapid and label-free detection of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) using an optofluidic chip is demonstrated. The optofluidic chip is prepared by covalent immobilization of 2,4-D-bovine serum albumin (2,4-D-BSA) conjugate to an integrated microring resonator. Subsequent detection of 2,4-D carried out in a competitive immunoreaction format enables selective detection of 2,4-D in different types of water samples, including bottled, tap, and lake water, at a limit of detection (LOD) of 4.5 pg/mL and in a quantitative range of 15-10 5 pg/mL. The microring resonator-based optofluidic chip is reusable with ultrahigh sensitivity that offers real-time and on-site detection of low-molecular-weight targets for potential applications in food safety and environmental monitoring.

  2. A silicon-based peptide biosensor for label-free detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa

    2015-05-01

    Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.

  3. Label-free specific detection of femtomolar cardiac troponin using an integrated nanoslit array fluidic diode.

    PubMed

    Liu, Yifan; Yobas, Levent

    2014-12-10

    We demonstrate here for the first time the utility of an integrated nanofluidic diode for detecting and quantifying physiologically relevant macromolecules. Troponin T, a key human cardiac protein biomarker, was selectively and rapidly detected free of labels for concentrations down to 10 fg/mL (∼ 0.3 fM) in buffer as well as 10 pg/mL (∼ 300 fM) in untreated human serum. This ultrasensitive detection arises from monolithic integration of a unique nanofluidic diode structure that is highly robust and amenable to site-specific surface modification. The structure features a planar nanoslit array where each nanoslit is defined at a nominal width of 70 nm over a micrometer-scale silicon trench without the use of high-resolution patterning techniques. Through vapor deposition, a glass layer is placed at a nonuniform thickness, tapering the trench profile upward and contributing to the triangular nanoslit structure. This asymmetric profile is essential for ionic current rectification noted here at various pH values, ionic strengths, and captured target species, which modulate the surface-charge density within the sensitive region of the nanoslit. The nanoslit, unlike nanopores, offers only 1D confinement, which appears to be adequate for reasonable rectification. The measurements are found in quantitative agreement with the diode simulations for the first time based on a pH- and salt-dependent surface-charge model.

  4. A multicenter study benchmarks software tools for label-free proteome quantification.

    PubMed

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  5. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    PubMed Central

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252

  6. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing.

    PubMed

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-07-22

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  7. Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors.

    PubMed

    Chiavaioli, Francesco; Zubiate, Pablo; Del Villar, Ignacio; Zamarreño, Carlos R; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Arregui, Francisco J; Matias, Ignacio R; Baldini, Francesco

    2018-05-25

    The advent of optical fiber-based biosensors combined with that of nanotechnologies has provided an opportunity for developing in situ, portable, lightweight, versatile, and high-performance optical sensing platforms. We report on the generation of lossy mode resonances by the deposition of nanometer-thick metal oxide films on optical fibers, which makes it possible to measure precisely and accurately the changes in optical properties of the fiber-surrounding medium with very high sensitivity compared to other technology platforms, such as long period gratings or surface plasmon resonances, the gold standard in label-free and real-time biomolecular interaction analysis. This property, combined with the application of specialty structures such as D-shaped fibers, permits enhancing the light-matter interaction. SEM and TEM imaging together with X-EDS tool have been utilized to characterize the two films used, i.e., indium tin oxide and tin dioxide. Moreover, the experimental transmission spectra obtained after the deposition of the nanocoatings have been numerically corroborated by means of wave propagation methods. With the use of a conventional wavelength interrogation system and ad hoc developed microfluidics, the shift of the lossy mode resonance can be reliably recorded in response to very low analyte concentrations. Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by 3 orders of magnitude when compared with other fiber-based configurations. The biosensor has been regenerated several times by injecting sodium dodecyl sulfate, which proves the capability of sensor to be reused.

  8. In vivo and ex vivo EPR detection of spin-labelled ovalbumin in mice.

    PubMed

    Abramović, Zrinka; Brgles, Marija; Habjanec, Lidija; Tomasić, Jelka; Sentjurc, Marjeta; Frkanec, Ruza

    2010-10-01

    In this study, spin-labelled ovalbumin (SL-OVA), free or entrapped in liposomes, was administered to mice subcutaneously (s.c.) or intravenously (i.v.) with the aim to determine the conditions for pharmacokinetic studies of spin-labelled proteins by EPR and to measure the time course of SL-OVA distribution in vivo in live mice and ex vivo in isolated organs. Upon s.c. administration, the decay of the EPR signal was followed for 60min at the site of application using an L-band EPR spectrometer. Within this time period, the signal of free SL-OVA was diminished by about 70%. It was estimated with the help of the oxidizing agent K(3)[(FeCN)(6)] that approximately 30% was a consequence of the spin label reduction to EPR non-visible hydroxylamine and about 40% was due to the SL-OVA elimination from the site of measurement. For liposome encapsulated SL-OVA, the intensity diminished only by approx. 40% in the same period, indicating that liposomes successfully protect the protein from reduction. EPR signal could not be detected directly over live mouse organs within 60min after s.c. application of SL-OVA. With the available L-band EPR spectrometer, the measurements at the site of s.c. application are possible if the amount of SL-OVA applied to a mouse is more than 3mg. For the pharmacokinetic studies of the protein distribution in organs after s.c. or i.v. injection the concentration of the spin-labelled protein should be more than 0.5mmol/kg. After i.v. administration, only ex vivo measurements were possible using an X-band EPR spectrometer, since the total amount of SL-OVA was not sufficient for in vivo detection and also because of rapid reduction of nitroxide. After 2min, the protein was preferentially distributed to liver and, to a smaller extent, to spleen.

  9. Protein detection using biobarcodes.

    PubMed

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  10. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  11. Label-free immunosensor based on gold nanoparticle silver enhancement.

    PubMed

    Yang, Minghui; Wang, Cunchang

    2009-02-01

    A label-free immunosensor for the sensitive detection of human immunoglobulin G (IgG) was prepared based on gold nanoparticle-silver enhancement detection with a simple charge-coupled device (CCD) detector. The gold nanoparticles, which were used as nuclei for the deposit of metallic silver and also for the adsorption of antibodies, were immobilized into wells of a 9-well chip. With the addition of silver enhancement buffer, metallic silver will deposit onto gold nanoparticles, causing darkness that can be optically measured by the CCD camera and quantified using ImageJ software. When antibody was immobilized onto the gold nanoparticles and antigen was captured, the formed immunocomplex resulted in a decrease of the darkness and the intensity of the darkness was in line with IgG concentrations from 0.05 to 10 ng/ml. The CCD detector is simple and portable, and the reported method has many desirable merits such as sensitivity and accuracy, making it a promising technique for protein detection.

  12. Rapid Verification of Candidate Serological Biomarkers Using Gel-based, Label-free Multiple Reaction Monitoring

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Barnhart, Kurt T.; Speicher, David W.

    2011-01-01

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves, quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1-D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μl serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers. PMID:21726088

  13. Rapid verification of candidate serological biomarkers using gel-based, label-free multiple reaction monitoring.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Barnhart, Kurt T; Speicher, David W

    2011-09-02

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μL of serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers.

  14. Label-free all-electronic biosensing in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stanton, Michael A.

    Label-free, all-electronic detection techniques offer great promise for advancements in medical and biological analysis. Electrical sensing can be used to measure both interfacial and bulk impedance changes in conducting solutions. Electronic sensors produced using standard microfabrication processes are easily integrated into microfluidic systems. Combined with the sensitivity of radiofrequency electrical measurements, this approach offers significant advantages over competing biological sensing methods. Scalable fabrication methods also provide a means of bypassing the prohibitive costs and infrastructure associated with current technologies. We describe the design, development and use of a radiofrequency reflectometer integrated into a microfluidic system towards the specific detection of biologically relevant materials. We developed a detection protocol based on impedimetric changes caused by the binding of antibody/antigen pairs to the sensing region. Here we report the surface chemistry that forms the necessary capture mechanism. Gold-thiol binding was utilized to create an ordered alkane monolayer on the sensor surface. Exposed functional groups target the N-terminus, affixing a protein to the monolayer. The general applicability of this method lends itself to a wide variety of proteins. To demonstrate specificity, commercially available mouse anti- Streptococcus Pneumoniae monoclonal antibody was used to target the full-length recombinant pneumococcal surface protein A, type 2 strain D39 expressed by Streptococcus Pneumoniae. We demonstrate the RF response of the sensor to both the presence of the surface decoration and bound SPn cells in a 1x phosphate buffered saline solution. The combined microfluidic sensor represents a powerful platform for the analysis and detection of cells and biomolecules.

  15. Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.

    2008-06-01

    A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.

  16. Label-free in-flow detection of single DNA molecules using glass nanopipettes.

    PubMed

    Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B

    2014-01-07

    With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.

  17. "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.

    PubMed

    Bougot-Robin, Kristelle; Li, Shunbo; Zhang, Yinghua; Hsing, I-Ming; Benisty, Henri; Wen, Weijia

    2012-10-21

    A novel imaging method for bulk refractive index sensing or label-free bio-molecular interaction sensing is presented. This method is based on specially designed "Peak tracking chip" (PTC) involving "tracks" of adjacent resonant waveguide gratings (RWG) "micropads" with slowly evolving resonance position. Using a simple camera the spatial information robustly retrieves the diffraction efficiency, which in turn transduces either the refractive index of the liquids on the tracks or the effective thickness of an immobilized biological layer. Our intrinsically multiplex chip combines tunability and versatility advantages of dielectric guided wave biochips without the need of costly hyperspectral instrumentation. The current success of surface plasmon imaging techniques suggests that our chip proposal could leverage an untapped potential to routinely extend such techniques in a convenient and sturdy optical configuration toward, for instance for large analytes detection. PTC design and fabrication are discussed with challenging process to control micropads properties by varying their period (step of 2 nm) or their duty cycle through the groove width (steps of 4 nm). Through monochromatic imaging of our PTC, we present experimental demonstration of bulk index sensing on the range [1.33-1.47] and of surface biomolecule detection of molecular weight 30 kDa in aqueous solution using different surface densities. A sensitivity of the order of 10(-5) RIU for bulk detection and a sensitivity of the order of ∼10 pg mm(-2) for label-free surface detection are expected, therefore opening a large range of application of our chip based imaging technique. Exploiting and chip design, we expect as well our chip to open new direction for multispectral studies through imaging.

  18. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection.

    PubMed

    Gu, Xuefang; Yan, Yuerong; Jiang, Guoqing; Adkins, Jason; Shi, Jian; Jiang, Guomin; Tian, Shu

    2014-03-01

    A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle-protein-bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL(-1) for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.

  19. Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy

    PubMed Central

    Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm-1 band assigned to disulfide bridges in insulin, and the 1552 cm-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603

  20. Differential label-free quantitative proteomic analysis of avian eggshell matrix and uterine fluid proteins associated with eggshell mechanical property.

    PubMed

    Sun, Congjiao; Xu, Guiyun; Yang, Ning

    2013-12-01

    Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label-free MS-based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-reference and random sampling approach for label-free identification of DNA composition using plasmonic nanomaterials.

    PubMed

    Freeman, Lindsay M; Pang, Lin; Fainman, Yeshaiahu

    2018-05-09

    The analysis of DNA has led to revolutionary advancements in the fields of medical diagnostics, genomics, prenatal screening, and forensic science, with the global DNA testing market expected to reach revenues of USD 10.04 billion per year by 2020. However, the current methods for DNA analysis remain dependent on the necessity for fluorophores or conjugated proteins, leading to high costs associated with consumable materials and manual labor. Here, we demonstrate a potential label-free DNA composition detection method using surface-enhanced Raman spectroscopy (SERS) in which we identify the composition of cytosine and adenine within single strands of DNA. This approach depends on the fact that there is one phosphate backbone per nucleotide, which we use as a reference to compensate for systematic measurement variations. We utilize plasmonic nanomaterials with random Raman sampling to perform label-free detection of the nucleotide composition within DNA strands, generating a calibration curve from standard samples of DNA and demonstrating the capability of resolving the nucleotide composition. The work represents an innovative way for detection of the DNA composition within DNA strands without the necessity of attached labels, offering a highly sensitive and reproducible method that factors in random sampling to minimize error.

  2. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.

    PubMed

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-10-30

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.

  3. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets

    PubMed Central

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-01-01

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434

  4. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.

    PubMed

    Li, Li Juan; Tian, Xue; Kong, Xiang Juan; Chu, Xia

    2015-01-01

    A G-quadruplex-based, label-free fluorescence assay was demonstrated for the detection of adenosine triphosphate (ATP). A double-stranded DNA (dsDNA), hybridized by ATP-aptamer and its complementary sequence, was employed as a substrate for ATP binding. SYBR Green I (SG I) was a fluorescent probe and exonuclease III (Exo III) was a nuclease to digest the dsDNA. Consequently, in the absence of ATP, the dsDNA was inset with SG I and was digested by Exo III, resulting in a low background signal. In the presence of ATP, the aptamer in dsDNA folded into a G-quadruplex structure that resisted the digestion of Exo III. SG I was inserted into the structure, showing high fluorescence. Owing to a decrease of the background noise, a high signal-to-noise ratio could be obtained. This sensor can detect ATP with a concentration ranging from 50 μM to 5 mM, and possesses a capacity for the sensitive determination of other targets.

  5. Label-free electrochemical detection of botulinum neurotoxin type E based on its enzymatic activity using interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Hyun, Sang Hwa; Park, Dae Keun; Kang, Aeyeon; Kim, Soohyun; Kim, Daehee; Shin, Yu Mi; Song, Ji-Joon; Yun, Wan Soo

    2016-02-01

    We report a simple label-free electrochemical method of detecting low concentrations of botulinum neurotoxin type E light chain (BoNT/E LC) based on its peptide cleavage activity. Dual-mode cyclic voltammetry was employed to observe changes in the redox signal of ferri-/ferro-cyanide on interdigitated microelectrodes, whose surfaces were covered by peptides designed from synaptosomal-associated protein 25 to be cleaved by BoNT/E LC. With the introduction of BoNT/E LC, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide molecules. In addition to the increased redox signal intensity, its time-dependence can be considered as a strong evidence of BoNT/E sensing, since the time-dependent increase can only result from the enzymatic activity of BoNT/E LC. Using this method, BoNT/E LC, at concentrations as low as 5 pg/ml, was readily measurable with only an hour of incubation.

  6. Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices.

    PubMed

    Credo, Grace M; Su, Xing; Wu, Kai; Elibol, Oguz H; Liu, David J; Reddy, Bobby; Tsai, Ta-Wei; Dorvel, Brian R; Daniels, Jonathan S; Bashir, Rashid; Varma, Madoo

    2012-03-21

    We introduce a label-free approach for sensing polymerase reactions on deoxyribonucleic acid (DNA) using a chelator-modified silicon-on-insulator field-effect transistor (SOI-FET) that exhibits selective and reversible electrical response to pyrophosphate anions. The chemical modification of the sensor surface was designed to include rolling-circle amplification (RCA) DNA colonies for locally enhanced pyrophosphate (PPi) signal generation and sensors with immobilized chelators for capture and surface-sensitive detection of diffusible reaction by-products. While detecting arrays of enzymatic base incorporation reactions is typically accomplished using optical fluorescence or chemiluminescence techniques, our results suggest that it is possible to develop scalable and portable PPi-specific sensors and platforms for broad biomedical applications such as DNA sequencing and microbe detection using surface-sensitive electrical readout techniques.

  7. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    PubMed

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  8. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    PubMed

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Glutathione-Capped Gold Nanoparticles-Based Photoacoustic Sensor for Label-Free Detection of Lead Ions

    NASA Astrophysics Data System (ADS)

    Shi, R.; Liu, X.-J.; Ying, Y.

    2017-07-01

    The photoacoustic signal generated by laser-induced nanobubbles (PA-LINB) proved to be a sensitive tool to monitor the aggregation of gold nanoparticles. Here, a simple and label-free photoacoustic method for the rapid detection of Pb2+ in the aqueous phase was developed. Due to the high affinity of Pb2+ ions to glutathione, the presence of Pb2+ led to the aggregation of glutathione-conjugated gold nanoparticles (GSH-GNPs). Hence, by measuring the variation of the PA-LINB signal after the aggregation of GSH-GNPs, Pb2+ can be quantified. A low detection limit for Pb2+ (42 nM) and a wide linear working range ( 42-1000 nM) were achieved. Furthermore, the proposed method showed good selectivity against other metal ions.

  10. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins.

    PubMed

    Tang, Jin-Bao; Tang, Ying; Yang, Hong-Ming

    2015-02-15

    Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag-BirA system. Through the high streptavidin (SA)-biotin interaction, the divalent biotinylated APs were clustered in the SA-biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ-AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable for the ZZ protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  12. Robust Label-free, Quantitative Profiling of Circulating Plasma Microparticle (MP) Associated Proteins*

    PubMed Central

    Braga-Lagache, Sophie; Buchs, Natasha; Iacovache, Mircea-Ioan; Zuber, Benoît; Jackson, Christopher Benjamin

    2016-01-01

    Cells of the vascular system release spherical vesicles, called microparticles, in the size range of 0.1–1 μm induced by a variety of stress factors resulting in variable concentrations between health and disease. Furthermore, microparticles have intercellular communication/signaling properties and interfere with inflammation and coagulation pathways. Today's most used analytical technology for microparticle characterization, flow cytometry, is lacking sensitivity and specificity, which might have led to the publication of contradicting results in the past. We propose the use of nano-liquid chromatography two-stage mass spectrometry as a nonbiased tool for quantitative MP proteome analysis. For this, we developed an improved microparticle isolation protocol and quantified the microparticle protein composition of twelve healthy volunteers with a label-free, data-dependent and independent proteomics approach on a quadrupole orbitrap instrument. Using aliquots of 250 μl platelet-free plasma from one individual donor, we achieved excellent reproducibility with an interassay coefficient of variation of 2.7 ± 1.7% (mean ± 1 standard deviation) on individual peptide intensities across 27 acquisitions performed over a period of 3.5 months. We show that the microparticle proteome between twelve healthy volunteers were remarkably similar, and that it is clearly distinguishable from whole cell and platelet lysates. We propose the use of the proteome profile shown in this work as a quality criterion for microparticle purity in proteomics studies. Furthermore, one freeze thaw cycle damaged the microparticle integrity, articulated by a loss of cytoplasm proteins, encompassing a specific set of proteins involved in regulating dynamic structures of the cytoskeleton, and thrombin activation leading to MP clotting. On the other hand, plasma membrane protein composition was unaffected. Finally, we show that multiplexed data-independent acquisition can be used for relative

  13. Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin.

    PubMed

    You, Xiaoying; Li, Yinhuan; Li, Baoping; Ma, Jie

    2016-01-15

    A chemiluminescence resonance energy transfer (CRET) platform was developed for sensitive and label-free detection of protease by using trypsin as a model analyte. In this CRET platform, bis(2,4,6-trichlorophenyl)oxalate-hydrogen peroxide chemiluminescence (CL) reaction was utilized as an energy donor and bovine serum albumin (BSA)-stabilized gold nanoclusters (Au NCs) as an energy acceptor. The BSA-stabilized Au NCs triggered the CRET phenomenon by accepting the energy from TCPO-H2O2 CL reaction, thus producing intense CL. In the presence of trypsin, the protein template of BSA-stabilized Au NCs was digested, which frustrated the energy transfer efficiency between the CL donor and the BSA-stabilized Au NCs, leading to a significant decrease in the CL signal. The decreased CL signal was proportional to the logarithm of trypsin concentration in the range of 0.01-50.0µg mL(-1). The detection limit for trypsin was 9ng mL(-)(1) and the relative standard deviations were lesser than 3% (n=11). This Au NCs-based CRET platform was successfully applied to the determination of trypsin in human urine samples, demonstrating its potential application in clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms.

    PubMed Central

    Maeda, Kenji; Finnie, Christine; Svensson, Birte

    2004-01-01

    Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots. The technique also provided information about accessible thiol groups in the proteins identified in the barley seed proteome. In total, 16 different putative target proteins were identified from 26 spots using tryptic in-gel digestion, matrix-assisted laser-desorption ionization-time-of-flight MS and database search. HvTrxh1 and HvTrxh2 were shown to have similar target specificity. Barley alpha-amylase/subtilisin inhibitor, previously demonstrated to be reduced by both HvTrxh1 and HvTrxh2, was among the identified target proteins, confirming the suitability of the method. Several alpha-amylase/trypsin inhibitors, some of which are already known as target proteins of thioredoxin h, and cyclophilin known as a target protein of m-type thioredoxin were also identified. Lipid transfer protein, embryospecific protein, three chitinase isoenzymes, a single-domain glyoxalase-like protein and superoxide dismutase were novel identifications of putative target proteins, suggesting new physiological roles of thioredoxin h in barley seeds. PMID:14636158

  15. Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine

    NASA Astrophysics Data System (ADS)

    Bröermann, Andreas; Steinhoff, Heinz-Jürgen; Schlücker, Sebastian

    2014-09-01

    The site-specific pH is an experimental probe for assessing models of structural folding and function of a protein as well as protein-protein and protein-ligand interactions. It can be determined by various techniques such as NMR, FT-IR, fluorescence and EPR spectroscopy. The latter require the use of external labels, i.e., employ pH-dependent dyes and spin labels, respectively. In this contribution, we outline an approach to a label-free and site-specific method for determining the local pH using deep ultraviolet resonance Raman (UVRR) spectroscopic fingerprints of the aromatic amino acids histidine and tyrosine in combination with a robust algorithm that determines the pH value using three UVRR reference spectra and without prior knowledge of the pKa.

  16. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification

  17. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids.

    PubMed

    Sun, Zhongyue; Liao, Tangbin; Zhang, Yulin; Shu, Jing; Zhang, Hong; Zhang, Guo-Jun

    2016-12-15

    A very simple sensing device based on biomimetic nanochannels has been developed for label-free, ultrasensitive and highly sequence-specific detection of DNA. Probe DNA was modified on the inner wall of the nanochannel surface by layer-by-layer (LBL) assembly. After probe DNA immobilization, DNA detection was realized by monitoring the rectified ion current when hybridization occurred. Due to three dimensional (3D) nanoscale environment of the nanochannel, this special geometry dramatically increased the surface area of the nanochannel for immobilization of probe molecules on the inner-surface and enlarged contact area between probes and target-molecules. Thus, the unique sensor reached a reliable detection limit of 10 fM for target DNA. In addition, this DNA sensor could discriminate complementary DNA (c-DNA) from non-complementary DNA (nc-DNA), two-base mismatched DNA (2bm-DNA) and one-base mismatched DNA (1bm-DNA) with high specificity. Moreover, the nanochannel-based biosensor was also able to detect target DNA even in an interfering environment and serum samples. This approach will provide a novel biosensing platform for detection and discrimination of disease-related molecular targets and unknown sequence DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Label-free biodetection using a smartphone.

    PubMed

    Gallegos, Dustin; Long, Kenneth D; Yu, Hojeong; Clark, Peter P; Lin, Yixiao; George, Sherine; Nath, Pabitra; Cunningham, Brian T

    2013-06-07

    Utilizing its integrated camera as a spectrometer, we demonstrate the use of a smartphone as the detection instrument for a label-free photonic crystal biosensor. A custom-designed cradle holds the smartphone in fixed alignment with optical components, allowing for accurate and repeatable measurements of shifts in the resonant wavelength of the sensor. Externally provided broadband light incident upon an entrance pinhole is subsequently collimated and linearly polarized before passing through the biosensor, which resonantly reflects only a narrow band of wavelengths. A diffraction grating spreads the remaining wavelengths over the camera's pixels to display a high resolution transmission spectrum. The photonic crystal biosensor is fabricated on a plastic substrate and attached to a standard glass microscope slide that can easily be removed and replaced within the optical path. A custom software app was developed to convert the camera images into the photonic crystal transmission spectrum in the visible wavelength range, including curve-fitting analysis that computes the photonic crystal resonant wavelength with 0.009 nm accuracy. We demonstrate the functionality of the system through detection of an immobilized protein monolayer, and selective detection of concentration-dependent antibody binding to a functionalized photonic crystal. We envision the capability for an inexpensive, handheld biosensor instrument with web connectivity to enable point-of-care sensing in environments that have not been practical previously.

  19. MEASURING OF PROTEIN SYNTHESIS USING METABOLIC 2H-LABELING, HIGH-RESOLUTION MASS SPECTROMETRY AND AN ALGORITHM

    PubMed Central

    Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen

    2013-01-01

    We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107

  20. Biconically tapered fiber optic probes for rapid label-free immunoassays.

    PubMed

    Miller, John; Castaneda, Angelica; Lee, Kun Ho; Sanchez, Martin; Ortiz, Adrian; Almaz, Ekrem; Almaz, Zuleyha Turkoglu; Murinda, Shelton; Lin, Wei-Jen; Salik, Ertan

    2015-04-01

    We report use of U-shaped biconically tapered optical fibers (BTOF) as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G) and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G)-antigen (rabbit anti-mouse IgG) reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.

  1. Gluten and gluten-free: issues and considerations of labeling regulations, detection methods, and assay validation.

    PubMed

    Diaz-Amigo, Carmen; Popping, Bert

    2012-01-01

    Gluten is a commonly used cereal derivative found in bakery products, among other items. In some susceptible individuals, however, it triggers immune responses of different kinds; there is, to a lesser extent, the wheat allergy that is immunoglobulin E (IgE)-mediated and leads to histamine release and typical allergic symptoms. In this case, other water-soluble proteins, like albumins, are also involved. On the other hand, there is, more frequently, celiac disease (CD), where the gluten causes immune reactions in the intestines of certain individuals, leading to degeneration of villi, which typically leads to malabsorption of nutrients and, consequently, malnutrition. The only currently effective health strategy for affected consumers is avoidance of gluten-containing products, based on clear labeling rules. However, despite unanimously accepted Codex definitions by all member jurisdictions, the national implementation of equivalent laws shows significant differences. In the context of CD and in support of the gluten-free statement, regulatory enforcement, as well as manufacturers' quality controls are mostly based on analytical results. However, numerous methods are available, some of which have been validated better than others, and many provide different results on identical samples. Reasons include detection of different gluten components and variability in extraction efficiency due to different buffer compositions, especially from processed foods. Last but not least, the lack of reference materials is hindering the process of generating comparable data across different ELISA kits, as well as other methods. How can such data still be used to support a gluten-free claim? New methodologies, in particular mass spectrometric analysis of gluten derived peptides, are being introduced in numerous laboratories. This methodology is not only capable of detecting gluten derived peptides but can also differentiate between and quantitate wheat, barley, rye, and oat. This

  2. Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic 13CO2 Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein1[OPEN

    PubMed Central

    Fernie, Alisdair R.; Stitt, Mark

    2015-01-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied 13CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%–4% d−1), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  3. Label-free surface plasmon sensing towards cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  4. Cell-free protein synthesis: the state of the art.

    PubMed

    Whittaker, James W

    2013-02-01

    Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.

  5. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.

    PubMed

    Geissler, David; Belder, Detlev

    2015-12-01

    One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (<300 nm) allows label-free detection of a broader range of analytes but also mandates the use of expensive fused silica glass, which is transparent to UV light. Herein, we report the first application of label-free deep UV fluorescence detection in non-UV transparent full-body polymer microfluidic devices. This was achieved by means of two-photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    NASA Astrophysics Data System (ADS)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  7. A label-free electrochemical sensor for detection of mercury(II) ions based on the direct growth of guanine nanowire.

    PubMed

    Huang, Yan Li; Gao, Zhong Feng; Jia, Jing; Luo, Hong Qun; Li, Nian Bing

    2016-05-05

    A simple, sensitive and label-free electrochemical sensor is developed for detection of Hg(2+) based on the strong and stable T-Hg(2+)-T mismatches. In the presence of Mg(2+), the parallel G-quadruplex structures could be specifically recognized and precipitated in parallel conformation. Therefore, the guanine nanowire was generated on the electrode surface, triggering the electrochemical H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In this research, a new method of signal amplification for the quantitative detection of Hg(2+) was described based on the direct growth of guanine nanowire via guanine nanowire. Under optimum conditions, Hg(2+) was detected in the range of 100 pM-100 nM, and the detection limit is 33 pM. Compared to the traditional single G-quadruplex label unit, this electrochemical sensor showed high sensitivity and selectivity for detecting Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A multi-center study benchmarks software tools for label-free proteome quantification

    PubMed Central

    Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan

    2016-01-01

    The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404

  9. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage

  10. A water-soluble conjugated polymer for protein identification and denaturation detection.

    PubMed

    Xu, Qingling; Wu, Chunxian; Zhu, Chunlei; Duan, Xinrui; Liu, Libing; Han, Yuchun; Wang, Yilin; Wang, Shu

    2010-12-03

    Rapid and sensitive methods to detect proteins and protein denaturation have become increasingly needful in the field of proteomics, medical diagnostics, and biology. In this paper, we have reported the synthesis of a new cationic water-soluble conjugated polymer that contains fluorene and diene moieties in the backbone (PFDE) for protein identification by sensing an array of PFDE solutions in different ionic strengths using the linear discriminant analysis technique (LDA). The PFDE can form complexes with proteins by electrostatic and/or hydrophobic interactions and exhibits different fluorescence response. Three main factors contribute to the fluorescence response of PFDE, namely, the net charge density on the protein surface, the hydrophobic nature of the protein, and the metalloprotein characteristics. The denaturation of proteins can also be detected using PFDE as a fluorescent probe. The interactions between PFDE and proteins were also studied by dynamic light scattering (DLS) and isothermal titration microcalorimetry (ITC) techniques. In contrast to other methods based on conjugated polymers, the synthesis of a series of quencher or dye-labeled acceptors or protein substrates has been avoided in our method, which significantly reduces the cost and the synthetic complexity. Our method provides promising applications on protein identification and denaturation detection in a simple, fast, and label-free manner based on non-specific interaction-induced perturbation of PFDE fluorescence response.

  11. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection.

    PubMed

    Huang, Hailiang; Shi, Shuo; Gao, Xing; Gao, Ruru; Zhu, Ying; Wu, Xuewen; Zang, Ruimin; Yao, Tianming

    2016-05-15

    Based on specific aptamer binding properties, a strategy for adenosine, dopamine and 17β-estradiol detection was realised by employing Ru complex and quantum dots (QDs) as fluorescence probes. Ru complex, which could quench the fluorescence of QDs, preferred to bind with aptamer DNA and resulted in the fluorescence rise of QDs. When the aptamer DNA was incubated with the target first, it could not bind with Ru complex and the fluorescence of QDs was quenched. Under the optimal condition, the fluorescence intensity was linearly proportional to the concentration of adenosine, dopamine and 17β-estradiol with a limit of detection (LOD) of 101 nM, 19 nM and 37 nM, respectively. The experiments in fetal bovine serum were also carried out with good results. This universal method was rapid, label-free, low-cost, easy-operating and highly repeatable for the detection of adenosine, dopamine and 17β-estradiol. Qualitative detection by naked eyes was also available without complex instruments. It could also be extended to detect various analytes, such as metal ions, proteins and small molecules by using appropriate aptamers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  13. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly.

    PubMed

    Parfenov, Vladislav A; Koudan, Elizaveta V; Bulanova, Elena A; Karalkin, Pavel A; Pereira, Frederico DAS; Norkin, Nikita E; Knyazeva, Alisa D; Gryadunova, Anna A; Petrov, Oleg F; Vasiliev, M M; Myasnikov, Maxim; Chernikov, Valery P; Kasyanov, Vladimir A; Marchenkov, Artem Yu; Brakke, Kenneth A; Khesuani, Yusef D; Demirci, Utkan; Mironov, Vladimir A

    2018-05-31

    Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first-time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering. . © 2018 IOP Publishing Ltd.

  14. Label-free detection of biomolecules with Ta2O5-based field effect devices

    NASA Astrophysics Data System (ADS)

    Branquinho, Rita Maria Mourao Salazar

    Field-effect-based devices (FEDs) are becoming a basic structural element in a new generation of micro biosensors. Their numerous advantages such as small size, labelfree response and versatility, together with the possibility of on-chip integration of biosensor arrays with a future prospect of low-cost mass production, make their development highly desirable. The present thesis focuses on the study and optimization of tantalum pentoxide (Ta2O5) deposited by rf magnetron sputtering at room temperature, and their application as sensitive layer in biosensors based on field effect devices (BioFEDs). As such, the influence of several deposition parameters and post-processing annealing temperature and surface plasma treatment on the film¡¦s properties was investigated. Electrolyte-insulator-semiconductor (EIS) field-effect-based sensors comprising the optimized Ta2O5 sensitive layer were applied to the development of BioFEDs. Enzyme functionalized sensors (EnFEDs) were produced for penicillin detection. These sensors were also applied to the label free detection of DNA and the monitoring of its amplification via polymerase chain reaction (PCR), real time PCR (RT-PCR) and loop mediated isothermal amplification (LAMP). Ion sensitive field effect transistors (ISFETs) based on semiconductor oxides comprising the optimized Ta2O5 sensitive layer were also fabricated. EIS sensors comprising Ta2O5 films produced with optimized conditions demonstrated near Nernstian pH sensitivity, 58+/-0.3 mV/pH. These sensors were successfully applied to the label-free detection of penicillin and DNA. Penicillinase functionalized sensors showed a 29+/-7 mV/mM sensitivity towards penicillin detection up to 4 mM penicillin concentration. DNA detection was achieved with 30 mV/mugM sensitivity and DNA amplification monitoring with these sensors showed comparable results to those obtained with standard fluorescence based methods. Semiconductor oxides-based ISFETs with Ta2O5 sensitive layer were

  15. A label-free and portable graphene FET aptasensor for children blood lead detection

    NASA Astrophysics Data System (ADS)

    Wang, Chenyu; Cui, Xinyi; Li, Ying; Li, Hongbo; Huang, Lei; Bi, Jun; Luo, Jun; Ma, Lena Q.; Zhou, Wei; Cao, Yi; Wang, Baigeng; Miao, Feng

    2016-02-01

    Lead is a cumulative toxicant, which can induce severe health issues, especially in children’s case due to their immature nervous system. While realizing large-scale monitoring of children blood lead remains challenging by utilizing traditional methods, it is highly desirable to search for alternative techniques or novel sensing materials. Here we report a label-free and portable aptasensor based on graphene field effect transistor (FET) for effective children blood lead detection. With standard solutions of different Pb2+ concentrations, we obtained a dose-response curve and a detection limitation below 37.5 ng/L, which is three orders lower than the safe blood lead level (100 μg/L). The devices also showed excellent selectivity over other metal cations such as, Na+, K+, Mg2+, and Ca2+, suggesting the capability of working in a complex sample matrix. We further successfully demonstrated the detection of Pb2+ ions in real blood samples from children by using our aptasensors, and explored their potential applications for quantification. Our results underscore such graphene FET aptasensors for future applications on fast detection of heavy metal ions for health monitoring and disease diagnostics.

  16. Label-free optical biosensing with slot-waveguides.

    PubMed

    Barrios, Carlos A; Bañuls, María José; González-Pedro, Victoria; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Maquieira, A; Sohlström, H; Holgado, M; Casquel, R

    2008-04-01

    We demonstrate label-free molecule detection by using an integrated biosensor based on a Si(3)N(4)/SiO(2) slot-waveguide microring resonator. Bovine serum albumin (BSA) and anti-BSA molecular binding events on the sensor surface are monitored through the measurement of resonant wavelength shifts with varying biomolecule concentrations. The biosensor exhibited sensitivities of 1.8 and 3.2 nm/(ng/mm(2)) for the detection of anti-BSA and BSA, respectively. The estimated detection limits are 28 and 16 pg/mm(2) for anti-BSA and BSA, respectively, limited by wavelength resolution.

  17. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    PubMed

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. 78 FR 47154 - Food Labeling; Gluten-Free Labeling of Foods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...The Food and Drug Administration (FDA or we) is issuing a final rule to define the term ``gluten-free'' for voluntary use in the labeling of foods. The final rule defines the term ``gluten-free'' to mean that the food bearing the claim does not contain an ingredient that is a gluten-containing grain (e.g., spelt wheat); an ingredient that is derived from a gluten-containing grain and that has not been processed to remove gluten (e.g., wheat flour); or an ingredient that is derived from a gluten-containing grain and that has been processed to remove gluten (e.g., wheat starch), if the use of that ingredient results in the presence of 20 parts per million (ppm) or more gluten in the food (i.e., 20 milligrams (mg) or more gluten per kilogram (kg) of food); or inherently does not contain gluten; and that any unavoidable presence of gluten in the food is below 20 ppm gluten (i.e., below 20 mg gluten per kg of food). A food that bears the claim ``no gluten,'' ``free of gluten,'' or ``without gluten'' in its labeling and fails to meet the requirements for a ``gluten-free'' claim will be deemed to be misbranded. In addition, a food whose labeling includes the term ``wheat'' in the ingredient list or in a separate ``Contains wheat'' statement as required by a section of the Federal Food, Drug, and Cosmetic Act (the FD&C Act) and also bears the claim ``gluten-free'' will be deemed to be misbranded unless its labeling also bears additional language clarifying that the wheat has been processed to allow the food to meet FDA requirements for a ``gluten-free'' claim. Establishing a definition of the term ``gluten-free'' and uniform conditions for its use in food labeling will help ensure that individuals with celiac disease are not misled and are provided with truthful and accurate information with respect to foods so labeled. We are issuing the final rule under the Food Allergen Labeling and Consumer Protection Act of 2004 (FALCPA).

  19. Painting proteins with covalent labels: what's in the picture?

    PubMed

    Fitzgerald, Michael C; West, Graham M

    2009-06-01

    Knowledge about the structural and biophysical properties of proteins when they are free in solution and/or in complexes with other molecules is essential for understanding the biological processes that proteins regulate. Such knowledge is also important to drug discovery efforts, particularly those focused on the development of therapeutic agents with protein targets. In the last decade a variety of different covalent labeling techniques have been used in combination with mass spectrometry to probe the solution-phase structures and biophysical properties of proteins and protein-ligand complexes. Highlighted here are five different mass spectrometry-based covalent labeling strategies including: continuous hydrogen/deuterium (H/D) exchange labeling, hydroxyl radical-mediated footprinting, SUPREX (stability of unpurified proteins from rates of H/D exchange), PLIMSTEX (protein-ligand interaction by mass spectrometry, titration, and H/D exchange), and SPROX (stability of proteins from rates of oxidation). The basic experimental protocols used in each of the above-cited methods are summarized along with the kind of biophysical information they generate. Also discussed are the relative strengths and weaknesses of the different methods for probing the wide range of conformational states that proteins and protein-ligand complexes can adopt when they are in solution.

  20. Label-free proteomic analysis of environmental acidification-influenced Streptococcus pyogenes secretome reveals a novel acid-induced protein histidine triad protein A (HtpA) involved in necrotizing fasciitis.

    PubMed

    Wen, Yao-Tseng; Wang, Jie-Siou; Tsai, Shu-Han; Chuan, Chiang-Ni; Wu, Jiunn-Jong; Liao, Pao-Chi

    2014-09-23

    Streptococcus pyogenes is responsible for various diseases. During infection, bacteria must adapt to adverse environments, such as the acidic environment. Acidic stimuli may stimulate S. pyogenes to invade into deeper tissue. However, how this acidic stimulus causes S. pyogenes to manipulate its secretome for facilitating invasion remains unclear. The dynamic label-free LC-MS/MS profiling identified 97 proteins, which are influenced by environmental acidification. Among these, 33 (34%) of the identified proteins were predicted to be extracellular proteins. Interestingly, classical secretory proteins comprise approximately 90% of protein abundance of the secretome in acidic condition at the stationary phase. One acid-induced secreted protein, HtpA, was selected to investigate its role in invasive infection. The mouse infected by the htpA deficient mutant showed lower virulence and smaller lesion area than the wild-type strain. The mutant strain was more efficiently cleared at infected skin than the wild-type strain. Besides, the relative phagocytosis resistance is lower in the mutant strain than in the wild-type strain. These data indicate that a novel acid-induced virulence factor, HtpA, which improves anti-phagocytosis ability for causing necrotizing fasciitis. Our investigation provides vital information for documenting the broad influences and mechanisms underlying the invasive behavior of S. pyogenes in an acidified environment. The acidified infected environment may facilitate S. pyogenes invasion from the mucosa to the deeper subepithelial tissue. The acid stimuli have been considered to affect the complex regulatory network of S. pyogenes for causing severe infections. Many of secreted virulence factors influenced by acidified environment may also play a crucial role in pathogenesis of invasive disease. To investigate temporal secretome changes under acidic environment, a comparative secretomics approach using label-free LC-MS/MS was undertaken to analyze

  1. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    PubMed

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  2. Magneto-impedance based detection of magnetically labeled cancer cells and bio-proteins

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Howell, M.; Mohapatra, S.; Nhung, T. H.; Mukherjee, P.; Srikanth, H.; Phan, M. H.

    2015-03-01

    A magnetic biosensor with enhanced sensitivity and immobilized magnetic markers is essential for a reliable analysis of the presence of a biological entity in a fluid. Based on conventional approaches, however, it is quite challenging to create such a sensor. We report on a novel magnetic biosensor using the magneto-impedance (MI) effect of a Co-based amorphous ribbon with a microhole-patterned surface that fulfils these requirements. The sensor probe was fabricated by patterning four microholes, each of diameter 2 μm and depth 2 μm, on the ribbon surface using FIB lithography. The magnetically labeled Luis Lung Carcinoma (LLC) cancer cells and Bovine serum albumin (BSA) proteins were drop-casted on the ribbon surface, and MI was measured over 0.1 - 10 MHz frequency range. As the analytes were trapped into the microholes, their physical motion was minimized and interaction among the magnetic fields was strengthened, thus yielding a more reliable and sensitive detection of the biological entities. The presence of magnetically labeled LLC cells (8.25x105 cells/ml, 10 μl) and BSA proteins (2x1011 particles/ml, 10 μl) were found to result in a ~ 2% change in MI with respect to the reference signal.

  3. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.

    PubMed

    Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong

    2013-01-01

    The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  4. Label-free detection of 3-nitro-l-tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor.

    PubMed

    Ng, Siu Pang; Qiu, Guangyu; Ding, Ning; Lu, Xiaoqing; Wu, Chi-Man Lawrence

    2017-03-15

    3-nitro-l-tyrosine (3-NT) is believed to be a biomarker of neurodegenerative diseases and metal doped graphene possess exceptionally high binding energy of 3-NT with metal-nitro chemisorption. Here we report a novel label-free detection scheme of 3-NT via nickel-doped graphene (NDG) as the functionalized receptor on our phase detecting localized surface plasmon resonance (LSPR) biosensor. When compared with reported 3-NT immunoassay with enzyme-linked immunosorbent assay (ELISA), our NDG-LSPR platform offers two advantages i.e. 1) label-free and 2) capture of 3-NT by direct chemisorption. Our limit of detection for 3-NT in PBS was found to be 0.13pg/ml and the linear dynamic range of response was from 0.5pg/ml to 1ng/ml, i.e. four orders of magnitude. The specificity of our NDG receptor to 3-NT was also verified with l-tyrosine of equivalent concentrations in PBS and diluted human serum, for which the NDG receptor shows negligible responses. In addition, the adsorption of 3-NT and l-tyrosine to the NDG receptor were also investigated by atomic force microscopy and further verified by surface enhanced Raman spectroscopy. Therefore, our NDG-LSPR biosensor competes favorably against ELISA and we believe it should be an attractive and economical solution to early diagnostic of 3-NT related disorders for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.

    PubMed

    Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong

    2017-09-15

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  8. Label-free carbon particulates detection in bio (medical) settings (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steuwe, Christian; Bové, Hannelore; vandeVen, Martin J.; Ameloot, Marcel; Roeffaers, Maarten B. J.

    2017-02-01

    The adverse health effects of particulate matter exposure are a generally accepted concern. Dramatic statistical figures suggest that fine dust is a main environmental risk in Europe and can be held accountable for hundreds of thousands of deaths per year [1]. Locating and tracking these nanometer sized particles, however, is not straight forward: In epidemiological and toxicology research only measurements based on labels [2] such as radionuclide markers have been applied. In this paper we present a direct, label-free optical contrast mechanism to detect carbon nanoparticles immersed in aqueous environments [3]. The virtue of this technique is its ability to perform in body fluids such as urine but also in cells and tissues. The mechanism is based on white light (WL) generation upon illumination with femtosecond pulsed near-infrared and is therefore non-incandescence related. We demonstrate the technique in various biological settings with dry and suspended carbon black particles (CB), a widely used model compound for soot [4]. Our approach allows for the unequivocal localization of CB alongside of common fluorophores and markers and can be performed on multiphoton laser-scanning microscopy platforms, a system commonly available in research laboratories. [1] European Environment Agency (2015). Press release. [2] Kong et al. Int. J. Mol. Sci. 2013, 14, (11), 22529-22543 [3] Bové and Steuwe et al. Nano letters, 2016, (16) , pages 3173-3178 [4] Arnal et al. Combust. Sci. Technol. 2012, 184, (7-8), 1191-1206.

  9. A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes.

    PubMed

    Bhavsar, Kinjal; Fairchild, Aaron; Alonas, Eric; Bishop, Daniel K; La Belle, Jeffrey T; Sweeney, James; Alford, T L; Joshi, Lokesh

    2009-10-15

    A biosensor for the serum cytokine, Interleukin-12 (IL-12), based upon a label-free electrochemical impedance spectroscopy (EIS) monitoring approach is described. Overexpression of IL-12 has been correlated to the diagnosis of Multiple Sclerosis (MS). An immunosensor has been fabricated by electroplating gold onto a disposable printed circuit board (PCB) electrode and immobilizing anti-IL-12 monoclonal antibodies (MAb) onto the surface of the electrode. This approach yields a robust sensor that facilitates reproducible mass fabrication and easy alteration of the electrode shape. Results indicate that this novel PCB sensor can detect IL-12 at physiological levels, <100 fM with f-values of 0.05 (typically <0.0001) in a label-free and rapid manner. A linear (with respect to log concentration) detectable range was achieved. Detection in a complex biological solution is also explored; however, significant loss of dynamic range is noted in the 100% complex solution. The cost effective approach described here can be used potentially for diagnosis of diseases (like MS) with known biomarkers in body fluids and for monitoring physiological levels of biomolecules with healthcare, food, and environmental relevance.

  10. Detecting the golgi protein 73 of liver cancer with micro cantilever

    NASA Astrophysics Data System (ADS)

    Thanh Tuyen Le, Thi; Pham, Van Tho; Nhat Khoa Phan, Thanh; Binh Pham, Van; Thao Le, Van; Hien Tong, Duy

    2014-12-01

    Golgi protein 73 (GP73) is a potential serum biomarker used in diagnosing human hepatocellular carcinoma (HCC). Compared to alpha-fetoprotein, detection of GP73 is expected to give better sensitivity and specificity and thus offers a better method for diagnosis of HCC at an early stage. In this paper, silicon nitride microcantilever was used to detect GP73. The cantilever was modified through many steps to contain antibody of GP73. The result shows that the cantilever can be used as a label-free sensor to detect this kind of biomarker.

  11. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis

    PubMed Central

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-01-01

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873

  12. A Label-Free Fluorescent Array Sensor Utilizing Liposome Encapsulating Calcein for Discriminating Target Proteins by Principal Component Analysis.

    PubMed

    Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru

    2017-07-15

    A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.

  13. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    PubMed Central

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei

    2011-01-01

    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair. PMID:22163821

  14. Tapered optical fiber sensor for label-free detection of biomolecules.

    PubMed

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei

    2011-01-01

    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber's first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair.

  15. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    PubMed

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  16. Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg

    2015-01-19

    We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. Themore » quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.« less

  17. Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag.

    PubMed

    Pan, Yuxiang; Wan, Zijian; Zhong, Longjie; Li, Xueqin; Wu, Qi; Wang, Jun; Wang, Ping

    2017-06-01

    Okadaic acid (OA) is a marine toxin ingested by shellfish. In this work, a simple, sensitive and label-free gap-based electrical competitive bioassay has been developed for this biotoxin detection. The gap-electrical biosensor is constructed by modifying interdigitated microelectrodes with gold nanoparticles (AuNPs) and using the self-catalytic growth of AuNPs as conductive bridges. In this development, the AuNPs growth is realized in the solution of glucose and chloroauric acid, with glucose oxidation used as the catalysis for growth of the AuNPs. The catalytic reaction product H 2 O 2 in turn reduces chloroauric acid to make the AuNPs grow. The conductance signal amplification is directly determined by the growth efficiency of AuNPs and closely related to the catalytic activity of AuNPs upon their interaction with OA molecule and OA aptamer. In the absence of OA molecule, the OA aptamer can absorb onto the surfaces of AuNPs due to electrostatic interaction, and the catalytically active sites of AuNPs are fully blocked. Thus the AuNPs growth would not happen. In contrast, the presence of OA molecule can hinder the interaction of OA aptamer and AuNPs. Then the AuNPs sites are exposed and the catalytic growth induces the conductance signal change. The results demonstrated that developed biosensor was able to specifically respond to OA ranging from 5 ppb to 80 ppb, providing limit of detection of 1 ppb. The strategy is confirmed to be effective for OA detection, which indicates the label-free OA biosensor has great potential to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  18. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.

    PubMed

    Rowland, Meng M; Bostic, Heidi E; Gong, Denghuang; Speers, Anna E; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F; Best, Michael D

    2011-12-27

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265

  19. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    PubMed

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  20. Real-Time, Label-Free, All-Electrical Detection of Salmonella typhimurium Using Lead Zirconate Titanate/Gold-Coated Glass Cantilevers at any Relative Humidity

    PubMed Central

    Zhu, Qing; Shih, Wan Y.; Shih, Wei-Heng

    2007-01-01

    We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = −5×10−11g/Hz, and a detection concentration sensitivity, 5×103 cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor. PMID:22872784

  1. Label-free optical imaging of membrane patches for atomic force microscopy

    PubMed Central

    Churnside, Allison B.; King, Gavin M.; Perkins, Thomas T.

    2010-01-01

    In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample. PMID:21164738

  2. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    PubMed

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions

    PubMed Central

    Abnousi, Armen; Broschat, Shira L.; Kalyanaraman, Ananth

    2016-01-01

    Background Identifying conserved regions in protein sequences is a fundamental operation, occurring in numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich regions within proteins, to compute protein clusters, to annotate sequence function, and to compute evolutionary relationships among protein sequences. A number of approaches exist for identifying and characterizing protein families based on their domains, and because domains represent conserved portions of a protein sequence, the primary computation involved in protein family characterization is identification of such conserved regions. However, identifying conserved regions from large collections (millions) of protein sequences presents significant challenges. Methods In this paper we present a new, alignment-free method for detecting conserved regions in protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method exploits the abundance of exact matching short subsequences (k-mers) to quickly detect conserved regions, and the power of machine learning is used to improve the prediction accuracy of detection. We present a parallel implementation of NADDA using the MapReduce framework and show that our method is highly scalable. Results We have compared NADDA with Pfam and InterPro databases. For known domains annotated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with new domains not present in the training set an average accuracy of 63% is achieved when compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability of NADDA to capture conserved regions beyond those present in Pfam. We have also compared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a single processor were 49s, 10,566s, and 456s

  4. Study and development of label-free optical biosensors for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.

    For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of

  5. Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine.

    PubMed

    Neves, Miguel A D; Blaszykowski, Christophe; Bokhari, Sumra; Thompson, Michael

    2015-10-15

    This paper describes a label-free and real-time piezoelectric aptasensor for the detection of cocaine. The acoustic wave sensing platform is a quartz substrate functionalized with an adlayer of S-(11-trichlorosilyl-undecanyl)-benzenethiosulfonate (BTS) cross-linker onto which the anti-cocaine MN4 DNA aptamer is next immobilized. Preparation of the sensor surface was monitored using X-ray photoelectron spectroscopy (XPS), while the binding of cocaine to surface-attached MN4 was evaluated using the electromagnetic piezoelectric acoustic sensor (EMPAS). The MN4 aptamer, unlike other cocaine aptamer variants, has its secondary structure preformed in the unbound state with only tertiary structure changes occurring during target binding. It is postulated that the highly sensitive EMPAS detected the binding of cocaine through target mass loading coupled to aptamer tertiary structure folding. The sensor achieved an apparent Kd of 45 ± 12 µM, and a limit of detection of 0.9 µM. Repeated regenerability of the sensor platform was also demonstrated. This work constitutes the first application of EMPAS technology in the field of aptasensors. Furthermore, it is so far one of the very few examples of a bulk acoustic wave aptasensor that is able to directly detect the binding interaction between an aptamer and a small molecule in a facile one-step protocol without the use of a complex assay or signal amplification step. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Label-Free Biosensor Imaging on Photonic Crystal Surfaces.

    PubMed

    Zhuo, Yue; Cunningham, Brian T

    2015-08-28

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  7. Label-Free Biosensor Imaging on Photonic Crystal Surfaces

    PubMed Central

    Zhuo, Yue; Cunningham, Brian T.

    2015-01-01

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity. PMID:26343684

  8. A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry.

    PubMed

    Brambilla, Francesca; Resta, Donatella; Isak, Ilena; Zanotti, Marco; Arnoldi, Anna

    2009-01-01

    Quantitative proteomics based on MS is useful for pointing out the differences in some food proteomes relevant to human nutrition. Stable isotope label-free (SIF) techniques are suitable for comparing an unlimited number of samples by the use of relatively simple experimental workflows. We have developed an internal standard label-free method based on the intensities of peptide precursor ions from MS/MS spectra, collected in data dependent runs, for the simultaneous qualitative characterization and relative quantification of storage proteins of Lupinus albus seeds in protein extracts of four lupin cultivars (cv Adam, Arés, Lucky, Multitalia). The use of an innovative microfluidic system, the HPLC-Chip, coupled with a classical IT mass spectrometer, has allowed a complete qualitative characterization of all proteins. In particular, the homology search mode has permitted to identify single amino acid substitutions in the sequences of vicilins (beta-conglutin precursor and vicilin-like protein). The MS/MS sequencing of substituted peptides confirms the high heterogeneity of vicilins according to the peculiar characteristics of the vicilin-encoding gene family. Two suitable bioinformatics parameters were optimized for the differential analyses of the main bioactive proteins: the "normalized protein average of common reproducible peptides" (N-ACRP) for gamma-conglutin, which is a homogeneous protein, and the "normalized protein mean peptide spectral intensity" (N-MEAN) for the highly heterogenous class of the vicilins.

  9. ZrO2 nanoparticles labeled via a native protein corona: detection by fluorescence microscopy and Raman microspectroscopy in rat lungs.

    PubMed

    Silge, Anja; Bräutigam, Katharina; Bocklitz, Thomas; Rösch, Petra; Vennemann, Antje; Schmitz, Inge; Popp, Jürgen; Wiemann, Martin

    2015-08-07

    ZrO2 nanoparticles are frequently used in composite materials such as dental fillers from where they may be released and inhaled upon polishing and grinding. Since the overall distribution of ZrO2 NP inside the lung parenchyma can hardly be observed by routine histology, here a labeling with a fluorphore was used secondary to the adsorption of serum proteins. Particles were then intratracheally instilled into rat lungs. After 3 h fluorescent structures consisted of agglomerates scattered throughout the lung parenchyma, which were mainly concentrated in alveolar macrophages after 3 d. A detection method based on Raman microspectroscopy was established to investigate the chemical composition of those fluorescent structures in detail. Raman measurements were arranged such that no spectral interference with the protein-bound fluorescence label was evident. Applying chemometrical methods, Raman signals of the ZrO2 nanomaterial were co-localized with the fluorescence label, indicating the stability of the nanomaterial-protein-dye complex inside the rat lung. The combination of Raman microspectroscopy and adsorptive fluorescence labeling may, therefore, become a useful tool for studying the localization of protein-coated nanomaterials in cells and tissues.

  10. Detection and size analysis of proteins with switchable DNA layers.

    PubMed

    Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2009-04-01

    We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.

  11. Phosphatidylinositol (3,4,5)-Trisphosphate Activity Probes for the Labeling and Proteomic Characterization of Protein Binding Partners

    PubMed Central

    Rowland, Meng M.; Bostic, Heidi E.; Gong, Denghuang; Speers, Anna E.; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F.; Best, Michael D.

    2013-01-01

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane-association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins as well as a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by on-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analog as well as through protein denaturation, indicating specific labeling. In addition, probes featuring different linker lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts, labeled proteins were observed by in-gel detection and characterized using post-labeling with biotin, affinity chromatography and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins

  12. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content.

    PubMed

    Gao, Hongfei; Wen, Luke; Wu, Yuhua; Fu, Zhifeng; Wu, Gang

    2017-11-15

    The development of genetically modified (GM) insect-resistant crops has aroused great public concern about the risks on the eco-environment resulting from a release of toxic Cry proteins (such as Cry1Ab) to the soil. Therefore, it is of crucial importance to measure the Cry proteins level and the GM crops content. Here, we have tested for the first time a method that uses novel carbon nanospheres (CNPs) label-free electrochemiluminescent (ECL) immunosensor for the ultrasensitive quantification of Cry1Ab and GM crops. In this work, novel CNPs were prepared from printer toner with a very facile approach, and linked with anti-Cry1Ab antibodies to modify a golden working electrode. The immunoreaction between Cry1Ab and its antibody formed an immunocomplex on the bioreceptor region of the sensor, which inhibited electron transfer between the electrode surface and the ECL substance, leading to a decrease of ECL response. Under the optimal conditions, the fabricated label-free ECL immunosensor determined Cry1Ab down to 3.0pgmL -1 within a linear range of 0.010-1.0ngmL -1 , showing significant improvement of sensitivity than that of most previous reports. Meanwhile, the proposed method was successfully applied for GM rice BT63 and GM maize MON810 detections down to 0.010% and 0.020%, respectively. Due to its outstanding advantages such as high sensitivity, ideal selectivity, simple fabrication, rapid detection, and low cost, the developed method can be considered as a powerful and pioneering tool for GM crops detection. Its use can also be extended to other toxin protein sensing in foods. Copyright © 2017. Published by Elsevier B.V.

  13. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.

    PubMed

    Shi, Xinhao; Gu, Wei; Zhang, Cuiling; Zhao, Longyun; Peng, Weidong; Xian, Yuezhong

    2015-03-14

    In this work, we developed a novel, label-free, colorimetric sensor for Pb(2+) detection based on the acceleration of gold leaching by graphene oxide (GO) at room temperature. Gold nanoparticles (AuNPs) can be dissolved in a thiosulfate (S2O3(2-)) aqueous environment in the presence of oxygen; however, the leaching rate is very slow due to the high activation energy (27.99 kJ mol(-1)). In order to enhance the reaction rate, some accelerators should be added. In comparison with the traditional accelerators (metal ions or middle ligands), we found that GO could efficiently accelerate the gold leaching reaction. Kinetic data demonstrate that the dissolution rate of gold in the Pb(2+)-S2O3(2-)-GO system is 5 times faster than that without GO at room temperature. In addition, the effects of surface modification and the nanoparticle size on the etching of AuNPs were investigated. Based on the GO-accelerated concentration-dependent colour changes of AuNPs, a colorimetric sensor for Pb(2+) detection was developed with a linear range from 0.1 to 20 μM and the limit of detection (LOD) was evaluated to be 0.05 μM. This colorimetric assay is simple, low-cost, label-free, and has numerous potential applications in the field of environmental chemistry.

  14. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.

    PubMed

    Cattani-Scholz, Anna; Pedone, Daniel; Dubey, Manish; Neppl, Stefan; Nickel, Bert; Feulner, Peter; Schwartz, Jeffrey; Abstreiter, Gerhard; Tornow, Marc

    2008-08-01

    We investigated hydroxyalkylphosphonate monolayers as a novel platform for the biofunctionalization of silicon-based field effect sensor devices. This included a detailed study of the thin film properties of organophosphonate films on Si substrates using several surface analysis techniques, including AFM, ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity, and current-voltage characteristics in electrolyte solution. Our results indicate the formation of a dense monolayer on the native silicon oxide that has excellent passivation properties. The monolayer was biofunctionalized with 12 mer peptide nucleic acid (PNA) receptor molecules in a two-step procedure using the heterobifunctional linker, 3-maleimidopropionic-acid-N-hydroxysuccinimidester. Successful surface modification with the probe PNA was verified by XPS and contact angle measurements, and hybridization with DNA was determined by fluorescence measurements. Finally, the PNA functionalization protocol was translated to 2 microm long, 100 nm wide Si nanowire field effect devices, which were successfully used for label-free DNA/PNA hybridization detection.

  15. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.

    PubMed

    Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred

    2014-07-16

    We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence

  16. Label-Free Sensitive Detection of DNA Methyltransferase by Target-Induced Hyperbranched Amplification with Zero Background Signal.

    PubMed

    Zhang, Yan; Wang, Xin-Yan; Zhang, Qianyi; Zhang, Chun-Yang

    2017-11-21

    DNA methyltransferases (MTases) may specifically recognize the short palindromic sequences and transfer a methyl group from S-adenosyl-l-methionine to target cytosine/adenine. The aberrant DNA methylation is linked to the abnormal DNA MTase activity, and some DNA MTases have become promising targets of anticancer/antimicrobial drugs. However, the reported DNA MTase assays often involve laborious operation, expensive instruments, and radio-labeled substrates. Here, we develop a simple and label-free fluorescent method to sensitively detect DNA adenine methyltransferase (Dam) on the basis of terminal deoxynucleotidyl transferase (TdT)-activated Endonuclease IV (Endo IV)-assisted hyperbranched amplification. We design a hairpin probe with a palindromic sequence in the stem as the substrate and a NH 2 -modified 3' end for the prevention of nonspecific amplification. The substrate may be methylated by Dam and subsequently cleaved by DpnI, producing three single-stranded DNAs, two of which with 3'-OH termini may be amplified by hyperbranched amplification to generate a distinct fluorescence signal. Because high exactitude of TdT enables the amplification only in the presence of free 3'-OH termini and Endo IV only hydrolyzes the intact apurinic/apyrimidinic sites in double-stranded DNAs, zero background signal can be achieved. This method exhibits excellent selectivity and high sensitivity with a limit of detection of 0.003 U/mL for pure Dam and 9.61 × 10 -6 mg/mL for Dam in E. coli cells. Moreover, it can be used to screen the Dam inhibitors, holding great potentials in disease diagnosis and drug development.

  17. Developments in label-free microfluidic methods for single-cell analysis and sorting.

    PubMed

    Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L

    2018-04-24

    Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.

  18. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    PubMed

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  19. Applicability of 99m Tc-Labeled Human Serum Albumin Scintigraphy in Dogs With Protein-Losing Enteropathy.

    PubMed

    Engelmann, N; Ondreka, N; von Pückler, K; Mohrs, S; Sicken, J; Neiger, R

    2017-03-01

    Diagnosis of protein loss into the gastrointestinal tract using noninvasive techniques is challenging. In people, scintigraphy not only is a sensitive tool to confirm protein-losing enteropathy (PLE), but it also allows for localization of protein loss. To investigate the feasibility of 99m Tc-labeled human serum albumin (HSA) scintigraphy in dogs with PLE in comparison with control dogs. A total of 8 clinically healthy control research dogs and 7 client-owned dogs with gastrointestinal clinical signs and hypoalbuminemia (serum albumin concentration <2.0 g/dL). Prospective case-control study. After IV injection of 400 MBq freshly prepared 99m Tc HSA (30 mg/dog), images of the abdomen were obtained 10, 60, 120, and 240 minutes postinjection. Additional images of the salivary and thyroid glands were obtained to rule out free 99m Tc. A scan was considered positive for PLE when radiopharmaceutical exudation was detectable in the intestinal tract. Only 1 control dog showed exudation of the radiopharmaceutical into the intestinal tract. No free 99m Tc was detected in any dog. In dogs with PLE, focal small intestinal and diffuse small intestinal radiopharmaceutical exudation into the bowel was detected in 2 and 3 dogs, respectively, whereas in 2 dogs, there was disagreement about whether radiopharmaceutical exudation was focal or diffuse. 99m Tc-labeled HSA scintigraphy was feasible to diagnose PLE in dogs. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy

    DOE PAGES

    Lu, Fa-Ke; Basu, Srinjan; Igras, Vivien; ...

    2015-08-31

    Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based onmore » changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Moreover, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. In conclusion, our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time.« less

  1. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy

    PubMed Central

    Lu, Fa-Ke; Basu, Srinjan; Igras, Vivien; Hoang, Mai P.; Ji, Minbiao; Fu, Dan; Holtom, Gary R.; Neel, Victor A.; Freudiger, Christian W.; Fisher, David E.; Xie, X. Sunney

    2015-01-01

    Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based on changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Furthermore, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. Our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time. PMID:26324899

  2. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    PubMed Central

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  3. Conductive silver paste smeared glass substrates for label-free Raman spectroscopic detection of HIV-1 and HIV-1 p24 antigen in blood plasma.

    PubMed

    Otange, Ben O; Birech, Zephania; Okonda, Justus; Rop, Ronald

    2017-05-01

    We report on application of conductive silver paste smeared glass slides as Raman spectroscopy sample substrates for label-free detection of HIV-1 p24 antigen in blood plasma. We also show that the same substrates can be applied in Raman spectroscopic screening of blood plasma for presence of HIV. The characteristic Raman spectrum of HIV-1 p24 antigen displayed prominent bands that were assigned to ribonucleic acids (RNA) and proteins that constitute the antigen. This spectrum can be used as reference during Raman spectroscopic screening for HIV in plasma within the first few days after exposure (<7 days). The Raman spectra obtained from HIV+ plasma displayed unique peaks centered at wavenumbers 928, 990, 1270, 1397, and 1446 cm -1 attributed to the Raman active vibrations in the virion carbohydrates, lipids, and proteins. Other bands similar to those reported in literature were also seen and assignments made. The attachment of the HIV virions to silver nanoparticles via gp120 glycoprotein knobs was thought to be responsible for the enhanced Raman signals of proteins associated with the virus. The principal component analysis (PCA) applied on the combined spectral data showed that HIV- and HIV+ spectra had differing spectral patterns. This indicated the great power of Raman spectroscopy in HIV detection when plasma samples are deposited onto silver paste smeared glass substrates. The Raman peaks responsible for the segregation of the spectral data in PCA were mainly those assigned to the viral proteins (645, 725, 813, 1270, and 1658 cm -1 ). Excellent results were obtained from Artificial Neural Network (ANN) applied on the HIV+ Raman spectral data around the prominent peak centered at 1270 cm -1 with R (coefficient of correlation) and R 2 (coefficient of determination) values of 0.9958 and 0.9895, respectively. The method has the potential of being used as quick blood screening for HIV before blood transfusion with the Raman peaks assigned to the virion

  4. A multi-analyte biosensor for the simultaneous label-free detection of pathogens and biomarkers in point-of-need animal testing.

    PubMed

    Ewald, Melanie; Fechner, Peter; Gauglitz, Günter

    2015-05-01

    For the first time, a multi-analyte biosensor platform has been developed using the label-free 1-lambda-reflectometry technique. This platform is the first, which does not use imaging techniques, but is able to perform multi-analyte measurements. It is designed to be portable and cost-effective and therefore allows for point-of-need testing or on-site field-testing with possible applications in diagnostics. This work highlights the application possibilities of this platform in the field of animal testing, but is also relevant and transferable to human diagnostics. The performance of the platform has been evaluated using relevant reference systems like biomarker (C-reactive protein) and serology (anti-Salmonella antibodies) as well as a panel of real samples (animal sera). The comparison of the working range and limit of detection shows no loss of performance transferring the separate assays to the multi-analyte setup. Moreover, the new multi-analyte platform allows for discrimination between sera of animals infected with different Salmonella subtypes.

  5. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    PubMed

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  6. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  7. Label-free and substrate-free potentiometric aptasensing using polycation-sensitive membrane electrodes.

    PubMed

    Ding, Jiawang; Chen, Yan; Wang, Xuewei; Qin, Wei

    2012-02-21

    A potentiometric label-free and substrate-free (LFSF) aptasensing strategy which eliminates the labeling, separation, and immobilization steps is described in this paper. An aptamer binds specifically to a target molecule via reaction incubation, which could induce a change in the aptamer conformation from a random coil-like configuration to a rigid folded structure. Such a target binding-induced aptamer conformational change effectively prevents the aptamer from electrostatically interacting with the protamine binding domain. This could either shift the response curve for the potentiometric titration of the aptamer with protamine as monitored by a conventional polycation-sensitive membrane electrode or change the current-dependent potential detected by a protamine-conditioned polycation-sensitive electrode with the pulsed current-driven ion fluxes of protamine across the polymeric membrane. Using adenosine triphosphate (ATP) as a model analyte, the proposed concept offers potentiometric detection of ATP down to the submicromolar concentration range and has been applied to the determination of ATP in HeLa cells. In contrast to the current LFSF aptasensors based on optical detection, the proposed strategy allows the LFSF biosensing of aptamer/target binding events in a homogeneous solution via electrochemical transduction. It is anticipated that the proposed strategy will lay a foundation for development of potentiometric sensors for LFSF aptasensing of a variety of analytes where target binding-induced conformational changes such as the formation of folded structures and the opening of DNA hairpin loops are involved.

  8. Point-of-need detection using surface-based biosensors with an examination of protein immobilization and development of magnetic labels

    NASA Astrophysics Data System (ADS)

    Lim, China Ye-Ling

    Over the past decade, our research group has worked on developing surface-based immunoassays to detect disease biomarkers. Our immunoassay platforms use a gold surface coated with an N-hydroxysuccinimide (NHS)-based monolayer and a layer of antibodies to capture a target antigen. Readout is achieved by surface-enhanced Raman scattering (SERS) or giant magnetoresistance (GMR) after labeling of the captured antigen with Raman dye-modified gold nanoparticles or magnetic particles, which are also coated with antibodies. Both of these platforms enable the low-level detection of numerous biomarkers and have the potential for translation into a point-of-need (PON) (i.e., rapid, easy to use, and field deployable) test. As part of an effort to develop a PON test, this dissertation includes investigations of: (1) SERS-based detection of botulinum neurotoxins (BoNTs), (2) protein immobilization procedures, and (3) magnetic microcapsules (MMCs) for use with GMR detection. First, a SERS-based immunoassay for bioterrorism agents, botulinum neurotoxins A (BoNT-A) and B (BoNT-B) with picomolar (or lower) detection limits for BoNT-A and BoNT-B in buffer and serum is described. These results not only demonstrate sufficient detection of these markers at levels important to homeland security and human health monitoring, but also the potential to translate this methodology to a PON test. Next, the reactivity of NHS ester-terminated monolayers, a common approach in protein immobilization chemistry, is investigated to assess the competition of the purported amidization reaction to that of hydrolysis. Results of kinetic studies on hydrolysis and aminolysis under relevant assay conditions show the rate of hydrolysis is 300x faster than that of aminolysis. These results indicate that it is highly unlikely that proteins are covalently linked to the surface and suggest that the protein layer is adsorbed via hydrophobic, hydrogen bonding, and electrostatic interactions. The last section

  9. High-throughput profiling of nanoparticle-protein interactions by fluorescamine labeling.

    PubMed

    Ashby, Jonathan; Duan, Yaokai; Ligans, Erik; Tamsi, Michael; Zhong, Wenwan

    2015-02-17

    A rapid, high throughput fluorescence assay was designed to screen interactions between proteins and nanoparticles. The assay employs fluorescamine, a primary-amine specific fluorogenic dye, to label proteins. Because fluorescamine could specifically target the surface amines on proteins, a conformational change of the protein upon interaction with nanoparticles will result in a change in fluorescence. In the present study, the assay was applied to test the interactions between a selection of proteins and nanoparticles made of polystyrene, silica, or iron oxide. The particles were also different in their hydrodynamic diameter, synthesis procedure, or surface modification. Significant labeling differences were detected when the same protein incubated with different particles. Principal component analysis (PCA) on the collected fluorescence profiles revealed clear grouping effects of the particles based on their properties. The results prove that fluorescamine labeling is capable of detecting protein-nanoparticle interactions, and the resulting fluorescence profile is sensitive to differences in nanoparticle's physical properties. The assay can be carried out in a high-throughput manner, and is rapid with low operation cost. Thus, it is well suited for evaluating interactions between a larger number of proteins and nanoparticles. Such assessment can help to improve our understanding on the molecular basis that governs the biological behaviors of nanomaterials. It will also be useful for initial examination of the bioactivity and reproducibility of nanomaterials employed in biomedical fields.

  10. Semiconductor sensor embedded microfluidic chip for protein biomarker detection using a bead-based immunoassay combined with deoxyribonucleic acid strand labeling.

    PubMed

    Lin, Yen-Heng; Peng, Po-Yu

    2015-04-15

    Two major issues need to be addressed in applying semiconductor biosensors to detecting proteins in immunoassays. First, the length of the antibody on the sensor surface surpasses the Debye lengths (approximately 1 nm, in normal ionic strength solution), preventing certain specifically bound proteins from being tightly attached to the sensor surface. Therefore, these proteins do not contribute to the sensor's surface potential change. Second, these proteins carry a small charge and can be easily affected by the pH of the surrounding solution. This study proposes a magnetic bead-based immunoassay using a secondary antibody to label negatively charged DNA fragments for signal amplification. An externally imposed magnetic force attaches the analyte tightly to the sensor surface, thereby effectively solving the problem of the analyte protein's distance to the sensor surface surpassing the Debye lengths. In addition, a normal ion intensity buffer can be used without dilution for the proposed method. Experiments revealed that the sensitivity can be improved by using a longer DNA fragment for labeling and smaller magnetic beads as solid support for the antibody. By using a 90 base pair DNA label, the signal was 15 times greater than that without labeling. In addition, by using a 120 nm magnetic bead, a minimum detection limit of 12.5 ng mL(-1) apolipoprotein A1 can be measured. Furthermore, this study integrates a semiconductor sensor with a microfluidic chip. With the help of microvalves and micromixers in the chip, the length of the mixing step for each immunoassay has been reduced from 1h to 20 min, and the sample volume has been reduced from 80 μL to 10 μL. In practice, a protein biomarker in a urinary bladder cancer patient's urine was successfully measured using this technique. This study provides a convenient and effective method to measure protein using a semiconductor sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    PubMed

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A comparative Study of Aptasensor Vs Immunosensor for Label-Free PSA Cancer Detection on GQDs-AuNRs Modified Screen-Printed Electrodes.

    PubMed

    Srivastava, Monika; Nirala, Narsingh R; Srivastava, S K; Prakash, Rajiv

    2018-01-31

    Label-free and sensitive detection of PSA (Prostate Specific Antigen) is still a big challenge in the arena of prostate cancer diagnosis in males. We present a comparative study for label-free PSA aptasensor and PSA immunosensor for the PSA-specific monoclonal antibody, based on graphene quantum dots-gold nanorods (GQDs-AuNRs) modified screen-printed electrodes. GQDs-AuNRs composite has been synthesized and used as an electro-active material, which shows fast electron transfer and catalytic property. Aptamer or anti-PSA has immobilized onto the surface of modified screen printed electrodes. Three techniques are used simultaneously, viz. cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedence spectroscopy (EIS) to investigate the analytical performance of both PSA aptasensor and PSA immunosensor with its corresponding PSA antigen. Under optimum conditions, both sensors show comparable results with an almost same limit of detection (LOD) of 0.14 ng mL -1 . The results developed with aptasensor and anti-PSA is also checked through the detection of PSA in real samples with acceptable results. Our study suggests some advantages of aptasensor in terms of better stability, simplicity and cost effectiveness. Further our present work shows enormous potential of our developed sensors for real application using voltammetric and EIS techniques simultaneous to get reliable detection of the disease.

  13. Protein 19F-labeling using transglutaminase for the NMR study of intermolecular interactions.

    PubMed

    Hattori, Yoshikazu; Heidenreich, David; Ono, Yuki; Sugiki, Toshihiko; Yokoyama, Kei-Ichi; Suzuki, Ei-Ichiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2017-08-01

    The preparation of stable isotope-labeled proteins is important for NMR studies, however, it is often hampered in the case of eukaryotic proteins which are not readily expressed in Escherichia coli. Such proteins are often conveniently investigated following post-expression chemical isotope tagging. Enzymatic 15 N-labeling of glutamine side chains using transglutaminase (TGase) has been applied to several proteins for NMR studies. 19 F-labeling is useful for interaction studies due to its high NMR sensitivity and susceptibility. Here, 19 F-labeling of glutamine side chains using TGase and 2,2,2-trifluoroethylamine hydrochloride was established for use in an NMR study. This enzymatic 19 F-labeling readily provided NMR detection of protein-drug and protein-protein interactions with complexes of about 100 kDa since the surface residues provided a good substrate for TGase. The 19 F-labeling method was 3.5-fold more sensitive than 15 N-labeling, and could be combined with other chemical modification techniques such as lysine 13 C-methylation. 13 C-dimethylated- 19 F-labeled FKBP12 provided more accurate information concerning the FK506 binding site.

  14. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  15. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    PubMed

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  16. Label-free electrochemical genosensor based on mesoporous silica thin film.

    PubMed

    Saadaoui, Maroua; Fernández, Iñigo; Luna, Gema; Díez, Paula; Campuzano, Susana; Raouafi, Noureddine; Sánchez, Alfredo; Pingarrón, José M; Villalonga, Reynaldo

    2016-10-01

    A novel label-free electrochemical strategy for nucleic acid detection was developed by using gold electrodes coated with mesoporous silica thin films as sensing interface. The biosensing approach relies on the covalent attachment of a capture DNA probe on the surface of the silica nanopores and further hybridization with its complementary target oligonucleotide sequence, causing a diffusion hindering of an Fe(CN)6 (3-/4-) electrochemical probe through the nanochannels of the mesoporous film. This DNA-mesoporous silica thin film-modified electrodes allowed sensitive (91.7 A/M) and rapid (45 min) detection of low nanomolar levels of synthetic target DNA (25 fmol) and were successfully employed to quantify the endogenous content of Escherichia coli 16S ribosomal RNA (rRNA) directly in raw bacterial lysate samples without isolation or purification steps. Moreover, the 1-month stability demonstrated by these biosensing devices enables their advanced preparation and storage, as desired for practical real-life applications. Graphical abstract Mesoporous silica thin films as scaffolds for the development of novel label-free electrochemical genosensors to perform selective, sensitive and rapid detection of target oligonucleotide sequences. Application towards E. coli determination.

  17. A label-free fluorimetric detection of biothiols based on the oxidase-like activity of Ag+ ions

    NASA Astrophysics Data System (ADS)

    Li, Ru; Lei, Cuihua; Zhao, Xian-En; Gao, Yue; Gao, Han; Zhu, Shuyun; Wang, Hua

    2018-01-01

    In this work, a label-free and sensitive fluorimetric method has been developed for the detections of biothiols including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), based on the specific biothiol-induced inhibition of the oxidase-like activity of silver ions (Ag+). It is well established that o-phenylenediamine (OPD) can be oxidized by Ag+ ions to generate fluorescent 2,3-diaminophenazine (OPDox). The introduction of biothiols would inhibit the oxidation of OPD by Ag+ due to the strong coordination between biothiols and Ag+. The changes of fluorescence intensities obtained in the Ag+-OPD system exhibited good linear correlations in the ranges of 0.50-30.0 μM for Cys, 1.0-45.0 μM for Hcy and 0.50-40.0 μM for GSH. The detection limits (S/N = 3) of Cys, Hcy and GSH were 110 nM, 200 nM and 150 nM, respectively. Subsequently, the developed fluorimetric method was successfully applied for the detection of biothiols in human serum.

  18. An ATMND/SGI based label-free and fluorescence ratiometric aptasensor for rapid and highly sensitive detection of cocaine in biofluids.

    PubMed

    Wang, Jiamian; Song, Jie; Wang, Xiuyun; Wu, Shuo; Zhao, Yanqiu; Luo, Pinchen; Meng, Changgong

    2016-12-01

    A label-free ratiometric fluorescence aptasensor has been developed for the rapid and sensitive detection of cocaine in complex biofluids. The fluorescent aptasensor is composed of a non-labeled GC-38 cocaine aptamer which serves as a basic sensing unit and two fluorophores, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and SYBR Green I (SGI) which serves as a signal reporter and a build-in reference, respectively. The detection principle is based on a specific cocaine mediated ATMND displacement reaction and the corresponding change in the fluorescence ratio of ATMND to SGI. Due to the high affinity of the non-labeled aptamer, the good precision originated from the ratiometric method, and the good fluorescence quantum yield of the fluorophore, the aptasensor shows good analytical performance with respect to cocaine detection. Under optimal conditions, the aptasensor shows a linear range of 0.10-10μM and a low limit of detection of 56nM, with a fast response of 20s. The low limit of detection is comparable to most of the fluorescent aptasensors with signal amplification strategies and much lower than all of the unamplified cocaine aptasensors. Practical sample analysis in a series of complex biofluids, including urine, saliva and serum, also indicates the good precision, stability, and high sensitivity of the aptasensor, which may have great potential for the point-of-care screening of cocaine in complex biofluids. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    PubMed Central

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054. PMID:25181601

  20. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase.

    PubMed

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-28

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.

  1. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    PubMed

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection.

    PubMed

    He, Yi; Huang, Guangming; Cui, Hua

    2013-11-13

    It was found that graphene oxide (GO) could effectively quench the chemiluminescence (CL) emission from a acridinium ester (AE)-hydrogen peroxide system. By taking advantage of this quenching effect, as a proof of concept, a label-free and homogeneous DNA assay was developed for the detection of Mycobacterium tuberculosis DNA. In the absence of target DNA, both probe DNA and AE were absorbed on the surface of GO, producing a weak CL emission owing to the CL quenching effect of GO. However, in the presence of target DNA, a double-stranded structure of DNA was generated, leading to the release of the oligonucleotide from the GO surface. AE favors binding with double-stranded DNA, which will be released from the GO surface; thus, the quenching effect of GO will be no longer effective and a strong CL signal can be observed. This assay can detect M. tuberculosis DNA with a detection limit of 0.65 nM. This sensitivity is lower than that of previously reported electrochemical detection.

  3. Detection of relevant amounts of cow's milk protein in non-pre-packed bakery products sold as cow's milk-free.

    PubMed

    Trendelenburg, V; Enzian, N; Bellach, J; Schnadt, S; Niggemann, B; Beyer, K

    2015-05-01

    Currently, there is no mandatory labelling of allergens for non-pre-packed foods in the EU. Therefore, consumers with food allergy rely on voluntary information provided by the staff. The aim of this study was to characterize allergic reactions to non-pre-packed foods and to investigate whether staff in bakery shops were able to give advice regarding a safe product choice. Questionnaires were sent to 200 parents of children with a food allergy. Staff of 50 bakery shops were interviewed regarding selling non-pre-packed foods to food-allergic customers. Bakery products being recommended as 'cow's milk-free' were bought, and cow's milk protein levels were measured using ELISA. A total of 104 of 200 questionnaires were returned. 25% of the children experienced an allergic reaction due to a non-pre-packed food from bakery shops and 20% from ice cream parlours. Sixty percent of the bakery staff reported serving food-allergic customers at least once a month, 24% once a week. Eighty four percent of the staff felt able to advise food-allergic consumers regarding a safe product choice. Seventy three 'cow's milk-free' products were sold in 44 bakery shops. Cow's milk could be detected in 43% of the bakery products, 21% contained >3 mg cow's milk protein per serving. Staff in bakery shops felt confident about advising customers with food allergy. However, cow's milk was detectable in almost half of bakery products being sold as 'cow's milk-free'. Every fifth product contained quantities of cow's milk exceeding an amount where approximately 10% of cow's milk-allergic children will show clinical relevant symptoms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  5. A dual marker label free electrochemical assay for Flavivirus dengue diagnosis.

    PubMed

    Santos, Adriano; Bueno, Paulo R; Davis, Jason J

    2018-02-15

    Dengue is a RNA viral illness of the genus Flavivirus which can cause, depending on the pervasiveness of the infection, hemorrhagic dengue fever or dengue shock syndrome. Herein we present an electrochemical label free approach enabling the rapid sensitive quantification of NS1 and IgG (supporting an ability to distinguish primary and secondary infections). Using a bifunctional SAM containing PEG moieties and a tethered redox thiol, both markers are detectable across clinically relevant levels by label free impedance derived redox capacitance. A subsequent frequency specific immittance function approach enables assaying (within seconds) with no impairment of analytical quality (linearity, sensitivity and variance). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Single Zno Nanowire-Based Biofet Sensors for Ultrasensitive, Label-Free and Real-Time Detection of Uric Acid

    NASA Astrophysics Data System (ADS)

    Lin, Pei; Liu, Xi; Yan, Xiaoqin; Kang, Zhuo; Lei, Yang; Zhao, Yanguang

    2012-08-01

    Qualitative and quantitative detection of biological and chemical species is crucial in many areas, ranging from clinical diagnosis to homeland security. Due to the advantages of ultrahigh sensitivity, label-free, fast readout and easy fabrication over the traditional detection systems, semiconductor nanowire based electronic devices have emerged as a potential platform. In this paper, we fabricated a single ZnO nanowire-based bioFET sensor for the detection of low and high concentration uric acid solution at the same time. The addition of uric acid with the concentrations from 1 pM to 0.5 mM resulted in the electrical conductance changes of up to 227 nS, and the response time turns out to be in the order of millisecond. The ZnO NW biosensor could easily detect as low as 1 pM of the uric acid with 14.7 nS of conductance increase, which implied that the sensitivity of the biosensor can be below the 1pM concentration.

  7. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-06-01

    Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.

  8. Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry.

    PubMed

    Hauck, Stefanie M; Dietter, Johannes; Kramer, Roxane L; Hofmaier, Florian; Zipplies, Johanna K; Amann, Barbara; Feuchtinger, Annette; Deeg, Cornelia A; Ueffing, Marius

    2010-10-01

    Autoimmune uveitis is a blinding disease presenting with autoantibodies against eye-specific proteins as well as autoagressive T cells invading and attacking the immune-privileged target tissue retina. The molecular events enabling T cells to invade and attack the tissue have remained elusive. Changes in membrane protein expression patterns between diseased and healthy stages are especially interesting because initiating events of disease will most likely occur at membranes. Since disease progression is accompanied with a break-down of the blood-retinal barrier, serum-derived proteins mask the potential target tissue-related changes. To overcome this limitation, we used membrane-enriched fractions derived from retinas of the only available spontaneous animal model for the disease equine recurrent uveitis, and compared expression levels by a label-free LC-MSMS-based strategy to healthy control samples. We could readily identify a total of 893 equine proteins with 57% attributed to the Gene Ontology project term "membrane." Of these, 179 proteins were found differentially expressed in equine recurrent uveitis tissue. Pathway enrichment analyses indicated an increase in proteins related to antigen processing and presentation, TNF receptor signaling, integrin cell surface interactions and focal adhesions. Additionally, loss of retina-specific proteins reflecting decrease of vision was observed as well as an increase in Müller glial cell-specific proteins indicating glial reactivity. Selected protein candidates (caveolin 1, integrin alpha 1 and focal adhesion kinase) were validated by immunohistochemistry and tissue staining pattern pointed to a significant increase of these proteins at the level of the outer limiting membrane which is part of the outer blood-retinal barrier. Taken together, the membrane enrichment in combination with LC-MSMS-based label-free quantification greatly increased the sensitivity of the comparative tissue profiling and resulted in detection

  9. Direct protein detection with a nano-interdigitated array gate MOSFET.

    PubMed

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  10. Robust label-free biosensing using microdisk laser arrays with on-chip references.

    PubMed

    Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C

    2018-02-05

    Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.

  11. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  12. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increasedmore » in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.« less

  13. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  14. Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb(2+) using molecular beacon and DNAzyme based amplification strategy.

    PubMed

    Yun, Wen; Cai, Dingzhou; Jiang, JiaoLai; Zhao, Pengxiang; Huang, Yu; Sang, Ge

    2016-06-15

    An enzyme-free and label-free colorimetric Pb(2+) sensor based on DNAzyme and molecular beacon (MB) has been developed and demonstrated by recycle using enzyme strand for signal amplification. The substrate strand DNA (S-DNA) of DNAzyme could be converted into MB structure with base pairs of stem part at the both ends. The MB could hybridize with enzyme strand DNA (E-DNA) to form DNAzyme, and be activated and cleaved in the presence of Pb(2+). The cleaved MB is much less stable, releasing from the DNAzyme as two product pieces. The product pieces of MB are flexible and could bind to unmodified AuNPs to effectively stabilize them against salt-induced aggregation. Then, the E-DNA is liberated to catalyze the next reaction and amplify the response signal. By taking advantage of repeated using of E-DNA, our proposed method exhibited high sensitive for Pb(2+) detection in a linear range from 0.05 to 5 nM with detection limit of 20 pM by UV-vis spectrometer. Moreover, this method was also used for determination of Pb(2+) in river water samples with satisfying results. Importantly, this strategy could reach high sensitivity without any modification and complex enzymatic or hairpins based amplification procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Detection of Z DNA binding proteins in tissue culture cells.

    PubMed Central

    Leith, I R; Hay, R T; Russell, W C

    1988-01-01

    A gel electrophoresis DNA binding assay to detect Z DNA binding proteins has been developed utilising [32P] labelled poly [d(G-C)] which was converted to the Z form by incubation in 100 microM Co(NH3)6Cl3. The parameters of the assay were established using a Z DNA antibody as a model system and then applied to extracts of Hela and BHK21 cells. Using an anti-Z DNA antibody conditions were established which allowed resolution of antibody-DNA complexes and free DNA in the presence of 100 microM Co(NH3)6Cl3. The inclusion of unlabelled complementary homopolymers eliminated non-specific binding to the labelled Z-DNA probe. Competition experiments demonstrated that the assay was highly specific for double stranded non-B DNA. Application of the technique to extracts of mammalian cells demonstrated that human and hamster cells contain Z-DNA binding proteins; further characterisation by a blotting technique indicated that a 56,000 molecular weight cell protein preferentially binds Z-DNA. Images PMID:3419919

  16. A sensitive electrochemical immunosensor based on poly(2-aminobenzylamine) film modified screen-printed carbon electrode for label-free detection of human immunoglobulin G.

    PubMed

    Putnin, Thitirat; Jumpathong, Watthanachai; Laocharoensuk, Rawiwan; Jakmunee, Jaroon; Ounnunkad, Kontad

    2018-08-01

    This work focuses on fabricating poly(2-aminobenzylamine)-modified screen-printed carbon electrode as an electrochemical immunosensor for the label-free detection of human immunoglobulin G. To selectively detect immunoglobulin G, the anti-immunoglobulin G antibody with high affinity to immunoglobulin G was covalently linked with the amine group of poly(2-aminobenzylamine) film-deposited screen-printed carbon electrode. The selectivity for immunoglobulin G was subsequently assured by being challenged with redox-active interferences and adventitious adsorption did not significantly interfere the analyte signal. To obviate the use of costly secondary antibody, the [Fe(CN) 6 ] 4-/3- redox probe was instead applied to measure the number of human immunoglobulin G through the immunocomplex formation that is quantitatively related to the level of the differential pulse voltammetric current. The resulting immunosensor exhibited good sensitivity with the detection limit of 0.15 ng mL -1 , limit of quantitation of 0.50 ng mL -1 and the linear range from 1.0 to 50 ng mL -1 . Given those striking analytical performances and the affordability arising from using cheap screen-printed carbon electrode with label-free detection, the immunosensor serves as a promising model for the next-step development of a diagnostic tool.

  17. Label-free genotyping of cytochrome P450 2D6*10 using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection.

    PubMed

    Wang, Hong-Qi; Wu, Zhan; Zhang, Yan; Tang, Li-Juan; Yu, Ru-Qin; Jiang, Jian-Hui

    2012-01-13

    Genotyping of cytochrome P450 monooxygenase 2D6*10 (CYP2D6*10) plays an important role in pharmacogenomics, especially in clinical drug therapy of Asian populations. This work reported a novel label-free technique for genotyping of CYP2D6*10 based on ligation-mediated strand displacement amplification (SDA) with DNAzyme-based chemiluminescence detection. Discrimination of single-base mismatch is firstly accomplished using DNA ligase to generate a ligation product. The ligated product then initiates a SDA reaction to produce aptamer sequences against hemin, which can be probed by chemiluminescence detection. The proposed strategy is used for the assay of CYP2D6*10 target and the genomic DNA. The results reveal that the proposed technique displays chemiluminescence responses in linear correlation to the concentrations of DNA target within the range from 1 pM to 1 nM. A detection limit of 0.1 pM and a signal-to-background ratio of 57 are achieved. Besides such high sensitivity, the proposed CYP2D6*10 genotyping strategy also offers superb selectivity, great robustness, low cost and simplified operations due to its label-free, homogeneous, and chemiluminescence-based detection format. These advantages suggest this technique may hold considerable potential for clinical CYP2D6*10 genotyping and association studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence

    PubMed Central

    Xu, Weichen; Lu, Yi

    2009-01-01

    We report a label-free fluorescent aptamer sensor for adenosine based on the regulation of malachite green (MG) fluorescence, with comparable sensitivity and selectivity to other labeled adenosine aptamer-based sensors. The sensor consists of free MG, an aptamer strand containing an adenosine aptamer next to an MG aptamer, and a bridging strand that partially hybridizes to the aptamer strand. Such a hybridization prevents MG from binding to MG aptamer, resulting in low fluorescence of MG in the absence of adenosine. Addition of adenosine causes the adenosine aptamer to bind adenosine, weakening the hybridization of the aptamer strand with the bridging strand, making it possible for MG to bind to the aptamer strand and exhibits high fluorescence intensity. Since this design is based purely on nucleic acid hybridization, it can be generally applied to other aptamers for the label-free detection of a broad range of analytes. PMID:20017558

  19. Protein-Ligand Interaction Detection with a Novel Method of Transient Induced Molecular Electronic Spectroscopy (TIMES): Experimental and Theoretical Studies.

    PubMed

    Zhang, Tiantian; Wei, Tao; Han, Yuanyuan; Ma, Heng; Samieegohar, Mohammadreza; Chen, Ping-Wei; Lian, Ian; Lo, Yu-Hwa

    2016-11-23

    Protein-ligand interaction detection without disturbances (e.g., surface immobilization, fluorescent labeling, and crystallization) presents a key question in protein chemistry and drug discovery. The emergent technology of transient induced molecular electronic spectroscopy (TIMES), which incorporates a unique design of microfluidic platform and integrated sensing electrodes, is designed to operate in a label-free and immobilization-free manner to provide crucial information for protein-ligand interactions in relevant physiological conditions. Through experiments and theoretical simulations, we demonstrate that the TIMES technique actually detects protein-ligand binding through signals generated by surface electric polarization. The accuracy and sensitivity of experiments were demonstrated by precise measurements of dissociation constant of lysozyme and N -acetyl-d-glucosamine (NAG) ligand and its trimer, NAG 3 . Computational fluid dynamics (CFD) computation is performed to demonstrate that the surface's electric polarization signal originates from the induced image charges during the transition state of surface mass transport, which is governed by the overall effects of protein concentration, hydraulic forces, and surface fouling due to protein adsorption. Hybrid atomistic molecular dynamics (MD) simulations and free energy computation show that ligand binding affects lysozyme structure and stability, producing different adsorption orientation and surface polarization to give the characteristic TIMES signals. Although the current work is focused on protein-ligand interactions, the TIMES method is a general technique that can be applied to study signals from reactions between many kinds of molecules.

  20. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study.

    PubMed

    Pirhonen, Juho; Arola, Johanna; Sädevirta, Sanja; Luukkonen, Panu; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Isomäki, Antti; Hukkanen, Mika; Yki-Järvinen, Hannele; Ikonen, Elina

    2016-01-01

    Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD. We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0-4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals. We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III. This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.

  1. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells.

    PubMed

    Wang, Kun; He, Meng-Qi; Zhai, Fu-Heng; He, Rong-Huan; Yu, Yong-Liang

    2017-05-01

    Simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. A sandwich electrochemical biosensor was developed based on polyadenine (polydA)-aptamer modified gold electrode (GE) and polydA-aptamer functionalized gold nanoparticles/graphene oxide (AuNPs/GO) hybrid for the label-free and selective detection of breast cancer cells (MCF-7) via a differential pulse voltammetry (DPV) technique. Due to the intrinsic affinity between multiple consecutive adenines of polydA sequences and gold, polydA modified aptamer instead of thiol terminated aptamer was immobilized on the surface of GE and AuNPs/GO. The label-free MCF-7 cells could be recognized by polydA-aptamer and self-assembled onto the surface of GE. The polydA-aptamer functionalized AuNPs/GO hybrid could further bind to MCF-7 cells to form a sandwich sensing system. Characterization of the surface modified GE was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using Fe(CN) 6 3-/4- as a redox probe. Under the optimized experimental conditions, a detection limit of 8 cellsmL -1 (3σ/slope) was obtained for MCF-7 cells by the present electrochemical biosensor, along with a linear range of 10-10 5 cellsmL -1 . By virtue of excellent sensitivity, specificity and repeatability, the present electrochemical biosensor provides a potential application in point-of-care cancer diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis.

    PubMed

    Dai, Peng; Wang, Qin; Wang, Weihua; Jing, Ruirui; Wang, Wei; Wang, Fengqin; Azadzoi, Kazem M; Yang, Jing-Hua; Yan, Zhen

    2016-01-21

    Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched pairs of human GC and adjacent tissues were analyzed by a coupled label-free Mass Spectrometry (MS) approach, followed by functional annotation with software analysis. Nano-LC-MS/MS, quantitative real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry were used to validate dysregulated proteins. One hundred forty-six dysregulated proteins with more than twofold expressions were quantified, 22 of which were first reported to be relevant with GC. Most of them were involved in cancers and gastrointestinal disease. The expression of a panel of four upregulated nucleic acid binding proteins, heterogeneous nuclear ribonucleoprotein hnRNPA2B1, hnRNPD, hnRNPL and Y-box binding protein 1 (YBX-1) were validated by Nano-LC-MS/MS, qRT-PCR, western blot and immunohistochemistry assays in ten GC patients' tissues. They were located in the keynotes of a predicted interaction network and might play important roles in abnormal cell growth. The label-free quantitative proteomic approach provides a deeper understanding and novel insight into GC-related molecular changes and possible mechanisms. It also provides some potential biomarkers for clinical diagnosis.

  3. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label.

    PubMed

    Fan, Ziyan; Keum, Young Soo; Li, Qing X; Shelver, Weilin L; Guo, Liang-Hong

    2012-05-01

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as an antibody label to increase the fluorescence signal and sensitivity of the immunoassays. Epoxy-modified glass slides were selected as the substrate for the production of 4 × 4 coating antigen microarrays. With this signal-enhancing system, competition curves for 17β-estradiol (E2), benzo[a]pyrene (BaP) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were obtained individually on the protein microarray. The IC(50) and calculated limit of detection (LOD) are 0.32 μg L(-1) and 0.022 μg L(-1) for E2, 37.2 μg L(-1) and 24.5 μg L(-1) for BaP, and 31.6 μg L(-1) and 2.8 μg L(-1) for BDE-47, respectively. LOD of E2 is 14-fold lower than the value reported in a previous study using Cy3 labeled antibody (Du et al., Clin. Chem, 2005, 51, 368-375). The results of the microarray immunoassay were within 15% of chromatographic analysis for all three pollutants in spiked river water samples, thus verifying the immunoassay. Simultaneous detection of E2, BaP and BDE-47 in one sample was demonstrated. There was no cross-reaction in the immunoassay between these three environmental chemicals. These results suggest that microarray-based immunoassays with DNA/dye conjugate labels are useful tools for the rapid, sensitive, and high throughput screening of multiple environmental contaminants.

  4. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke

    PubMed Central

    Liu, Huanling; Jablonska, Anna; Li, Yuguo; Cao, Suyi; Liu, Dexiang; Chen, Hanwei; Van Zijl, Peter CM; Bulte, Jeff W.M.; Janowski, Miroslaw; Walczak, Piotr; Liu, Guanshu

    2016-01-01

    ABSTRACT Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion. PMID:27446492

  5. A miniaturized optoelectronic system for rapid quantitative label-free detection of harmful species in food

    NASA Astrophysics Data System (ADS)

    Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos

    2016-03-01

    Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.

  6. Label-Free Fluorescent DNA Dendrimers for microRNA Detection Based On Nonlinear Hybridization Chain Reaction-Mediated Multiple G-Quadruplex with Low Background Signal.

    PubMed

    Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng

    2018-04-18

    Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative

  7. Applying a Targeted Label-free Approach using LC-MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Jaitly, Navdeep; Jayachandran, Hemalatha

    2007-10-12

    To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative Phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation sitemore » and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.« less

  8. Comparative study of label-free electrochemical immunoassay on various gold nanostructures

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Gao, C.; Li, C. M.; Bhatti, A. S.

    2013-10-01

    Electrochemical methods such as amperometry and impedance spectroscopy provide the feasibility of label-free immunoassay. However, the performance of electrochemical interfaces varies with the shape of gold nanostructures. In the present work three types of gold nanostructures including pyramid, spherical, and rod-like nanostructures were electrochemically synthesized on the gold electrode and were further transformed into immunosensor by covalent binding of antibodies. As a model protein, a cancer biomarker, Carcinoembryonic Antigen (CEA) was detected using amperometric and impedimetric techniques on three nanostructured electrodes, which enabled to evaluate and compare the immunoassay's performance. It was found that all three immunosensors showed improved linear electrochemical response to the concentration of CEA compared to bare Au electrode. Among all the spherical gold nanostructure based immunosensors displayed superior performance. Under optimal condition, the immunosensors exhibited a limit of detection of 4.1 pg ml-1 over a concentration range of five orders of magnitude. This paper emphasizes that fine control over the geometry of nanostructures is essentially important for high-performance electrochemical immunoassay.

  9. Rapid discovery of protein interactions by cell-free protein technologies.

    PubMed

    He, M; Taussig, M J

    2007-11-01

    Cell-free transcription and translation provides an open, controllable environment for production of correctly folded, soluble proteins and allows the rapid generation of proteins from DNA without the need for cloning. Thus it is becoming an increasingly attractive alternative to conventional in vivo expression systems, especially when parallel expression of multiple proteins is required. Through novel design and exploitation, powerful cell-free technologies of ribosome display and protein in situ arrays have been developed for in vitro production and isolation of protein-binding molecules from large libraries. These technologies can be combined for rapid detection of protein interactions.

  10. A label-free impedimetric DNA sensing chip integrated with AC electroosmotic stirring.

    PubMed

    Wu, Ching-Chou; Yang, Dong-Jie

    2013-05-15

    AC electroosmosis (ACEO) flow and label-free electrochemical impedance spectroscopy are employed to increase the hybridization rate and specifically detect target DNA (tDNA) concentrations. A low-ionic-strength solution, 6.1μS/cm 1mM Tris (pH 9.3), was used to produce ACEO and proved the feasibility of hybridization. Adequate voltage parameters for the simultaneous ACEO driving and DNA hybridization in the 1mM Tris solution were 1.5 Vpp and 200Hz. Moreover, an electrode set with a 1:4 ring width-to-disk diameter ratio exhibited a larger ACEO velocity above the disk electrode surface to improve collecting efficiency. The ACEO-integrated DNA sensing chips could reach 90% saturation hybridization within 117s. The linear range and detection limit of the sensors was 10aM-10pM and 10aM, respectively. The label-free impedimetric DNA sensing chips with integrated ACEO stirring can perform rapid hybridization and highly-sensitive detections to specifically measure tDNA concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors

    PubMed Central

    Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan

    2015-01-01

    Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827

  12. Plasma Proteome Dynamics: Analysis of Lipoproteins and Acute Phase Response Proteins with 2H2O Metabolic Labeling*

    PubMed Central

    Li, Ling; Willard, Belinda; Rachdaoui, Nadia; Kirwan, John P.; Sadygov, Rovshan G.; Stanley, William C.; Previs, Stephen; McCullough, Arthur J.; Kasumov, Takhar

    2012-01-01

    Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a 2H2O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. 2H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with 2H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions. PMID:22393261

  13. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples.

    PubMed

    Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok

    2015-08-04

    Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.

  14. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    PubMed

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  15. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors

    PubMed Central

    Pihíková, Dominika; Kasák, Peter

    2016-01-01

    Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer. PMID:27275016

  16. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  17. Label-free and enzyme-free detection of transcription factors with graphene oxide fluorescence switch-based multifunctional G-quadruplex-hairpin probe.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2016-01-15

    Transcription factors (TFs) play pivotal roles in the regulation of a variety of essential cellular processes and some of them have been recognized as potential diagnostic markers and therapeutic targets of some diseases. Sensitive and accurate detection of TFs is of great importance to better understanding their roles in gene regulation and evaluation of disease state. Here, we developed a simple, label-free and enzyme-free new fluorescent strategy for the detection of TFs by graphene oxide (GO) fluorescence switch-based multifunctional G-quadruplex-hairpin probe (MGHP). The MGHP possessed of three functions simultaneously, adsorbing onto GO with the loop part, binding to target with the stem part and serving as signal carrier with the terminal G-quadruplex. First, the MGHP was adsorbed quickly to GO. Next, the TF bound to the stem part of MGHP to form a huge target-MGHP complex, which led to desorption of the complex from GO. Finally, NMM was inserted into G-quadruplex in the complex to yield an enhanced fluorescence response. The GO used here, as a fluorescence switch, could quickly and efficiently quench the fluorescence of NMM inserted into the MGHP absorbed on the GO, guaranteeing a high signal-to-noise ratio. Sensitive detection of purified NF-κB p50 and HeLa cell nuclear extracts were achieved with detection limits of 0.2nM and 7.8ng/µL, respectively. Moreover, this proposed strategy could be used to screen inhibitors of NF-κB p50 activity. The strategy proposed here might offer a new potential approach for reliable quantification of TFs in clinical diagnostics and treatment research of some diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Antibodies Biotinylated Using a Synthetic Z-domain from Protein A Provide Stringent In Situ Protein Detection

    PubMed Central

    Konrad, Anna; Ashok, Nikhil; Pontén, Fredrik; Hober, Sophia; Asplund, Anna

    2013-01-01

    Antibody-based protein profiling on a global scale using immunohistochemistry constitutes an emerging strategy for mapping of the human proteome, which is crucial for an increased understanding of biological processes in the cell. Immunohistochemistry is often performed indirectly using secondary antibodies for detection, with the benefit of signal amplification. Direct immunohistochemistry instead brings the advantage of multiplexing; however, it requires labeling of the primary antibody. Many antibody-labeling kits do not specifically target IgG and may therefore cause labeling of stabilizing proteins present in the antibody solution. A new conjugation method has been developed that utilizes a modified Z-domain of protein A (ZBPA) to specifically target the Fc part of antibodies. The aim of the present study was to compare the ZBPA conjugation method and a commercially available labeling kit, Lightning-Link, for in situ protein detection. Fourteen antibodies were biotinylated with each method and stained using immunohistochemistry. For all antibodies tested, ZBPA biotinylation resulted in distinct immunoreactivity without off-target staining, regardless of the presence of stabilizing proteins in the buffer, whereas the majority of the Lightning-Link biotinylated antibodies displayed a characteristic pattern of nonspecific staining. We conclude that biotinylated ZBPA domain provides a stringent method for antibody biotinylation, advantageous for in situ protein detection in tissues. PMID:23920108

  19. An Informatics-assisted Label-free Approach for Personalized Tissue Membrane Proteomics: Case Study on Colorectal Cancer*

    PubMed Central

    Han, Chia-Li; Chen, Jinn-Shiun; Chan, Err-Cheng; Wu, Chien-Peng; Yu, Kun-Hsing; Chen, Kuei-Tien; Tsou, Chih-Chiang; Tsai, Chia-Feng; Chien, Chih-Wei; Kuo, Yung-Bin; Lin, Pei-Yi; Yu, Jau-Song; Hsueh, Chuen; Chen, Min-Chi; Chan, Chung-Chuan; Chang, Yu-Sun; Chen, Yu-Ju

    2011-01-01

    We developed a multiplexed label-free quantification strategy, which integrates an efficient gel-assisted digestion protocol, high-performance liquid chromatography tandem MS analysis, and a bioinformatics alignment method to determine personalized proteomic profiles for membrane proteins in human tissues. This strategy provided accurate (6% error) and reproducible (34% relative S.D.) quantification of three independently purified membrane fractions from the same human colorectal cancer (CRC) tissue. Using CRC as a model, we constructed the personalized membrane protein atlas of paired tumor and adjacent normal tissues from 28 patients with different stages of CRC. Without fractionation, this strategy confidently quantified 856 proteins (≥2 unique peptides) across different patients, including the first and robust detection (Mascot score: 22,074) of the well-documented CRC marker, carcinoembryonic antigen 5 by a discovery-type proteomics approach. Further validation of a panel of proteins, annexin A4, neutrophils defensin A1, and claudin 3, confirmed differential expression levels and high occurrences (48–70%) in 60 CRC patients. The most significant discovery is the overexpression of stomatin-like 2 (STOML2) for early diagnostic and prognostic potential. Increased expression of STOML2 was associated with decreased CRC-related survival; the mean survival period was 34.77 ± 2.03 months in patients with high STOML2 expression, whereas 53.67 ± 3.46 months was obtained for patients with low STOML2 expression. Further analysis by ELISA verified that plasma concentrations of STOML2 in early-stage CRC patients were elevated as compared with those of healthy individuals (p < 0.001), suggesting that STOML2 may be a noninvasive serological biomarker for early CRC diagnosis. The overall sensitivity of STOML2 for CRC detection was 71%, which increased to 87% when combined with CEA measurements. This study demonstrated a sensitive, label-free strategy for differential

  20. Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up.

    PubMed

    Soler, Maria; Estevez, M-Carmen; Moreno, Maria de Lourdes; Cebolla, Angel; Lechuga, Laura M

    2016-05-15

    Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish.

    PubMed

    Wu, Haiyun; Ohnuki, Hitoshi; Ota, Shirei; Murata, Masataka; Yoshiura, Yasutoshi; Endo, Hideaki

    2017-07-15

    Fishes display a wide variation in their physiological responses to stress, which is clearly evident in the plasma corticosteroid changes, chiefly cortisol levels in fish. As a well-known indicator of fish stress, a simple and rapid method for detecting cortisol changes especially sudden increases is desired. In this study, we describe an enzyme-functionalized label-free immunosensor system for detecting fish cortisol levels. Detection of cortisol using amperometry was achieved by immobilizing both anti-cortisol antibody (selective detection of cortisol) and glucose oxidase (signal amplification and non-toxic measurement) on an Au electrode surface with a self-assembled monolayer. This system is based on the maximum glucose oxidation output current change induced by the generation of a non-conductive antigen-antibody complex, which depends on the levels of cortisol in the sample. The immunosensor responded to cortisol levels with a linear decrease in the current in the range of 1.25-200ngml -1 (R=0.964). Since the dynamic range of the sensor can cover the normal range of plasma cortisol in fish, the samples obtained from the fish did not need to be diluted. Further, electrochemical measurement of one sample required only ~30min. The sensor system was applied to determine the cortisol levels in plasma sampled from Nile tilapia (Oreochromis niloticus), which were then compared with levels of the same samples determined using the conventional method (ELISA). Values determined using both methods were well correlated. These findings suggest that the proposed label-free immunosensor could be useful for rapid and convenient analysis of cortisol levels in fish without sample dilution. We also believe that the proposed system could be integrated in a miniaturized potentiostat for point-of-care cortisol detection and useful as a portable diagnostic in fish farms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  3. Carbon Nanotube Nanoelectrode Array as an Electronic Chip for Ultrasensitive Label-free DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6 and ferrocene derivatives. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. BRCA1 related oligonucleotide probes with 18 bp are selectively functionalized at the open ends of the nanotube array and specifically hybridized with oligonucleotide targets incorporated with a polyG tag. The guanine groups are employed as the signal moieties in the electrochemical measurements. R(bpy)(sup 2+, sub 3) mediator is used to further amplify the guanine oxidation signal. The hybridization of sub-attomoles of DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the R(bpy)(sup 2+, sub 3) amplification mechanism. This technique was employed for direct electrochemical detection of label-free PCR amplicon from a healthy donor through specific hybridization with the BRCA1 probe. The detection limit is estimated to be less than 1000 DNA molecules since abundant guanine bases in the PCR amplicon provides a large signal. This system provides a general platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparation, and low-cost operation.

  4. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.

    PubMed

    Song, Quanwei; Wang, Ruihua; Sun, Feifei; Chen, Hongkun; Wang, Zoumengke; Na, Na; Ouyang, Jin

    2017-01-15

    Owing to their promising advantages in biochemical analysis, aptamer-based sensing systems for the fluorescence detection of important biomolecules are being extensively investigated. Herein, we propose a turn-on fluorescent aptasensor for label-free detection of adenosine triphosphate (ATP) by utilizing the in situ formation of copper nanoparticles (CuNPs) and the specific digestion capability of exonuclease I (Exo I). In this assay, the addition of ATP can effectively hinder the digestion of aptamer-derived oligonucleotides due to the G-quadruplex structure. Accordingly, the remaining poly thymine at 5'-terminus of substrate DNA can serve as an efficient template for red-emitting fluorescent CuNPs with a Mega-Stokes shifting in buffered solution, which can be used to evaluate the concentration of ATP. This method is cost-effective and facile, because it avoids the use of traditional dye-labeled DNA strands and complex operation steps. Under optimized conditions, this method achieves a selective response for ATP with a detection limit of 93nM, and exhibits a good detection performance in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Microbeads display of proteins using emulsion PCR and cell-free protein synthesis.

    PubMed

    Gan, Rui; Yamanaka, Yumiko; Kojima, Takaaki; Nakano, Hideo

    2008-01-01

    We developed a method for coupling protein to its coding DNA on magnetic microbeads using emulsion PCR and cell-free protein synthesis in emulsion. A PCR mixture containing streptavidin-coated microbeads was compartmentalized by water-in-oil (w/o) emulsion with estimated 0.5 template molecules per droplet. The template molecules were amplified and immobilized on beads via bead-linked reverse primers and biotinylated forward primers. After amplification, the templates were sequentially labeled with streptavidin and biotinylated anti-glutathione S-transferase (GST) antibody. The pool of beads was then subjected to cell-free protein synthesis compartmentalized in another w/o emulsion, in which templates were coupled to their coding proteins. We mixed two types of DNA templates of Histidine6 tag (His6)-fused and FLAG tag-fused GST in a ratio of 1:1,000 (His6: FLAG) for use as a model DNA library. After incubation with fluorescein isothiocyanate (FITC)-labeled anti-His6 (C-term) antibody, the beads with the His6 gene were enriched 917-fold in a single-round screening by using flow cytometry. A library with a theoretical diversity of 10(6) was constructed by randomizing the middle four residues of the His6 tag. After a two-round screening, the randomized sequences were substantially converged to peptide-encoding sequences recognized by the anti-His6 antibody.

  6. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  7. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  8. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Liu, Chang; Huang, Yan; Zhang, Youyu; Li, Haitao; Zhao, Jiangna; Yao, Shouzhuo

    2013-12-03

    Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10(-9), 3.25 × 10(-8), 6.76 × 10(-8), and 1.9 × 10(-7) g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms.

  9. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples

    NASA Astrophysics Data System (ADS)

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-04-01

    A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.

  10. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study

    PubMed Central

    Pirhonen, Juho; Arola, Johanna; Sädevirta, Sanja; Luukkonen, Panu; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Isomäki, Antti; Hukkanen, Mika

    2016-01-01

    Background and Aims Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD. Methods We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0–4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals. Results We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III. Conclusions This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading. PMID:26808140

  11. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength.

    PubMed

    Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo

    2011-03-15

    A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.

  12. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  13. Quantitation of free polyethylene glycol in PEGylated protein conjugate by size exclusion HPLC with refractive index (RI) detection.

    PubMed

    Li, Ning; Ziegemeier, Daisy; Bass, Laura; Wang, Wei

    2008-12-15

    In this study, size exclusion high performance liquid chromatography was evaluated for its application in separation and quantitation of free polyethylene glycol (PEG) and its PEGylated-protein-conjugate (PEG-conjugate). Although the large mass of the free PEG (2-fold greater than the protein) made separation difficult, chromatographic conditions were identified enabling resolution and quantitation of the free PEG, PEG-conjugate and non-PEGylated protein with Shodex Protein KW803 and KW804 columns in series and refractive index detection. The optimum resolution of 1.7 and 2.0 was achieved for the free PEG and PEG-conjugate as well as the free PEG and non-PEGylated protein using 20mM HEPES buffer at pH 6.5. Under this condition, the plot of log(10)MW of all the pertinent analytes against retention time showed a linear relationship with a correlation coefficient of 1. Limited assay performance evaluation demonstrated that the method was linear in the concentration range of 10 to 250 microg/mL of free PEG with correlation coefficients of > or = 0.99. When free PEG in this concentration range was spiked into PEG-conjugate samples at 1mg/mL, the recovery was in the range of 78%-120%. Detection and quantitation limits were determined to be, respectively, 10 and 25 microg/mL for free PEG. The R.S.D. for intra- and inter-day precision was 0.09% or less for retention time measurements and 2.9% or less for area count measurements. Robustness testing was performed by deliberately deviating +/-0.2 pH units away from the desired pH as well as by increasing the flow rate. These deviations resulted in no significant impact on area percent distribution of all species. However, separation was found to be sensitive to high ionic strength and buffer species.

  14. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  15. Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimurium immunoassay.

    PubMed

    Punbusayakul, Niramol; Talapatra, Saikat; Ajayan, Pulickel M; Surareungchai, Werasak

    2013-01-01

    A label-free immunosensor from as-grown double wall carbon nanotubes (DW) bundles was developed for detecting Salmonella typhimurium. The immunosensor was fabricated by using the as-grown DW bundles as an electrode material with an anti-Salmonella impregnated on the surface. The immunosensor was electrochemically characterized by cyclic voltammetry. The working potential (100, 200, 300 and 400 mV vs. Ag/AgCl) and the anti-Salmonella concentration (10, 25, 50, 75, and 100 μg/mL) at the electrode were subsequently optimized. Then, chronoamperometry was used with the optimum potential of 100 mV vs. Ag/AgCl) and the optimum impregnated anti-Salmonella of 10 μg/mL to detect S. typhimurium cells (0-10(9) CFU/mL). The DW immunosensor exhibited a detection range of 10(2) to 10(7) CFU/mL for the bacteria with a limit of detection of 8.9 CFU/mL according to the IUPAC recommendation. The electrode also showed specificity to S. typhimurium but no current response to Escherichia coli. These findings suggest that the use of a label-free DW immunosensor is promising for detecting S. typhimurium.

  16. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  17. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles.

    PubMed

    Song, Quanwei; Peng, Manshu; Wang, Le; He, Dacheng; Ouyang, Jin

    2016-03-15

    The novel, facile and universal aptamer-based methods for the highly sensitive and selective fluorescence detection of important biomolecules have attracted considerable interest. Here, we present a label-free aptasensor for adenosine triphosphate (ATP) detection in aqueous solutions by using an ultra-sensitive nucleic acid stain PicoGreen (PG) as a fluorescent indicator and core-shell Ag@SiO2 nanoparticles (NPs) as a metal-enhanced fluorescence (MEF) platform. In the presence of ATP, the complementary DNA (cDNA)/aptamer duplexes confined onto the Ag@SiO2 NPs surface can release their aptamers into the buffered solution, causing a significant reduction in fluorescence intensity. By virtue of the amplified fluorescence signal, this aptasensor toward ATP can achieve a detection limit of 14.2 nM with a wide linear range and exhibit a good assay performance in complex biological samples. This sensing approach is cost-effective and efficient because it avoids the fluorescence labeling process and the use of any enzymes. Hence, this method may offer an alternative tool for determining the concentrations of ATP in biochemical and biomedical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform

    PubMed Central

    De Palo, Maripina; Ciminelli, Caterina

    2017-01-01

    In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication. PMID:28783075

  19. Gluten-Free Labeling of Foods

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Guidance & Regulation Guidance Documents & Regulatory Information by Topic Allergens Gluten-Free Labeling of Foods Share Tweet Linkedin Pin it More sharing options ...

  20. Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins.

    PubMed

    Suomi, Tomi; Corthals, Garry L; Nevalainen, Olli S; Elo, Laura L

    2015-11-06

    The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.

  1. A Label-Free Detection of Biomolecules Using Micromechanical Biosensors

    NASA Astrophysics Data System (ADS)

    Meisam, Omidi; A. Malakoutian, M.; Mohammadmehdi, Choolaei; Oroojalian, F.; Haghiralsadat, F.; Yazdian, F.

    2013-06-01

    A Microcantilevers resonator is used to detect a protein biomarker called prostate specific antigen (PSA), which is associated with prostate cancer. Different concentrations of PSA in a buffer solution are detected as a function of deflection of the beams. For this purpose, we use a surface micromachined, antibody-coated polycrystalline silicon micromechanical cantilever beam. Cantilevers have mass sensitivities of the order of 10-17 g/Hz, which result from their small mass. This matter allows them to detect an immobilized antibody monolayer corresponding to a mass of about 70 fg. With these devices, concentrations as low as 150 fg/mL, or 4.5 fM, could be detected from the realistic samples.

  2. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    PubMed

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  4. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    PubMed Central

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  5. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  6. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    PubMed

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  7. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating

    PubMed Central

    Sun, Dandan; Wang, Guanjun

    2017-01-01

    A compact and label-free optical fiber sensor based on a taper interferometer cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for detection of a breast cancer biomarker (HER2). The tapered fiber-optic interferometer is extremely sensitive to the ambient refractive index (RI). In addition, being insensitive to the RI variation, the FBG can be applied as a temperature thermometer due to its independent response to the temperature. Surface functionalization to the sensor is carried out to achieve specific targeting of the unlabeled biomarkers. The result shows that the proposed sensor presents a low limit-of-detection (LOD) of 2 ng/mL, enabling its potentials of application in early diagnosis on the breast cancer. PMID:29113127

  8. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    NASA Astrophysics Data System (ADS)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  9. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis.

    PubMed

    Poliakov, Anton; Russell, Calum W; Ponnala, Lalit; Hoops, Harold J; Sun, Qi; Douglas, Angela E; van Wijk, Klaas J

    2011-06-01

    Many insects are nutritionally dependent on symbiotic microorganisms that have tiny genomes and are housed in specialized host cells called bacteriocytes. The obligate symbiosis between the pea aphid Acyrthosiphon pisum and the γ-proteobacterium Buchnera aphidicola (only 584 predicted proteins) is particularly amenable for molecular analysis because the genomes of both partners have been sequenced. To better define the symbiotic relationship between this aphid and Buchnera, we used large-scale, high accuracy tandem mass spectrometry (nanoLC-LTQ-Orbtrap) to identify aphid and Buchnera proteins in the whole aphid body, purified bacteriocytes, isolated Buchnera cells and the residual bacteriocyte fraction. More than 1900 aphid and 400 Buchnera proteins were identified. All enzymes in amino acid metabolism annotated in the Buchnera genome were detected, reflecting the high (68%) coverage of the proteome and supporting the core function of Buchnera in the aphid symbiosis. Transporters mediating the transport of predicted metabolites were present in the bacteriocyte. Label-free spectral counting combined with hierarchical clustering, allowed to define the quantitative distribution of a subset of these proteins across both symbiotic partners, yielding no evidence for the selective transfer of protein among the partners in either direction. This is the first quantitative proteome analysis of bacteriocyte symbiosis, providing a wealth of information about molecular function of both the host cell and bacterial symbiont.

  10. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    PubMed Central

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  11. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    PubMed

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  12. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    NASA Astrophysics Data System (ADS)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  13. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries.

    PubMed

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Ocaña, Cristina; Marty, Jean-Louis

    2015-08-19

    Contamination of food by mycotoxin occurs in minute/trace quantities. Nearly 92.5% of the cocoa samples present Ochratoxin A (OTA) levels at trace quantity. Hence, there is a necessity for a highly sensitive and selective device that can detect and quantify these organic toxins in various matrices such as cocoa beans. This work reports for the first time, a facile and label-free electrochemical impedimetric aptasensor for rapid detection and quantitation of OTA in cocoa beans. The developed aptasensor was constructed based on the diazonium-coupling reaction mechanism for the immobilization of anti-OTA-aptamer on screen printed carbon electrodes (SPCEs). The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL, with added advantages of good selectivity and reproducibility. The increase in electron transfer resistance was linearly proportional to the OTA concentration in the range 0.15-2.5 ng/mL, with an acceptable recovery percentage (91-95%, RSD = 4.8%) obtained in cocoa samples. This work can facilitate a general model for the detection of OTA in cocoa beans based on the impedimetric aptasensor. The analysis can be performed onsite with pre-constructed and aptamer modified electrodes employing a portable EIS set up. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    PubMed

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine

    NASA Astrophysics Data System (ADS)

    Guo, Yanqing; Chen, Yanxia; Wei, Yanli; Li, Huanhuan; Dong, Chuan

    2015-02-01

    A simple, rapid and label-free fluorescent aptasensor was fabricated for the detection of potassium ion (K+ ion) in aqueous solution using K+ ion-stabilized single stranded DNA (ssDNA) with G-rich sequence as the recognition element and a fluorescent dye, berberine, as the fluorescence probe. In the presence of K+ ion, the G-rich ssDNA is promoted to form the aptamer-target complex with a G-quadruplex conformation, and berberine binding to the G-quadruplex structure results in the enhancement of its fluorescence. The fluorescence intensity of the sensing system displayed a calibration response for K+ ion in the range of 0-1600 μM with a detection limit of 31 nM (S/N = 3) and a relative standard deviation (RSD) of 0.45%. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K+ ion in blood serum samples with the recovery range of 81.7-105.3%. The assay for detection of potassium ion is easy, economical, robust, and stable in rough conditions.

  16. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast <1 h design-prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (<1 min) and short (1 mm) protein separations. The facile fabrication and prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  17. Photoactivatable protein labeling by singlet oxygen mediated reactions.

    PubMed

    To, Tsz-Leung; Medzihradszky, Katalin F; Burlingame, Alma L; DeGrado, William F; Jo, Hyunil; Shu, Xiaokun

    2016-07-15

    Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Graphene oxide-based electrochemical label-free detection of glycoproteins down to aM level using a lectin biosensor

    PubMed Central

    Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J.

    2017-01-01

    A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out. PMID:27277703

  19. Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren

    2018-05-01

    In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.

  20. Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay.

    PubMed

    Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren

    2018-05-16

    In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.

  1. Digital microbiology: detection and classification of unknown bacterial pathogens using a label-free laser light scatter-sensing system

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Dundar, M. Murat; Akova, Ferit; Patsekin, Valery; Bae, Euiwon; Tang, Yanjie; Dietz, J. Eric; Hirleman, E. Daniel; Robinson, J. Paul; Bhunia, Arun K.

    2011-06-01

    The majority of tools for pathogen sensing and recognition are based on physiological or genetic properties of microorganisms. However, there is enormous interest in devising label-free and reagentless biosensors that would operate utilizing the biophysical signatures of samples without the need for labeling and reporting biochemistry. Optical biosensors are closest to realizing this goal and vibrational spectroscopies are examples of well-established optical label-free biosensing techniques. A recently introduced forward-scatter phenotyping (FSP) also belongs to the broad class of optical sensors. However, in contrast to spectroscopies, the remarkable specificity of FSP derives from the morphological information that bacterial material encodes on a coherent optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given a constant environment, are unique to each bacterial species and/or serovar. Both FSP technology and spectroscopies rely on statistical machine learning to perform recognition and classification. However, the commonly used methods utilize either simplistic unsupervised learning or traditional supervised techniques that assume completeness of training libraries. This restrictive assumption is known to be false for real-life conditions, resulting in unsatisfactory levels of accuracy, and consequently limited overall performance for biodetection and classification tasks. The presented work demonstrates preliminary studies on the use of FSP system to classify selected serotypes of non-O157 Shiga toxin-producing E. coli in a nonexhaustive framework, that is, without full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to learning with a nonexhaustive training dataset to allow for the automated and distributed detection of unknown bacterial classes.

  2. Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer.

    PubMed

    Li, Yanyan; Zhao, Manru; Wang, Haiyan

    2017-11-01

    We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.

  3. The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2017-05-01

    The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was `label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO3 nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics.

  4. Development of cost-effective plasmonic biosensor using partially embedded gold nanoparticles for detection of immunoglobulin proteins

    NASA Astrophysics Data System (ADS)

    Kumari, Sudha; Moirangthem, Rakesh S.

    2018-02-01

    This work illustrates a label-free sensing of biomolecules using a simple capillary sensor. Here, capillary biosensor was prepared by decorating inner walls of a glass capillary with gold nanoparticles that was employed to investigate the biomolecular interactions. As a demonstration, rabbit immunoglobulin G (IgG) and anti-rabbit IgG (anti-IgG) proteins were chosen as a model system to monitor the receptor-analyte interactions. A surface binding sensitivity of 409 pg mm-2 was able to achieve towards the detection of 10 nM concentration of anti-rabbit IgG. The presented plasmonic sensor provides multiple advantages over conventional LSPR sensor by lifting requirement of the flow cell, prolonged sample preparation, complicated measurement setup etc that may enable its usage in rapid diagnostic testing. We believed that our proposed plasmonic capillary sensor could represent a potential candidate for developing cost-effective, label-free and high sensitivity sensing device for detection of biological molecules at low concentration.

  5. An enzyme-free and label-free surface plasmon resonance biosensor for ultrasensitive detection of fusion gene based on DNA self-assembly hydrogel with streptavidin encapsulation.

    PubMed

    Guo, Bin; Wen, Bo; Cheng, Wei; Zhou, Xiaoyan; Duan, Xiaolei; Zhao, Min; Xia, Qianfeng; Ding, Shijia

    2018-07-30

    In this research, an enzyme-free and label-free surface plasmon resonance (SPR) biosensing strategy has been developed for ultrasensitive detection of fusion gene based on the heterogeneous target-triggered DNA self-assembly aptamer-based hydrogel with streptavidin (SA) encapsulation. In the presence of target, the capture probes (Cp) immobilized on the chip surface can capture the PML/RARα, forming a Cp-PML/RARα duplex. After that, the aptamer-based network hydrogel nanostructure is formed on the gold surface via target-triggered self-assembly of X shaped polymers. Subsequently, the SA can be encapsulated into hydrogel by the specific binding of SA aptamer, forming the complex with super molecular weight. Thus, the developed strategy achieves dramatic enhancement of the SPR signal. Using PML/RARα "S" subtype as model analyte, the developed biosensing method can detect target down to 45.22 fM with a wide linear range from 100 fM to 10 nM. Moreover, the high efficiency biosensing method shows excellent practical ability to identify the clinical PCR products of PML/RARα. Thus, this proposed strategy presents a powerful platform for ultrasensitive detection of fusion gene and early diagnosis and monitoring of disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A general approach for chemical labeling and rapid, spatially controlled protein inactivation

    PubMed Central

    Marks, Kevin M.; Braun, Patrick D.; Nolan, Garry P.

    2004-01-01

    Chemical labeling of proteins inside of living cells can enable studies of the location, movement, and function of proteins in vivo. Here we demonstrate an approach for chemical labeling of proteins that uses the high-affinity interaction between an FKBP12 mutant (F36V) and a synthetic, engineered ligand (SLF′). A fluorescein conjugate to the engineered ligand (FL-SLF′) retained binding to FKBP12(F36V) and possessed similar fluorescence properties as parental fluorescein. FL-SLF′ labeled FKBP12(F36V) fusion proteins in live mammalian cells, and was used to monitor the subcellular localization of a membrane targeted FKBP12(F36V) construct. Chemical labeling of FKBP12(F36V) fusion proteins with FL-SLF′ was readily detectable at low expression levels of the FKBP12(F36V) fusion, and the level of fluorescent staining with FL-SLF′ was proportional to the FKBP12(F36V) expression level. This FL-SLF′-FKBP12(F36V) labeling technique was tested in fluorophore assisted laser inactivation (FALI), a light-mediated technique to rapidly inactivate fluorophore-labeled target proteins. FL-SLF′ mediated FALI of a β-galactosidase-FKBP12(F36V) fusion protein, causing rapid inactivation of >90% of enzyme activity upon irradiation in vitro. FL-SLF′ also mediated FALI of a β-galactosidase fusion expressed in living NIH 3T3 cells, where β-galactosidase activity was reduced in 15 s. Thus, FL-SLF′ can be used to monitor proteins in vivo and to target rapid, spatially and temporally defined inactivation of target proteins in living cells in a process that we call FK-FALI. PMID:15218100

  7. Functionalized nanopipettes: toward label-free, single cell biosensors.

    PubMed

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  8. Functionalized nanopipettes: toward label-free, single cell biosensors

    PubMed Central

    Actis, Paolo; Mak, Andy C.

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113

  9. Comparison of the Membrane Proteome of Virulent Mycobacterium tuberculosis and the Attenuated Mycobacterium bovis BCG Vaccine Strain by Label-free Quantitative Proteomics

    PubMed Central

    Gunawardena, Harsha P.; Feltcher, Meghan E.; Wrobel, John A.; Gu, Sheng; Braunstein, Miriam; Chen, Xian

    2015-01-01

    The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge we have generated the first comprehensive and high coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen. PMID:24093440

  10. Adapter reagents for protein site specific dye labeling.

    PubMed

    Thompson, Darren A; Evans, Eric G B; Kasza, Tomas; Millhauser, Glenn L; Dawson, Philip E

    2014-05-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this acetophenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. © 2014 Wiley Periodicals, Inc.

  11. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  12. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics.

    PubMed

    Cecchini, Tiphaine; Yoon, Eun-Jeong; Charretier, Yannick; Bardet, Chloé; Beaulieu, Corinne; Lacoux, Xavier; Docquier, Jean-Denis; Lemoine, Jerome; Courvalin, Patrice; Grillot-Courvalin, Catherine; Charrier, Jean-Philippe

    2018-03-01

    Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases ( i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases ( i.e. ADC and OXA-51-like) and six components of the two major efflux systems ( i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less

  14. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    PubMed

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  16. Label-Free Proteomic Analysis of Protein Changes in the Striatum during Chronic Ethanol Use and Early Withdrawal

    PubMed Central

    Ayers-Ringler, Jennifer R.; Oliveros, Alfredo; Qiu, Yanyan; Lindberg, Daniel M.; Hinton, David J.; Moore, Raymond M.; Dasari, Surendra; Choi, Doo-Sup

    2016-01-01

    The molecular mechanisms underlying the neuronal signaling changes in alcohol addiction and withdrawal are complex and multifaceted. The cortico-striatal circuit is highly implicated in these processes, and the striatum plays a significant role not only in the early stages of addiction, but in the developed-addictive state as well, including withdrawal symptoms. Transcriptional analysis is a useful method for determining changes in gene expression, however, the results do not always accurately correlate with protein levels. In this study, we employ label-free proteomic analysis to determine changes in protein expression within the striatum during chronic ethanol use and early withdrawal. The striatum, composed primarily of medium spiny GABAergic neurons, glutamatergic and dopaminergic nerve terminals and astrocytes, is relatively homogeneous for proteomic analysis. We were able to analyze more than 5000 proteins from both the dorsal (caudate and putamen) and ventral (nucleus accumbens) striatum and identified significant changes following chronic intermittent ethanol exposure and acute (8 h) withdrawal compared to ethanol naïve and ethanol exposure groups respectively. Our results showed significant changes in proteins involved in glutamate and opioid peptide signaling, and also uncovered novel pathways including mitochondrial function and lipid/cholesterol metabolism, as revealed by changes in electron transport chain proteins and RXR activation pathways. These results will be useful in the development of novel treatments for alcohol withdrawal and thereby aid in recovery from alcohol use disorder. PMID:27014007

  17. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  18. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  19. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  20. Using label-free screening technology to improve efficiency in drug discovery.

    PubMed

    Halai, Reena; Cooper, Matthew A

    2012-02-01

    Screening assays have traditionally utilized reporter labels to quantify biological responses relevant to the disease state of interest. However, there are limitations associated with the use of labels that may be overcome with temporal measurements possible with label-free. This review comprises general and system-specific information from literature searches using PubMed, published books and the authors' personal experience. This review highlights the label-free approaches in the context of various applications. The authors also note technical issues relevant to the development of label-free assays and their application to HTS. The limitations associated with the use of transfected cell lines and the use of label-based assays are gradually being realized. As such, greater emphasis is being placed on label-free biophysical techniques using native cell lines. The introduction of 96- and 384-well plate label-free systems is helping to broker a wider acceptance of these approaches in high-throughput screening. However, potential users of the technologies remain skeptical, primarily because the physical basis of the signals generated, and their contextual relevance to cell biology and signal transduction, has not been fully elucidated. Until this is done, these new technology platforms are more likely to complement, rather than replace, traditional screening platforms.

  1. Application of a Label-Free Immunosensor for White Spot Syndrome Virus (WSSV) in Shrimp Cultivation Water.

    PubMed

    Waiyapoka, Thanyaporn; Deachamag, Panchalika; Chotigeat, Wilaiwan; Bunsanong, Nittaya; Kanatharana, Proespichaya; Thavarungkul, Panote; Loyprasert-Thananimit, Suchera

    2015-10-01

    White spot syndrome virus (WSSV) is a major pathogen affecting the shrimp industry worldwide. In a preliminary study, WSSV binding protein (WBP) was specifically bound to the VP26 protein of WSSV. Therefore, we have developed the label-free affinity immunosensor using the WBP together with anti-GST-VP26 for quantitative detection of WSSV in shrimp pond water. When the biological molecules were immobilized on a gold electrode to form a self-assembled monolayer, it was then used to detect WSSV using a flow injection system with optimized conditions. Binding between the different copies of WSSV and the immobilized biological molecules was detected by an impedance change (ΔZ″) in real time. The sensitivity of the developed immunosensor was in the linear range of 1.6 × 10(1)-1.6 × 10(6) copies/μl. The system was highly sensitive for the analysis of WSSV as shown by the lack of impedance change when using yellow head virus (YHV). The developed immunosensor could be reused up to 37 times (relative standard deviation (RSD), 3.24 %) with a good reproducibility of residual activity (80-110 %). The immunosensor was simple to operate, reliable, reproducible, and could be applied for the detection and quantification of WSSV in water during shrimp cultivation.

  2. Saturation Fluorescence Labeling of Proteins for Proteomic Analyses

    PubMed Central

    Pretzer, Elizabeth; Wiktorowicz, John E.

    2008-01-01

    We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations including a disulfide reducing agent (TCEP), pH, incubation time, linearity of labeling, and saturating dye: protein thiol ratio with protein standards to gauge specific and non-specific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific vs. non-specific labeling in the presence of thiourea are also discussed. We have found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, α-lactalbumin) is achieved at 50-100-fold excess of the uncharged maleimide-functionalized BODIPY™ dyes over Cys. We confirm our previous findings and those of others that the maleimide dyes are not impacted by the presence of 2M thiourea. Moreover, we establish that 2 mM TCEP used as reductant is optimal. We also establish further that labeling is optimal at pH 7.5 and complete after 30 min. Low non-specific labeling was gauged by the inclusion of non-Cys containing proteins (horse myoglobin, bovine carbonic anhydrase) to the labeling mixture. We also show that the dye exhibits little to no effect on the two dimensional mobilities of labeled proteins derived from cells. PMID:18191033

  3. A 100K well screen for a muscarinic receptor using the Epic label-free system--a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors.

    PubMed

    Dodgson, K; Gedge, L; Murray, D C; Coldwell, M

    2009-01-01

    Seven-transmembrane receptors (7TMRs) are a family of proteins of great interest as therapeutic targets because of their abundance on the cell surface, diverse effects in modulating cell behavior and success as a key class of drugs. We have evaluated the Epic label-free system for the purpose of identifying antagonists of the muscarinic M3 receptor. We compared the data generated from the label-free technology with data for the same compounds in a calcium flux assay. We have shown that this technology can be used for high throughput screening (HTS) of 7TMRs and as an orthogonal approach to enable rapid evaluation of HTS outputs. A number of compounds have been identified which were not found in a functional HTS measuring the output from a single pathway, which may offer new approaches to inhibiting responses through this receptor.

  4. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  5. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    NASA Astrophysics Data System (ADS)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  6. Label-free detection of cardiac troponin-I using gold nanoparticles functionalized single-walled carbon nanotubes based chemiresistive biosensor

    NASA Astrophysics Data System (ADS)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Singh, Rajiv K.; Biradar, Ashok M.; Mulchanadani, Ashok

    2013-11-01

    We report a specific and ultrasensitive, label-free chemiresistive biosensor based on mercaptopropionic acid capped gold nanoparticles (GNP) functionalized single walled carbon nanotube (SWNT) hybrid for the detection of cardiac specific biomarker troponin-I (cTnI). GNPs were attached to SWNTs through a molecular linker 1-pyrenemethylamine. The highly specific cTnI antibody was covalently immobilized on GNPs through capping agent using carbodiimide coupling reaction. The cTnI interaction to its corresponding antibody was studied with respect to changes in conductance in SWNTs channel, and a detailed field-effect transistor characteristic was delineated. The device exhibited a linear response to cTnI from 0.01 to 10 ng ml-1.

  7. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong

    2017-01-15

    A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses.

    PubMed

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.

  9. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses

    PubMed Central

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources. PMID:26308446

  10. Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors.

    PubMed

    Lai, Wei-An; Lin, Chih-Heng; Yang, Yuh-Shyong; Lu, Michael S-C

    2012-05-15

    This work presents miniaturized CMOS (complementary metal oxide semiconductor) sensors for non-faradic impedimetric detection of AIV (avian influenza virus) oligonucleotides. The signal-to-noise ratio is significantly improved by monolithic sensor integration to reduce the effect of parasitic capacitances. The use of sub-μm interdigitated microelectrodes is also beneficial for promoting the signal coupling efficiency. Capacitance changes associated with surface modification, functionalization, and DNA hybridization were extracted from the measured frequency responses based on an equivalent-circuit model. Hybridization of the AIV H5 capture and target DNA probes produced a capacitance reduction of -13.2 ± 2.1% for target DNA concentrations from 1 fM to 10 fM, while a capacitance increase was observed when H5 target DNA was replaced with non-complementary H7 target DNA. With the demonstrated superior sensing capabilities, this miniaturized CMOS sensing platform shows great potential for label-free point-of-care biosensing applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Detection of radiation-induced brain necrosis in live rats using label-free time-resolved fluorescence spectroscopy (TRFS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura

    2017-02-01

    Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.

  12. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform

    NASA Astrophysics Data System (ADS)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2017-02-01

    Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL-1, where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL-1 (R2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.

  13. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample.

    PubMed

    Bagheryan, Zahra; Raoof, Jahan-Bakhsh; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio

    2016-06-15

    Fast and accurate detection of microorganisms is of key importance in clinical analysis and in food and water quality monitoring. Salmonella typhimurium is responsible for about a third of all cases of foodborne diseases and consequently, its fast detection is of great importance for ensuring the safety of foodstuffs. We report the development of a label-free impedimetric aptamer-based biosensor for S. typhimurium detection. The aptamer biosensor was fabricated by grafting a diazonium-supporting layer onto screen-printed carbon electrodes (SPEs), via electrochemical or chemical approaches, followed by chemical immobilisation of aminated-aptamer. FTIR-ATR, contact angle and electrochemical measurements were used to monitor the fabrication process. Results showed that electrochemical immobilisation of the diazonium-grafting layer allowed the formation of a denser aptamer layer, which resulted in higher sensitivity. The developed aptamer-biosensor responded linearly, on a logarithm scale, over the concentration range 1 × 10(1) to 1 × 10(8)CFU mL(-1), with a limit of quantification (LOQ) of 1 × 10(1) CFU mL(-1) and a limit of detection (LOD) of 6 CFU mL(-1). Selectivity studies showed that the aptamer biosensor could discriminate S. typhimurium from 6 other model bacteria strains. Finally, recovery studies demonstrated its suitability for the detection of S. typhimurium in spiked (1 × 10(2), 1 × 10(4) and 1 × 10(6) CFU mL(-1)) apple juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Constructing Proteome Reference Map of the Porcine Jejunal Cell Line (IPEC-J2) by Label-Free Mass Spectrometry.

    PubMed

    Kim, Sang Hoon; Pajarillo, Edward Alain B; Balolong, Marilen P; Lee, Ji Yoon; Kang, Dae-Kyung

    2016-06-28

    In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive™ Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications.

  15. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.

    PubMed

    Cuddihy, Sarah L; Baty, James W; Brown, Kristin K; Winterbourn, Christine C; Hampton, Mark B

    2009-01-01

    The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.

  16. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  17. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  18. Fab fragment labeled with ICG-derivative for detecting digestive tract cancer.

    PubMed

    Yano, Hiromi; Muguruma, Naoki; Ito, Susumu; Aoyagi, Eriko; Kimura, Tetsuo; Imoto, Yoshitaka; Cao, Jianxin; Inoue, Shohei; Sano, Shigeki; Nagao, Yoshimitsu; Kido, Hiroshi

    2006-09-01

    In previous studies, we generated infrared ray fluorescence-labeled monoclonal antibodies and developed an infrared ray fluorescence endoscope capable of detecting the monoclonal antibodies to establish a novel diagnostic technique for gastrointestinal cancer. Although the whole IgG molecule has commonly been used for preparation of labeled antibodies, labeled IgG displays insufficient sensitivity and specificity, probably resulting from non-specific binding of the Fc fragment to target cells or interference between fluorochromes on the identical labeled antibody, which might be caused by molecular structure. In this in vitro study, we characterized an Fc-free fluorescence-labeled Fab fragment, which was expected to yield more specific binding to target cells than the whole IgG molecule. An anti-mucin antibody and ICG-ATT, an ICG derivative, were used as the labeled antibody and labeling compound, respectively. Paraffin sections of excised gastric cancer tissues were subjected to staining. The labeled whole IgG molecule (ICG-ATT-labeled IgG) and the labeled Fab fragment (ICG-ATT-labeled Fab) were prepared according to a previous report, and the fluorescence properties, antibody activities, and features of fluorescence microscope images obtained from paraffin sections were compared. Both ICG-ATT-labeled Fab and ICG-ATT-labeled IgG were excited by a near infrared ray of 766nm, and maximum emission occurred at 804nm. Antibody activities of ICG-ATT-labeled Fab were shown to be similar to those of unlabeled anti-MUC1 antibody. The fluorescence intensity obtained from paraffin sections of excised gastric cancer tissues revealed a tendency to be greater with ICG-ATT-labeled Fab than with ICG-ATT-labeled IgG. The infrared ray fluorescence-labeled Fab fragment was likely to be more specific than the conventionally labeled antibodies. Fragmentation of antibodies is considered to contribute to improved sensitivity and specificity of labeled antibodies for detection of micro

  19. Mass spectrometry data from label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.

    PubMed

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2017-06-01

    Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.

  20. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.

    PubMed

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver

    2016-09-02

    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  1. Protein labelling: Playing tag with proteins

    NASA Astrophysics Data System (ADS)

    Romanini, Dante W.; Cornish, Virginia W.

    2012-04-01

    Fluorescent labels can now be attached to a specific protein on the surface of live cells using a two-step method that reacts a norbornene -- introduced using genetic encoding -- with a variety of dyes.

  2. A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation.

    PubMed

    Välikangas, Tommi; Suomi, Tomi; Elo, Laura L

    2017-05-31

    Label-free mass spectrometry (MS) has developed into an important tool applied in various fields of biological and life sciences. Several software exist to process the raw MS data into quantified protein abundances, including open source and commercial solutions. Each software includes a set of unique algorithms for different tasks of the MS data processing workflow. While many of these algorithms have been compared separately, a thorough and systematic evaluation of their overall performance is missing. Moreover, systematic information is lacking about the amount of missing values produced by the different proteomics software and the capabilities of different data imputation methods to account for them.In this study, we evaluated the performance of five popular quantitative label-free proteomics software workflows using four different spike-in data sets. Our extensive testing included the number of proteins quantified and the number of missing values produced by each workflow, the accuracy of detecting differential expression and logarithmic fold change and the effect of different imputation and filtering methods on the differential expression results. We found that the Progenesis software performed consistently well in the differential expression analysis and produced few missing values. The missing values produced by the other software decreased their performance, but this difference could be mitigated using proper data filtering or imputation methods. Among the imputation methods, we found that the local least squares (lls) regression imputation consistently increased the performance of the software in the differential expression analysis, and a combination of both data filtering and local least squares imputation increased performance the most in the tested data sets. © The Author 2017. Published by Oxford University Press.

  3. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain.

    PubMed

    Cosgrove, J W; Clark, B D; Brown, I R

    1981-03-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d-lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 75K and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4 degrees C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.

  4. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice.

    PubMed

    Miao, Hong; Wang, Lan; Zhuo, Yan; Zhou, Zinan; Yang, Xiaoming

    2016-12-15

    A facile-green strategy to synthesize carbon dots (CDs) with a quantum yield (QY) of nearly 13.9% has been built up, while tomato juice served as the carbon source. Interestingly, not only the precursor of CDs and the whole synthesis procedure were environmental-friendly, but this type of CDs also exhibited multiple advantages including high fluorescent QY, excellent photostability, non-toxicity and satisfactory stability. Significantly, a label-free sensitive assay for detecting carcinoembryonic antigen (CEA) in a continuous and recyclable way has been proposed on the basis of adsorption and desorption of aptamers by the surface of CDs through a competitive mechanism. To be specific, the richness of carboxyl groups of the CDs enabled strong adsorption of ssDNA to the surface of CDs through π-π stacking interactions, resulting in the effective fluorescence quenching by forming CDs-aptamer complexes. The stronger binding affinity between CEA and CEA-aptamer than the π-π stacking interactions has been taken advantage to achieve immediate recovery of the fluorescence of CDs once CEA was introduced. Thereby, quantitative evaluation of CEA concentration in a broad range from 1ngmL(-1) to 0.5ngmL(-1) with the detection limit of 0.3ngmL(-1) was realized in this way. This strategy can be applied in a recyclable way, broadening the sensing application of CDs with biocompatibility. Besides, the CDs were used for cell imaging, potentiating them towards diverse purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J.

    2015-03-01

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization

  6. Evaluation of a novel label-free photonic-crystal biosensor imaging system for the detection of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong

    2017-02-01

    Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.

  7. Label-free detection of surface markers on stem cells by oblique-incidence reflectivity difference microscopy

    PubMed Central

    Lo, Kai-Yin; Sun, Yung-Shin; Landry, James P.; Zhu, Xiangdong; Deng, Wenbin

    2012-01-01

    Conventional fluorescent microscopy is routinely used to detect cell surface markers through fluorophore-conjugated antibodies. However, fluorophore-conjugation of antibodies alters binding properties such as strength and specificity of the antibody in ways often uncharacterized. The binding between antibody and antigen might not be in the native situation after such conjugation. Here, we present an oblique-incidence reflectivity difference (OI-RD) microscope as an effective method for label-free, real-time detection of cell surface markers and apply such a technique to analysis of Stage-Specific Embryonic Antigen 1 (SSEA1) on stem cells. Mouse stem cells express SSEA1 on their surfaces and the level of SSEA1 decreases when the cells start to differentiate. In this study, we immobilized mouse stem cells and non-stem cells (control) on a glass surface as a microarray and reacted the cell microarray with unlabeled SSEA1 antibodies. By monitoring the reaction with an OI-RD microscope in real time, we confirmed that the SSEA1 antibodies only bind to the surface of the stem cells while not to the surface of non-stem cells. From the binding curves, we determined the equilibrium dissociation constant (Kd) of the antibody with the SSEA1 markers on the stem cell surface. The results concluded that OI-RD microscope can be used to detect binding affinities between cell surface markers and unlabeled antibodies bound to the cells. The information could be another indicator to determine the cell stages. PMID:21781038

  8. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria.

    PubMed

    Barreiros dos Santos, M; Azevedo, S; Agusil, J P; Prieto-Simón, B; Sporer, C; Torrents, E; Juárez, A; Teixeira, V; Samitier, J

    2015-02-01

    Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyclic voltammetry. The immobilization of antibody on the epoxysilane layer was quantified by Optical Waveguide Lightmode Spectroscopy, obtaining a mass variation of 12 ng cm(− 2) (0.08 pmol cm(− 2)). Microcontact printing and fluorescence microscopy were used to demonstrate the specific binding of E. coli O157:H7 to the antibody-patterned surface. We achieved a ratio of 1:500 Salmonella typhimurium/E. coli O157:H7, thus confirming the selectivity of the antibodies and efficiency of the functionalization procedure. Finally, the detection capacity of the ITO-based immunosensor was evaluated by Electrochemical Impedance Spectroscopy. A very low limit of detection was obtained (1 CFU mL(− 1)) over a large linear working range (10–10(6) CFU mL(− 1)). The specificity of the impedimetric immunosensor was also examined. Less than 20% of non-specific bacteria (S. typhimurium and E. coli K12) was observed. Our results reveal the applicability of ITO for the development of highly sensitive and selective impedimetric immunosensors.

  9. Detection of protein-small molecule binding using a self-referencing external cavity laser biosensor.

    PubMed

    Meng Zhang; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T

    2014-01-01

    High throughput screening of protein-small molecule binding interactions using label-free optical biosensors is challenging, as the detected signals are often similar in magnitude to experimental noise. Here, we describe a novel self-referencing external cavity laser (ECL) biosensor approach that achieves high resolution and high sensitivity, while eliminating thermal noise with sub-picometer wavelength accuracy. Using the self-referencing ECL biosensor, we demonstrate detection of binding between small molecules and a variety of immobilized protein targets with binding affinities or inhibition constants in the sub-nanomolar to low micromolar range. The demonstrated ability to perform detection in the presence of several interfering compounds opens the potential for increasing the throughput of the approach. As an example application, we performed a "needle-in-the-haystack" screen for inhibitors against carbonic anhydrase isozyme II (CA II), in which known inhibitors are clearly differentiated from inactive molecules within a compound library.

  10. Determination of free and total (free plus protein-bound) melatonin in plasma and cerebrospinal fluid by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Rizzo, Vittoria; Porta, Camillo; Moroni, Mauro; Scoglio, Enrico; Moratti, Remigio

    2002-07-05

    A simple, sensitive and accurate method for the estimation of free and total (free plus protein-bound) melatonin (MLT) in human plasma and cerebrospinal fluid (CSF) is described. Via Chem-Elut cartridges, free and total MLT (the latter obtained after a deproteinization step) were quantified in dichloromethane-extracted samples and analyzed in one chromatographic run by high-performance liquid chromatography (HPLC) with fluorimetric detection. The column used was an Extrasil ODS-2 (3 microm, 150 x 4.6 mm I.D.), while the mobile phase consisted of 75 mM sodium acetate-acetonitrile (72:28, v/v) (pH 5.0). Repeatability and reproducibility of the method were 3.24 and 9.4%, respectively. The recovery of melatonin from plasma and CSF was 99.9+/-4.0% for non-deproteinized samples and 93.2+/-4.8% for deproteinized samples. The detection limit of the assay was 0.5 pg/ml. In human plasma, the mean+/-SD concentrations in the darkness period were 23.18+/-7.44 pg/ml for free melatonin and 82.5+/-36.48 pg/ml for total melatonin, while the lowest concentrations detected during daytime were 2.23+/-2.22 and 7.40+/-5.68 pg/ml, respectively. Detection of MLT in CSF was 5.01+/-2.31 and 28.55+/-6.95 pg/ml for the free and total fraction, respectively.

  11. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    PubMed

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  12. A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform.

    PubMed

    Li, Yan; Yang, Wei-Kang; Fan, Man-Qi; Liu, Ao

    2011-01-01

    A novel approach to fabricate a label-free amperometric immunosensor for the detection of carcinoembryonic antigen (CEA) was described. Herein, methylene blue (MB), gold nanoparticles (AuNPs) and carcinoembryonic antibody (anti-CEA) were layer-by-layer assembled on the graphene-Nafion nanocomposite film-modified electrode by means of a self-assembling technique and the opposite-charged adsorption. Subsequently, the stepwise self-assembling procedure of the immunosensor was further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors influencing the performance of the resulting immunosensor were studied in detail. The developed procedure showed improved features, including larger amount and higher immunoactivity of the immobilized antibody and repeatable regeneration of the sensor, as well as direct, rapid and simple determination for the antigen without multiple separation and labeling steps. The immunosensor could detect the target protein in a range of 0.5 to 120 ng/mL with a limit of 0.17 ng/mL (at 3σ). Finally, the immunosensing system was evaluated on several clinical samples. Analytical results were found to be in satisfactory agreement with those detected by the enzyme-linked immunosorbent assay (ELISA) method, indicating that this new method was a promising alternative tool for clinical diagnosis.

  13. Exploiting Uniformly 13C-Labeled Carbohydrates for Probing Carbohydrate-Protein Interactions by NMR Spectroscopy.

    PubMed

    Nestor, Gustav; Anderson, Taigh; Oscarson, Stefan; Gronenborn, Angela M

    2017-05-03

    NMR of a uniformly 13 C-labeled carbohydrate was used to elucidate the atomic details of a sugar-protein complex. The structure of the 13 C-labeled Manα(1-2)Manα(1-2)ManαOMe trisaccharide ligand, when bound to cyanovirin-N (CV-N), was characterized and revealed that in the complex the glycosidic linkage torsion angles between the two reducing-end mannoses are different from the free trisaccharide. Distances within the carbohydrate were employed for conformational analysis, and NOE-based distance mapping between sugar and protein revealed that Manα(1-2)Manα(1-2)ManαOMe is bound more intimately with its two reducing-end mannoses into the domain A binding site of CV-N than with the nonreducing end unit. Taking advantage of the 13 C spectral dispersion of 13 C-labeled carbohydrates in isotope-filtered experiments is a versatile means for a simultaneous mapping of the binding interactions on both, the carbohydrate and the protein.

  14. Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries

    PubMed Central

    Zimmerman, Sandra G; Peters, Nathaniel C; Altaras, Ariel E; Berg, Celeste A

    2014-01-01

    In situ hybridization (ISH) is a powerful technique for detecting nucleic acids in cells and tissues. Here we describe three ISH procedures that are optimized for Drosophila ovaries: whole-mount, digoxigenin-labeled RNA ISH; RNA fluorescent ISH (FISH); and protein immunofluorescence (IF)–RNA FISH double labeling (IF/FISH). Each procedure balances conflicting requirements for permeabilization, fixation and preservation of antigenicity to detect RNA and protein expression with high resolution and sensitivity. The ISH protocol uses alkaline phosphatase–conjugated digoxigenin antibodies followed by a color reaction, whereas FISH detection involves tyramide signal amplification (TSA). To simultaneously preserve antigens for protein detection and enable RNA probe penetration for IF/FISH, we perform IF before FISH and use xylenes and detergents to permeabilize the tissue rather than proteinase K, which can damage the antigens. ISH and FISH take 3 d to perform, whereas IF/FISH takes 5 d. Probe generation takes 1 or 2 d to perform. PMID:24113787

  15. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    PubMed

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  16. A Label-Free Porous Silicon Immunosensor for Broad Detection of Opiates in a Blind Clinical Study and Result Comparison to Commercial Analytical Chemistry Techniques

    PubMed Central

    Bonanno, Lisa M.; Kwong, Tai C.; DeLouise, Lisa A.

    2010-01-01

    In this work we evaluate for the first time the performance of a label-free porous silicon (PSi) immunosensor assay in a blind clinical study designed to screen authentic patient urine specimens for a broad range of opiates. The PSi opiate immunosensor achieved 96% concordance with liquid chromatography-mass spectrometry/tandem mass spectrometry (LC-MS/MS) results on samples that underwent standard opiate testing (n=50). In addition, successful detection of a commonly abused opiate, oxycodone, resulted in 100% qualitative agreement between the PSi opiate sensor and LC-MS/MS. In contrast, a commercial broad opiate immunoassay technique (CEDIA®) achieved 65% qualitative concordance with LC-MS/MS. Evaluation of important performance attributes including precision, accuracy, and recovery was completed on blank urine specimens spiked with test analytes. Variability of morphine detection as a model opiate target was < 9% both within-run and between-day at and above the cutoff limit of 300 ng ml−1. This study validates the analytical screening capability of label-free PSi opiate immunosensors in authentic patient samples and is the first semi-quantitative demonstration of the technology’s successful clinical use. These results motivate future development of PSi technology to reduce complexity and cost of diagnostic testing particularly in a point-of-care setting. PMID:21062030

  17. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics

    NASA Astrophysics Data System (ADS)

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-01

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  18. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics.

    PubMed

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-30

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  19. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.

    PubMed

    Stöhr, Katharina; Siegberg, Daniel; Ehrhard, Tanja; Lymperopoulos, Konstantinos; Öz, Simin; Schulmeister, Sonja; Pfeifer, Andrea C; Bachmann, Julie; Klingmüller, Ursula; Sourjik, Victor; Herten, Dirk-Peter

    2010-10-01

    Recent developments in fluorescence microscopy raise the demands for bright and photostable fluorescent tags for specific and background free labeling in living cells. Aside from fluorescent proteins and other tagging methods, labeling of SNAP-tagged proteins has become available thereby increasing the pool of potentially applicable fluorescent dyes for specific labeling of proteins. Here, we report on novel conjugates of benzylguanine (BG) which are quenched in their fluorescence and become highly fluorescent upon labeling of the SNAP-tag, the commercial variant of the human O(6)-alkylguanosyltransferase (hAGT). We identified four conjugates showing a strong increase, i.e., >10-fold, in fluorescence intensity upon labeling of SNAP-tag in vitro. Moreover, we screened a subset of nine BG-dye conjugates in living Escherichia coli and found them all suited for labeling of the SNAP-tag. Here, quenched BG-dye conjugates yield a higher specificity due to reduced contribution from excess conjugate to the fluorescence signal. We further extended the application of these conjugates by labeling a SNAP-tag fusion of the Tar chemoreceptor in live E. coli cells and the eukaryotic transcription factor STAT5b in NIH 3T3 mouse fibroblast cells. Aside from the labeling efficiency and specificity in living cells, we discuss possible mechanisms that might be responsible for the changes in fluorescence emission upon labeling of the SNAP-tag, as well as problems we encountered with nonspecific labeling with certain conjugates in eukaryotic cells.

  20. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  1. Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu

    2015-06-01

    A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.

  2. Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein

    PubMed Central

    Wang, Yaoguang; Zhang, Yong; Wu, Dan; Ma, Hongmin; Pang, Xuehui; Fan, Dawei; Wei, Qin; Du, Bin

    2017-01-01

    In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP). Multifunctionalized graphene nanocomposites (TB-Au-Fe3O4-rGO) were applied to modify the electrode to achieve the amplification of electrochemical signal. TB-Au-Fe3O4-rGO includes the advantages of graphene, ferroferric oxide nanoparticles (Fe3O4 NPs), gold nanoparticles (Au NPs) and toluidine blue (TB). As a kind of redox probe, TB can produce the electrochemical signal. Graphene owns large specific surface area, high electrical conductivity and good adsorption property to load a large number of TB. Fe3O4 NPs have good electrocatalytic performance towards the redox of TB. Au NPs have good biocompatibility to capture the antibodies. Due to the good electrochemical performance of TB-Au-Fe3O4-rGO, the effective and sensitive detection of AFP was achieved by the designed electrochemical immunosensor. Under optimal conditions, the designed immunosensor exhibited a wide linear range from 1.0 × 10−5 ng/mL to 10.0 ng/mL with a low detection limit of 2.7 fg/mL for AFP. It also displayed good electrochemical performance including good reproducibility, selectivity and stability, which would provide potential applications in the clinical diagnosis of other tumor markers. PMID:28186128

  3. Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNAzyme catalytic beacons.

    PubMed

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Chen; Xie, Xia; Liu, Yuanyuan; Wang, Jiajia; Tang, Jing; Zhang, Yi; Deng, Yaocheng

    2016-01-01

    A novel label-free impedimetric sensing system based on DNAzyme and ordered mesoporous carbon-gold nanoparticle (OMC-GNPs) for the determination of Pb(2+) concentration was developed in the present study. Firstly, gold nanoparticles deposited on the modified electrode surface were employed as a platform for the immobilization of thiolated probe DNA, and then hybridized with DNAzyme catalytic beacons. Subsequently, in the presence of Pb(2+), the DNAzyme could be activated to cleave the substrate strand into two DNA fragments, which causes differences in the electrical properties of the film. Randles equivalent circuit was employed to evaluate the electrochemical impedance spectroscopy (EIS) result. The charge transfer resistance (R(CT)) value for the [Fe(CN)6](3-/4-) redox indicator was remarkably decline after hybridization with Pb(2+). The difference in RCT values before and after hybridization with Pb(2+) showed a linear relation with the concentration of the Pb(2+) in a range of 5×10(-10)-5×10(-5) M, with a detection limit of 2×10(-10) M (S/N=3). Furthermore, with the application of Pb(2+) dependent 8-17DNAzyme, the proposed sensing system exhibited high selectivity without using any labeled probes. This biosensor demonstrated a promising potential for Pb(2+) detection in real sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Label-Free Biological and Chemical Sensing Using Whispering Gallery Mode Optical Resonators: Past, Present, and Future

    PubMed Central

    Su, Judith

    2017-01-01

    Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed. PMID:28282881

  5. Novel image processing method study for a label-free optical biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  6. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  7. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.

    PubMed

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2018-01-16

    Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Deep Learning in Label-free Cell Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  9. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  10. Deep Learning in Label-free Cell Classification

    DOE PAGES

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  11. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  12. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols.

    PubMed

    Feng, Lingyan; Wu, Li; Xing, Feifei; Hu, Lianzhe; Ren, Jinsong; Qu, Xiaogang

    2017-12-15

    Electrochemiluminescence (ECL) of metal nanoclusters and their application have been widely reported due to the good biocompatibility, fascinating electrocatalytic activity and so on. Using DNA as synthesis template opens new opportunities to modulate the physical properties of AgNCs. Triplex DNA has been reported for the site-specific, homogeneous and highly stable silver nanoclusters (AgNCs) fabrication from our recent research. Here we further explore their extraordinary ECL properties and applications in biosensor utilization. By reasonable design of DNA sequence, AgNCs were obtained in the predefined position of CG.C + sites of triplex DNA, and the ECL emission at a low potential was observed with this novel DNA template. Finally, a simple and label-free method was developed for biothiols detection based on the enhanced catalytic reaction and a robust interaction between the triplex-AgNCs and cysteine, by influencing the microenvironment provided by DNA template. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Label-free detection and identification of waterborne parasites using a microfluidic multi-angle laser scattering system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Limei; Lei, Lei; Li, Feng

    2017-10-01

    A microfluidic-based multi-angle laser scattering (MALS) system capable of acquiring scattering patterns of a single particle is designed and demonstrated. The system includes a sheathless nozzle microfluidic glass chip, and an on-chip MALS unit being in alignment with the nozzle exit in the chip. The size and relative refractive indices (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.002 by comparing the experimental scattering patterns with theoretical ones. We measured scattering patterns of waterborne parasites i.e., Cryptosporidium parvum (C.parvum) and Giardia lamblia (G. lamblia), and some other representative species suspended in deionized water at a maximum flow rate of 12 μL/min, and a maximum of 3000 waterborne parasites can be identified within one minute with a mean accuracy higher than 96% by classification of distinctive scattering patterns using a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free detection of waterborne parasites and other biological contaminants.

  14. Exonuclease III-assisted cascade signal amplification strategy for label-free and ultrasensitive electrochemical detection of nucleic acids.

    PubMed

    Xiong, Erhu; Yan, Xiaoxia; Zhang, Xiaohua; Liu, Yunqing; Zhou, Jiawan; Chen, Jinhua

    2017-01-15

    In this work, a simple, signal-on and label-free electrochemical biosensor for ultrasensitive DNA detection is reported on the basis of an autocatalytic and exonuclease III (Exo III)-assisted cascade signal amplification strategy. In the presence of target DNA (T-DNA), the hybridization between the 3'-protruding DNA fragment of hairpin DNA probe (HP1) and T-DNA triggered the Exo III cleavage process, accompanied by the releasing of T-DNA and autonomous generation of new DNA fragment which was used for the successive hybridization with the another hairpin DNA (HP2) on the electrode. After the Exo III cleavage process, numerous quadruplex-forming oligomers which caged in HP2 were liberated on the electrode surface and folded into G-quadruplex-hemin complexes with the help of K + and hemin to give a remarkable electrochemical response. As a result, a low detection limit of 4.83fM with an excellent selectivity toward T-DNA was achieved. The developed electrochemical biosensor should be further extended for the detection of a wide spectrum of analytes and has great potential for the development of ultrasensitive biosensing platform for early diagnosis in gene-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    PubMed

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  16. Cost-effective and label-free holographic biosensor for detection of herpes simplex virus (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Ho, Ha; Daloglu, Mustafa; Torres, Avee; McLeod, Euan; Ozcan, Aydogan

    2017-03-01

    Herpes is one of the most widespread sexually transmitted viral diseases. Timely detection of Herpes Simplex Virus (HSV) can help prevent the rampant spreading of the virus. Current detection techniques such as viral culture, immuno-assays or Polymerase-Chain-Reaction, are time extensive and require expert handling. Here we present a field-portable, easy-to-use, and cost-effective biosensor for the detection of HSV based on holographic imaging. The virus is first captured from a target solution onto specifically developed substrates, prepared by coating glass coverslips with HSV-specific antibodies, and imaged using a lensfree holographic microscope. Several light-emitting-diodes (LEDs), coupled to multi-mode optical-fibers, are used to illuminate the sample containing the viruses. A micro-controller is used to activate the LEDs one at a time and in-line holograms are recorded using a CMOS imager placed immediately above the substrate. These sub-pixel shifted holograms are used to generate a super-resolved hologram, which is reconstructed to obtain the phase and amplitude images of the viruses. The signal of the viruses is enhanced using self-assembled PEG-based nanolenses, formed around the viral particles. Based on the phase information of the reconstructed images we can estimate the size of the viral particles, with an accuracy of +/- 11 nm, as well as quantify the viral load. The limit-of-detection of this system is estimated to be <500 viral copies per 100 μL sample volume that is imaged over 30 mm^2 field-of-view. This holographic microscopy based biosensor is label-free, cost-effective and field-portable, providing results in 2 hours, including sample preparation and imaging time.

  17. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Chen, Gang; Feng, Shangyuan; Pan, Jianji; Zheng, Xiongwei; Su, Ying; Chen, Yan; Huang, Zufang; Lin, Xiaoqian; Lan, Fenghua; Chen, Rong; Zeng, Haishan

    2012-06-01

    Studies with circulating ribonucleic acid (RNA) not only provide new targets for cancer detection, but also open up the possibility of noninvasive gene expression profiling for cancer. In this paper, we developed a surface-enhanced Raman scattering (SERS), platform for detection and differentiation of serum RNAs of colorectal cancer. A novel three-dimensional (3-D), Ag nanofilm formed by dry MgSO4 aggregated silver nanoparticles, Ag NP, as the SERS-active substrate was presented to effectively enhance the RNA Raman signals. SERS measurements were performed on two groups of serum RNA samples. One group from patients, n=55 with pathologically diagnosed colorectal cancer and the other group from healthy controls, n=45. Tentative assignments of the Raman bands in the normalized SERS spectra demonstrated that there are differential expressions of cancer-related RNAs between the two groups. Linear discriminate analysis, based on principal component analysis, generated features can differentiate the colorectal cancer SERS spectra from normal SERS spectra with sensitivity of 89.1 percent and specificity of 95.6 percent. This exploratory study demonstrated great potential for developing serum RNA SERS analysis into a useful clinical tool for label-free, noninvasive screening and detection of colorectal cancers.

  18. Fluorescent Labeling of Proteins.

    PubMed

    Modesti, Mauro

    2018-01-01

    Many single-molecule experimental techniques exploit fluorescence as a tool to investigate conformational dynamics, molecular interactions, or track the movement of proteins in order to gain insight into their biological functions. A prerequisite to these experimental approaches is to graft one or more fluorophores on the protein of interest with the desired photophysical properties. Here, we describe procedures for efficient methods used to covalently attach fluorophores to proteins. Alternative direct and indirect labeling strategies are also described.

  19. Sequence-specific label-free nucleic acid biosensor for the detection of the hepatitis C virus genotype 1a using a disposable pencil graphite electrode.

    PubMed

    Donmez, Soner; Arslan, Fatma; Arslan, Halit

    2016-05-01

    In this paper, we demonstrate a simple, sensitive, inexpensive, disposable and label-free electrochemical nucleic acid biosensor for the detection of the hepatitis C virus genotype 1a (HCV1a). The nucleic acid biosensor was designed with the amino-linked inosine-substituted 20-mer probes, which were immobilized onto a disposable pencil graphite electrode (PGE) by covalent linking. The proposed nucleic acid biosensor was linear in the range of 0.05 and 0.75 μM, exhibiting a limit of detection of 54.9 nM. The single-stranded synthetic PCR product analogs of HCV1a were also detected with satisfactory results under optimal conditions, showing the potential application of this biosensor.

  20. Trace fluorescent labeling for protein crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusey, Marc, E-mail: marc.pusey@ixpressgenes.com; Barcena, Jorge; Morris, Michelle

    2015-06-27

    The presence of a covalently bound fluorescent probe at a concentration of <0.5% does not affect the outcome of macromolecule crystallization screening experiments. Additionally, the fluorescence can be used to determine new, not immediately apparent, lead crystallization conditions. Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experimentmore » in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent.« less

  1. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anna M.

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2.more » Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.« less

  2. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  3. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  4. On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation.

    PubMed

    Yang, Rui; Pagaduan, Jayson V; Yu, Ming; Woolley, Adam T

    2015-01-01

    Microfluidic systems with monolithic columns have been developed for preconcentration and on-chip labeling of model proteins. Monoliths were prepared in microchannels by photopolymerization, and their properties were optimized by varying the composition and concentration of the monomers to improve flow and extraction. On-chip labeling of proteins was achieved by driving solutions through the monolith by use of voltage then incubating fluorescent dye with protein retained on the monolith. Subsequently, the labeled proteins were eluted, by applying voltages to reservoirs on the microdevice, and then detected, by monitoring laser-induced fluorescence. Monoliths prepared from octyl methacrylate combine the best protein retention with the possibility of separate elution of unattached fluorescent label with 50% acetonitrile. Finally, automated on-chip extraction and fluorescence labeling of a model protein were successfully demonstrated. This method involves facile sample pretreatment, and therefore has potential for production of integrated bioanalysis microchips.

  5. ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS.

    PubMed

    Wan, Cuihong; Liu, Jian; Fong, Vincent; Lugowski, Andrew; Stoilova, Snejana; Bethune-Waddell, Dylan; Borgeson, Blake; Havugimana, Pierre C; Marcotte, Edward M; Emili, Andrew

    2013-04-09

    The experimental isolation and characterization of stable multi-protein complexes are essential to understanding the molecular systems biology of a cell. To this end, we have developed a high-throughput proteomic platform for the systematic identification of native protein complexes based on extensive fractionation of soluble protein extracts by multi-bed ion exchange high performance liquid chromatography (IEX-HPLC) combined with exhaustive label-free LC/MS/MS shotgun profiling. To support these studies, we have built a companion data analysis software pipeline, termed ComplexQuant. Proteins present in the hundreds of fractions typically collected per experiment are first identified by exhaustively interrogating MS/MS spectra using multiple database search engines within an integrative probabilistic framework, while accounting for possible post-translation modifications. Protein abundance is then measured across the fractions based on normalized total spectral counts and precursor ion intensities using a dedicated tool, PepQuant. This analysis allows co-complex membership to be inferred based on the similarity of extracted protein co-elution profiles. Each computational step has been optimized for processing large-scale biochemical fractionation datasets, and the reliability of the integrated pipeline has been benchmarked extensively. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    PubMed Central

    Ghisaidoobe, Amar B. T.; Chung, Sang J.

    2014-01-01

    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  7. Label-free multiphoton microscopy reveals altered tissue architecture in hippocampal sclerosis.

    PubMed

    Uckermann, Ortrud; Galli, Roberta; Leupold, Susann; Coras, Roland; Meinhardt, Matthias; Hallmeyer-Elgner, Susanne; Mayer, Thomas; Storch, Alexander; Schackert, Gabriele; Koch, Edmund; Blümcke, Ingmar; Steiner, Gerald; Kirsch, Matthias

    2017-01-01

    The properties and structure of tissue can be visualized without labeling or preparation by multiphoton microscopy combining coherent anti-Stokes Raman scattering (CARS), addressing lipid content, second harmonic generation (SHG) showing collagen, and two-photon excited fluorescence (TPEF) of endogenous fluorophores. We compared samples of sclerotic and nonsclerotic human hippocampus to detect pathologic changes in the brain of patients with pharmacoresistant temporomesial epilepsy (n = 15). Multiphoton microscopy of cryosections and bulk tissue revealed hippocampal layering and micromorphologic details in accordance with reference histology: CARS displayed white and gray matter layering and allowed the assessment of axonal myelin. SHG visualized blood vessels based on adventitial collagen. In addition, corpora amylacea (CoA) were found to be SHG-active. Pyramidal cell bodies were characterized by intense cytoplasmic endogenous TPEF. Furthermore, diffuse TPEF around blood vessels was observed that co-localized with positive albumin immunohistochemistry and might indicate degeneration-associated vascular leakage. We present a label-free and fast optical approach that analyzes pathologic aspects of HS. Hippocampal layering, loss of pyramidal cells, and presence of CoA indicative of sclerosis are visualized. Label-free multiphoton microscopy has the potential to extend the histopathologic armamentarium for ex vivo assessment of changes of the hippocampal formation on fresh tissue and prospectively in vivo. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  8. Label-free imaging and temporal signature in phenotypic cellular assays: a new approach to high-content screening.

    PubMed

    Martin, Julio

    2010-09-01

    Some drug targets are not amenable to screening because of the lack of a practical or validated biological assay. Likewise, some screening assays may not be predictive of compound activity in a more disease-relevant scenario, or assay development may demand excessive allocation of resources (i.e., time, money or personnel) with limited knowledge of the actual tractability of the target. Label-free methodologies, implemented in microtiter plate format, may help address these issues and complement, simplify, or facilitate assays. Label-free biosensors, based on grating resonance or electrical impedance, are versatile platforms for detecting phenotypic changes in both engineered and native cells. Their non-invasive nature allows for the kinetic monitoring of multiple real-time cellular responses to external stimuli, as well as for the use of successive pharmacological challenges. The temporal signature recorded for a particular stimulus is characteristic of the cell type and the signaling pathway activated upon binding of a ligand to its receptor. Cellular label-free technology is an important technical advance in the study of functional pharmacological selectivity. Described in this overview are some of the hurdles encountered in modern drug discovery and the ways in which label-free technologies can be used to overcome these obstacles.

  9. Label-free resistive-pulse cytometry.

    PubMed

    Chapman, M R; Sohn, L L

    2011-01-01

    Numerous methods have recently been developed to characterize cells for size, shape, and specific cell-surface markers. Most of these methods rely upon exogenous labeling of the cells and are better suited for large cell populations (>10,000). Here, we review a label-free method of characterizing and screening cells based on the Coulter-counter technique of particle sizing: an individual cell transiting a microchannel (or "pore") causes a downward pulse in the measured DC current across that "pore". Pulse magnitude corresponds to the cell size, pulse width to the transit time needed for the cell to pass through the pore, and pulse shape to how the cell traverses across the pore (i.e., rolling or tumbling). When the pore is functionalized with an antibody that is specific to a surface-epitope of interest, label-free screening of a specific marker is possible, as transient binding between the two results in longer time duration than when the pore is unfunctionalized or functionalized with a nonspecific antibody. While this method cannot currently compete with traditional technology in terms of throughput, there are a number of applications for which this technology is better suited than current commercial cytometry systems. Applications include the rapid and nondestructive analysis of small cell populations (<100), which is not possible with current technology, and a platform for providing true point-of-care clinical diagnostics, due to the simplicity of the device, low manufacturing costs, and ease of use. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.

    PubMed

    Timabud, Tarinee; Yin, Xiaojian; Pongdontri, Paweena; Komatsu, Setsuko

    2016-02-05

    High temperature markedly reduces the yields and quality of rice grains. To identify the mechanisms underlying heat stress-induced responses in rice grains, proteomic technique was used. Developing Khao Dawk Mali 105 rice grains at the milky, dough, and mature stages were treated at 40 °C for 3 days. Aromatic compounds were decreased in rice grains under heat stress. The protein abundance involved in glycolysis and tricarboxylic acid cycle, including glyceraldehyde 3-phosphate dehydrogenase and citrate synthase, was changed in milky and dough grains after heat treatment; however, none changes in mature grains. The abundance involved in amino acid metabolism was increased in dough grains, but decreased in milky grains. In addition, the abundance involved in starch and sucrose metabolism, such as starch synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthase, and alpha amylase, was decreased in milky grains, but increased in dough grains. A number of redox homeostasis-related proteins, such as ascorbate peroxidase and peroxiredoxin, were increased in developing rice grains treated with heat stress. These results suggest that in response to heat stress, the abundance of numerous proteins involved in redox homeostasis and carbohydrate biosynthetic pathways may play a major role in the development of KDML105 rice grains. Yield of Khao Dawk Mali 105 rice, which is an economical aromatic rice, was disrupted by environmental stress. Rice grains developed under heat stress caused loss of aroma compound. To identify the mechanism of heat response in rice grain, gel-free/label-free proteomic technique was used. The abundance of proteins involved in glycolysis and tricarboxylic acid cycle was disrupted by heat stress. High temperature limited starch biosynthesis; however, it enhanced sugar biosynthesis in developing rice grains. Redox homeostasis related proteins were disrupted by heat stress. These results suggest that proteins involved in redox homeostasis

  11. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.

    PubMed

    You, Sixian; Tu, Haohua; Chaney, Eric J; Sun, Yi; Zhao, Youbo; Bower, Andrew J; Liu, Yuan-Zhi; Marjanovic, Marina; Sinha, Saurabh; Pu, Yang; Boppart, Stephen A

    2018-05-29

    Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM.

  12. Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy.

    PubMed

    Kusić, Dragana; Rösch, Petra; Popp, Jürgen

    2016-03-01

    Legionellae colonize biofilms, can form a biofilm by itself and multiply intracellularly within the protozoa commonly found in water distribution systems. Approximately half of the known species are pathogenic and have been connected to severe multisystem Legionnaires' disease. The detection methods for Legionella spp. in water samples are still based on cultivation, which is time consuming due to the slow growth of this bacterium. Here, we developed a cultivation-independent, label-free and fast detection method for legionellae in a biofilm matrix based on the Raman spectroscopic analysis of isolated single cells via immunomagnetic separation (IMS). A database comprising the Raman spectra of single bacterial cells captured and separated from the biofilms formed by each species was used to build the identification method based on a support vector machine (SVM) discriminative classifier. The complete method allows the detection of Legionella spp. in 100 min. Cross-reactivity of Legionella spp. specific immunomagnetic beads to the other studied genera was tested, where only small cell amounts of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli compared to the initial number of cells were isolated by the immunobeads. Nevertheless, the Raman spectra collected from isolated non-targeted bacteria were well-discriminated from the Raman spectra collected from isolated Legionella cells, whereby the Raman spectra of the independent dataset of Legionella strains were assigned with an accuracy of 98.6%. In addition, Raman spectroscopy was also used to differentiate between isolated Legionella species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Quantitative Detection of Small Molecule/DNA Complexes Employing a Force-Based and Label-Free DNA-Microarray

    PubMed Central

    Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.

    2009-01-01

    Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688

  14. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A.

    PubMed

    Park, Jin-Ho; Byun, Ju-Young; Mun, Hyoyoung; Shim, Won-Bo; Shin, Yong-Beom; Li, Taihua; Kim, Min-Gon

    2014-09-15

    Binding of an analyte on the surface of a nanoparticle typically promotes a change in the local refractive index, which gives rise to a shift in the wavelength of the localized surface plasmon resonance (LSPR) absorption band. The magnitude of the LSPR wavelength change is dependent on both the location of the analyte relative to the surface of the nanoparticle and the degree of alteration of the refractive index. We have employed this phenomenon as the basis for designing a new, label-free approach for the detection of the toxic mold mycotoxin, ochratoxin A (OTA) that employs a gold nanorod (GNR) and an aptamer target binding mechanism. In this system, binding of OTA causes an accumulation of OTA and G-quadruplex structure of the aptamer. This process results in a longitudinal wavelength shift of the LSPR peak associated with a change in the local refractive index near the GNR surface. By using this method, OTA can be quantitatively detected at concentrations lower than 1 nM. In addition, the results of this effort show that aptamer functionalized GNR substrate is robust in that it can be regenerated for reuse over seven times by heating in methanol at 70 °C to remove OTA. Moreover, the proposed biosensor system exhibits high selectivity for OTA over other mycotoxins. Finally, the sensor can be employed to detect OTA in ground corn samples with excellent recovery levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Label-free photoacoustic nanoscopy

    PubMed Central

    Danielli, Amos; Maslov, Konstantin; Garcia-Uribe, Alejandro; Winkler, Amy M.; Li, Chiye; Wang, Lidai; Chen, Yun; Dorn, Gerald W.; Wang, Lihong V.

    2014-01-01

    Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nanoscopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position, multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. PMID:25104412

  16. A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves.

    PubMed

    Moradi, M; Sattarahmady, N; Rahi, A; Hatam, G R; Sorkhabadi, S M Rezayat; Heli, H

    2016-12-01

    Detection of leishmaniasis is important in clinical diagnoses. In the present study, identification of Leishmania parasites was performed by a label-free, PCR-free and signal-on ultrasensitive electrochemical DNA biosensor. Gold nanoleaves were firstly electrodeposited by an electrodeposition method using spermidine as a shape directing agent. The biosensor was fabricated by immobilization of a Leishmania major specific DNA probe onto gold nanoleaves, and methylene blue was employed as a marker. Hybridization of the complementary single stranded DNA sequence with the biosensor under the selected conditions was then investigated. The biosensor could detect a synthetic DNA target in a range of 1.0×10 -10 to 1.0×10 -19 molL -1 with a limit of detection of 1.8×10 -20 molL -1 , and genomic DNA in a range of 0.5-20ngμL -1 with a limit of detection of 0.07ngμL -1 . The biosensor could distinguish Leishmania major from a non-complementary-sequence oligonucleotide and the tropica species with a high selectivity. The biosensor was applicable to detect Leishmania major in patient samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nanoscale observation of local bound charges of patterned protein arrays by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Kim, S.; Park, S.; Kim, Y. S.

    2008-09-01

    A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 µm, and the 90° rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 µm2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection.

  18. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  19. Fluorescent labeling of tetracysteine-tagged proteins in intact cells.

    PubMed

    Hoffmann, Carsten; Gaietta, Guido; Zürn, Alexander; Adams, Stephen R; Terrillon, Sonia; Ellisman, Mark H; Tsien, Roger Y; Lohse, Martin J

    2010-09-01

    In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder-ethanedithiol (FlAsH-EDT₂). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg⁻¹ of protein, such as G protein-coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT₂ as described takes 2-3 h, depending on the number of samples to be processed.

  20. Detection and localisation of protein-protein interactions in Saccharomyces cerevisiae using a split-GFP method.

    PubMed

    Barnard, Emma; McFerran, Neil V; Trudgett, Alan; Nelson, John; Timson, David J

    2008-05-01

    An alternative method for monitoring protein-protein interactions in Saccharomyces cerevisiae has been developed. It relies on the ability of two fragments of enhanced green fluorescent protein (EGFP) to reassemble and fluoresce when fused to interacting proteins. Since this fluorescence can be detected in living cells, simultaneous detection and localisation of interacting pairs is possible. DNA sequences encoding N- and C-terminal EGFP fragments flanked by sequences from the genes of interest were transformed into S. cerevisiae JPY5 cells and homologous recombination into the genome verified by PCR. The system was evaluated by testing known interacting proteins: labelling of the phosphofructokinase subunits, Pfk1p and Pfk2p, with N- and C-terminal EGFP fragments, respectively, resulted in green fluorescence in the cytoplasm. The system works in other cellular compartments: labelling of Idh1p and Idh2p (mitochondrial matrix), Sdh3p and Sdh4p (mitochondrial membrane) and Pap2p and Mtr4p (nucleus) all resulted in fluorescence in the appropriate cellular compartment.

  1. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles.

    PubMed

    Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang

    2016-08-17

    In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.

    PubMed

    Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei

    2018-01-01

    Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    NASA Astrophysics Data System (ADS)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  4. Relation between clinical mature and immature lymphocyte cells in human peripheral blood and their spatial label free scattering patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li

    2016-07-01

    A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.

  5. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification.

    PubMed

    Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-06-07

    A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.

  6. Rapid Quantitative Detection of Brucella melitensis by a Label-Free Impedance Immunosensor Based on a Gold Nanoparticle-Modified Screen-Printed Carbon Electrode

    PubMed Central

    Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen

    2013-01-01

    A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis. PMID:23881126

  7. Rapid quantitative detection of Brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode.

    PubMed

    Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen

    2013-07-04

    A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 10(4) to 4 × 10(6) CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 10(4) and 4 × 10(5) CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.

  8. Molecular Machine Powered Surface Programmatic Chain Reaction for Highly Sensitive Electrochemical Detection of Protein.

    PubMed

    Zhu, Jing; Gan, Haiying; Wu, Jie; Ju, Huangxian

    2018-04-17

    A bipedal molecular machine powered surface programmatic chain reaction was designed for electrochemical signal amplification and highly sensitive electrochemical detection of protein. The bipedal molecular machine was built through aptamer-target specific recognition for the binding of one target protein with two DNA probes, which hybridized with surface-tethered hairpin DNA 1 (H1) via proximity effect to expose the prelocked toehold domain of H1 for the hybridization of ferrocene-labeled hairpin DNA 2 (H2-Fc). The toehold-mediated strand displacement reaction brought the electrochemical signal molecule Fc close to the electrode and meanwhile released the bipedal molecular machine to traverse the sensing surface by the surface programmatic chain reaction. Eventually, a large number of duplex structures of H1-H2 with ferrocene groups facing to the electrode were formed on the sensor surface to generate an amplified electrochemical signal. Using thrombin as a model target, this method showed a linear detection range from 2 pM to 20 nM with a detection limit of 0.76 pM. The proposed detection strategy was enzyme-free and allowed highly sensitive and selective detection of a variety of protein targets by using corresponding DNA-based affinity probes, showing potential application in bioanalysis.

  9. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection.

    PubMed

    Espina, Juan Gómez; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2015-10-01

    Analytical methods allowing sensitive determination of reduced homocysteine (rHcy), one of the so-called biothiols, in human serum is a topic of growing interest due to its close relation to several human disorders, mainly cardiovascular diseases. Although most widely used analytical strategies to determine total Hcy involve derivatization by means of fluorescent labels, this work proposes the use of ebselen, a Se-containing labelling agent to derivatize the reactive sulfhydryl group of the Hcy molecule in its "free" reduced form, which is more likely to play different roles in disease pathogenesis. Optimization of the derivatization and separation conditions by high-performance liquid chromatography (HPLC) to isolate the excess of derivatizing reagent is carried out here using UV/VIS detection. Further, the study of the Se labelling reaction by electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides a stoichiometry of the derivative of 1:1. The main advantage of using ebselen as a labelling agent is the presence of the Se atom in the molecule that allows the use of inductively coupled plasma mass spectrometry (ICP-MS) as a sensitive and selective Se detector. The coupling of HPLC with ICP-MS provided excellent features for the determination of Se-derivatized rHcy (detection limit of 9.6 nM) in real samples. Quantification was accomplished by using post-column isotope dilution (ID) of Se in serum samples, after precipitation of the main serum proteins. Quantitative results for "free" rHcy turned out to be around 0.18-0.22 μM in serum samples from healthy individuals that could be directly analyzed without sample preconcentration.

  11. Enhanced detection of quantum dots labeled protein by simultaneous bismuth electrodeposition into microfluidic channel.

    PubMed

    Medina-Sánchez, Mariana; Miserere, Sandrine; Cadevall, Miquell; Merkoçi, Arben

    2016-02-01

    In this study, we propose an electrochemical immunoassay into a disposable microfluidic platform, using quantum dots (QDs) as labels and their enhanced detection using bismuth as an alternative to mercury electrodes. CdSe@ZnS QDs were used to tag human IgG as a model protein and detected through highly sensitive stripping voltammetry of the dissolved metallic component (cadmium in our case). The modification of the screen printed carbon electrodes (SPCEs) was done by a simple electrodeposition of bismuth that was previously mixed with the sample containing QDs. A magneto-immunosandwich assay was performed using a micromixer. A magnet placed at its outlet in order to capture the magnetic beads used as solid support for the immunoassay. SPCEs were integrated at the end of the channel as detector. Different parameters such as bismuth concentration, flow rate, and incubation times, were optimized. The LOD for HIgG in presence of bismuth was 3.5 ng/mL with a RSD of 13.2%. This LOD was about 3.3-fold lower than the one obtained without bismuth. Furthermore, the sensitivity of the system was increased 100-fold respect to experiments carried out with classical screen-printed electrodes, both in presence of bismuth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in situ Based on Dual-Labeled DNAzyme.

    PubMed

    Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi

    2018-01-01

    Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.

  13. Label-free optical imaging of nonfluorescent molecules by stimulated radiation.

    PubMed

    Min, Wei

    2011-12-01

    Imaging contrasts other than fluorescence are highly desirable for label-free detection and interrogation of nonfluorescent molecular species inside live cells, tissues, and organisms. The recently developed stimulated Raman scattering (SRS) and stimulated emission microscopy techniques provide sensitive and specific contrast mechanisms for nonfluorescent species, by employing the light amplification aspect of stimulated radiation. Compared to their spontaneous counterparts, stimulated radiation can enhance the imaging performance significantly, making the previously 'dark' molecules observable. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Fluorescent labeling of tetracysteine-tagged proteins in intact cells

    PubMed Central

    Hoffmann, Carsten; Gaietta, Guido; Zürn, Alexander; Adams, Stephen R; Terrillon, Sonia; Ellisman, Mark H; Tsien, Roger Y; Lohse, Martin J

    2011-01-01

    In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder–ethanedithiol (FlAsH-EDT2). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg−1 of protein, such as G protein–coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT2 as described takes 2–3 h, depending on the number of samples to be processed. PMID:20885379

  15. Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ai Cheng; Du, Dan; Chen, Baowei

    2014-09-07

    Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection wasmore » studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.« less

  16. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Shao, Jin-Yu; Wang, Lihong V.

    2017-04-01

    Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification in vivo. The feasibility was first demonstrated by imaging CTC cluster ex vivo. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats in vivo. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters in vivo and showed its potential for tumor metastasis study and cancer therapy.

  17. Label-free in situ imaging of oil body dynamics and chemistry in germination

    PubMed Central

    Waschatko, Gustav; Billecke, Nils; Schwendy, Sascha; Jaurich, Henriette; Bonn, Mischa; Vilgis, Thomas A.

    2016-01-01

    Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ. Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination. Oil bodies undergo a cycle of growth and shrinkage that is paralleled by lipid and protein compositional changes. Specifically, the total protein concentration associated with oil bodies increases in the first phase of germination and subsequently decreases. Lipids contained within the oil bodies change in saturation and chain length during germination. Our results show that CRM is a well-suited platform to monitor in situ lipid dynamics and local chemistry and that oil bodies are actively remodelled during germination. This underscores the dynamic role of lipid reservoirs in plant development. PMID:27798279

  18. RFP tags for labeling secretory pathway proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Liyang; Zhao, Yanhua; Zhang, Xi

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to anmore » environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.« less

  19. Towards a proteome signature for invasive ductal breast carcinoma derived from label-free nanoscale LC-MS protein expression profiling of tumorous and glandular tissue.

    PubMed

    Röwer, Claudia; Vissers, Johannes P C; Koy, Cornelia; Kipping, Marc; Hecker, Michael; Reimer, Toralf; Gerber, Bernd; Thiesen, Hans-Jürgen; Glocker, Michael O

    2009-12-01

    As more and more alternative treatments become available for breast carcinoma, there is a need to stratify patients and individual molecular information seems to be suitable for this purpose. In this study, we applied label-free protein quantitation by nanoscale LC-MS and investigated whether this approach could be used for defining a proteome signature for invasive ductal breast carcinoma. Tissue samples from healthy breast and tumor were collected from three patients. Protein identifications were based on LC-MS peptide fragmentation data which were obtained simultaneously to the quantitative information. Hereby, an invasive ductal breast carcinoma proteome signature was generated which contains 60 protein entries. The on-column concentrations for osteoinductive factor, vimentin, GAP-DH, and NDKA are provided as examples. These proteins represent distinctive gene ontology groups of differentially expressed proteins and are discussed as risk markers for primary tumor pathogenesis. The developed methodology has been found well applicable in a clinical environment in which standard operating procedures can be kept; a prerequisite for the definition of molecular parameter sets that shall be capable for stratification of patients.

  20. Detection of DNA–protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs

    PubMed Central

    Shoulkamy, Mahmoud I.; Nakano, Toshiaki; Ohshima, Makiko; Hirayama, Ryoichi; Uzawa, Akiko; Furusawa, Yoshiya; Ide, Hiroshi

    2012-01-01

    Proteins are covalently trapped on DNA to form DNA–protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 μg of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles. PMID:22730301

  1. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    PubMed

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Determination of dye/protein ratios in a labeling reaction between a cyanine dye and bovine serum albumin by micellar electrokinetic chromatography using a diode laser-induced fluorescence detection.

    PubMed

    Jing, Peng; Kaneta, Takashi; Imasaka, Totaro

    2002-08-01

    The degree of labeling, i.e., dye/protein ratio (D/P) is important for characterizing properties of dye labeling with proteins. A method for the determination of this ratio between a fluorescent cyanine dye and bovine serum albumin (BSA), based on the separation of the labeling mixture using micellar electrokinetic chromatography with diode laser-induced fluorescence detection, is described. Two methods for the determination of D/P were examined in this study. In these methods, a hydrolysis product and impurities, which are usually unfavorable compounds that are best excluded for protein analysis, were utilized to determine the amounts of dye bound to BSA. One is a direct method in which a ratio of the peak area of BSA to the total peak area of all the products produced in the labeling reaction was used for determining the average number of dye molecules bound to a single BSA molecule. The other is an indirect determination, which is based on diminution of all peak areas related to the products except for the labeled BSA. These methods were directly compared by means of a spectrophotometric method. The experimental results show that the indirect method is both reliable and sensitive. Therefore, D/P values can be determined at trace levels using the indirect method.

  3. Labeling of indocyanine green with carrier-free iodine-123

    DOEpatents

    Ansari, Azizullah N.; Lambrecht, Richard M.; Redvanly, Carol S.; Wolf, Alfred P.

    1976-01-01

    The method of labeling indocyanine green (ICG) with carrier-free iodine-123 comprising the steps of condensing xenon-123 on crystals of ICG followed by permitting decay of the .sup.123 Xe a sufficient length of time to produce .sup.123 I-electronically excited ions and atoms which subsequently label ICG.

  4. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.

    PubMed

    Wang, Xiu-Li; Zhu, Ying; Fang, Qun

    2014-01-07

    In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.

  5. One-step nanoimprinted hybrid micro-/nano-structure for in situ protein detection of isolated cell array via localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ali, Riyaz Ahmad Mohamed; Villariza Espulgar, Wilfred; Aoki, Wataru; Jiang, Shu; Saito, Masato; Ueda, Mitsuyoshi; Tamiya, Eiichi

    2018-03-01

    Nanoplasmonic biosensors show high potentials as label-free devices for continuous monitoring in biomolecular analyses. However, most current sensors comprise multiple-dedicated layers with complicated fabrication procedures, which increases production time and manufacturing costs. In this work, we report the synergistic integration of cell-trapping microwell structures with plasmonic sensing nanopillar structures in a single-layered substrate by one-step thermal nanoimprinting. Here, microwell arrays are used for isolating cells, wherein gold-capped nanostructures sense changes in local refractive index via localized surface plasmon resonance (LSPR). Hence, proteins secreted from trapped cells can be label-freely detected as peak shifts in absorbance spectra. The fabricated device showed a detection limit of 10 ng/µL anti-IgA. In Pichia pastoris cells trial analysis, a red shift of 6.9 nm was observed over 12 h, which is likely due to the protein secretion from the cells. This approach provides an inexpensive, rapid, and reproducible alternative for mass production of biosensors for continuous biomolecular analyses.

  6. Selective cell-surface labeling of the molecular motor protein prestin.

    PubMed

    McGuire, Ryan M; Silberg, Jonathan J; Pereira, Fred A; Raphael, Robert M

    2011-06-24

    Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Selective cell-surface labeling of the molecular motor protein prestin

    PubMed Central

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Prestin, a multipass transmembrane protein whose N- an C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. PMID:21651892

  8. Label-free and non-contact optical biosensing of glucose with quantum dots.

    PubMed

    Khan, Saara A; Smith, Gennifer T; Seo, Felix; Ellerbee, Audrey K

    2015-02-15

    We present a label-free, optical sensor for biomedical applications based on changes in the visible photoluminescence (PL) of quantum dots in a thin polymer film. Using glucose as the target molecule, the screening of UV excitation due to pre-absorption by the product of an enzymatic assay leads to quenching of the PL of quantum dots (QDs) in a non-contact scheme. The irradiance changes in QD PL indicate quantitatively the level of glucose present. The non-contact nature of the assay prevents surface degradation of the QDs, which yields an efficient, waste-free, cost-effective, portable, and sustainable biosensor with attractive market features. The limit of detection of the demonstrated biosensor is ~3.5 µm, which is competitive with existing contact-based bioassays. In addition, the biosensor operates over the entire clinically relevant range of glucose concentrations of biological fluids including urine and whole blood. The comparable results achieved across a range of cost-affordable detectors, including a spectrophotometer, portable spectrometer, and iPhone camera, suggest that label-free and visible quantification of glucose with QD films can be applied to low-cost, point-of-care biomedical sensing as well as scientific applications in the laboratory for characterizing glucose or other analytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity

    DOE PAGES

    Qin, Kun; Hu, Shuren; Retterer, Scott T.; ...

    2016-02-05

    Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.

  10. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    PubMed

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  11. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  12. Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker

    PubMed Central

    Haslam, Carrie; Damiati, Samar; Whitley, Toby; Ifeachor, Emmanuel

    2018-01-01

    We report on the development of label-free chemical vapour deposition (CVD) graphene field effect transistor (GFET) immunosensors for the sensitive detection of Human Chorionic Gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFET sensors were fabricated on Si/SiO2 substrate using photolithography with evaporated chromium and sputtered gold contacts. GFET channels were functionalised with a linker molecule to an immobile anti-hCG antibody on the surface of graphene. The binding reaction of the antibody with varying concentration levels of hCG antigen demonstrated the limit of detection of the GFET sensors to be below 1 pg/mL using four-probe electrical measurements. We also show that annealing can significantly improve the carrier transport properties of GFETs and shift the Dirac point (Fermi level) with reduced p-doping in back-gated measurements. The developed GFET biosensors are generic and could find applications in a broad range of medical diagnostics in addition to cancer, such as neurodegenerative (Alzheimer’s and Parkinson’s) and cardiovascular disorders. PMID:29316718

  13. Quantification of free cysteines in membrane and soluble proteins using a fluorescent dye and thermal unfolding.

    PubMed

    Branigan, Emma; Pliotas, Christos; Hagelueken, Gregor; Naismith, James H

    2013-11-01

    Cysteine is an extremely useful site for selective attachment of labels to proteins for many applications, including the study of protein structure in solution by electron paramagnetic resonance (EPR), fluorescence spectroscopy and medical imaging. The demand for quantitative data for these applications means that it is important to determine the extent of the cysteine labeling. The efficiency of labeling is sensitive to the 3D context of cysteine within the protein. Where the label or modification is not directly measurable by optical or magnetic spectroscopy, for example, in cysteine modification to dehydroalanine, assessing labeling efficiency is difficult. We describe a simple assay for determining the efficiency of modification of cysteine residues, which is based on an approach previously used to determine membrane protein stability. The assay involves a reaction between the thermally unfolded protein and a thiol-specific coumarin fluorophore that is only fluorescent upon conjugation with thiols. Monitoring fluorescence during thermal denaturation of the protein in the presence of the dye identifies the temperature at which the maximum fluorescence occurs; this temperature differs among proteins. Comparison of the fluorescence intensity at the identified temperature between modified, unmodified (positive control) and cysteine-less protein (negative control) allows for the quantification of free cysteine. We have quantified both site-directed spin labeling and dehydroalanine formation. The method relies on a commonly available fluorescence 96-well plate reader, which rapidly screens numerous samples within 1.5 h and uses <100 μg of material. The approach is robust for both soluble and detergent-solubilized membrane proteins.

  14. Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry.

    PubMed

    Hmmier, Abduladim; O'Brien, Michael Emmet; Lynch, Vincent; Clynes, Martin; Morgan, Ross; Dowling, Paul

    2017-06-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women throughout the world. The need to detect lung cancer at an early, potentially curable stage, is essential and may reduce mortality by 20%. The aim of this study was to identify distinct proteomic profiles in bronchoalveolar fluid (BALF) and plasma that are able to discriminate individuals with benign disease from those with non-small cell lung cancer (NSCLC). Using label-free mass spectrometry analysis of BALF during discovery-phase analysis, a significant number of proteins were found to have different abundance levels when comparing control to adenocarcinoma (AD) or squamous cell lung carcinoma (SqCC). Validation of candidate biomarkers identified in BALF was performed in a larger cohort of plasma samples by detection with enzyme-linked immunoassay. Four proteins (Cystatin-C, TIMP-1, Lipocalin-2 and HSP70/HSPA1A) were selected as a representative group from discovery phase mass spectrometry BALF analysis. Plasma levels of TIMP-1, Lipocalin-2 and Cystatin-C were found to be significantly elevated in AD and SqCC compared to control. The results presented in this study indicate that BALF is an important proximal biofluid for the discovery and identification of candidate lung cancer biomarkers. There is good correlation between the trend of protein abundance levels in BALF and that of plasma which validates this approach to develop a blood biomarker to aid lung cancer diagnosis, particularly in the era of lung cancer screening. The protein signatures identified also provide insight into the molecular mechanisms associated with lung malignancy.

  15. Gold/silver/gold trilayer films on nanostructured polycarbonate substrates for direct and label-free nanoplasmonic biosensing.

    PubMed

    López-Muñoz, Gerardo A; Estévez, M-Carmen; Vázquez-García, Marc; Berenguel-Alonso, Miguel; Alonso-Chamarro, Julián; Homs-Corbera, Antoni; Lechuga, Laura M

    2018-05-01

    Ultrasmooth gold/silver/gold trilayer nanostructured plasmonic sensors were obtained using commercial Blu-ray optical discs as nanoslits-based flexible polymer substrates. A thin gold film was used as an adhesion and nucleation layer to improve the chemical stability and reduce the surface roughness of the overlying silver film, without increasing ohmic plasmon losses. The structures were physically and optically characterized and compared with nanostructures of single gold layer. Ultrasmooth and chemically stable trilayer nanostructures with a surface roughness <0.5 nm were obtained following a simple and reproducible fabrication process. They showed a figure of merit (FOM) value up to 69.2 RIU -1 which is significantly higher (more than 95%) than the gold monolayer counterpart. Their potential for biosensing was demonstrated by employing the trilayer sensor for the direct and refractometric (label-free) detection of C-reactive protein (CRP) biomarker in undiluted urine achieving a Limit of Detection (LOD) in the pM order. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A sensitive label-free immunosensor for detection α-Fetoprotein in whole blood based on anticoagulating magnetic nanoparticles.

    PubMed

    Xu, Tingting; Chi, Bo; Wu, Fan; Ma, Shangshang; Zhan, Shuyue; Yi, Meihui; Xu, Hong; Mao, Chun

    2017-09-15

    Accurate values of tumor markers in blood play an especially important role in the diagnosis of illness. Here, based on the combination of three techniques include anticoagulant technology, nanotechnology and biosensing technology, a sensitive label-free immunosensor with anti-biofouling electrode for detection α-Fetoprotein (AFP) in whole blood was developed by anticoagulating magnetic nanoparticles. The obtained products of Fe 3 O 4 -ɛ-PL-Hep nanoparticles were characterized by fourier transform infrared (FT-IR) spectra, transmission electron microscopy (TEM), ζ-potential and vibrating sample magnetometry (VSM). Moreover, the blood compatibility of anticoagulating magnetic nanoparticles was characterized by in vitro coagulation tests, hemolysis assay and whole blood adhesion tests. Combining the anticoagulant property of heparin (Hep) and the good magnetism of Fe 3 O 4 , the Fe 3 O 4 -ɛ-PL-Hep nanoparticles could improve not only the anti-biofouling property of the electrode surface when they contact with whole blood, but also the stability and reproducibility of the proposed immunosensor. Thus, the prepared anticoagulating magnetic nanoparticles modified immunosensor for the detection of AFP showed excellent electrochemical properties with a wide concentration range from 0.1 to 100ng/mL and a low detection limit of 0.072ng/mL. Furthermore, five blood samples were assayed using the developed immunosensor. The results showed satisfactory accuracy with low relative errors. It indicated that our developed immunoassay was competitive and could be potentially used for the detection of whole blood samples directly. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  18. Linear-array-based photoacoustic tomography for label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Wang, Lihong V.

    2017-03-01

    Circulating tumor cell (CTC) clusters arise from multicellular grouping in the primary tumor and elevate the metastatic potential by 23 to 50 fold compared to single CTCs. High throughout detection and quantification of CTC clusters is critical for understanding the tumor metastasis process and improving cancer therapy. In this work, we report a linear-array-based photoacoustic tomography (LA-PAT) system capable of label-free high-throughput CTC cluster detection and quantification in vivo. LA-PAT detects CTC clusters and quantifies the number of cells in them based on the contrast-to-noise ratios (CNRs) of photoacoustic signals. The feasibility of LA-PAT was first demonstrated by imaging CTC clusters ex vivo. LA-PAT detected CTC clusters in the blood-filled microtubes and computed the number of cells in the clusters. The size distribution of the CTC clusters measured by LA-PAT agreed well with that obtained by optical microscopy. We demonstrated the ability of LA-PAT to detect and quantify CTC clusters in vivo by imaging injected CTC clusters in rat tail veins. LA-PAT detected CTC clusters immediately after injection as well as when they were circulating in the rat bloodstreams. Similarly, the numbers of cells in the clusters were computed based on the CNRs of the photoacoustic signals. The data showed that larger CTC clusters disappear faster than the smaller ones. The results prove the potential of LA-PAT as a promising tool for both preclinical tumor metastasis studies and clinical cancer therapy evaluation.

  19. An aggregated perylene-based broad-spectrum, efficient and label-free quencher for multiplexed fluorescent bioassays.

    PubMed

    Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin

    2014-08-15

    Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.

    PubMed

    Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas

    2018-04-03

    With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.